105 research outputs found

    Approximations of the aggregated interference statistics for outage analysis in massive MTC

    Get PDF
    This paper presents several analytic closed-form approximations of the aggregated interference statistics within the framework of uplink massive machine-type-communications (mMTC), taking into account the random activity of the sensors. Given its discrete nature and the large number of devices involved, a continuous approximation based on the Gram–Charlier series expansion of a truncated Gaussian kernel is proposed. We use this approximation to derive an analytic closed-form expression for the outage probability, corresponding to the event of the signal-to-interference-and-noise ratio being below a detection threshold. This metric is useful since it can be used for evaluating the performance of mMTC systems. We analyze, as an illustrative application of the previous approximation, a scenario with several multi-antenna collector nodes, each equipped with a set of predefined spatial beams. We consider two setups, namely single- and multiple-resource, in reference to the number of resources that are allocated to each beam. A graph-based approach that minimizes the average outage probability, and that is based on the statistics approximation, is used as allocation strategy. Finally, we describe an access protocol where the resource identifiers are broadcast (distributed) through the beams. Numerical simulations prove the accuracy of the approximations and the benefits of the allocation strategy.Peer ReviewedPostprint (published version

    Zero-Outage Cellular Downlink with Fixed-Rate D2D Underlay

    Full text link
    Two of the emerging trends in wireless cellular systems are Device-to-Device (D2D) and Machine-to-Machine (M2M) communications. D2D enables efficient reuse of the licensed spectrum to support localized transmissions, while M2M connections are often characterized by fixed and low transmission rates. D2D connections can be instrumental in localized aggregation of uplink M2M traffic to a more capable cellular device, before being finally delivered to the Base Station (BS). In this paper we show that a fixed M2M rate is an enabler of efficient Machine-Type D2D underlay operation taking place simultaneously with another \emph{downlink} cellular transmission. In the considered scenario, a BS BB transmits to a user UU, while there are NMN_M Machine-Type Devices (MTDs) attached to UU, all sending simultaneously to UU and each using the same rate RMR_M. While assuming that BB knows the channel B−UB-U, but not the interfering channels from the MTDs to UU, we prove that there is a positive downlink rate that can always be decoded by UU, leading to zero-outage of the downlink signal. This is a rather surprising consequence of the features of the multiple access channel and the fixed rate RMR_M. We also consider the case of a simpler, single-user decoder at UU with successive interference cancellation. However, with single-user decoder, a positive zero-outage rate exists only when NM=1N_M=1 and is zero when NM>1N_M>1. This implies that joint decoding is instrumental in enabling fixed-rate underlay operation.Comment: Revised versio

    A NOMA-enhanced reconfigurable access scheme with device pairing for M2M networks

    Get PDF
    This paper aims to address the distinct requirements of machine-to-machine networks, particularly heterogeneity and massive transmissions. To this end, a reconfigurable medium access control (MAC) with the ability to choose a proper access scheme with the optimal configuration for devices based on the network status is proposed. In this scheme, in each frame, a separate time duration is allocated for each of the nonorthogonal multiple access (NOMA)-based, orthogonal multiple access (OMA)-based, and random access-based segments, where the length of each segment can be optimized. To solve this optimization problem, an iterative algorithm consisting of two sub-problems is proposed. The first sub-problem deals with selecting devices for the NOMA/OMA-based transmissions, while the second one optimizes the parameter of the random access scheme. To show the efficacy of the proposed scheme, the results are compared with the reconfigurable scheme which does not support NOMA. The results demonstrate that by using a proper device pairing scheme for the NOMA-based transmissions, the proposed reconfigurable scheme achieves better performance when NOMA is adopted

    Fine-grained performance analysis of massive MTC networks with scheduling and data aggregation

    Get PDF
    Abstract. The Internet of Things (IoT) represents a substantial shift within wireless communication and constitutes a relevant topic of social, economic, and overall technical impact. It refers to resource-constrained devices communicating without or with low human intervention. However, communication among machines imposes several challenges compared to traditional human type communication (HTC). Moreover, as the number of devices increases exponentially, different network management techniques and technologies are needed. Data aggregation is an efficient approach to handle the congestion introduced by a massive number of machine type devices (MTDs). The aggregators not only collect data but also implement scheduling mechanisms to cope with scarce network resources. This thesis provides an overview of the most common IoT applications and the network technologies to support them. We describe the most important challenges in machine type communication (MTC). We use a stochastic geometry (SG) tool known as the meta distribution (MD) of the signal-to-interference ratio (SIR), which is the distribution of the conditional SIR distribution given the wireless nodes’ locations, to provide a fine-grained description of the per-link reliability. Specifically, we analyze the performance of two scheduling methods for data aggregation of MTC: random resource scheduling (RRS) and channel-aware resource scheduling (CRS). The results show the fraction of users in the network that achieves a target reliability, which is an important aspect to consider when designing wireless systems with stringent service requirements. Finally, the impact on the fraction of MTDs that communicate with a target reliability when increasing the aggregators density is investigated

    Stochastic Geometry Analysis and Design of Wireless Powered MTC Networks

    Get PDF
    Machine-type-communications (MTC) are being crucial in the development of next generation mobile networks. Given that MTC devices are usually battery constrained, wireless power transfer (WPT) and energy harvesting (EH) have emerged as feasible options to enlarge the lifetime of the devices, leading to wireless powered networks. In that sense, we consider a setup where groups of sensors are served by a base station (BS), which is responsible for the WPT. Additionally, EH is used to collect energy from the wireless signals transmitted by other sensors. To characterize the energy obtained from both procedures, we model the sporadic activity of sensors as Bernoulli random variables and their positions with repulsive Mat\'ern cluster processes. This way, the random activity and spatial distribution of sensors are introduced in the analysis of the energy statistics. This analysis can be useful for system design aspects such as energy allocation schemes or optimization of idle-active periods, among others. As an example of use of the developed analysis, we include the design of a WPT scheme under a proportional fair policy.Comment: This work has been accepted at the 2020 21st IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC 2020). Copyright held by IEE

    Energy-driven techniques for massive machine-type communications

    Get PDF
    In the last few years, a lot of effort has been put into the development of the fifth generation of cellular networks (5G). Given the vast heterogeneity of devices coexisting in these networks, new approaches have been sought to meet all requirements (e.g., data rate, coverage, delay, etc.). Within that framework, massive machine-type communications (mMTC) emerge as a promising candidate to enable many Internet of Things applications. mMTC define a type of systems where large sets of simple and battery-constrained devices transmit short data packets simultaneously. Unlike other 5G use cases, in mMTC, a low cost and power consumption are extensively pursued. Due to these specifications, typical humantype communications (HTC) solutions fail in providing a good service. In this dissertation, we focus on the design of energy-driven techniques for extending the lifetime of mMTC terminals. Both uplink (UL) and downlink (DL) stages are addressed, with special attention to the traffic models and spatial distribution of the devices. More specifically, we analyze a setup where groups of randomly deployed sensors send their (possibly correlated) observations to a collector node using different multiple access schemes. Depending on their activity, information might be transmitted either on a regular or sporadic basis. In that sense, we explore resource allocation, data compression, and device selection strategies to reduce the energy consumption in the UL. To further improve the system performance, we also study medium access control protocols and interference management techniques that take into account the large connectivity in these networks. On the contrary, in the DL, we concentrate on the support of wireless powered networks through different types of energy supply mechanisms, for which proper transmission schemes are derived. Additionally, for a better representation of current 5G deployments, the presence of HTC terminals is also included. Finally, to evaluate our proposals, we present several numerical simulations following standard guidelines. In line with that, we also compare our approaches with state-of-the-art solutions. Overall, results show that the power consumption in the UL can be reduced with still good performance and that the battery lifetimes can be improved thanks to the DL strategies.En els últims anys, s'han dedicat molts esforços al desenvolupament de la cinquena generació de telefonia mòbil (5G). Donada la gran heterogeneïtat de dispositius coexistint en aquestes xarxes, s'han buscat nous mètodes per satisfer tots els requisits (velocitat de dades, cobertura, retard, etc.). En aquest marc, les massive machine-type communications (mMTC) sorgeixen com a candidates prometedores per fer possible moltes aplicacions del Internet of Things. Les mMTC defineixen un tipus de sistemes en els quals grans conjunts de dispositius senzills i amb poca bateria, transmeten simultàniament paquets de dades curts. A diferència d'altres casos d'ús del 5G, en mMTC es persegueix un cost i un consum d'energia baixos. A causa d'aquestes especificacions, les solucions típiques de les human-type communications (HTC) no aconsegueixen proporcionar un bon servei. En aquesta tesi, ens centrem en el disseny de tècniques basades en l'energia per allargar la vida útil dels terminals mMTC. S'aborden tant les etapes del uplink (UL) com les del downlink (DL), amb especial atenció als models de trànsit i a la distribució espacial dels dispositius. Més concretament, analitzem un escenari en el qual grups de sensors desplegats aleatòriament, envien les seves observacions (possiblement correlades) a un node col·lector utilitzant diferents esquemes d'accés múltiple. Depenent de la seva activitat, la informació es pot transmetre de manera regular o esporàdica. En aquest sentit, explorem estratègies d'assignació de recursos, compressió de dades, i selecció de dispositius per reduir el consum d'energia en el UL. Per millorar encara més el rendiment del sistema, també estudiem protocols de control d'accés al medi i tècniques de gestió d'interferències que tinguin en compte la gran connectivitat d'aquestes xarxes. Per contra, en el DL, ens centrem en el suport de les wireless powered networks mitjançant diferents mecanismes de subministrament d'energia, per als quals es deriven esquemes de transmissió adequats. A més, per una millor representació dels desplegaments 5G actuals, també s'inclou la presència de terminals HTC. Finalment, per avaluar les nostres propostes, presentem diverses simulacions numèriques seguint pautes estandarditzades. En aquesta línia, també comparem els nostres enfocaments amb les solucions de l'estat de l'art. En general, els resultats mostren que el consum d'energia en el UL pot reduir-se amb un bon rendiment i que la durada de la bateria pot millorar-se gràcies a les estratègies del DL.En los últimos años, se han dedicado muchos esfuerzos al desarrollo de la quinta generación de telefonía móvil (5G). Dada la gran heterogeneidad de dispositivos coexistiendo en estas redes, se han buscado nuevos métodos para satisfacer todos los requisitos (velocidad de datos, cobertura, retardo, etc.). En este marco, las massive machine-type communications (mMTC) surgen como candidatas prometedoras para hacer posible muchas aplicaciones del Internet of Things. Las mMTC definen un tipo de sistemas en los cuales grandes conjuntos de dispositivos sencillos y con poca batería, transmiten simultáneamente paquetes de datos cortos. A diferencia de otros casos de uso del 5G, en mMTC se persigue un coste y un consumo de energía bajos. A causa de estas especificaciones, las soluciones típicas de las human-type communications (HTC) no consiguen proporcionar un buen servicio. En esta tesis, nos centramos en el diseño de técnicas basadas en la energía para alargar la vida ´útil de los terminales mMTC. Se abordan tanto las etapas del uplink (UL) como las del downlink (DL), con especial atención a los modelos de tráfico y a la distribución espacial de los dispositivos. Más concretamente, analizamos un escenario en el cual grupos de sensores desplegados aleatoriamente, envían sus observaciones (posiblemente correladas) a un nodo colector utilizando diferentes esquemas de acceso múltiple. Dependiendo de su actividad, la información se puede transmitir de manera regular o esporádica. En este sentido, exploramos estrategias de asignación de recursos, compresión de datos, y selección de dispositivos para reducir el consumo de energía en el UL. Para mejorar todavía más el rendimiento del sistema, también estudiamos protocolos de control de acceso al medio y técnicas de gestión de interferencias que tengan en cuenta la gran conectividad de estas redes. Por el contrario, en el DL, nos centramos en el soporte de las wireless powered networks mediante diferentes mecanismos de suministro de energía, para los cuales se derivan esquemas de transmisión adecuados. Además, para una mejor representación de los despliegues 5G actuales, también se incluye la presencia de terminales HTC. Finalmente, para evaluar nuestras propuestas, presentamos varias simulaciones numéricas siguiendo pautas estandarizadas. En esta línea, también comparamos nuestros enfoques con las soluciones del estado del arte. En general, los resultados muestran que el consumo de energía en el UL puede reducirse con un buen rendimiento y que la duración de la batería puede mejorarse gracias a las estrategias del DLPostprint (published version
    • …
    corecore