

Aalborg Universitet

Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

Wang, Yuanye

Published in: Wimax Evolution

Publication date: 2009

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Wang, Y. (2009). Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems. In M. Katz, & F. Fitzek (Eds.), *Wimax Evolution: Emerging Technologies and Applications* (pp. 335-366). Wiley. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-047069680X,descCd-description.html

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

WiMAX Evolution

WiMAX Evolution

Emerging Technologies and Applications

Marcos D. Katz

VTT, Finland

Frank H.P. Fitzek

Aalborg University, Denmark

This edition first published 2009 © 2009 John Wiley & Sons Ltd

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom.

For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Nokia is a registered trademark of Nokia Corporation. With thanks to Nokia for permitting the use of Nokia trademark images in this publication.

Library of Congress Cataloging-in-Publication Data

Katz, Marcos D.

WiMAX evolution: emerging technologies and applications / Marcos Katz, Frank Fitzek.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-69680-4 (cloth)

1. Wireless communication systems. 2. Broadband communication systems. 3. Mobile communication systems. 4. Wireless LANs. 5. IEEE 802.16 (Standard) I. Fitzek, Frank H. P. II. Title.

TK5103.2.K36 2009

621.384-dc22 2008038550

A catalogue record for this book is available from the British Library.

ISBN 9780470696804 (H/B)

Set in 10/12pt Times by Sunrise Setting Ltd, Torquay, UK. Printed in Great Britain by Antony Rowe.

Contents

LI	ist of Contributors	XV
Fo	preword	xxi
Pr	reface	xxiii
Ac	cknowledgements	xxvii
Li	ist of Acronyms	xxix
I	Introduction	1
1	Introduction to WiMAX Technology Wonil Roh and Vladimir Yanover	3
	1.1 Overview of State-of-the-art WiMAX Technology 1.1.1 Structure of the System Profile 1.1.2 Key PHY Features 1.1.3 Key MAC Features 1.1.4 Advanced Networking Features 1.2 WiMAX Evolution Path 1.2.1 Release 1.5 1.2.2 Release 2.0	4 5 7 9 9
	References	
II	WiMAX Validation: Validating Current Fixed and Mobile WiMAX through Advanced Testbeds	15
2	WiMAX Performance in Practice Kostas Pentikousis, Esa Piri, Jarno Pinola and Ilkka Harjula	17
	2.1 Empirical Evaluations of WiMAX 2.2 Fixed WiMAX Testbed Evaluation 2.2.1 Audio and Video Traffic over WiMAX 2.2.2 Traffic Generation	20

•	~~	A TOTAL TOTAL
V1	(1)	NTENTS
V 1	CO	1111111

		2.2.3 Host Clock Synchronization	22
		2.2.4 Baseline Capacity Measurements	25
	2.3	VoIP Over Fixed WiMAX	26
		2.3.1 VoIP Overhead	26
		2.3.2 Synthetic G.723.1 VoIP Over WiMAX	27
		2.3.3 Synthetic G.729.1 VoIP Over WiMAX	27
		2.3.4 Synthetic Speex VoIP over WiMAX	28
		2.3.5 VoIP Aggregation	29
	2.4	IPTV over fixed WiMAX	34
	2.5	Mobile WiMAX Testbed Evaluation	36
		2.5.1 The VTT CNL Mobile WiMAX Testbed	37
		2.5.2 Baseline Capacity Measurements	38
	2.6	Summary	39
	2.7	Further Reading	40
	Refe	erences	41
П	I N	lovel Scenarios	45
3	Nov	el WiMAX Scenarios for Future Broadband Wireless Access Networks	47
J		o Neves, Kostas Pentikousis, Susana Sargento, Marília Curado, Paulo Simões	-
	1 eur	and Francisco Fontes	
	3.1	Introduction	47
	3.2	WMAN Network Provider	48
		3.2.1 Broadband Wireless Access	48
	2.2	3.2.2 Advanced Mobile WiMAX	54
	3.3	Telemedicine Applications	57
		3.3.1 Remote Patient Monitoring	58
	2.4	3.3.2 On-site Medical Assistance	59
	3.4	Environmental Monitoring	60 60
		3.4.1 Seismic Activity	61
		3.4.3 Other Applications	65
	3.5	Conclusions	66
		erences	66
	1010	Actions	00
4	Pric	ing in WiMAX Networks	69
	Ioan	nis Papapanagiotou, Jie Hui and Michael Devetsikiotis	
	4.1	Introduction	69
	4.2	Economics in Network Engineering	70
	1.2	4.2.1 Building a Business Model	70
		4.2.2 Control and Pricing	71
	4.3	Building the Pricing Schemes	73
		4.3.1 Utility, Demand Functions and Optimization Objectives	73
		4.3.2 Flat-rate Pricing	74
		4.3.3 User-based Pricing	75

CC	NTE	NTS	vii
	4.4 4.5 Refer	Pricing in Different WiMAX Topologies 4.4.1 Point-to-point Unlimited Capacity 4.4.2 Mesh Mode Operation 4.4.3 Point-to-point Limited Capacity 4.4.4 WiMAX/WiFi Architecture Conclusion rences	76 76 77 78 81 83 83
IV	A	dvanced WiMAX Architectures	85
5		IAX Femtocells s Smart, Clare Somerville and Doug Pulley	87
	5.1 5.2 5.3	Introduction	87 87 88 88 89 90 91 92 94 95 95 97 97
	Refe	5.4.3 Downlink Coverage Analysis	
6	_	perative Principles in WiMAX hang, Frank H.P. Fitzek and Marcos D. Katz	105
	6.1 6.2	Introduction	
	6.3	Cooperative Schemes for Multicast Broadcast Services in WiMAX 6.3.1 Cooperative Transmission for Multimedia Multicast Services 6.3.2 Cooperative Retransmission Scheme for Reliable Multicast Services Using Network Coding	115 116
	6.4 6.5 Refer	Network Coding Implementation in the Commercial WiMAX Mobile Device Conclusion	123 125

viii CONTENTS

10	Robust Header Compression for WiMAX Femto Cells Frank H.P. Fitzek, Gerrit Schulte, Esa Piri, Jarno Pinola, Marcos D. Katz, Jyrki Huusko, Kostas Pentikousis and Patrick Seeling	185
V	WiMAX Extensions	183
9	WiMAX Deployments Alexander Bachmutsky 9.1 Introduction	165 167 168 172 172 177 180 181
9	ASN-GW High Availability through Cooperative Networking in Mobile	162
	8.6 Conclusions and Outlook	161
	8.4.4 Implementation Issues	
	8.4.3 Reservation Strategies	156
	8.4.1 Modeling the Coding Gain	
	8.4 Enabling WNC for the IEEE 802.16 MeSH Mode	
	 8.2 Background on the IEEE 802.16 MeSH Mode	147 149
8	WiMAX Mesh Architectures and Network Coding Parag S. Mogre, Matthias Hollick, Christian Schwingenschloegl, Andreas Ziller and Ralf Steinmetz 8.1 Introduction	145
	References	
	7.1 Monitoring with the WSN Paradigm 7.2 Overall System Architecture 7.3 Efficient Access Management Schemes 7.3.1 System Model and Problem Formulation 7.4 Secure Communications Approaches	131 133 135
7	The Role of WiMAX Technology in Distributed Wide Area Monitoring Applications Francesco Chiti, Romano Fantacci, Leonardo Maccari, Dania Marabissi and Daniele Tarchi 7.1. Marita in an italia NYSN Para linear	129

CONTENTS ix

	10.1 Introduction 10.2 ROHC in a Nutshell 10.3 Scenario Under Investigation 10.4 WiMAX and ROHC Measurement Setup 10.5 WiMAX and ROHC Measurements Results 10.5.1 ROHC on WiMAX Downlink 10.5.2 ROHC on WiMAX Uplink 10.5.3 ROHC Capacity Gain 10.6 Conclusion References	186 188 190 192 194 195 196
11	1 A WiMAX Cross-layer Framework for Next Generation Networks	199
11	Pedro Neves, Susana Sargento, Ricardo Matos, Giada Landi, Kostas Pentikousis Marília Curado and Francisco Fontes	
	11.1 Introduction	199
	11.2 IEEE 802.16 Reference Model	200
	11.3 Cross-layer Design for WiMAX Networks	
	11.3.1 Cross-layer Mechanisms for QoS Support	
	11.3.2 Cross-layer Mechanisms for Seamless Mobility Optimization	
	11.4 WEIRD: A Practical Case of WiMAX Cross-layer Design	
	11.4.1 WEIRD Architecture	212
	11.5 WEIRD Framework Performance Evaluation	215
	11.5.1 Cross-layer Signaling Measurements	
	11.5.2 QoS Evaluation	219
		217
	11.6 Summary	
		222
12	11.6 Summary	222
12	11.6 Summary	222 224 227
12	11.6 Summary	222 224 227 227
12	11.6 Summary References References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment	222 224 227 227 228
12	11.6 Summary	222 224 227 227 228 230
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment	222 224 227 227 230 230
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment 12.3.1 Auditory Quality Assessment	222 224 227 227 230 230 230
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment 12.3.1 Auditory Quality Assessment 12.3.2 Instrumental Quality Assessment	222 224 227 228 230 230 231
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment 12.3.1 Auditory Quality Assessment 12.3.2 Instrumental Quality Assessment 12.4 Continuous Speech Quality Assessment for VoIP	222 224 227 228 230 230 231 231
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment 12.3.1 Auditory Quality Assessment 12.3.2 Instrumental Quality Assessment 12.4 Continuous Speech Quality Assessment for VoIP 12.4.1 VoIP Components and their Impact on Speech Quality	222 224 227 228 230 231 231 233
12	11.6 Summary References 2 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro 12.1 Introduction 12.2 Quality of Experience versus Quality of Service Assessment 12.3 Methods for Speech Quality Assessment 12.3.1 Auditory Quality Assessment 12.3.2 Instrumental Quality Assessment 12.4.4 Continuous Speech Quality Assessment for VoIP 12.4.1 VoIP Components and their Impact on Speech Quality 12.4.2 Continuous Assessment of Time-varying QoE 12.4.1 Continuous Assessment of Time-varying QoE 12.4.2 Continuous Assessment of Time-varying QoE	222 224 227 228 230 231 231 233 235
12	References	222 224 227 228 230 230 231 233 235
12	References	222 224 227 228 230 230 231 233 235 237 237
12	References	222 224 227 228 230 231 231 235 237 237 238
12	References	222 224 227 228 230 231 231 235 237 238 238
12	References	222 224 227 228 230 231 231 233 235 237 238 239 240
12	References	222 224 227 228 230 231 231 233 235 237 238 239 240

x CONTENTS

		12.6.2 The Most Simple R-Score Scheduler 12.6.3 Performance Evaluation Conclusion	245248
13	VoII	over WiMAX	251
	Rath	Vannithamby and Roshni Srinivasan	
	13.1	Introduction	251
	13.2	Features to Support VoIP over WiMAX	252
		13.2.1 Silence Suppression using ertPS	
		13.2.2 HARQ	
		13.2.3 Channel Aware Scheduling	
		13.2.4 Protocol Header Compression	
	13.3	Enhanced Features for Improved VoIP Capacity	
		13.3.1 VoIP Traffic Characteristics	
		13.3.2 Dynamic Resource Allocation for VoIP	
		13.3.3 Individual Persistent Scheduling	
		13.3.4 Group Scheduling	
		Simulation Results	
		Conclusion	
	Kere	rences	263
14		IAX User Data Load Balancing under Bachmutsky	265
	14.1	Introduction	265
		Local Breakout Use for Load Balancing	
		14.2.1 Local Breakout at the Base Station Level	
		14.2.2 Local Breakout at the ASN-GW Level	
	14.3	Network-level Load Balancing over Tunneled Interfaces	267
		14.3.1 Is WiMAX Special for the Case of Traffic Load Balancing?	269
		14.3.2 Analysis of Possible Solutions	269
	14.4	Conclusions	276
15		oling Per-flow and System-wide QoS and QoE in Mobile WiMAX	277
	Thon	nas Casey, Xiongwen Zhao, Nenad Veselinovic, Jari Nurmi and Riku Jäntti	
	15.1	Introduction	277
	15.2	Overview	
		15.2.1 Incoming Traffic	
		15.2.2 System and Resources	
		15.2.3 QoS and QoE	
	15.3	Per-flow-based QoS and QoE	
		15.3.1 MAC scheduler considerations	
		$15.3.2\;$ Scheduler Optimization Based on the QoS and QoE Measures $\;$	
	15.4	System-wide Tools for Enabling QoS and QoE	
		15.4.1 Load Balancing	287

15.4.2 HO Prioritization	299
15.5 Conclusions	
References	
VI WiMAX Evolution and Future Developments	305
16 MIMO Technologies for WiMAX Systems: Present and Future Chan-Byoung Chae, Kaibin Huang and Takao Inoue	307
16.1 Introduction	307
16.2 IEEE802.16e: Single-user MIMO Technologies	
16.2.1 Open-loop Solutions	
16.2.2 Closed-loop Solutions	
16.2.3 Limitations	– Part I.
Nonlinear Processing	
16.3.1 System Model	
16.3.2 Vector Perturbation	
16.3.3 Performance of a Vector Perturbation System	
16.4 IEEE802.16m: Evolution Towards Multiuser MIMO Technologies Linear Processing	
16.4.1 Linear Multiuser MIMO: Perfect Channel State Information	
16.4.2 Linear Multiuser MIMO: Limited Feedback	
16.4.3 Linear Multiuser MIMO: Multiuser Diversity	
16.5 Conclusion	
References	
17 Hybrid Strategies for Link Adaptation Exploiting Several Degrees of	
Freedom in WiMAX Systems	335
Suvra Sekhar Das, Muhammad Imadur Rahman and Yuanye Wang	
17.1 Introduction	335
17.2 Link Adaptation Preliminaries	
17.2.1 Trade-offs and Optimization Target	
17.3 Link Adaptation Algorithms	
17.3.1 SAMPDA Algorithm	
17.4 Link Adaptation Scenario	
17.4.1 Link Adaptation Process	
17.4.2 System Parameters	
17.4.3 Frame Structure	
17.5 Role of Power Adaptation in Collaboration with Bit Adaptation.	
17.5.1 AMC and Power Adaptation at the Same Rate	
17.5.2 AMC and Power Adaptation at Different Rates	
17.5.3 Overnead Analysis	
17.6 Link Adaptation Considering Several System issues	
17.6.2 Fixed Coding Rate	
17.0.2 That County Rule	,

xii CONTENTS

	177	17.6.3 AMC Rate	
	1/./	Summary	
		17.7.1 Guidelines for Hybrid Link Adaptation	
		17.7.2 Conclusion from Bit and Power Allocation Analysis	
	Dofor	rences	
	Kelei	tences	303
18		lying WiMAX in New Scenarios: Limitations of the Physical Layer	265
		Possible Solutions	367
	нкка	Harjula, Paola Cardamone, Matti Weissenfelt, Mika Lasanen, Sandrine Boumard, Aaron Byman and Marcos D. Katz	
	18.1	WiMAX in New Scenarios	367
		Channel Model for Mountainous Environments	
	10.2	18.2.1 COST 259/273	
		18.2.2 3GPP/3GPP2 Statistical Channel Model	
		18.2.3 SUI Models and IEEE 802.16a Channel Models	
		18.2.4 WINNER Phase I and II Channel Models	
	18.3	Mountainous Scenario and Channel Modeling	
		18.3.1 Analytical Modeling of the Channel in the Presence of Mountains	
		18.3.2 Extension of the WINNER Phase I Channel Model for the	
		Mountainous Scenario	371
	18.4	Beamforming Algorithms and Simulation	372
		18.4.1 Pre-FFT Receive EVD Beamforming	373
		18.4.2 Post-FFT Receive EVD Beamforming	
		18.4.3 Simulation Results	
		A Timing Synchronization Study in a Mountain Environment	
		Analysis and Conclusions	
	Refe	rences	383
19	Appl	lication of Radio-over-Fiber in WiMAX: Results and Prospects	385
		Luis Corral, Roberto Llorente, Valentín Polo, Borja Vidal, Javier Martí,	
		Jonás Porcar, David Zorrilla and Antonio José Ramírez	
	19.1	Introduction	385
		19.1.1 Radio-over-Fiber systems	385
		19.1.2 Analog Transmission on Fiber State-of-the-Art	387
		19.1.3 Market Overview and Technology Forecast	
	19.2	Optical Transmission of WiMAX Signals	
		19.2.1 Optical Link Key Elements	
		19.2.2 Transmission Performance	
	19.3	WiMAX-on-Fiber Applications	
		19.3.1 Target Applications	
		19.3.2 Transmission Impairments	
		19.3.3 Field Trials	
		Conclusions	
	Refe	rences	398

CONTENTE	•••
CONTENTS	X111
CONTENTS	AIII

	Network Planning and its Part in Future WiMAX Systems Avraham Freedman and Moshe Levin	40 1
	20.1 Introduction	401
	20.2 The Network Planning Process	
-	20.2.1 Data Collection	
	20.2.2 Network Planning	
	20.2.3 Planning Verification and Update	
	20.3 The Impact of WiMAX on Network Planning	
	20.3.1 Flexibility of WiMAX Deployment	
	20.3.2 WiMAX Network Planning	
	20.4 Planning of Future WiMAX Networks	
	20.4.1 Advanced Spatial Techniques	
	20.4.2 Relays, Femtocells and Mesh Networks	
	20.4.3 Cognitive Radios, Self-configuring and Cooperative Networks	
(20.5 Modeling: the Key to Integration of Planning Information	
-	20.5.1 The Problem	
	20.5.2 Suggested Solutions	
	20.6 Conclusions	
	References	
	WiMAX Network Automation: Neighbor Discovery, Capabilities Negotiation, Auto-configuration and Network Topology Learning	425
	Alexander Bachmutsky	
2	21.1 Introduction	425
	21.2 WiMAX Network Elements Auto-discovery	
	21.3 Automatic Learning of the WiMAX Network Topology	
	21.4 Capabilities Exchange	
	21.5 Automatic WiMAX Version Management	
	21.6 Automated Roaming	
	21.7 Conclusion: Network Automation as a WiMAX Differentiator	
	References	
	An Overview of Next Generation Mobile WiMAX: Technology and Prospects	441
	Sassan Ahmadi	
	22.1 Introduction	
	22.2 Summary of IEEE 802.16m System Requirements	
	22.3 Areas of Improvement and Extension in Mobile WiMAX	
	22.4 IEEE 802.16m Architecture and Protocol Structure	
	22.5 IEEE 802.16m Mobile Station State Diagram	
	22.6 IEEE 802.16m Physical Layer	
	22.7 IEEE 802.16m MAC Layer	
2	22.8 Conclusions	462
]	References	462
nde	P y	463
		70.

List of Contributors

Sassan Ahmadi

Intel Corporation
Mail Stop: JF3-336
2111 NE 25th Avenue
Hillsboro
OR 97124
USA

sassan.ahmadi@intel.com

Alexander Bachmutsky

Nokia Siemens Networks 313 Fairchild Drive Mountain View CA 94043 USA

alexander.bachmutsky@nsn.com

Thomas Michael Bohnert SAP Research CEC Zurich

Kreuzstrasse 20 8008 Zurich Switzerland thomas.michael.bohnert@sap.com and tmb@nqinet.de

Sandrine Boumard

VTT Technical Research Centre of Finland Kaitoväylä 1 FI-90571 Oulu Finland sandrine.boumard@vtt.fi

Aaron Byman

EB Corp.
Tutkijantie 7
90570 Oulu
Finland
Aaron.Byman@elektrobit.com

Paola Cardamone

THALES Security Solutions and Services S.p.A. via Provinciale Lucchese, 33 50019 Sesto Fiorentino Firenze Italy paola.cardamone@gmail.com

Thomas Casev

Elektrobit
Keilasatama 5
02150 Espoo
Finland
thomas.casey@elektrobit.com

Chan-Byoung Chae

Wireless Networking and Communications Group Department of Electrical and Computer Engineering

The University of Texas at Austin Austin, TX

USA

cbchae@ece.utexas.edu

Francesco Chiti

Department of Electronics and Telecommunications University of Florence via di S. Marta 3 I-50139 Florence Italy francesco.chiti@unifi.it

Juan Luis Corral

Nanophotonics Technology Center Universidad Politécnica de Valencia Camino de Vera s/n 46022 Valencia Spain jlcorral@ntc.upv.es Marília Curado

DEI-CISUC

University of Coimbra Polo II, Pinhal de Marrocos

3030-290 Coimbra

Portugal

marilia@dei.uc.pt

Suvra Sekhar Das Ph.D

Tata Consultancy Services

Innovation Lab, Convergence Practice,

Tata Consultancy Services

Kolkata

India

suvra.das@tcs.com

Michael Devetsikiotis

Electrical and Computer Engineering North Carolina State University

Raleigh

NC 27695-7911

USA

mdevets@ncsu.edu

Romano Fantacci

Department of Electronics and

Telecommunications

University of Florence

via di S. Marta 3

I-50139 Florence

Italy

romano.fantacci@unifi.it

Frank H.P. Fitzek

Electronic Systems - Mobile Device Group

Aalborg University

Denmark

ff@es.aau.dk

Francisco Fontes

Portugal Telecom Inovação

R. Eng. José Ferreira Pinto Basto

3810-106 Aveiro

Portugal

fontes@ptinovacao.pt

Avraham Freedman

Hexagon System Engineering Ltd

P.O. Box 10149

14 Imber Street

Suite 51

Petach Tikva 49001

Israel

avif@hexagonltd.com

Ilkka Harjula

VTT Technical Research Centre of Finland

Kaitoväylä 1 FI-90571 Oulu

Fi-905/1 Finland

ilkka.harjula@vtt.fi

Matthias Hollick

Multimedia Communications Lab (KOM)

TU Darmstadt

Merckstr. 25

64283 Darmstadt

Germany

matthias.hollick@kom.tu-darmstadt.de

Kaibin Huang

Department of Electrical and Electronic

Engineering

Hong Kong University of Science and

Technology

Hong Kong

huangkb@ieee.org

Jie Hui

Intel Communication Technology Lab

Portland, Oregon

USA

Jie.Hui@intel.com

Jyrki Huusko

VTT Technical Research Centre of Finland

Kaitoväylä 1

FI-90571 Oulu

Finland

Jyrki.Huusko@vtt.fi

Takao Inoue

Wireless Networking and Communications

Group

Department of Electrical and Computer

Engineering

The University of Texas at Austin

Austin, TX

USA

inoue@ece.utexas.edu

Riku Jäntti

Department of Communications and Networking

Helsinki University of Technology

PL 3000

02015 TKK Espoo

Finland

riku.jantti@tkk.fi

Marcos D. Katz

VTT Technical Research Centre of Finland

Kaitoväylä 1 FI-90571 Oulu

Finland

Marcos.Katz@vtt.fi

Giada Landi

Nextworks

Via Turati, 43

56125 Pisa

Italy

g.landi@nextworks.it

Mika Lasanen

VTT Technical Research Centre of Finland

Kaitoväylä 1 FI-90571 Oulu

Finland

mika.lasanen@vtt.fi

Moshe Levin

Hexagon System Engineering Ltd

P.O. Box 10149

14 Imber Street, Suite 51

Petach Tikva 49001

Israel

moshe@hexagonltd.com

Roberto Llorente

Nanophotonics Technology Center

Universidad Politécnica de Valencia

Camino de Vera s/n

46022 Valencia

Spain

jlcorral@ntc.upv.es

Leonardo Maccari

Department of Electronics and

Telecommunications

University of Florence

via di S. Marta 3

I-50139 Florence

Italy

leonardo.maccari@unifi.it

Dania Marabissi

Department of Electronics and

Telecommunications

University of Florence

via di S. Marta 3

I-50139 Florence

Italy

dania.marabissi@unifi.it

Javier Martí

Nanophotonics Technology Center

Universidad Politécnica de Valencia

Camino de Vera s/n

46022 Valencia

Spain

jmarti@ntc.upv.es

Ricardo Matos

IT/UA Telecommunications Institute/University

of Aveiro

Campus Universitário de Santiago

3810-193 Aveiro

Portugal

ricardo.matos@ua.pt

Parag S. Mogre

Multimedia Communications Lab (KOM)

TU Darmstadt

Merckstr. 25

64283 Darmstadt

Germany

parag.mogre@kom.tu-darmstadt.de

Edmundo Monteiro

University of Coimbra

Pinhal de Marrocos, Polo II

3030 Coimbra

Portugal

edmundo@dei.uc.pt

Pedro Neves

Portugal Telecom Inovação

R. Eng. José Ferreira Pinto Basto

3810-106 Aveiro

Portugal

pedro-m-neves@ptinovacao.pt

Jari Nurmi

Elektrobit

Kehräämöntie 5

87400 Kajaani

Finland

jari.nurmi@elektrobit.com

Ioannis Papapanagiotou

Electrical and Computer Engineering

North Carolina State University

Raleigh

NC 27695-7911

USA

ipapapa@ncsu.edu

Kostas Pentikousis

VTT Technical Research Centre of Finland Kaitoväylä 1 FI-90571 Oulu Finland

kostas.pentikousis@vtt.fi

Jarno Pinola

VTT Technical Research Centre of Finland Kaitoväylä 1 FI-90571 Oulu Finland jarno.pinola@vtt.fi

Esa Piri

VTT Technical Research Centre of Finland Kaitoväylä 1 FI-90571 Oulu Finland esa.piri@vtt.fi

Valentín Polo

AIMPLAS València Parc Tecnològic C/ Gustave Eiffel, 4 46980 Paterna Spain

vpolo@aimplas.es

Jonás Porcar

DAS Photonics S.L. Camino de Vera s/n Building 8F 46022 Valencia Spain jporcar@dasphotonics.com

Doug Pulley

picoChip
Riverside Buildings
108 Walcot Street
Bath BA1 5BG
UK
doug.pulley@picochip.com

Muhammad Imadur Rahman Ph.D

Center for TeleInFrastrutur (CTIF) Department of Electronic Systems Aalborg University Denmark imr@ieee.org

Antonio José Ramírez

DAS Photonics S.L.
Camino de Vera s/n
Building 8F
46022 Valencia
Spain
aramirez@dasphotonics.com

Wonil Roh

Samsung Electronic Corp., Ltd 416 Maetan-3dong Yeongtong-gu Suwon-city Gyeonggi-do, 443-742 Korea wonil.roh@samsung.com

Susana Sargento

IT/UA Telecommunications Institute/University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal susana@ua.pt

Gerrit Schulte

acticom Am Borsigturm 42 13507 Berlin Germany

Christian Schwingenschloegl

Siemens AG
Corporate Technology, Information and
Communication
Otto-Hahn-Ring 6
81730 Munich
Germany
chris.schwingenschloegl@siemens.com

Patrick Seeling

Department of Computing and New Media Technologies University of Wisconsin - Stevens Point Science Building, Room B243 Stevens Point WI 54481 USA pseeling@uwsp.edu

Paulo Simões

DEI-CISUC

University of Coimbra Polo II, Pinhal de Marrocos 3030-290, Coimbra

Portugal

psimoes@dei.uc.pt

Chris Smart

picoChip

Riverside Buildings 108 Walcot Street Bath BA1 5BG

UK

chris.smart@picochip.com

Clare Somerville

picoChip

Riverside Buildings 108 Walcot Street Bath BA1 5BG

UK

clare.somerville@picochip.com

Roshni Srinivasan

Intel Corporation

2200 Mission College Boulevard RNB 5-123

Santa Clara CA 95052 USA

roshni.srinivasan@intel.com

Dirk Staehle

University of Wuerzburg Institute of Computer Science Chair of Distributed Systems

Am Hubland

D-97074 Wuerzburg

Germany

dstaehle@informatik.uni-wuerzburg.de

Ralf Steinmetz

Multimedia Communications Lab (KOM)

TU Darmstadt Merckstr. 25 64283 Darmstadt

Germany

ralf.steinmetz@kom.tu-darmstadt.de

Daniele Tarchi

Department of Electronics and

Telecommunications

University of Florence

via di S. Marta 3

I-50139 Florence

Italy

daniele.tarchi@unifi.it

Rath Vannithamby

Intel Corporation

2111 NE 25th Avenue

Mail Stop JF3-206

Hillsboro

OR 97124

USA

rath.vannithamby@intel.com

Borja Vidal

Nanophotonics Technology Center

Universidad Politécnica de Valencia

Camino de Vera s/n

46022 Valencia

Spain

borvirod@ntc.upv.es

Nenad Veselinovic

Elektrobit

Keilasatama 5

02150 Espoo

Finland

nenad.veselinovic@elektrobit.com

Yuanye Wang M.Sc

Aalborg University

Radio Access Technology Section

Department of Electronic Systems

Aalborg University

Denmark

ywa@es.aau.dk

Matti Weissenfelt

VTT Technical Research Centre of Finland

Kaitoväylä 1 FI-90571 Oulu

Finland

matti.weissenfelt@vtt.fi

Vladimir Yanover

Alvarion Ltd

11/4 Nahshon Str.

Kfar Saba 44447

Israel

vladimir.yanover@alvarion.com

Qi Zhang

Department of Communications,
Optics and Materials
Technical University of Denmark
Denmark
qz@com.dtu.dk

Xiongwen Zhao

Elektrobit Keilasatama 5 02150 Espoo Finland

xiongwen.zhao@elektrobit.com

Andreas Ziller

Siemens AG
Corporate Technology, Information and
Communication
Otto-Hahn-Ring 6
81730 Munich
Germany
andreas.ziller@siemens.com

David Zorrilla

DAS Photonics S.L. Camino de Vera s/n Building 8F 46022 Valencia Spain

dzorrilla@dasphotonics.com

Foreword

Mobile WiMAX: the Enabler for the Mobile Internet Revolution

The Internet has become one the most important assets for the growth of economies across the globe. More than a billion people use the Internet at their workplace and in their daily lives for business interactions, social interactions and entertainment. The Internet has had a profound effect on the economy of developed and developing nations having made economic activity more efficient, accessible and affordable. Most of the productivity gains in today's economies are thanks to the Internet and ecommerce. There have been profound social impacts from increased the access to valuable information and social interaction between the masses. The impact is at many socioeconomic levels: business productivity, energy savings, healthcare delivery, improved government functions, education, improved citizen interactions (locally and globally), etc. Despite the benefits of the Internet, today only about 20% of the World's population have access to the Internet. In particular, the emerging countries that could benefit greatly are seriously deprived of this valuable asset. There are a number of reasons for the small number of users in the emerging countries: lack of infrastructure, affordability of personal computers, unaffordable access fees, etc.

The next big step in the evolution of the Internet is ubiquitous availability enabled through mobile Internet. This revolutionary step is poised to increase the value of the Internet enormously as it will create a fundamental shift in the use of the Internet by bringing the Internet to the users as opposed to users having to go to the Internet. For this vision to become a reality, a number of requirements need to be met. First and foremost, affordable and ubiquitous mobile Internet access needs to be provided using the mobile cellular concept. This is poised to be fulfilled thanks to mobile WiMAX. Secondly, affordable and low-power mobile Internet devices and mobile PCs are needed. This is also happening with the computer industry making huge strides in making these devices more affordable. The low-cost netbook category with examples such as the ASUS Eee PC and variety of small mobile PCs or Mobile Internet Devices (MIDs) are now available and will undoubtedly become even more affordable in the near future.

Mobile WiMAX has been designed with the purpose of enabling mobile Internet from the physical layer to the network layer. The physical layer design relies on Orthogonal Frequency Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO) as the two key technologies to optimize coverage and spectral efficiency. In addition, sophisticated techniques for link adaptation and error control provide improved performance and robustness. Mobile WiMAX technology includes many other important aspects such as security

xxii FOREWORD

and power-saving methods, provisions for location-based services, support for hierarchical deployments, quality-of-service, and open Internet user and network management schemes, which are essential in enabling deployment and consumer adoption of the technology.

The Internet is dynamic by nature and is evolving rapidly on the application level and creating ever-increasing demands on connectivity. Studies indicate that Internet traffic has been doubling roughly every two years. Mobile Internet will undoubtedly change the Internet as we know it today and may create even more traffic than ever anticipated. Mobile WiMAX needs to evolve constantly to keep up with the growth of mobile Internet. The WiMAX industry has already been working on the next technology in IEEE 802.16m to build the basis for the next generation of mobile Internet.

This book provides the material that is essential to understand the underlying concepts for mobile WiMAX and it also provides an overview of technologies that will enable the evolution of the technology in the future. I sincerely hope that the book will further motivate researchers and developers to create innovative ideas and techniques that will help fulfill the promise of the new era of mobile Internet.

Siavash M. Alamouti, Intel Fellow Chief Technology Officer, Mobile Wireless Group

Preface

The remarkable development of wireless and mobile communications in the last two decades is a unique phenomenon in the history of technology. Even the most optimistic predictions on penetration of mobile subscribers and capabilities of wireless devices have been surpassed by reality. In a quarter of century the number of mobile subscribers soared from a few to half the world population (in 2008), and according to some forecasts by 2010 the number of mobile users will exceed the number of toothbrush users (four billion). The Wireless World Research Forum (WWRF) envisions that by year 2017 there will be seven trillion wireless devices serving seven billion people. Two main development directions in untethered communications can be identified, wide-area communications, with the omnipresent cellular systems as the most representative example, and short-range communications, involving an array of networking technologies for providing wireless connectivity over short distances, for instance Wireless Local Area Networks (WLANs), Wireless Personal Area Networks (WPANs), Wireless Body Area Networks (WBANs), Wireless Sensor Networks (WSNs), Bluetooth, etc. Recent years have witnessed an enormous growth in interest in the metropolitan wireless networks. This should not be a surprise, as in 2008, for the first time in history more than half of the world population lives in urban areas, according to the United Nations Population Fund. WiMAX (Worldwide Interoperability for Microwave Access) is the most representative worldwide initiative focusing on metropolitan communications. WiMAX, based on the IEEE 802.16 standard, defines wireless networks combining key characteristics of wide-area cellular networks as well as short-range networks. namely mobility and high data throughput. IEEE 802.16 is a very active and rapidly evolving standard that serves as the fundamental basis for WiMAX systems. Several amendments are currently being developed addressing particular technical aspects or capabilities, including 802.16g, 802.16h, 802.16j, 802.16j, 802.16k and 802.16m. There are already several books dealing with WiMAX technology, describing mostly the basic operating principles, current standards and associated technical solutions. The current vertiginous developments in the WiMAX arena have lead the Editors to conceive of this book, taking over where most of the published WiMAX volumes left off, that is, looking in future directions. Leading research scientists and engineers from key WiMAX industry, academia and research centers worldwide have contributed to this book with their ideas, concepts, concrete technical suggestions and visions.

As WiMAX as a whole encompasses a very broad area, it is impossible to find a single author able to write in detail about a large array of advanced concepts and solutions applicable at different system levels of WiMAX: the Editors have thus invited specialists in the field to contribute with their ideas in different chapters. The goal of this book is

xxiv PREFACE

Figure 1 WiMAX evolution: organization of the book.

to create concrete supportive links between the presented concepts and future metropolitan communication systems, discussing technical solutions as well as novel identified scenarios, business applications and visions that are likely to become integral parts of the future WiMAX. Thus, this book tries to answer questions including the following. Which are the emerging WiMAX technologies that are being developed? What are the new scenarios for deploying WiMAX? What are the most promising WiMAX applications and business? How are standards evolving? What are the visions of industry? What are the capabilities and measured performance of real (commercial) WiMAX systems?

As shown in Figure 1, this book has been organized into six independent parts, covering different aspects of WiMAX technology and its evolution. Part One overview of the current state of WiMAX technology, serving as an introduction to WiMAX. Part Two presents measurements and validation results carried out on real state-of-the-art WiMAX testbeds (fixed and mobile), providing unique results on the achievable capabilities of commercial equipment operating in real scenarios. Novel scenarios and business cases for WiMAX are considered in Part Three. In Part Four new promising architectures for WiMAX are discussed, including wireless sensor networks, mesh and cooperative networking as well as femtocells. Part Five discusses several extensions to the current WiMAX, that is, new solutions that can be used in conjunction with the current WiMAX standard. Finally, Part Six looks into technical developments beyond the immediate WiMAX future, including PHY and MAC evolution, prospects and visions, emerging technologies, evolution of standards, etc.

WiMAX Evolution: Emerging Technologies and Applications is a book intended for research, development and standardization engineers working in industry, as well as for scientists in academic and research institutes. Graduate students conducting research in

PREFACE xxv

WiMAX and next generation mobile communications will also find in this book relevant material for further research. The Editors think that this book provides novel views and detailed technical solutions, foreseeing future WiMAX while being a stimulating source of inspiration for further advanced research in the field.

The Editors welcome any suggestions, comments or constructive criticism on this book. Such feedback will be used to improve forthcoming editions. The Editors can be contacted at wimaxeditor@es.aau.dk.

Marcos D. Katz VTT (Technical Research Centre of Finland), Finland

Frank H.P. Fitzek *Aalborg University, Denmark*

September 2008

Acknowledgements

At times, our own light goes out, and is rekindled by a spark from another person. Each of us has cause to think with deep gratitude of those who have lighted the flame within us.

Albert Schweitzer

The Editors are deeply indebted to each and every contributor to this book. Without the valuable contributions and enthusiastic participation of specialists around the globe this book would have never been possible. We wish to place on record our deep appreciation to all of the authors of the chapters, who are, in alphabetical order:

Sassan Ahmadi, Alexander Bachmutsky, Sandrine Boumard, Aaron Byman, Thomas Bohnert, Paola Cardamone, Thomas Casey, Chan-Byoung Chae, Francesco Chiti, Juan Luis Corral, Marília Curado, Suvra Sekhar Das, Michael Devetsikiotis, Romano Fantacci, Francisco Fontes, Avraham Freedman, Ilkka Harjula, Matthias Hollick, Kaibin Huang, Jie Hui, Jyrki Huusko, Takao Inoue, Riku Jäntti, Giada Landi, Mika Lasanen, Moshe Levin, Roberto Llorente, Leonardo Maccari, Dania Marabissi, Javier Martí, Ricardo Matos, Parag S. Mogre, Edmundo Monteiro, Pedro Neves, Jari Nurmi, Ioannis Papapanagiotou, Kostas Pentikousis, Jarno Pinola, Esa Piri, Valentín Polo, Jonás Porcar, Doug Pulley, Muhammad Imadur Rahman, Antonio Ramírez, Wonil Roh, Susana Sargento, Gerrit Schulte, Christian Schwingenschloegl, Patrick Seeling, Paulo Simões, Chris Smart, Clare Somerville, Roshni Srinivasan, Dirk Staehle, Ralf Steinmetz, Daniele Tarchi, Rath Vannithamby, Nenad Veselinovic, Borja Vidal, Yuanye Wang, Matti Weissenfelt, Vladimir Yanover, Qi Zhang, Xiongwen Zhao, Andreas Ziller and David Zorrilla.

We would like to express our gratitude to several people and organizations that supported this book. First, we are grateful to Mr Siavash Alamouti, Intel Fellow and CTO of the Mobile Wireless Group, for his motivating and enlightening foreword.

VTT, the Technical Research Centre of Finland, provided financial and logistical support for the preparation of this book. We are grateful to Technology Director Dr Jussi Paakkari, Technology Manager Kyösti Rautiola and Research Professor Dr Aarne Mämmelä for their unconditional support during this initiative. We also thank our research colleagues at VTT (Communications Platform Group, and in particular the Cooperative and Cognitive Networks Team) for their technical contributions, motivating discussions and for creating a truly pleasant working atmosphere. Our colleagues from the Converging Networks Laboratory (CNL) also deserve our deep appreciation, particularly Dr Marko Jurvansuu, Jyrki Huusko, Marko Palola, Dr Kostas Pentikousis and Dr Martin Varela Rico.

The European Project WEIRD (WiMAX Extension to Isolated Research Data Networks), coordinated and technically supervised by Enrico Angori (Datamat, Italy) and Marcos Katz, respectively, was the source of several chapters of this book. We are grateful to the WEIRD consortium and its people across Europe for the received support. For their support and enlightening discussions, we are also grateful to Gerrit Schulte (acticom, Germany), Kari Horneman (Nokia Siemens Networks, Finland), Dr Wonil Roh (Samsung Electronic Corp., Ltd, Korea), Dr Jaakko Talvitie (Elektrobit, Finland) and Professor Garik Markarian (Lancaster University, UK).

Parts of the book were financed by the X3MP project granted by the Danish Ministry of Science, Technology and Innovation. Furthermore we would like to thank our colleagues from Aalborg University, Denmark for their support, namely Børge Lindberg, Ben Krøyer, Peter Boie Jensen, Bo Nygaard Bai, Henrik Benner, Finn Hybjerg Hansen and Svend Erik Volsgaard.

The Editors would like to thank Nokia for providing invaluable technical support as well as mobile devices for testing purposes. Special thanks go to Harri Pennanen, Nina Tammelin and Per Møller from Nokia. We are grateful to Jarmo Tikka (Nokia) who kindly provided the N810 wireless tablets that were used in the measurement setup of Chapter 6. Particular thanks go to Alberto Bestetti and Antonio Cimmino (Alcatel-Lucent, Italy) and Arto Grönholm (Alcatel-Lucent, Finland) for support with the WiMAX equipment used in some of the measurement test-beds.

We thank John Wiley & Sons Ltd, for their encouragement and support during the process of creating this book. Special thanks to Tiina Ruonamaa, Anna Smart and Sarah Tilley for their kindness, patience, flexibility and professionalism. Birgitta Henttunen from VTT, Finland is acknowledged for her support in many administrative issues.

Finally, the Editors would like to thank their respective families for their support and understanding during the entire process of creating this book.

List of Acronyms

μC MicroController

16-QAM 16 Quadrature Amplitude Modulation

2G 2nd Generation

3G 3rd Generation

3GPP 3rd Generation Partnership Project

3GPP2 3rd Generation Partnership Project 2

4G Fourth Generation

A/V Audio/Visual

AAA Authentication, Authorization and Accounting

AAS Adaptive Antenna System

AC Admission Control; Antenna Circulation

ACIR Adjacent Channel Interference Ratio

ACK Acknowledgement

ACR Absolute Category Rating

ADSL Asymmetric Digital Subscriber Line

AG Antenna Grouping

AMC adaptive modulation and coding

AMR Adaptive Multi-Rate

AMS Adaptive MIMO Switching

AP Access Point

APD Adaptive Power Distribution

APFR Adaptive Power Fixed Rate

API Application Programming Interface

APMC Adaptive Power, Modulation and Coding

AQ Assessed QoS

ARP Address Resolution Protocol

ARQ Automatic Repeat Request

AS Antenna Selection

ASN Access Service Network

ASN-GW Access Service Network Gateway

ATM Asynchronous Transfer Mode

AVC Advanced Video Coding

AWGN Additive White Gaussian Noise

BD Block Diagonalization

BE Best Effort

BER Bit Error Rate

BF Beamforming

BGP Border Gateway Protocol (routing)

BLER Block Error Rate

BOM Bill Off Materials

bps Bits Per Second

BPSK Binary Phase Shift Keying

BS Base Station

BSID Base Station Identifier

BWA Broadband Wireless Access

C/I Carrier to Interference Ratio

CAPEX Capital Expenditures

CATV Cable Television

CBC Cipher Block Chaining

CBF Coordinated Beamforming

CBR Constant Bit Rate

CC Chase Combining; Convolutional Code; Coordination Center

CCF Call Control Function

CCP2P Cellular Controlled Peer to Peer

CDF Cumulative Distribution Function

CDL Clustered Delay Line

CDMA Code Division Multiplex Access

CELP Code Excited Linear Prediction

CH Compressed Header

C/I Carrier-to-Interference Ratio

CID Connection Identifier

CI-STBC Coordinate Interleaved Space—Time Block Code

CMIP Client Mobile IP

CN Correspondent Node

CN Core Network

CNL VTT Converging Networks Laboratory

CNR Channel-to-Noise Ratio

CoA Care-of-Address

CODEC Compression/Decompression

COST European Cooperation in the Field of Scientific and Technical Research

COTS Commercial Off The Shelf

CP Cyclic Prefix

CPE Customer Premises Equipment

CPS Common Part Sublayer

CPU Central Processing Unit

COI Channel Quality Indicator

CQICH Channel Quality Indicator Channel

CRC Cyclic Redundancy Check

CS Convergence Sublayer

C-SAP Control Service Access Point

CSG Closed Subscriber Group

CSI Channel State Information

CSN Connectivity Services Network

CTS Clear to Send

DAS Distributed Antenna System

DCA Dynamic Channel Allocation

DCD Downlink Channel Descriptor

DCF Discounted Cash Flow

DES Data Encryption Standard

DFB Distributed Feedback

DHCP Dynamic Host Configuration Protocol

DL Downlink

DMTBR Dynamic Multiple-Threshold Bandwidth Reservation

DNS Domain Name System

DNS-SD Dynamic Name System Service Discovery

DPT Dirty Paper Theory

DRR Deficit Round Robin

DRX Discontinuous Reception

DS-CDMA Direct Sequence Code Division Multiple Access

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

DWRR Deficit Weighed Round Robin

EAP Extensible Authentication Protocol

ECMP Equal Cost Multi-Path

EDF Earliest Deadline First

EpBR Energy per Bit Ratio

ertPS Extended Real-Time Polling Service

ERT-VR Extended Real-Time Variable Rate

ESP Encapsulating Security Payload

ETX Expected Transmission Count

EVD Eigenvalue Decomposition

EVRC Enhanced Variable Rate Codec

FA Foreign Agent

FBSS Fast Base Station Switching

FCH Frame Control Header

FDD Frequency-Division Duplex

FDM Frequency Division Multiplexing

FEC Forward Error Correction

FER Frame Error Rate

FFMS Forest Fire Monitoring Station

FFT Fast Fourier Transform

FIFO First In First Out

FP Framework Programme

FPAR Fixed Power Adaptive Rate

FPGA Field-programmable Gate Array

FTP File Transfer Protocol

FUSC Fully Used Subcarriers

GA Generic Adapter

LIST OF ACRONYMS xxxi

GIS Geographic Information Systems IPv6 Internet Protocol version 6 **GIST** General Internet Signaling Transport IQ Intrinsic QoS GMH Generic MAC Header IOA Instrumental Quality Assessment IRR Internal Rate of Return GoS Grade of Service ISD Inter-site Distance GPRS General Packet Radio Service **IST** Information Society Technologies **GPS** Global Positioning System ITU International Telecommunications Union **GRE** Generic Routing Encapsulation **kbps** kilobits per second (1000 bits s^{-1}) **GSM** Global System for Mobile Communications KPI Key Performance Indicator **GTP** GPRS Tunneling Protocol L1 Layer 1 (Physical Layer) **GUI** Graphical User Interface **L2** Layer 2 (Data Link Layer) **L2TP** Layer 2 Tunneling Protocol **GW** Gateway LA Link Adaptation **HA** High Availability; Home Agent LACP Link Aggregation Control Protocol **HARQ** Hybrid Automatic Repeat Request LAG Ling Aggregation **HD** High Definition LAN Local Area Network **HFC** Hybrid Fiber Coaxial LBC Load Balancing Cycle **HFDD** Half-duplex Frequency Division Duplex LBS Location Based Services HFR Hybrid Fiber Radio LDAP Lightweight Directory Access Protocol HHO Hard Handover LLA Low Level Agent **HO** Handover LLL Lenstra-Lenstra-Lovász **HSDPA** High Speed Data Packet Access LOS Line-of-Sight **HSPA** High Speed Packet Access LPC Linear Predictive Coding **HSRP** Hot Standby Router Protocol LPM Loss Packet Matrix **HTTP** Hyper Text Transfer Protocol LSB Least Significant Bit **HW** Hardware LTE Long Term Evolution ICMP Internet Control Message Protocol LU Lenstra-Lenstra-Lovász ICT Information and Communication MAC Medium Access Control Technologies MAN Metropolitan Area Network **ID** Identification MAP Medium Access Protocol; Mobile **IETF** Internet Engineering Task Force Application Part IFFT Inverse Fast Fourier Transform MBAC Measurement Based Admission Control IMDD Intensity Modulation, Direct Detection MBB Make Before Break **IMS** IP Multimedia Subsystem MBMS Multimedia Broadcast Multicast Service **IMT** International Mobile Telecommnications **Mbps** Megabits per second $(1\,000\,000\,\text{bits s}^{-1})$ IP Internet Protocol MBS Mesh Base Station; Multicast and

Broadcast Service

MCBCS Multicast and Broadcast Service

MCS Modulation and Coding Scheme

Ipsec Internet Protocol Security

IPv4 Internet Protocol version 4

IPTV Internet Protocol Television

MCW Multi Codeword

MDHO Macro Diversity Handover

MeSH IEEE 802.16-2004 Mesh Mode

MIB Management Information Base

MICS Media Independent Command Service

MIES Media Independent Event Service

MIH Media Independent Handover

MIHF Media Independent Handover Function

MIHO Mobile Initiated Handover

MIHU Media Independent Handover User

MIIS Media Independent Information Service

MIMO Multiple Input Multiple Output

MIP Mobile Internet Protocol

ML Maximum Latency

MLD Maximum Likelihood Decoder

MLI Modulation Level Information

MM Mobility Management

MMF Multimode Fiber

MMR Mobile Multihop Relay

MMSE Minimum Mean Square Error

MN Mobile Node

MOS Mean Opinion Score

MPEG Moving Picture Experts Group

MRC Maximum Ratio Combining

MRT Maximum Ratio Transmission

MRTR Minimum Reserved Traffic Rate

MS Mobile Station

M-SAP Management Service Access Point

MSB Most Significant Bit

MSDU MAC Service Data Unit

MSE Mean Square Error

MSID Mobile Subscriber ID

MSTR Maximum Sustained Traffic Rate

MTBF Mean Time Between Failures

MTU Maximum Transmission Unit

NACK Negative Acknowledgement

NAI Network Access Identifier

NC Network Coding

NCMS Network Control and Management System

NDCQ Nondegenerate Constraint Qualification

NE Network Element

NET Network Layer

NGMN Next-Generation Mobile Network

NGN Next Generation Network

NIHO Network Initiated Handover

NLOS Non-Line-of-Sight

NMS Network Management System

NPV Net Present Value

NRM Network Reference Model

nrt Non-real-time

nrtPS Non-real-time Polling Service

NSIS Next Steps in Signaling

NSLP NSIS Signaling Layer Protocol

NTLP NSIS Transport Layer Protocol

NTP Network Time Protocol

NWG Network Working Group

O&M Operations and Management

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

OGBF Orthogonal Beamforming

OMC Operation and Maintenance Center

OMF Operation and Maintenance Function

OPEX Operational Expenditures

OSPF Open Shortest Path First

P2P Peer to Peer

PA ITU Pedestrian A

PB ITU Pedestrian B

PAN Personal Area Network

PAPR Peak to Average Power Ratio

PBE Perfect Bayesian Equilibrium

PC Paging Controller; Power Control

PCM Pulse Code Modulation

PDA Personal Digital Assistant

PDU Protocol Data Unit

LIST OF ACRONYMS xxxiii

PEP Performance Enhancing Proxy rt real-time PER Packet Error Rate **RTP** Real-time Transport Protocol **PHB** Per Hop Behavior rtPS Real-Time Polling Service RTS Request to Send PHY Physical Layer RTT Round Trip Time PLC Packet Loss Concealment **RT-VR** Real-Time Variable Rate PLR Packet Loss Rate Rx Receive PMIP Proxy Mobile IP SA Specific Adapter PMP Point to Multipoint **SAF** Service Availability Forum PN Psedorondam Noise **SAMPDA** Simple Adaptive Modulation and POF Plastic Optical Fiber Power Adaptation Algorithm PQ Perceived QoS SAP Service Access Point **PSTN** Public Switched Telphone Network SBS Serving Base Station PTMP Point-to-Multipoint SC Serra do Carvalho PTP Precision Time Protocol **SCM** Spatial Channel Model PTP Point-to-point **SCR** Spare Capacity Report PU2RC Per-User Unitary and Rate Control SCTP Stream Control Transmission Protocol PUSC Partially Used Subcarrier; Partially Used **SCW** Single Codeword Subchannelization **SDMA** Spatial Division Multiple Access **QAM** Quadrature Amplitude Modulation SDU Service Data Unit **QoE** Quality of Experience SE Spectral Efficiency QoS Quality of Service SF Service Flow QPSK Quadrature Phase-Shift Keying SFDR Spurious Free Dynamic Range RADIUS Remote Authentication Dial-In User SFM Service Flow Management Service **SID** Silent Insertion Descriptor RAN Radio Access Network **SINR** Signal-to-Interference + Noise Ratio RAU Remote Antenna Unit SIP Session Initiation Protocol RB Resource Block **SISO** Single Input Single Output **RF** Radiofrequency SL Serra da Lousã RFC Request for Comments (IETF standard **SLA** Service Level Agreement document) SM Spatial Multiplexing RMF Resource Management Function SMF Singlemode Fiber RMS Root Mean Square SMS Short Message Service **RoF** Radio-over-Fiber **SNMP** Simple Network Management Protocol **ROHC** Robust Header Compression **SNR** Signal-to-Noise Ratio **RRM** Radio Resource Management S-OFDMA Scalable Orthogonal Frequency RS Relay Station **Division Multiple Access**

SOHO Small Office/Home Office

SON Self-Organized Network

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

SP Synchronization Pattern

SRA Simple Rate Adaptation

SRD System Requirement Document

SS Subscriber Station

SSL Secure Socket Layer

STBC Space Time Block Coding

STC Space-Time Coding

SUI Standford University Interim

SW Software

TBS Target Base Station

TCP Transmission Control Protocol

TDD Time Division Duplex

TDM Time Division Multiplexing

TDMA Time Division Multiple Access

TEM Telecommunications Equipment Manufacturer

TETRA Terrestrial Trunked Radio

TTI Transmission Time Interval

TTP Trusted Third Party

TWG Technical Working Group

Tx Transmit

UC University of Coimbra

UCD Uplink Channel Descriptor

UDP User Datagram Protocol

UGS Unsolicited Grant Service

UL Uplink

UMB Ultra Mobile Broadband

UMTS Universal Mobile Telecommunications System

UMTS-LTE Universal Mobile

Telecommunications Systems – Long

Term Evolution

VAD Voice Activity Detection

VBR Variable Bit Rate

VCEG Video Coding Experts Group

VCSEL Vertical Cavity Surface Emitting Laser

VDT Virtual Drive Test

VLSI Very-Large-Scale Integration

VoD Video on Demand

VoIP Voice over Internet Protocol

VP Vector Perturbation

VR Virtual Router

VRRP Virtual Router Redundancy Protocol

W3GPP third generation partnership project

WAC Wireless Access Controller

WDM Wavelength Division Multiplexing

WEIRD WiMAX Extension to Isolated Research Data Networks

WEP Wired Equivalent Privacy

WiFi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WINNER Wireless World Initiative New Radio

WLAN Wireless Local Area Network

W-LSB Windowed Least Significant Bits

WMAN Wireless Metropolitan Area Network

WMN Wireless Mesh Network

WNC Wireless Network Coding

WNEA WiMAX Network Element Advertisement

WPAN Wireless Personal Area Network

WRR Weighted Round Robin

WSN Wireless Sensor Network

WT WiMAX Terminal

WWRF Wireless World Research Forum

ZFBF Zero-Forcing Beamforming