5,445 research outputs found

    A Reliable and Cost-Efficient Auto-Scaling System for Web Applications Using Heterogeneous Spot Instances

    Full text link
    Cloud providers sell their idle capacity on markets through an auction-like mechanism to increase their return on investment. The instances sold in this way are called spot instances. In spite that spot instances are usually 90% cheaper than on-demand instances, they can be terminated by provider when their bidding prices are lower than market prices. Thus, they are largely used to provision fault-tolerant applications only. In this paper, we explore how to utilize spot instances to provision web applications, which are usually considered availability-critical. The idea is to take advantage of differences in price among various types of spot instances to reach both high availability and significant cost saving. We first propose a fault-tolerant model for web applications provisioned by spot instances. Based on that, we devise novel auto-scaling polices for hourly billed cloud markets. We implemented the proposed model and policies both on a simulation testbed for repeatable validation and Amazon EC2. The experiments on the simulation testbed and the real platform against the benchmarks show that the proposed approach can greatly reduce resource cost and still achieve satisfactory Quality of Service (QoS) in terms of response time and availability

    A study on performance measures for auto-scaling CPU-intensive containerized applications

    Get PDF
    Autoscaling of containers can leverage performance measures from the different layers of the computational stack. This paper investigate the problem of selecting the most appropriate performance measure to activate auto-scaling actions aiming at guaranteeing QoS constraints. First, the correlation between absolute and relative usage measures and how a resource allocation decision can be influenced by them is analyzed in different workload scenarios. Absolute and relative measures could assume quite different values. The former account for the actual utilization of resources in the host system, while the latter account for the share that each container has of the resources used. Then, the performance of a variant of Kubernetes’ auto-scaling algorithm, that transparently uses the absolute usage measures to scale-in/out containers, is evaluated through a wide set of experiments. Finally, a detailed analysis of the state-of-the-art is presented

    Learning workload behaviour models from monitored time-series for resource estimation towards data center optimization

    Get PDF
    In recent years there has been an extraordinary growth of the demand of Cloud Computing resources executed in Data Centers. Modern Data Centers are complex systems that need management. As distributed computing systems grow, and workloads benefit from such computing environments, the management of such systems increases in complexity. The complexity of resource usage and power consumption on cloud-based applications makes the understanding of application behavior through expert examination difficult. The difficulty increases when applications are seen as "black boxes", where only external monitoring can be retrieved. Furthermore, given the different amount of scenarios and applications, automation is required. To deal with such complexity, Machine Learning methods become crucial to facilitate tasks that can be automatically learned from data. Firstly, this thesis proposes an unsupervised learning technique to learn high level representations from workload traces. Such technique provides a fast methodology to characterize workloads as sequences of abstract phases. The learned phase representation is validated on a variety of datasets and used in an auto-scaling task where we show that it can be applied in a production environment, achieving better performance than other state-of-the-art techniques. Secondly, this thesis proposes a neural architecture, based on Sequence-to-Sequence models, that provides the expected resource usage of applications sharing hardware resources. The proposed technique provides resource managers the ability to predict resource usage over time as well as the completion time of the running applications. The technique provides lower error predicting usage when compared with other popular Machine Learning methods. Thirdly, this thesis proposes a technique for auto-tuning Big Data workloads from the available tunable parameters. The proposed technique gathers information from the logs of an application generating a feature descriptor that captures relevant information from the application to be tuned. Using this information we demonstrate that performance models can generalize up to a 34% better when compared with other state-of-the-art solutions. Moreover, the search time to find a suitable solution can be drastically reduced, with up to a 12x speedup and almost equal quality results as modern solutions. These results prove that modern learning algorithms, with the right feature information, provide powerful techniques to manage resource allocation for applications running in cloud environments. This thesis demonstrates that learning algorithms allow relevant optimizations in Data Center environments, where applications are externally monitored and careful resource management is paramount to efficiently use computing resources. We propose to demonstrate this thesis in three areas that orbit around resource management in server environmentsEls Centres de Dades (Data Centers) moderns són sistemes complexos que necessiten ser gestionats. A mesura que creixen els sistemes de computació distribuïda i les aplicacions es beneficien d’aquestes infraestructures, també n’augmenta la seva complexitat. La complexitat que implica gestionar recursos de còmput i d’energia en sistemes de computació al núvol fa difícil entendre el comportament de les aplicacions que s'executen de manera manual. Aquesta dificultat s’incrementa quan les aplicacions s'observen com a "caixes negres", on només es poden monitoritzar algunes mètriques de les caixes de manera externa. A més, degut a la gran varietat d’escenaris i aplicacions, és necessari automatitzar la gestió d'aquests recursos. Per afrontar-ne el repte, l'aprenentatge automàtic juga un paper cabdal que facilita aquestes tasques, que poden ser apreses automàticament en base a dades prèvies del sistema que es monitoritza. Aquesta tesi demostra que els algorismes d'aprenentatge poden aportar optimitzacions molt rellevants en la gestió de Centres de Dades, on les aplicacions són monitoritzades externament i la gestió dels recursos és de vital importància per a fer un ús eficient de la capacitat de còmput d'aquests sistemes. En primer lloc, aquesta tesi proposa emprar aprenentatge no supervisat per tal d’aprendre representacions d'alt nivell a partir de traces d'aplicacions. Aquesta tècnica ens proporciona una metodologia ràpida per a caracteritzar aplicacions vistes com a seqüències de fases abstractes. La representació apresa de fases és validada en diferents “datasets” i s'aplica a la gestió de tasques d'”auto-scaling”, on es conclou que pot ser aplicable en un medi de producció, aconseguint un millor rendiment que altres mètodes de vanguardia. En segon lloc, aquesta tesi proposa l'ús de xarxes neuronals, basades en arquitectures “Sequence-to-Sequence”, que proporcionen una estimació dels recursos usats per aplicacions que comparteixen recursos de hardware. La tècnica proposada facilita als gestors de recursos l’habilitat de predir l'ús de recursos a través del temps, així com també una estimació del temps de còmput de les aplicacions. Tanmateix, redueix l’error en l’estimació de recursos en comparació amb d’altres tècniques populars d'aprenentatge automàtic. Per acabar, aquesta tesi introdueix una tècnica per a fer “auto-tuning” dels “hyper-paràmetres” d'aplicacions de Big Data. Consisteix així en obtenir informació dels “logs” de les aplicacions, generant un vector de característiques que captura informació rellevant de les aplicacions que s'han de “tunejar”. Emprant doncs aquesta informació es valida que els ”Regresors” entrenats en la predicció del rendiment de les aplicacions són capaços de generalitzar fins a un 34% millor que d’altres “Regresors” de vanguàrdia. A més, el temps de cerca per a trobar una bona solució es pot reduir dràsticament, aconseguint un increment de millora de fins a 12 vegades més dels resultats de qualitat en contraposició a alternatives modernes. Aquests resultats posen de manifest que els algorismes moderns d'aprenentatge automàtic esdevenen tècniques molt potents per tal de gestionar l'assignació de recursos en aplicacions que s'executen al núvol.Arquitectura de computador

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201
    corecore