65 research outputs found

    LIPADE's Research Efforts Wireless Body Sensor Networks

    Get PDF

    MIQoS-RP: Multi-Constraint Intra-BAN, QoS-aware routing protocol for wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks (WBSNs) are becoming increasing popular in a number of healthcare applications. A particular requirement of WBSNs in a healthcare system is the transmission of time-sensitive and critical data, captured by heterogeneous biosensors, to a base station while considering the constraints of reliability, throughput, delay and link quality. However, the simultaneous communication among various biosensors also raises the possibility of congestion on nodes or transmission links. Consequently, the likelihood of a number of untoward situations increases, such as disruption (high delays), packet losses, retransmissions, bandwidth exhaustion, and insufficient buffer space. The significant level of interference in the network leads to a higher number of collisions and retransmissions. The selection of an optimized route to cope with these issues and satisfy the QoS requirements of a WBSN has not been well-studied in the relevant literature. In this regard, we propose a multi-constraint, Intra-BAN, QoS-Aware Routing Protocol (referred to as MIQoS-RP) which introduces an improved, multi-facet routing metric to optimize the route selection while satisfying the aforementioned constraints. The performance of the proposed protocol is evaluated in terms of average end-to-end delay, throughput and packet drop ratio. The comparison of MIQoS-RP with the existing routing protocols demonstrates its efficacy in terms of the selected criteria. The results show that the MIQoS-RP achieves improved throughput by 22%, average end-to-end delay by 29% and packet drop ratio performance by 41% as compares to existing schemes

    Multi-constrained mechanism for intra-body area network quality-of-service aware routing in wireless body sensor networks

    Get PDF
    Wireless Body Sensor Networks (WBSNs) have witnessed tremendous research interests in a wide range of medical and non-medical fields. In the delaysensitive application scenarios, the critical data packets are highly delay-sensitive which require some Quality-of-Service (QoS) to reach the intended destinations. The categorization of data packets and selection of poor links may have detrimental impacts on overall performance of the network. In WBSN, various biosensors transmit the sensed data towards a destination for further analysis. However, for an efficient data transmission, it is very important to transmit the sensed data towards the base station by satisfying the QoS multi-constrained requirements of the healthcare applications in terms of least end-to-end delay and high reliability, throughput, Packet Delivery Ratio (PDR), and route stability performance. Most of the existing WBSN routing schemes consider traffic prioritization to solve the slot allocation problem. Consequently, the data transmission may face high delays, packet losses, retransmissions, lack of bandwidth, and insufficient buffer space. On the other hand, an end-to-end route is discovered either using a single or composite metric for the data transmission. Thus, it affects the delivery of the critical data through a less privileged manner. Furthermore, a conventional route repair method is considered for the reporting of broken links which does not include surrounding interference. As such, this thesis presents the Multi-constrained mechanism for Intra- Body Area Network QoS aware routing (MIQoS) with Low Latency Traffic Prioritization (LLTP), Optimized Route Discovery (ORD), and Interference Adaptive Route Repair (IARR) schemes for the healthcare application of WBSN with an objective of improving performance in terms of end-to-end delay, route stability, and throughput. The proposed LLTP scheme considers various priority queues with an optimized scheduling mechanism that dynamically identifies and prioritizes the critical data traffic in an emergency situation to enhance the critical data transmission. Consequently, this will avoid unnecessary queuing delay. The ORD scheme incorporates an improved and multi-facet routing metric, Link Quality Metric (LQM) optimizes the route selection by considering link delay, link delivery ratio, and link interference ratio. The IARR scheme identifies the links experiencing transmission issues due to channel interference and makes a coherent decision about route breakage based on the long term link performance to avoid unnecessary route discovery notifications. The simulation results verified the improved performance in terms of reducing the end-to-end delay by 29%, increasing the throughput by 22% and route stability by 26% as compared to the existing routing schemes such as TTRP, PA-AODV and standard AODV. In conclusion, MIQoS proves to be a suitable routing mechanism for a wide range of interesting applications of WBSN that require fast, reliable and multi-hop communication in heavily loaded network traffic scenarios

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Predictable Real-Time Wireless Networking For Sensing And Control

    Get PDF
    Towards the end goal of providing predictable real-time wireless networking for sensing and control, we have developed a real-time routing protocol MTA that predictably delivers data by their deadlines, and a scheduling protocol PRKS to ensure a certain link reliability based on the Physical-ratio-K (PRK) model, which is both realistic and amenable for distributed implementation, and a greedy scheduling algorithm to deliver as many packets as possible to the sink by a deadline in lossy multi-hop wireless sensor networks. Real-time routing is a basic element of closed-loop, real-time sensing and control, but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature of link/path delays makes the basic problem of computing the probabilistic distribution of path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time routing and may well have to be executed by resource-constrained devices in a distributed manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ delay conditions in real-time routing, but it has been observed that delay-based routing can lead to instability, estimation error, and low data delivery performance in general. To address these challenges, we propose the Multi-Timescale Estimation (MTE) method; by accurately estimating the mean and variance of per-packet transmission time and by adapting to fast-varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we propose the Multi-Timescale Adaptation (MTA) routing protocol; MTA integrates the stability of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data flow control within the DAG to ensure real-time data delivery in the presence of dynamics and uncertainties. We also address the challenges of implementing MTE and MTA in resource-constrained devices such as TelosB motes. We evaluate the performance of MTA using the NetEye and Indriya sensor network testbeds. We find that MTA significantly outperforms existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission cost by a factor of 9.7. Predictable wireless communication is another basic enabler for networked sensing and control in many cyber-physical systems, yet co-channel interference remains a major source of uncertainty in wireless communication. Integrating the protocol model\u27s locality and the physical model\u27s high fidelity, the physical-ratio-K (PRK) interference model bridges the gap between the suitability for distributed implementation and the enabled scheduling performance, and it is expected to serve as a foundation for distributed, predictable interference control. To realize the potential of the PRK model and to address the challenges of distributed PRK-based scheduling, we design protocol PRKS. PRKS uses a control-theoretic approach to instantiating the PRK model according to in-situ network and environmental conditions, and, through purely local coordination, the distributed controllers converge to a state where the desired link reliability is guaranteed. PRKS uses local signal maps to address the challenges of anisotropic, asymmetric wireless communication and large interference range, and PRKS leverages the different timescales of PRK model adaptation and data transmission to decouple protocol signaling from data transmission. Through sensor network testbed-based measurement study, we observe that, unlike existing scheduling protocols where link reliability is unpredictable and the reliability requirement satisfaction ratio can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%) in different network and environmental conditions without a priori knowledge of these conditions, and, through local distributed coordination, PRKS achieves a channel spatial reuse very close to what is enabled by the state-of-the-art centralized scheduler while ensuring the required link reliability. Ensuring the required link reliability in PRKS also reduces communication delay and improves network throughput. We study the problem of scheduling packet transmissions to maximize the expected number of packets collected at the sink by a deadline in a multi-hop wireless sensor network with lossy links. Most existing work assumes error-free transmissions when interference constraints are complied, yet links can be unreliable due to external interference, shadow- ing, and fading in harsh environments in practice. We formulate the problem as a Markov decision process, yielding an optimal solution. However, the problem is computationally in- tractable due to the curse of dimensionality. Thus, we propose the efficient and greedy Best Link First Scheduling (BLF) protocol. We prove it is optimal for the single-hop case and provide an approach for distributed implementation. Extensive simulations show it greatly enhances real-time data delivery performance, increasing deadline catch ratio by up to 50%, compared with existing scheduling protocols in a wide range of network and traffic settings

    Evaluating Techniques for Wireless Interconnected 3D Processor Arrays

    Get PDF
    In this thesis the viability of a wireless interconnect network for a highly parallel computer is investigated. The main theme of this thesis is to project the performance of a wireless network used to connect the processors in a parallel machine of such design. This thesis is going to investigate new design opportunities a wireless interconnect network can offer for parallel computing. A simulation environment is designed and implemented to carry out the tests. The results have shown that if the available radio spectrum is shared effectively between building blocks of the parallel machine, there are substantial chances to achieve high processor utilisation. The results show that some factors play a major role in the performance of such a machine. The size of the machine, the size of the problem and the communication and computation capabilities of each element of the machine are among those factors. The results show these factors set a limit on the number of nodes engaged in some classes of tasks. They have shown promising potential for further expansion and evolution of our idea to new architectural opportunities, which is discussed by the end of this thesis. To build a real machine of this type the architects would need to solve a number of challenging problems including heat dissipation, delivering electric power and Chip/board design; however, these issues are not part of this thesis and will be tackled in future

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Adaptation of the IEEE 802.11 protocol for inter-satellite links in LEO satellite networks

    Get PDF
    Knowledge of the coefficient of thermal expansion (CTE) of a ceramic material is important in many application areas. Whilst the CTE can be measured, it would be useful to be able to predict the expansion behaviour of multiphase materials.. There are several models for the CTE, however, most require a knowledge of the elastic properties of the constituent phases and do not take account ofthe microstructural features of the material. If the CTE could be predicted on the basis of microstructural information, this would then lead to the ability to engineer the microstructure of multiphase ceramic materials to produce acceptable thermal expansion behaviour. To investigate this possibility, magnesia-magnesium aluminate sp~el (MMAS) composites, consisting of a magnesia matrix and magnesium aluminate s~ne'l (MAS) particles, were studied. Having determined a procedure to produce MAS fr alumina and magnesia, via solid state sintering, magnesia-rich compositions wit ~ various magnesia contents were prepared to make the MMAS composites. Further, the l\.1MAS composites prepared from different powders (i.e. from an alumina-magnesia mixture ahd from a magnesia-spinel powder) were compared. Com starch was added into the powder mixtures before sintering to make porous microstructures. Microstructural development and thermal expansion behaviour ofthe MMAS composites were investigated. Microstructures of the MAS and the MMAS composites as well as their porous bodies were quaritified from backscattered electron micrographs in terms of the connectivity of solids i.e. solid contiguity by means of linear intercept counting. Solid contiguity decreased with increasing pore content and varied with pore size, pore shape and pore distribution whereas the phase contiguity depended strongly on the chemical composition and was less influenced by porosity. ' The thermal expansion behaviour of the MAS and the MMAS composites between 100 and 1000 °C was determined experimentally. Variation in the CTE ofthe MAS relates to the degree of spinel formation while the thermal expansion of the MMAS composites depends strongly on phase content. However, the MMAS composites with similar phase compositions but made from different manufacturing processes showed differences in microstructural features and thermal expansion behaviour. Predictions of the CTE values for composites based on a simple rule-of-mixtures (ROM) using volume fraction were compared with the measured data. A conventional ROM accurately predicted the effective CTE of a range of dense alumina-silicon carbide particulate composites but was not very accurate for porous multiphase structures. It provided an upper bound prediction as all experimental values were lower. Hence, the conventional ROM was modified to take account of quantitative microstructural parameters obtained from solid contiguity. The modified ROM predicted lower values and gave a good agreement with the experimental data. Thus, it has been shown that quantitative microstructural information can be used to predict the CTE of multiphase ceramic materials with complex microstructures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Enabling Efficient, Robust, and Scalable Wireless Multi-Hop Networks: A Cross-Layer Approach Exploiting Cooperative Diversity

    Get PDF
    The practical performance in terms of throughput, robustness, and scalability of traditional Wireless Multihop Networks (WMNs) is limited. The key problem is that such networks do not allow for advanced physical layers, which typically require (a) spatial diversity via multiple antennas, (b) timely Channel State Information (CSI) feedback, and (c) a central instance that coordinates nodes. We propose Corridor-based Routing to address these issues. Our approach widens traditional hop-by-hop paths to span multiple nodes at each hop, and thus provide spatial diversity. As a result, at each hop, a group of transmitters cooperates at the physical layer to forward data to a group of receivers. We call two subsequent groups of nodes a stage. Since all nodes participating in data forwarding at a certain hop are part of the same fully connected stage, corridors only require one-hop CSI feedback. Further, each stage operates independently. Thus, Corridor-based Routing does not require a network-wide central instance, and is scalable. We design a protocol that builds end-to-end corridors. As expected, this incurs more overhead than finding a traditional WMN path. However, if the resulting corridor provides throughput gains, the overhead compensates after a certain number of transmitted packets. We adapt two physical layers to the aforementioned stage topology, namely, Orthogonal Frequency-Division Multiple Access (OFDMA), and Interference Alignment (IA). In OFDMA, we allocate each subchannel to a link of the current stage which provides good channel conditions. As a result, we avoid deep fades, which enables OFDMA to transmit data robustly in scenarios in which traditional schemes cannot operate. Moreover, it achieves higher throughputs than such schemes. To minimize the transmission time at each stage, we present an allocation mechanism that takes into account both the CSI, and the amount of data that each transmitter needs to transmit. Further, we address practical issues and implement our scheme on software-defined radios. We achieve roughly 30% average throughput gain compared to a WMN not using corridors. We analyze OFDMA in theory, simulation, and practice. Our results match in all three domains. Further, we design a physical layer for corridor stages based on IA in the frequency domain. Our practical experiments show that IA often performs poorly because the decoding process augments noise. We find that the augmentation factor depends only on the channel coefficients of the subchannels that IA uses. We design a mechanism to determine which transmitters should transmit to which receivers on which subchannels to minimize noise. Since the number of possible combinations is very large, we use heuristics that reduce the search space significantly. Based on this design, we present the first practical frequency IA system. Our results show that our approach avoids noise augmentation efficiently, and thus operates robustly. We observe that IA is most suitable for stages with specific CSI and traffic conditions. In such scenarios, the throughput gain compared to a WMN not using corridors is 25% on average, and 150% in the best case. Finally, we design a decision engine which estimates the performance of both OFDMA and IA for a given stage, and chooses the one which achieves the highest throughput. We evaluate corridors with up to five stages, and achieve roughly 20% average throughput gain. We conclude that switching among physical layers to adapt to the particular CSI and traffic conditions of each stage is crucial for efficient and robust operation
    corecore