25 research outputs found

    Interference Suppression in Multiple Access Communications Using M-Ary Phase Shift Keying Generated via Spectral Encoding

    Get PDF
    A conceptual transform domain communication system (TDCS) is shown capable of operating successfully using M-Ary phase shift keying (MPSK) data modulation in a multiple access environment. Using spectral encoding, the conceptual TDCS provides an effective means for mitigating interference affects while achieving multiple access communications. The use of transform domain processing with MPSK data modulation (TD-MPSK) provides higher spectral efficiency relative to other modulation techniques (antipodal signaling and cyclic shift keying) considered previously for TDCS applications. The proposed TD-MPSK technique uses spectral encoding for both data and multiple access phase modulations. Demodulation of the spectrally encoded TD-MPSK communication symbols is accomplished using conventional, multi-channel time domain correlation techniques. Analytic expressions for TD-MPSK probability of symbol error (PE) and probability of bit error (PB) are derived and validated using simulated results over the range of signal-to-noise ratios typically considered for communications. This validation includes scenarios with: 1) multiple access interference, 2) spectral notching, 3) jamming present and 4) combinations of all three. For a J/S of 3.14 dB and a Eb/N0 of 6 dB, PB dropped by up to a factor of 3 for TD-QPSK in a MA environment for the case when spectral notching was present versus the case when spectral notching wasn\u27t present. The cross-correlation between communication symbols of different synchronous users can be made identically zero through proper selection of multiple access phase codes (orthogonal signaling). For a synchronous network containing orthogonal users, PE and PB are unaffected as the number of orthogonal network users increases. For a J/S of 3.14 dB and a Eb/N0 of 6 dB, PB dropped by a factor of 12 for TD-QPSK in a MA environment for the case when spectral notching was present versus the case when spectral notching wasn\u27t present

    Performance of a Spectrally Encoded Multi-carrier Phase Shift Keying Communications System in a Frequency-Selective, Slowly-Fading Multipath Channel

    Get PDF
    This research examines the performance of a spectrally encoded, multi-carrier, phase shift keying communications system in a frequency-selective, slowly-fading multipath channel. The specific communications system modeled is the transform domain communication system (TDCS) originally researched as an interference avoidance technique. Previous TDCS research assumed an additive white Gaussian noise channel, which is not representative of a realistic environment. This thesis presents overviews of previous TDCS research, the multipath fading channel, and the RAKE receiver. Analysis and Matlab simulations compare the performance of spectrally encoded and un-encoded signals through a multipath fading channel using an L-diversity TDCS RAKE receiver. Encoded signals take on the spectral shape of the multipath fading channel transfer function. Un-encoded signals have a flat magnitude spectrum. The research also evaluates the interference rejection capability of spectrally encoded signals in a multipath channel. Research results indicate for diversities ranging between 2 and 50, spectrally encoded signals need 1.0 to 2.75dB less transmitted normalized bit energy to noise power spectral density ratios to achieve the same probability of bit error as un-encoded signals. Results also demonstrate that spectrally encoded TDCS signals retain the interference rejection capability

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility

    Evaluation of Overlay/underlay Waveform via SD-SMSE Framework for Enhancing Spectrum Efficiency

    Get PDF
    Recent studies have suggested that spectrum congestion is mainly due to the inefficient use of spectrum rather than its unavailability. Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) are two terminologies which are used in the context of improved spectrum efficiency and usage. The DSA concept has been around for quite some time while the advent of CR has created a paradigm shift in wireless communications and instigated a change in FCC policy towards spectrum regulations. DSA can be broadly categorized as using a 1) Dynamic Exclusive Use Model, 2) Spectrum Commons or Open sharing model or 3) Hierarchical Access model. The hierarchical access model envisions primary licensed bands, to be opened up for secondary users, while inducing a minimum acceptable interference to primary users. Spectrum overlay and spectrum underlay technologies fall within the hierarchical model, and allow primary and secondary users to coexist while improving spectrum efficiency. Spectrum overlay in conjunction with the present CR model considers only the unused (white) spectral regions while in spectrum underlay the underused (gray) spectral regions are utilized. The underlay approach is similar to ultra wide band (UWB) and spread spectrum (SS) techniques utilize much wider spectrum and operate below the noise floor of primary users. Software defined radio (SDR) is considered a key CR enabling technology. Spectrally modulated, Spectrally encoded (SMSE) multi-carrier signals such as Orthogonal Frequency Domain Multiplexing (OFDM) and Multi-carrier Code Division Multiple Access (MCCDMA) are hailed as candidate CR waveforms. The SMSE structure supports and is well-suited for SDR based CR applications. This work began by developing a general soft decision (SD) CR framework, based on a previously developed SMSE framework that combines benefits of both the overlay and underlay techniques to improve spectrum efficiency and maximizing the channel capacity. The resultant SD-SMSE framework provides a user with considerable flexibility to choose overlay, underlay or hybrid overlay/underlay waveform depending on the scenario, situation or need. Overlay/Underlay SD-SMSE framework flexibility is demonstrated by applying it to a family of SMSE modulated signals such as OFDM, MCCDMA, Carrier Interferometry (CI) MCCDMA and Transform Domain Communication System (TDCS). Based on simulation results, a performance analysis of Overlay, Underlay and hybrid Overlay/Underlay waveforms are presented. Finally, the benefits of combining overlay/underlay techniques to improve spectrum efficiency and maximize channel capacity are addressed

    Etude et génération de formes d'ondes "ad hoc" pour les communications. (Une approche algébrique pour l'étude de l'efficacité spectrale et la réduction du PAPR dans les TDCS)

    Get PDF
    Avec le besoin croissant en bande-passante, les technologies dites de radio-cognitive sont de plus en plus étudiées par la communauté scientifique. L enjeu est d utiliser au mieux le spectre disponible. L'une de ces technologies, Transform Domain Communication System (TDCS), dont les performances en termes d efficacité énergétique et spectrale étaient jusqu'à présent méconnues, constitue le sujet d'étude de cette thèse. Après une présentation du contexte scientifique et industriel de la thèse, le système TDCS est introduit, ainsi que ses similarités et différences avec OFDM et MC-CDMA. Le système est ensuite décrit sous le formalisme algébrique des modulations linaires. Cela a permis d établir une expression de l efficacité spectrale du système. Plusieurs techniques sont alors proposées pour améliorer celle-ci tout en améliorant, dans certains cas, le taux d erreur binaire. Étant composé d un de plusieurs composantes sinusoïdales, le signal TDCS souffre d un fort Peak-to-Average Power Ratio (PAPR). La théorie ensembliste est alors présentée puis mise à profit en troisième partie de cette thèse pour proposer les algorithmes Douglas-Rachford et ROCS de réduction du PAPR des signaux TDCS. Ces algorithmes convergent plus rapidement et vers des valeurs plus basses que l algorithme POCS précédemment utilisé dans la littératureFor about ten years, spectrum scarcity and the growing need of bandwidth have pushed the studies on cognitive-radio technologies to counter this waste. Among them: the Transform Domain Communication System (TDCS), on which this thesis focuses. Until now, TDCS performance in terms of spectral and power efficiency was largely unknown. After introducing the thesis industrial and scientific context, the TDCS is introduced and compared with popular technologies such as OFDM and MC-CDMA. The system is then studied by means of the linear modulations algebraic framework. This has led to the TDCS spectral efficiency determination and to new design rules to jointly achieve a better spectral efficiency and a lower BER. Several methods are then proposed to further increase the spectral efficiency by means of a dense multidimensional modulation. Since a TDCS signal is made of several sines, it suffers from a strong Peak-to-Average Power Ratio (PAPR). Set theoretic estimation is then introduced in a third part and new PAPR-reduction algorithms such as Douglas-Rachford and Reflection Onto Convex Sets are brought to light and achieve better performance than the usual POCS algorithm regarding to the convergence rate, as well as the achieved PAPRTOULOUSE-INSA-Bib. electronique (315559905) / SudocSudocFranceF

    Advanced Modulation and Coding Technology Conference

    Get PDF
    The objectives, approach, and status of all current LeRC-sponsored industry contracts and university grants are presented. The following topics are covered: (1) the LeRC Space Communications Program, and Advanced Modulation and Coding Projects; (2) the status of four contracts for development of proof-of-concept modems; (3) modulation and coding work done under three university grants, two small business innovation research contracts, and two demonstration model hardware development contracts; and (4) technology needs and opportunities for future missions

    Experimental Study of Multirate Margin in Software Defined Multirate Radio

    Get PDF
    Due to the recent development of spectrally-efficient modulation schemes, IEEE 802.11 Wifi and IEEE 802.16 WiMax radios support wireless communication at multiple bit rates. While high-rate transmission allows delivering more information in less time, the corresponding performance improvement is less than expected due to the PHY- and MAC-layer overheads, imposed by the 802.11/16 standards. This is particularly true in wireless ad hoc networks as there exist rate-distance and rate-hop count tradeoffs. The concept of multi-rate margin is proposed in this thesis, which exploits the difference in communication characteristics at different rates and serves as the fundamental ingredient for an opportunistic transmission protocol, targeted to meliorate the ad hoc mobile wireless network performance. In this thesis, the multi-rate margin is analyzed with theoretical derivation, perceived with simulation result using MATLAB and observed through real world testing using USRP and GNU Radio, which is a recent implementation of Software Defined Radi

    Cooperative Distributed Transmission and Reception

    Get PDF
    In telecommunications, a cooperative scheme refers to a method where two or more users share or combine their information in order to increase diversity gain or power gain. In contrast to conventional point-to-point communications, cooperative communications allow different users in a wireless network to share resources so that instead of maximizing the performance of its own link, each user collaborates with its neighbours to achieve an overall improvement in performance. In this dissertation, we consider different models for transmission and reception and explore cooperative techniques that increase the reliability and capacity gains in wireless networks, with consideration to practical issues such as channel estimation errors and backhaul constraints. This dissertation considers the design and performance of cooperative communication techniques. Particularly, the first part of this dissertation focuses on the performance comparison between interference alignment and opportunistic transmission for a 3-user single-input single- output (SISO) interference channel in terms of average sum rate in the presence of channel estimation errors. In the case of interference alignment, channel estimation errors cause interference leakage which consequently results in a loss of achievable rate. In the case of opportunistic transmission, channel estimation errors result in a non-zero probability of incorrectly choosing the node with the best channel. The effect of these impairments is quantified in terms of the achievable average sum rate of these transmission techniques. Analysis and numerical examples show that SISO interference alignment can achieve better average sum rate with good channel estimates and at high SNR whereas opportunistic transmission provides better performance at low SNR and/or when the channel estimates are poor. We next considers the problem of jointly decoding binary phase shift keyed (BPSK) messages from a single distant transmitter to a cooperative receive cluster connected by a local area network (LAN). An approximate distributed receive beamforming algorithm is proposed based on the exchange of coarsely- quantized observations among some or all of the nodes in the receive cluster. By taking into account the differences in channel quality across the receive cluster, the quantized information from other nodes in the receive cluster can be appropriately combined with locally unquantized information to form an approximation of the ideal receive beamformer decision statistic. The LAN throughput requirements of this technique are derived as a function of the number of participating nodes in the receive cluster, the forward link code rate, and the quantization parameters. Using information-theoretic analysis and simulations of an LDPC coded system in fading channels, numerical results show that the performance penalty (in terms of outage probability and block error rate) due to coarse quantization is small in the low SNR regimes enabled by cooperative distributed reception. An upper/lower bound approximation is derived based on a circle approximation in the channel magnitude domain which provides a pretty fast way to compute the outage probability performance for a system with arbitrary number of receivers at a given SNR. In the final part of this dissertation, we discuss the distributed reception technique with higher- order modulation schemes in the forward link. The extension from BPSK to QPSK is straightforward and is studied in the second part of this dissertation. The extension to 8PSK, 4PAM and 16QAM forward links, however, is not trivial. For 8PSK, two techniques are proposed: pseudobeamforming and 3-bit belief combining where the first one is intuitive and turns out to be suboptimal,the latter is optimal in terms of outage probability performance. The idea of belief combining can be applied to the 4PAM and 16QAM and it is shown that better/finer quantizer design can further improve the block error rate performance. Information-theoretic analysis and numerical results are provided to show that significant reliability and SNR gains can be achieved by using the proposed schemes

    Air Force Institute of Technology Research Report 2005

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, and Engineering Physics
    corecore