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ABSTRACT

The Internet of Things (IoT) represents a substantial shift within wireless
communication and constitutes a relevant topic of social, economic,
and overall technical impact. It refers to resource-constrained devices
communicating without or with low human intervention. However,
communication among machines imposes several challenges compared to
traditional human type communication (HTC). Moreover, as the number
of devices increases exponentially, different network management techniques
and technologies are needed. Data aggregation is an efficient approach to
handle the congestion introduced by a massive number of machine type
devices (MTDs). The aggregators not only collect data but also implement
scheduling mechanisms to cope with scarce network resources.
This thesis provides an overview of the most common IoT applications and

the network technologies to support them. We describe the most important
challenges in machine type communication (MTC). We use a stochastic
geometry (SG) tool known as the meta distribution (MD) of the signal-to-
interference ratio (SIR), which is the distribution of the conditional SIR
distribution given the wireless nodes’ locations, to provide a fine-grained
description of the per-link reliability. Specifically, we analyze the performance
of two scheduling methods for data aggregation of MTC: random resource
scheduling (RRS) and channel-aware resource scheduling (CRS). The results
show the fraction of users in the network that achieves a target reliability,
which is an important aspect to consider when designing wireless systems with
stringent service requirements. Finally, the impact on the fraction of MTDs
that communicate with a target reliability when increasing the aggregators
density is investigated.

Keywords: data aggregation, Internet of Things, meta distribution, machine
type communication, scheduling schemes, stochastic geometry.
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1 INTRODUCTION

During the last decades, the world witnessed notable advances in wireless technologies
in terms of human communication. Evolving from only voice services offered by the
first generation (1G) cellular networks; stepping forward to the starting phase of the
second generation (2G) with features and services such as signal digitalization, short
text messages and email transfers but at 14.4 kbps data rates; following with the third
generation (3G) providing digital broadband and enhanced downlink data transmission
speed ranging from 8 Mbps to 10 Mbps; to finally reach 100 Mbps and broader coverage
using forth generation (4G) technology [1]. This evolution allowed cellular networks to
move progressively from voice-centric to data-centric systems, but still, communication
was restricted to humans.
Recently, a growing interest arose from academia and industry to provide worldwide

connectivity among things (machines and devices). This transition from human type
communications (HTC) toward machine type communications (MTC) is driven by the
need to reform our society and, therefore, the way we live. Moreover, even though the
technology to connect things to the Internet has existed for more than 20 years, the
actual development in embedded devices, smart user interfaces, and cloud computing1

impulses the Internet of Things (IoT) concept to emerge as a huge potential value in
terms of improved efficiency, sustainability and safety for industry and society [3]. Under
this huge umbrella, the recently introduced fifth generation (5G) New Radio is designed
to moderately support massive and critical MTC. However, it is clear that 5G cannot
support the new and stringent requirements on wireless connectivity that most novel and
futuristic MTC applications may impose [4]. In this context, sixth generation (6G) is
envisioned to incorporate suitable technologies defined outside the 5G scope, that will
change the way wireless networks collect, process and transmit data [5].

1.1 IoT applications and challenges

Recently, IoT-based services have gained enormous popularity, and are expected to keep
growing in the future. Some of the most important IoT applications to improve human
life and contribute to the world’s economic growth include:

• smart home, often referred to as home automation, enables the remote monitoring
and management of appliances and systems, such as lighting and heating [6];

• wearables or smart electronic devices located close to the skin’s surface to detect,
analyze, and transmit information related to body signals and/or data collected
from the environment. This allows, in some cases, immediate feedback to the
person wearing it [7];

• smart grids [8], which is the traditional electrical network serving every citizen,
but updated with communication technologies such as sensors, radio modules,
and gateways. This technology allows consumers to make better energy usage

1Device computation can be offloaded to the cloud to benefit from on-demand self-service, resource
pooling, broad network, measured service, and rapid elasticity [2]



decisions to save electricity and reduce the expenses associated with high energy
consumption, and permits to restore power faster after a collapse;

• connected vehicles, see [9], is another application that might help in preventing
accident by optimizing driving decision making, and avoiding long traffic queues
(improves traffic flow) due to the constant interchange of information related to
location, speed, and dynamics among vehicles and road infrastructure such as traffic
lights;

• smart farming [10], which involves data collection from sensors and monitoring to
elaborate analytical models that farmers can use to make more accurate decisions
about crops harvesting and rearing.

Figure 1 shows some IoT applications and the ecosystem of network technologies to
support the variety of requirements. The requirement differences (latency and data rate)

Figure 1. Internet of Things ecosystem.

between some of these application domains are described in [11]. These applications bring
brand-new business opportunities while imposing numerous challenges in connectivity
and efficient communication management.
Because most IoT devices are placed in remote areas, depending on the application,

they use wireless connectivity; therefore, the existing wireless infrastructure demands
substantial changes. Widely adopted wireless communication protocols such as
orthogonal frequency-division multiplexing require additional circuitry; thus, they need
to be redesigned to fit IoT scenarios [12], [13]. Moreover, short-range wireless technologies
(communication over centimeters) are essential to ensure the desired low-complexity IoT
devices and the required low-cost deployments.
IoT devices mainly include four stages to complete a particular task: data acquisition;



data processing, which is the most time-consuming; data storage and data transmission
and communication, which is the one that consumes more power. Thus, it is critical to
consider energy-efficient designs in all these stages [14]. In this sense, energy harvesting
technologies [15, 16], low-power processors units [17, 18], and efficient duty cycling2

techniques [19] can contribute to avoid traditional large and heavy batteries and power
packs, which are not suitable for small IoT devices.
In general, most IoT devices are deployed to sense the surrounding environment,

generate raw data and transmit this information to other nodes in the network. In
industrial scenarios, this real-time data is exploited to make better decisions, improve
productivity and save human’s life, e.g., manufacturing industry [20] and safer mining
industry [21]. However, extracting useful information from a highly dynamic environment
and perform actions based on it (e.g., detecting anomalies and correct them) is a
challenging research problem in artificial intelligence [22], [23]. Particularly, machine
learning-based approaches allow users to identify patterns in historical data to visualize
tendencies that appear over long periods and run predictive analysis based on a variety
of possible scenarios. However, implementing complex machine learning algorithms in
resource-constrained devices to achieve these goals is a big challenge [24]. This is because
the algorithms need match the storage capacity and computing power of IoT devices.
On the other hand, machines and objects in practically any industry scenario can

be connected and configured to send data to cloud applications over diverse network
technologies working in licensed and unlicensed bands [25], [26]. Thus, a security risk is
present at every link along the IoT path. Unfortunately, diverse kinds of traffic, devices’
computing capabilities, and the lack of a common standard and architecture for IoT
protection make security solutions a tough assignment [27], [28].

1.2 5G-enabled IoT

Cellular technologies can provide clear benefits across a wide range of IoT applications.
This is mainly because: i) reduced deployment costs by re-using the already existing
infrastructure with global reach, ii) high scalability, iii) mature quality of service
(QoS) functionalities and iv) security [29]. However, current cellular networks such as
Long-Term Evolution (LTE), conceived for mobile broadband traffic with target block
error rate of 10−1 and unpredictable latency values that ascend to several seconds [30],
cannot efficiently support connectivity for a massive number of heterogeneous devices3

communicating between each other through the Internet with low or without human
supervision.
5G networks address previous standard limitations by introducing a set of enabling

technologies that provide energy and spectral efficient connectivity. This includes device-
to-device (D2D) communications, massive multiple-input multiple-output (mMIMO),
communications in the millimeter wave (mm-Wave) spectrum, and ultra dense networks
(UDN).

2An IoT device spends most of its time in the sleep mode; thus, it is essential to find promising
solutions for very large-scale integration (VLSI) designs that reduce the static power consumption
(leakage) [14].

3The number of IoT devices, e.g., sensors, actuators, appliances, is foreseen to reach 38.6 billions by
2025 [31].



D2D communication refers to a radio technology that enables user equipments located
in close proximity to bypass the cellular base stations (BSs) and directly connect to
each other, which is extremely beneficial for users located at the cell edge or congested
areas. Notice that other short-range technologies such as Bluetooth, WiFi or near-field
communication provide some D2D communication functionalities. However, they work
in unlicensed band; thus, the interference is unmanageable and they cannot provide
security and QoS guarantees as cellular networks do [32]. D2D communication is a
promising solution to improve spatial frequency reuse, decrease the power consumption
in cellular networks, reduce the traffic congestion at the network core and minimize the
latency. However, its implementation involves technical challenges such as interference
management, peer discovery, synchronization, resource allocation for D2D and cellular
links, and adaptive mode selection and power control for user equipments [33]. The
most popular use cases of D2D communication include public safety services, mobile
tracking and positioning, traffic offloading, vehicle-to-vehicle (V2V) communication,
content distribution, extension of cellular coverage and reliable health monitoring [34].
mMIMO is a fundamental technology for providing the high spectral efficiency4,

energy efficiency and reliability professed by 5G. This concept emerged in 2010 and
it was considered science fiction at that time [36] but it became a commercial reality
in 2018 [37]. In general, large-scale antenna arrays permit to concentrate all the
power in specific directions by implementing very sophisticated algorithms such as
beamforming (precoding) and beam steering [38]. Moreover, since mMIMO uses many
more antennas (typically more than 64) than the number of users served in a resource
block, the beam can be extremely narrow, thus reducing the leakage in undesired
directions; which translates to high-efficient signal energy transmissions and very limited
(if any) interference. Also, notice that narrow signal beams, which implies high angular
resolution, make the user position tracking process more reliable. Although mMIMO
adds undeniable qualitative improvements over conventional MIMO, researchers still
need to address some challenges such as pilot contamination, precoding, channel
estimation, user scheduling, and hardware impairments [39]. Authors in [35] discuss
important considerations for mMIMO design, optimization and deployment.
mm-Waves communications operate over a high frequency spectrum (from 30 to 300

GHz) and bring attractive opportunities to attain ultra-high data rates by exploiting
large signal bandwidths. Moreover, using higher spectrum frequencies allows to
reduce the dimensions of an antenna and pack more antennas into an array; this
is why mm-Waves is the primary enabler of mMIMO. The key research challenges
come from the inherent propagation characteristics of electromagnetic waves at high
frequencies. mm-Wave transmissions experience high attenuation because of their
incapacity to penetrate objects (rich scattering concept completely disappears) and
their molecular-specific absorption loss. The path loss effects on the received power
at high frequencies can be drawn from Friis transmission equation [40], and can be
compensated by using antennas with high gains or equivalently exploiting the high

4Spectral efficiency is the number of information bits per complex-valued sample, measured in
bit/s/Hz, that it can be transmitted reliably over the specific channel [35]. It refers to the capability of
using the bandwidth efficiently.



gain from large antenna arrays. Moreover, since the coherence block5 is proportional
to the wavelength, estimating the time-varying channel in mm-Wave bands requires
more updates, which results in greater pilot overhead than in sub-6 GHz band [41], [42].
Also, notice that at mm-Wave frequencies, the noise power, which is proportional to
the bandwidth, cannot be neglected; thus, effective beamforming for pilots is crucial
to improve the signal-to-noise ratio (SNR). Due to the aforementioned issues, it is
expected that mm-Wave technologies can be efficient only in the context of short-range
communication; furthermore, it is essential to develop accurate channel and propagation
models that account for parameters such as line-of-sight (LoS) probability, large-scale
path loss and building penetration loss to exploit their full benefits.
The main idea behind UDN is to move the access nodes as close as possible to the end

users by deploying low-power small cells (picocells and femtocells) in the coverage area
of traditional macrocells, particularly, in hotspots where high traffic is generated [43].
The density of cells is greater than that of active users [44]. This allows to satisfy
the stringent and diverse users’ requirements while providing uniform coverage and
adaptable connectivity. In this context, the integration of unmanned aerial vehicles
(UAVs) as small cells for temporarily restoring service is studied in [45]. This is
beneficial due to the strong LoS links that UAVs can provide and the possibility of rapid
and low-cost deployments. However, UDNs introduce new technical challenges such
as load imbalance, severe interference problems, unfairness in radio resource sharing,
unnecessary handover, inefficient radio resource utilization and high signalling overhead.
Moreover, recent studies reveal that at certain point, network densification may stop
providing significant throughput gains. In other words, the coverage probability in terms
of the signal-to-interference-plus-noise ratio (SINR) is maximized at a finite BS density
beyond which the throughput decreases [46]. For instance, authors in [47] show that the
coverage reaches a maximum point before starting to decay when the network becomes
denser under bounded pathloss, lognormal shadowing and strongest cell association.
Physical limitations in the UDNs performance such as the BS height is studied in [46].
To overcome these challenges and achieve the performance requirements in 5G, it is
essential to combine UDNs and other 5G enabling technologies such as mMIMO and
mm-Wave [48].
Notice that 5G does not only presuppose high data rates transmissions, as it is

commonly thought; but it is a whole ecosystem of technologies that will support a wide
range of use cases and requirements. In particular, the Third-Generation Partnership
Project (3GPP) considers enhanced mobile broadband (eMBB), ultra-reliable low-
latency communications (URLLC), and massive MTC (mMTC) as three main use cases
that 5G should support. Important design criteria for each 5G service are discussed
in [49], while authors in [50] investigate the heterogeneity arising from their coexistence,
under orthogonal and non-orthogonal slicing of radio resources. Notice that efficient
resource sharing between mMTC and URLLC users is challenging to accomplish due to
the random activity of users belonging to the first group, and deserve special attention
since they constitute enablers for a broad spectrum of IoT applications.
In one extreme case, URLLC is introduced to support use cases with stringent
5A coherence block consists of several subcarriers and time samples over which the channel response

remains constant. If the coherence bandwidth is Bc and the coherence time is Tc, then each coherence
block contains τc = BcTc complex-valued samples [35].



requirements in terms of extremely low latency6(less than 1 ms), high availability and
reliability7 (say 10−9 of decoding error probability). Specifically, it is expected to play
an important role in providing connectivity for new scenarios from vertical domain
(critical IoT) [54] such as factory automation, with a maximum error probability of 10−9

and latency ranging from 0.25 to 10 ms; smart grids (10−6 and 3− 20 ms, depending on
each country electricity frequency); intelligent transportation (10−5, 5− 10 ms) [30], etc.
Notice that when the latency requirement is not a most, transmitting at a rate lower
than channel capacity guarantees the target reliability almost surely, but ensuring low
latency and high reliability in parallel makes URLLC extremely challenging [55]. On
the other extreme, mMTC networks are designed to be latency-tolerant, and the main
performance requirement is to provide connectivity for a huge number of devices that
sporadically transmit and receive a small amount of data [56]. Since these devices are
battery-powered, the major concern lies in changing the traditional protocol stack and
network structure to utilize the available power sparingly.
This thesis focuses on mMTC; thus, in the next section, we present the challenges

and requirements on massive connectivity. Moreover, we introduce the main mMTC
characteristics that impose a redesign of traditional HTC protocols.

1.3 Challenges and requirements for massive connectivity

In contrast to HTC, mMTC brings new network designs and associated challenges to be
addressed. For example, HTC is characterized by high-speed downlink communication,
while low-rate uplink transmissions (data rate for each user may be around 10
kbits/s [57]) prevail in mMTC. Since the payload size can be similar to that of the data
packets8, novel techniques for short packet length transmission need to be studied to
prevent the overhead resulting from the control signals (messages required before the
data payload is transmitted successfully) such as new channel coding mechanisms [58],
low signaling overhead medium access control (MAC) protocols [59] and grant-free
communication with appropriate collision resolution mechanisms [60]. Notice that
less frequent and shorter transmissions preserve energy; thus, low signaling overhead
MAC protocols also constitute an enabler for energy efficient MTC. As the number
of devices increases exponentially, e.g., up to 300.000 devices in a single cell [57],
the radio spectrum becomes insufficient to support the variety of applications; thus,
non-orthogonal multiple access (NOMA) [61] techniques emerge as a prospective solution
to allow signal overlapping over the same time-frequency resources via power-domain
or code-domain multiplexing. At the receiver side, devices use successive interference
cancellation (SIC) when decoding. Notice that orthogonal medium access statically
links the number of available resources to the number of tolerable users, which is

6Latency is a cross-layer concept. This is, it can be interpreted in many ways according to the focused
layer of the communication protocols [51]. For instance, authors in [52] define it as the delay that a data
packet experiences from the access of a given protocol layer at the transmitter to the egress of the same
layer at the receiver.

7Spatial diversity —switching-like combining schemes—is a promising technique to endure the desired
reliability levels in URLLC for low-cost IoT devices [53].

8Vehicle-to-Everything communication is a typical example that involves the transmission of short
information payloads.



inefficient in dense networks. Due to the group-based nature of communication [62],
mMTC traffic usually presents high temporal and spatial correlation properties. In
other words, the interference, which depends on the active nodes set and is a main
limiting factor of wireless network performance, is temporally and spatially correlated.
The temporal correlation affects retransmission strategies, while the spatial correlation
influences the routing part [63]. Learning techniques are usually needed to extract the
correlation information. The data traffic produced by machine type devices (MTDs) is
highly heterogeneous, sporadic due to uncoordinated sleeping cycles, and dynamic with
event-driven and periodic activations compared to more predictable HTC traffic [57].
For example, in a wireless sensor network, each sensor measures different variables e.g.,
temperature, humidity, speed, etc, with different characteristics such as dynamic range
and frequency. This imposes a variety of hardware restrictions such as sample rate,
resolution and sensitivity. Network slicing of wireless resources is a novel solution that
can enable HTC and mMTC co-existence in the future cellular networks [64].
Different MTC applications have distinct characteristics and service requirements,

e.g., in terms of priority and delay constraints, which leads to the need for novel
scheduling schemes. Moreover, MTDs should be cheap enough to allow for massive
deployments. This is translated into low complexity, computational and memory
resource constraints, and, unfortunately, limited performance. Furthermore, because
IoT devices can be placed in locations of hard accessibility and due to the cost associated
with battery replacement, power-saving methods for dense IoT networks need to be
considered9. Low-power wide-area (LPWA) technologies such as LoRa and Sigfox
are among the potential technologies to provide cost-effective and long-range (15 km
and 20 km, respectively) connectivity solutions for IoT applications [66]. Notice also
that energy-efficient clustering schemes simplify the deployment of low-power MTDs [67].

1.4 Reaching beyond 5G

Although 5G aims at supporting several IoT services, it might fall short to meet all
novel application requirements. MTC networks in beyond 5G and 6G are envisioned to
optimize the integration of a diverse set of communications systems and technologies such
as cell-free mMIMO (distributed MIMO), which consists of a group of antennas spread
over a large geographical area in such a way that each user is surrounded by BS antennas
instead of each BS being surrounded by users as current scenarios showcase. Conventional
MIMO BSs with packed arrays cover many users within the corresponding cells, and the
received signal strength between different users experiences large variations. Contrary,
in cell-free mMIMO, the cell concept disappears and service antennas coherently serve
all user terminals; thus, providing higher throughput [37]. The antenna elements may
connect each other inside a single cable, e.g., the so-called radio stripes [68], to provide
coverage in places where BSs are challenging to deploy, e.g., cultural places, stadiums
and factories. A central baseband processing unit is connected to all the antenna stripes
to perform the necessary baseband signal processing.
Similar to mMIMO, intelligent reflecting surfaces (IRS) [69], or reconfigurable
9The battery of these devices is expected to last more than 10 years with the battery capacity of 5

Wh [65].



intelligent surface [70] could be a keystone to reduce energy consumption in 6G at
communication frequencies above 100 GHz while realizing high beamforming gains. IRSs
form large and thin metamaterial surfaces that modify the incident electromagnetic
waves’ phase and amplitude. Thus, producing scatterings in desired directions and
reducing the power loss generated by random reflections, which creates an alternative
transmission path when the line-of-sight between the transmitter and receiver is
obstructed. Note that mMIMO uses beamforming to also secure physical layer
communications. However, the achievable secrecy rate is limited even with this technique
when the legitimate user and the eavesdropper links exhibit high correlation. In this
scenario, IRS can constructively direct the beamformed signal towards the user and in a
destructive manner towards the eavesdropper. However, this approach requires detecting
and locating the eavesdropper, which is not an easy task. IRSs also make the wireless
channel highly controllable, which reduces transmitter and receiver design complexity,
and can be utilized in full-duplex relaying applications [71]. This technology will be
essential for high-frequency communications where the penetration loss is significant.
Moreover, IRSs do not require radio frequency (RF) components; thus, large structures
can be potentially produced at low cost and complexity, which translates to less power
depletion than conventional active MIMO arrays [71].
Despite the efforts to efficiently exploit mm-Wave spectrum for 5G wireless networks,

the quest for increasing data rates persists. The THz band (0.1-10 THz) offers
much higher transmission bandwidths than the mm-Wave; however, to achieve its full
potentials, several challenges still remain. For instance, THz transmissions experience
even higher propagation losses, thus, limiting the communication distances, although
suitable beamforming may overcome this issue [72]. Moreover, before the actual data
transmissions take place, user equipments communicating at THz frequencies must follow
a beam training process to allows transceivers direct the antenna gain toward different
directions to find the optimal spatial path that maximizes the received signal. This is
not a trivial task to accomplish since it must be repeated to maintain high data rates
across the network when the users move and the environment changes [73]. At these
frequencies, parasitic reactances of active devices such as transistors increase, which
make power amplifiers difficult to fabricate [74]. Even though we can find in the literature
several attempts to minimize the receiver complexity by using simpler Schottky barrier
diode-based envelope detector to reconstruct the signal coherently [75], THz receivers are
still complex and expensive. Moreover, it is necessary to design fast processing chips to
handle the wide bandwidth and very large-scale antenna, which consume high power since
dynamic power consumption of a chip is proportional to the operating frequency [76].
Figure 2 illustrates a typical UDN with other enable technologies such as mMIMO,

mm-Wave, D2D communication and IRS.

1.5 Thesis contributions

Motivated by the crucial role of mMTC in IoT and the challenges arising from the
variety of new IoT applications, we devote this thesis to analyze data aggregation and
resource scheduling as two crucial techniques to deal with the massive access of MTDs
while guaranteeing the desired QoS in these challenging scenarios. We use the novel



Figure 2. 5G and 6G technologies to support IoT.

concept of meta distribution (MD), a powerful stochastic geometry (SG) tool to handle
the per-node QoS requirements. We derive theoretical results, discuss them, and conduct
performance evaluation via Monte Carlo simulations in MATLAB. To the best of our
knowledge, current literature lacks a framework that integrates the three aforementioned
concepts: data aggregation, MD, and resource scheduling. Thus, by integrating them,
we provide benchmark performance and important insights to consider in the design of
future networks with stringent service requirements. Our objective is to fill this gap
through the following concrete contributions:

• We present an overview of the most important SG aspects to model dense networks,
e.g., the most common point processes (PPs) used in the literature. Essential
metrics to characterized the goodness-of-fit when approximating real network
deployments by PPs are also provided.

• We use the MD concept to fully characterize the uplink traffic performance in a
Poisson network with data aggregation. We adopt the random resource scheduling
(RRS) and channel-aware resource scheduling (CRS) scheduling schemes proposed
in [77] to deal with the limited spectrum resources. However, herein we provide a
more fine-grained performance characterization of a typical link.

• We present an accurate and simple closed-form expression for the MD of the signal-
to-interference ratio (SIR) under the RRS scheme based on an approximation
obtained from the relation between the geometric and the arithmetic mean, in
contrast to the usually adopted moment inversion approach (Gil-Pelaez theorem)
that requires the calculation of complex integrals.

• We also provide an upper bound to the MD under RRS for any path loss exponent
(α ≥ 2) that allows fast computation compared to time-consuming Monte Carlo
simulations, and obtaining important network performance insights.



• Our results show that CRS can serve more devices than RRS for a common target
reliability. Moreover, we conclude that the standard success probability does not
guarantee QoS for any node in a network. We also provide insights into the
transmission rate required to keep a percentage of devices/users communicating
with a target reliability for both scheduling schemes.

Finally, the exhaustive bibliography review carried out in this thesis can serve as a
reference material for master students and researchers working with SG tools to analyze
dense wireless networks.

1.6 Thesis outline

The rest of the thesis is organized as follows: Chapter 2 reviews data aggregation,
scheduling and resource allocation techniques, and the SIR MD as a powerful SG tool
for mMTC with QoS guarantees. Chapter 3 introduces the system model, a MD-based
analytical approach for mMTC, and presents the network performance evaluation and
numerical results under RRS and CRS. Finally, Chapter 4 concludes the thesis and also
discusses future research directions.
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2 MASSIVE MTC WITH QOS GUARANTEES

Recently, enabling massive access with QoS guarantees has been of great interest to
academia and industry research community. The most common techniques discussed
in the literature to handle random access in MTC scenarios are classified as: i) direct
orthogonal access, ii) direct non-orthogonal access, and iii) indirect access. The first
one includes techniques such as Access Class Barring [78], distributed queuing [79], and
dynamic allocation of the random access channel. These solutions aim to reduce preamble
collisions’ effects; however, the access delay and the signal overhead increase in dense
networks. In contrast, non-orthogonal multiple access schemes allow resource overloading,
thus fitting to scenarios with a large number of MTDs but sacrificing complexity at the
decoder side. The third class refers to cluster-based data aggregetaion, which is treated
in detail in the next section.

2.1 Data aggregation

A promising way to support a massive number of concurrent connections emerges from
the concept of data aggregation. Moreover, because power-constrained MTDs may not
communicate directly with the BS, hierarchical architectures may be necessary to provide
efficient data aggregation. This means that MTDs can form groups or clusters, statically
or dynamically, depending on some criteria such as QoS, device type, geographic location,
services type, and cooperative grouping [80]; and associate to more powerful nodes (in
terms of storage and processing capacity) called gateways or aggregators. In general, the
density of aggregators is considerably smaller than the density of MTDs. This approach
allows aggregators to first collect the data traffic from MTDs and then relay it to the core
network, where it is used by multiple applications. As shown in Figure 3, this hierarchical
structure [81]: i) shortens the distance in the communication while diminishing the
power consumption of the MTDs; ii) reduces the number of connections to the core,
thus decreasing the congestion; and iii) extends network coverage. Notice that in the
sensor networks context, data aggregation benefits from the intrinsic spatial-temporal
correlation that arises from local sensor clustering to remove redundant information.
Dynamic centralized clustering algorithms rely on a sink or BS to select the cluster heads
(CHs). To do so, the BS requires extensive data from the nodes, which sometimes needs
complex embedded hardware or exchanging a significant number of control messages.
In contrast, the nodes in distributed clustering algorithms are completely autonomous
since they decide the suitable CHs by exchanging information with each other. Both
centralized and distributed clustering algorithms usually alternate the nodes playing the
role of the CHs, based on the remaining CH energy, to dynamically balance the energy
consumption and the traffic among all the nodes and extend network lifetime [82]. For
instance, a distributed approach for data aggregation, where nodes use a fuzzy-logic
system to decide whether they become a CH or not, is proposed in [83]. This process
is occasionally supported by the BS, which sends three messages during the network
lifetime to reconfigure the network’s skip value, i.e, number of rounds in which the same
CHs remains. Authors in [84] propose a centralized clustering mechanism where BS
determines the CHs based on location and mobility information received from the MTDs,
and runs the k-means algorithm to form the clusters based on how frequent MTDs access
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Figure 3. Direct communication between MTDs and BS (left) and a typical data
aggregation scenario using fixed data aggregators and a UAV as mobile aggregator (right).

the network. More complex scenarios implement static and dynamic clustering-based
data aggregation techniques simultaneously in the network [85]. This approach exploits
the assumption that dynamic clustering is more favorable for sensed targets located
far from the sink, and events sensed near the sink can be directly transmitted without
any aggregation at all. In practice, dynamic clustering mechanisms need to evolve to
reduce the signaling overhead and delay associated with cluster formation, e.g, cost from
discovering all potential MTC-aggregator links, especially for time-sensitive industrial
applications with stringent delay constraints. For example, authors in [86] propose an
algorithm to form clusters and select the CHs in vehicular ad-hoc networks (VANETs)
based on the regular transmission of beacons to distribute the nodes’ states. Excessive
beacons transmission results in severe performance degradation due to uncontrolled
collisions, especially in high-mobility and dense scenarios. Cluster-based data aggregation
mechanisms can improve efficiency if green technologies such as energy harvesting are also
implemented. Note that due to the low power budget of MTDs, it is reasonable to let
them collect energy from the RF signal sent by aggregators, which in turn, have greater
capabilities.
Since MTDs are power and range-limited, data aggregation can appear over multi-hop

D2D connections. This is the case of tree-based data aggregation [87, 88] that aims to
minimise resource consumption and maximise data collection rate. Data information
flows from leaf nodes to the root node or the sink. However, optimizing the hierarchical
organization of devices and energy-efficient data aggregation simultaneously dictates
critical design issues. This is because the number of hierarchical levels determines the
number of transmission hops and therefore the power consumption during the aggregation
process. Notice that the number of hops also affects the communication delay, which is
extremely linked to the network throughput. Moreover, each time an application traffic
changes or a new application emerges, the structure needs to be optimized again based
on the new requirement. Even more, in case of packet loss at any stage of the tree, the
entire information is affected as well [89].
Recently, several works have taken steps forward by investigating and exploiting the

advantages of data aggregation. For instance, authors in [90] propose an energy-efficient
data aggregation scheme for a three-stages hierarchical MTC network. Stages composed
of transmitters and aggregators can work in parallel or series. In the former, transmission
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and aggregation occur simultaneously during all multi-hop transmission stages; although
causing severe interference problems. In contrast, the latter does not allow stages
to repeat before the data is eventually transmitted to the BS (complete cycle); thus,
provides low data rates but causes low interference since multiple stages are not active
simultaneously.
Data aggregation benefits can be materialized by deploying either fixed or mobile data

aggregators as illustrated in Figure 3. The former constitutes a smart strategy to collect,
process, and transmit compressed data in MTC scenarios with low-mobility or static
devices such as smart utility meters or video surveillance cameras. This implies knowing
the devices’ locations to implement suitable aggregation algorithms. A strategically fixed
positioned data aggregator can successfully meet the QoS requirements of all MTDs in its
vicinity. However, its sub-optimal placement may result in inefficient energy consumption
due to variable distances from MTDs to the aggregator. Moreover, massive transmission
requests may overload a limited-resource and fixed data aggregator. Deploying mobile
data aggregators can solve these issues; however, this solution may be inappropriate for
delay intolerant MTDs [91]. Interesting scenarios include UAVs playing the role of mobile
aggregators [92], which provide more scalability since UAVs can access outlying areas.
Instead of conventional aggregation schemes based on device location, authors in [93]

consider the latency requirement as an essential classifier for MTC services and the
fundamental metric to achieve QoS-based aggregation for network slicing. Once the
clusters are formed using the k-means algorithm, they are assigned to specific gateways
through the Hungarian algorithm. Meanwhile, authors in [91] propose a cooperative data
aggregation scheme based on the coexistence of a fixed data aggregator and multiple
mobile data aggregators selected using graph theory to aggregate data from delay
intolerant and tolerant MTDs, respectively. Notice that it is unlikely that all the MTDs in
an mMTC network demand uniform QoS services; thus, this approach provides effective
congestion control and energy efficiency while coping with the sub-optimal positioning
issues. It also improves the communication delay and outage probability compared to
schemes based on single fixed data aggregator and single mobile data aggregators.
Notice that data aggregation is a more complex network functionality that include

other aspects such as efficient routing protocols and suitable data aggregation functions to
remove the redundant information. Moreover, the trade-off among performance measures
such as energy consumption, latency and data accuracy is indispensable to design proper
data aggregation structures and protocols. However, in this thesis, we only exploit the
cluster-based spatial hierarchy to analyze other network capabilities such as resource
scheduling.

2.2 Scheduling and resource allocation

Due to the massive access requests in MTC applications, spectrum scarcity remains a
serious issue. Note that communication at higher frequencies (THz and mm-Waves) for
mMTC applications imposes a huge challenge since they involve resource constrained-
devices located in remote places facing severe propagation problems, e.g., underground
locations. Thus, different techniques have been proposed to efficiently manage the
insufficient resources. Spectrum sharing is a promising strategy to address the disparity
between limited spectrum resource and traffic demands by allowing more than one node
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to use the same spectrum at the same time [94]. Among them, cognitive radio based
solutions allow MTDs to sense the spectrum and opportunistically access the unused
bands in their vicinity without affecting the spectrum utilized by primary users, although
this may be costly in terms of device complexity and battery depletion [95], [96]. While
mMTC applications can exploit both unlicensed and licensed bands, the former becomes
highly problematic due to uncontrolled interference (lack of QoS guarantees) due to
different networks coexistence. In this regard, spectrum sharing techniques such as
Licensed Shared Access and Spectrum Access System could be suitable solutions for
mMTC applications since they can provide better interference management. Other
interesting spectrum sharing solutions include NOMA and D2D communication [97].
This section focuses on transmission scheduling and resource allocation techniques as
potential solutions to deal with insufficient spectrum.
To enable low latency MTC, MTDs can perform contention-based access because

it offers smaller delay and signaling overhead than traditional schemes. This is
because MTDs transmit packets on a randomly selected resource without having any
specific scheduled resources [98]. However, many devices trying to access the network
results in situations where the number of requests exceeds the available resources. In
such scenarios, it is important to know the devices prone to communication failure,
e.g, due to bad channel conditions, and expected failure duration. This knowledge
permits to flexibly allocate the resources among the MTDs with better conditions,
provide scalable transmission time interval and guarantee QoS, e.g., minimizing outage
probability. Due to the scarce network resources, the scenario where the BS allocates
the channel resources to all the MTDs in the network might be impractical [81]. Instead,
aggregators can incorporate intelligent functionalities such as different type of scheduling
mechanisms to improve network performance [77], [99]. Notice that the limited number
of services, e.g., voice, video and web, and QoS requirements supported by LTE make
the traditional scheduling policies not suitable for MTC where the channel quality and
QoS requirements are equally important [100]. For these reasons, novel solutions have
been proposed to optimize the MTDs selection task across the network and improve
data aggregation and transmission.
Two scheduling schemes are proposed in [77] to be implemented by aggregators: RRS

and CRS. The authors use SG tools to show that CRS and RRS schemes achieve similar
performance as long as the aggregator’s available resources are not limited. On the other
hand, CRS outperforms RRS when the number of MTDs requesting service exceeds the
available channels. Later, these scheduling mechanisms were extended in [101], [102]
under NOMA and imperfect SIC. The aforementioned schemes consider a fixed number
of available resources at the aggregator and do not address the MTDs heterogeneity
and their variable QoS (channels are assigned based on the received signal strength).
In contrast, authors in [100] introduce two scheduling schemes for uplink MTC, which
consider both channel conditions and maximum allowed delay of each device requesting
service to deal with QoS demands. The former reduces the outage probability while the
latter allows saving power by setting the device to sleep mode until the next transmission
takes place.
After optimal MTDs scheduling, an interesting question is how to efficiently distribute

the available resources among the selected devices based on goals such as throughput
maximization [103], interference minimization [104], etc. An interference-aware
subcarrier allocation algorithm is investigated in [105] to maximize the connectivity of
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mMTC devices (sensors and actuators) subject to QoS requirements of eMBB devices
(monitoring cameras) in an industrial wireless network. The maximum interference that
each subcarrier can support is calculated. Then, authors determine the MTD pair with
the least interference to the subcarrier and estimate the access property according to
whether the MTD pair’s QoS is satisfied. When the accumulated interference caused by
the MTD pair is greater than the maximum interference limit that the subcarrier can
sustain, the subcarrier will not be accessible to other MTDs pairs anymore. Meanwhile,
authors in [91] suggest to dynamically allocate channels to the MTDs while considering
the SNR, queuing delay, QoS requirements, and the pending number of devices in a class.
The simulation results show that resource allocation and aggregation bring significant
improvement in outage probability, energy efficiency, and system capacity. Finally, rate
control is another resource allocation strategy that can be exploited to meet stringent
reliability requirements. Authors in [106] propose a joint optimization of the rate control
in the network layer and transmission rate in the physical layer in a D2D scenario. This
approach avoids data imbalance and, therefore, packet drop at the transmitter due to
limited queue buffering capability, which leads to unacceptable latency and unreliable
transmissions. The proposed algorithm is not constrained to D2D-relay networks, but it
can extend to different application scenarios such as energy harvesting.

2.3 Stochastic geometry

Among the most popular analytical approaches for wireless networks analysis, we can
mention scaling laws, fixed geometry based analysis, graph theory (percolation) and SG.
The problem of finding scaling laws for large wireless networks with randomly distributed
nodes was first investigated in [107]. This approach describes how, both local and global,
network connectivity properties scale with various network parameters [108]. However,
the complex nature of large wireless networks with stochastic nodes distribution makes
the derivation of exact results intractable, and design insights are extremely difficult
to obtain [109]. Analysis based on fixed geometry provides concrete results but lacks
generality since it does not fit to the network behavior under different spatial realizations.
Moreover, spatial configurations may change over an infinite number of possibilities;
thus, it is impossible to design wireless systems for each specific configuration [110].
In graph theory, a graph consists of number of vertices and edges, where an edge
is an association between two vertices. In the wireless network context, a vertex is
equivalent to a node and an edge is a link between two nodes; thus, any network can
be modeled mathematically as a graph1, e.g, mobile ad-hoc networks (MANETs) [112].
On the other hand, SG provides tractable models and accurate performance bounds to
characterize and better understand dense wireless networks’ operation with randomly
distributed nodes. Depending on the network type and the MAC layer behavior,
SG permits to abstract nodes’ position to a suitable PP that captures the network
properties. Modeling all active nodes’ locations is crucial since it determines the SIR
at the receiver side. Notice that the strength of received signals depends heavily on
the distances between transmitters and receivers. Thus, many quantities of interest,

1Graphs can be algebraically represented as matrices; thus, network study can be automated through
algorithms [111].
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e.g., aggregated interference, outage probability, achieved/transmission data rate and
bit error probability, can be evaluated by averaging over all network topologies seen
from a "typical point" weighted by their probability of occurrence [113]. This abstraction
level helps designers to optimize and modify important network parameters efficiently.
Moreover, the average results provide the generality missing in fixed geometry-based
approaches.
The typical point concept is essential in PP theory, and it often refers to the typical

user, typical receiver, typical vehicle, etc, in the wireless communications context. If
the total number of points is finite, such typical point comes from selecting one of the
points uniformly at random. Notice that nothing “typical” relates a point selected in a
deterministic way; moreover, it is impossible to select a point uniformly from an infinite
set. Accurate results require many realizations of the PP since no point is typical in
a single realization, and every point inside the PP must have the same probability of
being selected [114]. If the PP is stationary2 and ergodic3, we can generate the typical
point statistics by averaging those of each point in a single realization, observed in a
sufficient large observation window. Notice that stationarity is not sufficient to obtain
the statistics of the typical point by considering many points in a single realization; but
ergodicity is also vital. This reflects the “average” nature of the typical point concept.
In other words, we may find that the “typical person” in any country is 1.70 cm tall,
which means that if we measure every person height from a large population sample,
we would obtain that average height, but this does not mean that an individual with
that exact height exists. Thus, for any stationary PP, we obtain the typical point by
conditioning on a point existing at a certain location (Slivnyak’s theorem [114]), without
loss of generality, usually the origin to achieve mathematical tractability, and averaging
over the PP. Contrary, in the non-stationary case, the typical point at a particular
location may show different statistical properties than the typical point at a different
position. This notion of typical point has important implications for efficient cellular
network transmission schemes, such as NOMA, beamforming, and BS cooperation, in
both downlink and uplink [116].

2.3.1 Poisson point process

The most widely used approach for modeling the network geometry is the Poisson PP
(PPP), mainly due to its analytical tractability. In a PPP, the number of points located
in two (or more) non-overlapping (disjoint) regions is independent, and random following
a Poisson distribution. In other words, the points show little or, ideally, zero interaction.
If that is not the case, non-Poisson models would be more suitable for representing the
particular scenario.
To define a PPP on some mathematical space, only a single mathematical object is

needed. This object is a type of measure4 from measure theory called the mean measure
2Statistical parameters of an underlying process do not vary over space (invariant under translation).
3A stationary process is said to be ergodic if one can obtain all its statistical characteristics from

any of its single random realizations. In other words, regardless of what the individual samples are, the
collection of samples must represent the whole process [115].

4A measure on a set is a function that assigns a non-negative real number to a subset of the set.
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or intensity measure, denoted as Λ. This intensity measure is the first moment of a
PP (analog to the expected value of a random variable) and can be interpreted as the
average number of points located in a region of the underlying space [114]. If the intensity
measure is a function of the location, then it is called inhomogeneous (non-uniform) PPP.
Thus,

Λ(A) =
∫
A
λ(x, y) dx dy, (1)

where A is in general a d-dimensional bounded volume, E[Φ(A)] = Λ(A), and λ(x, y) is
a locally integrable positive function known as intensity. As illustrated case, we consider
dx dy as the 2-dimensional volume element (area element), but it could be any dimension.
Instead of λ(x, y) and dx dy, one could write, in (two-dimensional) polar coordinates
λ(r, θ) and rdrdϕ , where r and ϕ denote the radial and angular coordinates respectively.
For any collection of disjoint bounded sets A1, . . . , Ak, an inhomogeneous PPP with
intensity λ(x, y) has the finite-dimensional distribution

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk} =
k∏
i=1

(
(Λ(Ai)ni
ni!

e−Λ(Ai)
)
, (2)

where Φ(Ak) denotes the number of points in the region Ak ⊂ R2. One efficient method
to simulate an inhomogeneous PPP [117], [118] implies generating first a homogeneous
one with intensity value λ′, which is an upper bound of the distance-dependent intensity
function λ(x, y). Then suitably transform the points according to deterministic function;
this is, to thin5 the homogeneous PPP with the thinning probability function p(x, y) =
λ(x, y)/λ′. Notice that depending on the specific intensity measure, non-homogeneous
PPPs can model either repulsive or cluster process. This PP is appropriate for modeling
the pico-BSs installed around the macro-cell boundaries to improve the network coverage.
The Cox process is an example of PP belonging to this group. Specifically, the Poisson
line Cox PP has found interesting applications to study wireless communication networks
in cities, where the streets correspond to Poisson lines (Vehicular networks) [120], [121].
When the intensity does not vary over the underlying space (independent of the

location), the resulting PP is called a homogeneous (uniform) PPP. The following finite-
dimensional distribution can represent these properties

P{Φ(A1) = n1, . . . ,Φ(Ak) = nk} =
k∏
i=1

(
(λ|Ai|)ni
ni!

e−λ|Ai|
)
, (3)

where Φ(A1), . . . ,Φ(Ak) are independent Poisson random variables of parameters
λ|Ai|, . . . , λ|Ak|, respectively, and E[Φ(A)] = λ|A|. An illustration of a uniform and
non-uniform PPP in R2 is shown in Figure 4. Notice that in contrast to the uniform
PPP, the non-uniform PPP intensity is periodic along the x-axis, while it decreases
along the y-axis.
Other appealing properties exploited by network designers include that the sum of

PPPs is still a PPP, the probability generating functional (PGFL) [114] is known in
closed-form, and the distance distribution among the nodes, namely, the distance to the
n-th neighboring node is known.

5The thinning operation refers to creating a new PP from an underlying PP by removing or retaining
points according to some probabilistic rule [119].
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Figure 4. Example of an homogeneous PPP with λ = 1 (left), and an inhomogeneous
PPP with λ(x, y) = 2 exp(−y/6)(1 + sin x) (right) on [0, 20]2.

2.3.2 Non-Poisson point process

While models based on PPP have provided important insights on wireless networks
performance over the last years; empirical evidences6 indicate that in current cellular
networks, the BSs positions lies somewhere between completely random (as modeled
by PPP) and deterministic. This is because the BSs deployment depends on network
topology, network planning, and the geographical region type. Even in cellular networks
where a PPP models BSs positions, active users served in the same time-frequency
resource block do not form a PPP. For instance, in the heavily loaded BSs case, the
user PP seems to follow a Ginibre PP [123]. Moreover, the PPP implies uncorrelated
node’s positions; therefore, it may not be suitable to model networks with interference
management techniques, where repulsion or attraction among the nodes exists [124].
Thus, a single PP model is insufficient to capture the variety of node densities,
propagation conditions, and deployment structures in all scenarios. These limitations
motivate more realistic models based on non-Poisson processes that accurately fit
practical deployments. For non-Poisson processes, conditioning on a point being at a
certain location changes the PP statistics. This is because the number of points in
disjoint regions may be dependent on each other. Therefore, mathematical tractability
is hard to achieve in most cases.
In many practical scenarios, PPs with repulsive nature (points negatively correlated)

can model the set of nodes that transmit simultaneously over the same channel. A PP
with repulsion (regular PP) arises when points cannot approximate other than a certain
minimum distance, e.g., two contiguous BSs cannot be randomly close in actual cellular
networks because of physical constraints and MAC scheduling. The following PPs have
these repulsive features:

• Matérn hard-core process (MHC): Type I and II Matérn hard-core processes
are the PPs of choice to model concurrent transmitters in dense wireless networks
operating carrier sense multiple access protocol that imposes distance constraints

6For instance, by fitting a real BSs deployment data-set of the operator Vodafone in rural and urban
zones in the UK, authors in [122] show that the Strauss and the Poisson hard-core processes provide
better models.
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between simultaneous transmitters [125], [126]. Both types are constructed from a
parent PPP of intensity λ > 0. In the type I process, all nodes with a neighbor
within a fixed distance δ are thinned; whereas in the type II process, a random
mark is assigned to each node, and a node is thinned only if another node with
a smaller mark exists within a distance δ. This is an example of a dependent
thinning operation [119].Then, in contrast to what happens for an independent PPP
thinning, the resulting MHC process is not a PPP. These processes are difficult to
analyze since their PGFLs do not exist. Additionally, both PPs behave differently
[127]. For type I, the excess interference relative to the PPP increases exponentially
in λ and δ (for power-law path loss), while for type II, the excess interference never
exceeds 1dB, regardless of the path loss model.

• Determinantal point process (DPP): is a soft-core PP with adaptable
repulsiveness [128]. The Ginibre point process (GPP) is a particular case of DPP
that served in [129] as a model for sensors and gateways locations in a wireless
sensor network with energy harvesting. Specially, the β-GPP, which is a thinned
and re-scaled GPP, where 0 < β ≤ 1 is the retaining probability, serves to model
to BSs locations in cellular networks [130].

• Poisson hole process (PHP): is constructed using two independents PPPs Φ1
and Φ2 with densities λ1 and λ2, respectively, where λ2 > λ1. Φ1 represents the
hole centers, while Φ2 constitutes the baseline process from which the holes are
formed. In other words, all the points located inside a circle of radius D around
each x ∈ Φ1 are removed to form the holes. Thus, the points retained in Φ2 after
forming the holes constitute the PHP ΨH , which can be mathematically defined
as [131]

ΨH = {x ∈ Φ2 : x /∈
⋃
y∈Φ1

B(y,D)}, (4)

where B(y,D) is a circle of radius D centered at y and mimicking a hole. This PP
is suitable for applications such as cognitive radio, where the main objective is to
improve spectrum utilization by allowing unlicensed secondary users to use licensed
spectrum as long as they do not cause excessive interference to the licensed primary
users. Thus, it is important to create exclusion zones (holes) around primary users,
where secondary transmissions are not allowed [131], [132]. The PHP has also been
used to model inter-tier dependence in the BS locations in heterogeneous cellular
networks (HCN), in which case, small cells form the PHP [133]. In [134], a PHP
formulation allows integrating D2D and cellular networks by creating exclusion
zones around cellular users and protect their communication from the interference
coming from D2D transmissions. Note that although the exact characterization of
interference experienced by a typical node in the PHP is unknown; several tight
upper and lower bounds on the Laplace transform are provided in [131].

On the other hand, in many practical wireless scenarios, the transmitters form clusters
due to geographical factors, e.g., indoor access points and groups of nodes moving in
a coordinated manner. Besides, MAC protocols can induce clustering phenomenon
among transmitters [135]. Thus, clustered PPs can suitably model such correlated
transmitters’ locations. Moreover, they accurately model ultra-dense 5G HCNs, which
include macrocells, picocells and femtocells [136–138]. Any cluster process is generated
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by taking a parent PP and a daughter PP per each parent point, and translating the
daughter processes to their parent’s positions. The cluster process is then the union of
all the daughter points. If the parent process is stationary, and the daughter processes
are independent among themselves and also from the parent process, and have the same
distribution, the procedure is called homogeneous independent clustering. Thus, only
one cluster represents the statistics of the whole process. Moreover, if each cluster is
itself a finite PPP, the resulting process is called a doubly PPP [114]. These important
concepts will help the reader understand some of the system model’s assumptions in the
next chapter. The following PPs present these attraction features:

• Thomas cluster process (TCP): is a stationary and isotropic Poisson cluster
process generated by a set of daughter points (random in number) independently
and identically distributed according to a symmetric normal distribution with zero
mean around each parent point PPP [139].

• Matérn cluster process (MCP): is a doubly Poisson cluster process, where the
daughter points are uniformly distributed on the ball centered at each PPP parent
point [114], [140]. Modeling based on MCP can capture both clustered and bounded
properties of D2D communications in urban areas as in [141].

• Gauss-Poisson process (GPP): is a Poisson cluster process with homogeneous
independent clustering. Each cluster has one or two points, with probabilities 1−p
and p, respectively. If a cluster has one point, it is located at the position of the
parent. If a cluster has two points, one of them is at the position of the parent,
and the other is randomly distributed around the parent with some probability
density function (PDF) [114]. Author in [135] propose the GPP as a model for
wireless networks that exhibit clustering behavior and derive the SIR distributions
for cooperative and non-cooperative transmission schemes.

Figure 5 shows the PP taxonomy. The PPP is the PP with zero interaction among
the points. Moving to the right, points attract each other, which result in clustered
processes. Meanwhile moving to the left, points start to repulse each other, which leads
to regular processes. Figure. 6 illustrates snapshots of two PPs realizations, namely,
DPP and Thomas cluster process. Notice that under certain conditions, combinations7

of these simple PPs might produce an intractable PP as in [142].

2.3.3 Spatial statistics for point processes

In the previous subsections, we showed that many PPs could be used for modeling
different types of communication networks with diverse characteristics. Given all the
PPs mentioned earlier, an interesting question is how accurate they can model practical
deployments. Moreover, in some scenarios [142], operations on PPs such as dependent
thinning result in a PP from which it is impossible to analytically evaluate performance
metric, e.g. success probability. In these cases, a detour is taken, and the underlying
PP is approximated by simpler ones (PPP and TCP) in order to benefits from their

7Combinations in this context refers to operation among PPs such as superposition or mappings such
as indicator functions.
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Figure 5. Stochastic dependency among PPs.
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Figure 6. Comparison between repulsive process (Determinantal PP on the left) and
clustered process (TCP on the right).

explicit PGFL expressions. Thus, classical spatial statistics are considered for testing
these models’ goodness-of-fit and comparing different PPs structures. At this point, we
find useful to make a slight distinction between points and events. The former refers to
geometrical positions in the plane, while the latter refers to points where “something”
happens, e.g., the interferers’ positions in a wireless system.
The contact distribution function or empty space function denotes the shortest distance

from the given fixed location u to the nearest point of of the PP (nearest event). Thus,
it provides information about the empty space between points. It is defined as [143]

F (r) , P(Φ(B(u, r)) > 0), (5)

where Φ(B(u, r)) denotes the number of points within the ball of radius r centered at
the reference point u that does not belong to the original PP. For a stationary PP,
any arbitrary point in R2 can be treated as reference point; thus, the origin typically
offers more tractability. Notice that if we denote ||u − Φ|| as the shortest distance
from the given location u to the nearest point in Φ, then ||u − Φ|| ≤ r holds if and
only if Φ(B(u, r) > 0); thus, the contact distribution function matches the cumulative
distribution function (CDF) of the distance from the location u to the nearest point. This
is an important statement that can be exploited to test complete spatial randomness by
comparing the PDF of the distance distribution from the origin to the nearest point
of any PP with the theoretical F (r) corresponding to the PPP. Moreover, (5) is more
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powerful at detecting deviations from complete spatial randomness in the direction of
clustering [144]. If the events are clustered, the F (r) function will rise slowly at first
but more rapidly at longer distances; this is because a good portion of the study area is
empty; therefore many random points locations are at longer distances from the nearest
event in the pattern.
The nearest-neighbor distance distribution function is a different concept from the

contact distance distribution. In this case, the goal is to determine the distance from a
point of the process, z ∈ Φ, to its nearest neighbor (event-event distance distribution)
defined as [114]

G(r) , P(||z − Φ\{z}||), z ∈ Φ. (6)
Notice that the contact distance becomes the nearest-neighbor distance when the
reference point is part of the original PP. Moreover, for the PPP, both functions are
identical [145]. Authors in [139] provide the contact distance and the nearest-neighbor
distribution functions for the TCP. For the latter, two cases are analyzed: i) the reference
point is chosen uniformly at random from the TCP, and ii) it is a randomly chosen point
from a cluster chosen uniformly at random from the TCP.
The previous measures are only based on the nearest neighbor and have the drawback

that nearest-neighbor distances can be arbitrary small relative to other distances in the
point pattern; thus, they can mask important structures in the pattern depending on the
study area dimensions. A common approach around this problem consists of using the
Ripley’s K function [143] instead. This is a second-order statistic defined for stationary
PPs that carries important information about the dependence or interaction between
different points of the process. Moreover, it counts the mean number of events within
distance r of a given event in the PP, excluding the point itself. In other words, it is used
as a measure of repulsiveness/clustering. Specifically, compared to the completely spatial
random PPP, a repulsive PP model has a smaller K function, while a clustered PP model
has a larger K function, in which case, more events are being counted. Formally, for a
stationary and isotropic PP Φ with intensity λ, the K function is defined as [114], [146]

K(r) , E!0[Φ(B(0, r))]
λ

, (7)

where E!0(·) is the expectation with respect to the conditional probabilities of the Φ
events given that a point (the typical point) is observed at a specific location (reduced
Palm distribution of Φ [147]), and B(0, r) is the ball centered at origin with radius r. For
instance, this metric is utilized in [148] to examine whether simulated DPPs fit real BS
deployments in two major US cities.
In many situations, we are interested in modeling the interference; thus, only the

transmitters’ PP is relevant. Note that the interference is not only determined by the
nodes’ spatial configuration, but also by the MAC scheme, which performs a thinning
operation on the whole set to produce the transmitters’ set. Due to its nature, in most
wireless scenarios, the interference PP deviates from the simple PPP; thus, the need
for non-PPP becomes inevitable. The limited analytical tractability of non-PPP makes
difficult, and often impossible, to obtain closed-form expressions for network performance.
This is because Campbell’s theorem [114] does not hold for non-PPP. To overcome this
issue, authors in [116,123] apply the pair correlation function concept defined in [143] as

g(r) , 1
2π r

d

d r
K(r), (8)
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which is critical to approximate complex models by simpler and more tractable ones.
This is, a simple PP can approximate any complex PP by performing a proper match
of the respective intensities using the pair correlation functions concept. This statement
can be formulated as follow. If we consider the interference PP ΦI of general intensity
λ, we would like to find a PPP ΦPPP such that for all f :

E!0 ∑
z∈ΦI

f(z) ≡ E
∑

z∈ΦPPP

f(z). (9)

Applying Campbell’s theorem and its Palm version on the right and the left side,
respectively, (9) boils down to

λ
∫
R
f(z)g(||z||

√
λ)dz ≡

∫
R
f(z)λPPP(||z||)dz, (10)

which holds if λPPP(r) = λg(r
√
λ). The idea is to introduce a new PP such that the

network seen by a user at the origin is probabilistically equivalent (in terms of PDF)
as the network seen by the typical user of the original PP. This is easily understood
when realizing that the typical user sees the network through the distance from the
serving BS and the corresponding interferers. Notice that a PPP is a natural choice
as approximation, but in principle, any PP with intensity function λPPP can be used.
Also notice that estimating the intensity of the approximated PP is based on the same
principles as the mean and variance or any PDF is estimated in classical statistics. This is,
we could obtain the curve corresponding to the pair correlation function of the underlying
PP via Monte Carlo simulation and use function-fitting tools in MATLAB to produce
a suitable function that mimics its behaviour. Interestingly, we realize that (9) holds
certain similitude with the mean interference in wireless networks since f(z) can be
thought as a path loss function; thus, we can obtain general expressions for the mean
interference by using the reduced second moment measure K(r) and combining (8), (9)
and (10) as in [149]. Others methods to test PP models with practical examples are
analyzed in [145].
All distance functions discussed in this section are affected by the edge effect. This

issue arises from the fact that events near the edge of the study area tend to have higher
nearest-neighbor distances even though they might have neighbors outside the study area
closer than any inside it. To remove these edge effects, the PPs must be simulated on
an extended version of the simulation window to include events that are not counted as
part of the actual process but are needed to account for those distances to events close to
the area’s boundaries of interest. Moreover, if the study area (sampling window) is large
enough, its effect can be neglected [150]. Edge effect is a more complicated topic that
cannot be bypassed when analyzing point patterns but goes beyond this thesis’ scope;
thus, the reader can obtain more information in [151], [152].
Using any of the statistics presented in this section should be sufficient to pick a suitable

PP that captures a wide range of real-world deployments characteristics since they reveal
details on the range and strength of correlation in the pattern. However, in practice,
it is not trivial to recognize a suitable model for each deployment. In most practical
applications, some prior information often supports the model choice. For instance,
data collected from the environment might show certain temporal-spatial correlation
among nodes, in which case clustered PPs could be the first-trial option. However, a
more detailed analysis may indicate that the modeling has to be polished. In general,
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the model must be accurate and simple enough that both parameters estimation and
simulation are still attainable. The first glance in the analysis of spatial PPs should test
the complete randomness assumption. Results derived from this step and some visual
inspection of the points distribution in the area might lead to conclusions such as whether
the pattern is stationary or non-stationary, and clustered or regular. Moreover, every
modeling approach should start with the classical models presented in Section 2.3.1 and
Section 2.3.2, since they can easily be fitted and simulated. If these PPs result in poor
models, they can even be relaxed, for instance, by choosing a non-Poisson parent process
for a cluster process or by including hard cores, i.e., minimum inter-point distances. Any
of these modifications should keep the model simple to be simulated [145].

2.3.4 Related works

We can refer to countless works where SG has played an important role in describing
scenarios where it would have been impossible to obtain qualitative results and
performance trends with traditional modeling tools. For example, in [153], the authors
use an SG approach to quantify the performance of multi-hop massive IoT networks
under three different packet forwarding schemes in terms of the average successful packet
progress made per unit area. Moreover, a unified study of large-scale IoT spatio-temporal
performance can be carried out by combining SG and queuing theory [154]. This
framework allows designers to realize solutions based on combinations of temporal traffic
intensity and spatial device density to avoid network inestability. For instance, authors
in [155] develop a novel spatio-temporal mathematical framework using SG and queueing
theory to study the performance of radio access channel procedure in challenging scenarios
where a massive IoT system coexists with traditional cellular systems8. Meanwhile,
authors in [157] perform a complete study of LoRa scalability considering various channel
parameters and multiple gateways using tools from SG. Later in [158], SG is also used
to evaluate networks’ scalability by modeling the effect of interference resulting from
the imperfect orthogonality of the spreading factors. An analytical framework based
on SG is proposed in [159] to model the outage probability when several replicas of
the same packet are transmitted from heterogeneous sources with correlated deployment
locations in LPWA IoT networks. The correlation is captured by Poisson cluster PPs
that contain the position of nodes reusing radio resources with a similar or different code
as the transmitter of interest. Authors in [113] and [160] survey different PPs to describe
multi-tier and cognitive cellular wireless networks, and present several SG approaches to
analyze network performance and interference management techniques in these types of
scenarios. Modeling, analysis, and optimization of grant-free NOMA in mMTC via SG
is performed in [161]. Finally, the vital role of SG as an analytical tool for performance
evaluation of 6G networks is analyzed in [162].

8To learn some of the challenges in the coexistence of massive IoT and traditional cellular networks,
see [156].
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2.4 The meta distribution of the SIR

A key metric of interest in interference-limited networks is the traditional success
probability given a SIR threshold θ, ps(θ) = P(SIR > θ), at a "typical receiver" in
the network, obtained by averaging over the channel fading, the channel access scheme
and the PP. Thus, the success probability is the result of spatial averaging over the entire
PP, and only provides users’ average performance. In other words, it does not reveal how
concentrated the link success probabilities are considering different users; therefore, it is
not possible relying on this metric to distribute the transmit resources across the network
with QoS guarantees.
A simple experiment allows us to understand above issues better. As an illustration,

consider Poisson bipolar networks and slotted ALOHA medium access protocol with
transmitting probability p. The potential transmitters form a PPP with intensity λ and
each one has a dedicated receiver at distance R in a random orientation9. This is a typical
model for self-organizing wireless communication networks such as MANETs in which
mobile devices dot not rely on any BS [111]. For Poisson bipolar networks, the success
probability expression under Rayleigh fading is provided in [163] as ps = exp (−Cλθδp),
where C is a constant that depends on the link distance R and path loss exponent α.
Notice that if we keep λp constant for a fixed θ, ps does not change. Then, we show
in Figure 7 the individual link reliabilities histogram for constant λp = 1 (constant ps)
while changing p to 0.8, 0.4, 0.1 and 0.01. The red cross specifies the average of all link
reliabilities, ps, which remains constant at 0.84 in all cases. Clearly, the distribution of
link reliabilities changes significantly, even with constant ps. Consequently, it is important
to measure the fluctuation of the link reliability around ps to fully characterize the
network’s performance in terms of connectivity, end-to-end delay, per-device reliability,
etc, since a performance distribution contains much more information than just its mean.
We center our attention on random variables of the form

Ps(θ) , P(SIR > θ|Φ), (11)

where the conditional probability is taken over the fading and the channel access scheme
and given the nodes’ position for a particular realization of the network. In general,
the moments of the conditional success probability, Mb(θ) , E(Ps(θ)b), carry enormous
importance, as we will show later. Particularly, the −1-st moment is known as the mean
local delay, and it is defined as the average number of transmissions attempts until a
packet is successfully received if the transmitter is constantly transmitting [164]. The first
moment is interpreted as the standard (average) success probability, ps(θ) = E[Ps(θ)];
and the variance, Var(Ps) = M2 −M2

1 , quantifies the performance difference among all
the devices in the network, i.e., network’s fairness. For example, by analyzing these
two metrics, authors in [165] provide insights to determine the most efficient operating
antenna configurations for URLLC applications in 5G cellular networks with coexisting
sub-6GHz and mm-Wave transmissions. This analysis shows that as the number of
antenna elements in a hybrid spectrum network increases, the reduction in the variance
of reliability is noticeable.

9By the displacement theorem [114], the receivers PP is also a PPP. Thus, the Poisson bipolar network
consists of two dependent PPPs.
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Figure 7. Link reliability histogram and traditional success probability ps(θ) (red cross)
in Poisson bipolar network with ALOHA. The histogram of the empirical probability
density function of the link success probability in a Poisson bipolar network with ALOHA
channel access for R = 1/3, C = 0.5483, θ = −10 dB and α = 4.

The intention is then to find the two-parameter complementary CDF of Ps(θ), defined
as [166]

F̄ (θ, x) , P(Ps(θ) > x), (12)

where x ∈ [0, 1] refers to the target reliability level. Due to the ergodicity of the PP,
one can understand F̄ (θ, x) as the fraction of links or users that achieve an SIR θ with
a probability of at least x [166]. This is a new fundamental performance metric called
the MD of the SIR, which was first introduced in [166] in the context of Poisson bipolar
and cellular networks. Notice that the MD isolates the randomness produced by the
small-scale fading from the location of interferers [167].

2.4.1 Mean local delay

Critical MTC applications require transmission with very low latency, below 1 ms, [51].
The per-link delay consists of four types of delays: the processing delay, the queueing
delay, the transmission delay, and the propagation delay. Due to the high-performance
central processing units produced nowadays, the processing delay is negligible in most
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wireless network applications compared to the queueing delay and the transmission delay.
Moreover, the propagation delay can also be insignificant since radio signals propagate
at close to the speed of light. The main component of the transmission delay is the
retransmission delay, which is closely related to the number of retransmissions of a packet,
often called local delay [164]. The local delay, denoted by L, is defined as the number
of transmission attempts needed until a packet is successfully received (decoded) over a
wireless link. Thus, the mean local delay can be written as

E[L] = E[E[L|Φ]] = E
[

1
Ps(θ)

]
= M−1, (13)

where the inner expectation is obtained by averaging over the fading and the MAC
protocol if it exists. This is an important network performance metric that it is finite
when certain network parameters, such as the SIR threshold and the medium access
probability, are below specific thresholds [168]. In these situations, the fraction of nodes
that experience such related long delays is negligible . It is known, for instance, that
highly mobile networks provide enough time diversity to keep the local delay finite [169].
The mean local delay may show a phase transition called wireless contention phase
transition [168]. In this case, it becomes infinite at some critical value of a network
parameter, i.e., a successful packet transmission requires infinite time slots, which means
there is a considerable number of links with long delays [169]. More interestingly, L
follows a geometric distribution with parameter Ps given in (11)

P (L = τ | Φ) = (1− Ps)τ−1 Ps, τ ∈ N. (14)

For ergodic PPs, we can obtain that [116]

P (P (L ≤ τ | Φ) > x) =P (1− (1− Ps)τ > x) = F̄Ps(1− (1− x)1/τ ), (15)

which states the fraction of users that succeeds decoding the received signals in at most
τ time slots with probabilities larger than x. For example, with x = 0.90, F̄Ps(0.90) is the
fraction of users that receive their desired signals successfully in the first transmission
attempt (i.e., τ = 1) with a probability higher than 0.90, while F̄Ps(0.68) is the fraction
of users achieving the same goal after the second transmission attempt (i.e., τ = 2) for
the same target reliability, or equivalently, the fraction of users that successfully decoding
the data messages in the first time slot with reliability 0.68.
Authors in [170] define the region of the activity probabilities in which the mean

local delay of each tier remains finite in an HCN where the BSs activity is modeled by
ALOHA. The impact of increasing the BS density on the mean local delay in a D2D
communication scenario is investigated in [171]. Authors in [172] evaluate the optimal
number of sub-bands in frequency-hopping multiple access and the optimal transmit
probability in ALOHA that minimize the interference correlation and the mean local
delay. Results reveal that if no MAC dynamics are implemented, the local delay has
a heavy tail distribution which results in infinite mean local delay. Finally, authors
in [173] study the effect of bandwidth partitioning on the reliability and the local delay
performance in a Poisson bipolar network. It is shown that there is a finite optimum
number of sub-bands that minimizes the local delay.
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2.4.2 Computation tools

Direct calculation of (12) is usually infeasible or may be cumbersome because the
interference PDF is hard to find except for just a few path loss and fading models10.
Thus, different methodologies have been recently proposed in the literature to find exact
or approximate closed-form expressions, or even efficient numerical computation methods,
for the MD of the SIR, e.g.,

• Gil-Pelaez approach: Since the MD has finite support in [0, 1], the problem
of extracting the distribution from its integer moments boils down to solve the
Hausdorff moment problem [174], [175], and the solution is unique if it exists. This
method exploits the Gil-Pelaez inversion theorem [176] from the imaginary moments
of the conditional link success probability, Mjt = E[Ps(θ)jt], where t ∈ R+ and
j ,
√
−1. The MD is then given by

F̄Ps(x) = 1
2 + 1

π

∫ ∞
0

=[e−jt lnxMjt]
t

dt, (16)

where =[·] denotes the imaginary part of a complex number. This method has
been extensively used in the literature e.g. [166], [177–183], but its main drawback
resides in the fact that it involves the computation of complex numerical integrals
for which the limits and step size need to be carefully selected [184], and it is a
time-consuming method.

• Binomial mixtures approach: Using this approach, the exact MD can be
obtained by evaluating

F̄Ps(x) = 1−
bnxc∑
k=0

n∑
b=k

(
n

b

)(
b

k

)
(−1)b−kMb︸ ︷︷ ︸

%k

, ∀x ∈ (0, 1], (17)

while F̄Ps(0) = 1. The notation bvc is used to denote the largest integer less than
or equal to v. Notice that Mb = E[Ps(θ)b] and n ∈ Z+ refers to the number of
integer moments. The larger n is, the more accurate the results become, but at the
expense of high computational time, although in general it converges much faster
than Gil-Pelaez approach. Notice that %k is a linear combination of the moments;
thus, it can be expressed as the linear transformation % = Am, where m is a
column vector containing the moments, i.g., m = (Mb)nb=0, and A ∈ Z(n+1)×(n+1) is
defined as [185]

Abi ,

(
n

b

)(
b

i

)
(−1)b−i1(b ≥ i), i, b ∈ {0, 1, 2, . . . , n}, (18)

where 1(·) is the indicator function. This linear mapping is an upper triangular
matrix, symmetric with respect to the antidiagonal, and needs to be calculated only
once for the desired level of accuracy. An example for n = 4 is provided in [185].

10 [113] reviews different techniques to bound the aggregate interference and evaluate the network
performance.
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Notice that this procedure avoids the need of complex operations as required in the
Gil-Pelaez technique. However, high order moments are needed and they are not
always feasible to compute [185]. This method was first proposed in [186], where it
was also compared with Poisson mixtures. Moreover, it was later used in [182] to
compute the energy MD in a wireless powered network with direct wireless energy
transfer from power beacons to low-power wireless devices. Additionally, it was
utilized in [180] to determine the coverage probability MD with and without line of
sight propagation, for which, the first 25 moments were sufficient to obtain accurate
results.

• Euler sum approach: With this particular method, one can reconstruct the MD
with a known and bounded error by using the trapezoidal integration and the Euler
sum rule. This approach was proposed for the first time in [187], and later used
in [188] to compute the coverage probability in a power beacon-assisted mm-Wave
ad-hoc network. Using this approach, the MD can be formulated as [189]

F̄Ps(x) ≈
2−Q exp(A2 )

ln2 x

Q∑
q=0

(
Q

q

) B+q∑
n=0

(−1)n
βn
<

M−Sn/ ln(x)

Sn

+ |ε(Q,B,A)|, (19)

where <[·] is the real part operator; Sn = A+j2πn
2 ; β0 = 2; βn = 1 for n = 1, 2, ..., q+

B; A, B and C are positive parameters used to control the accuracy11; finally,
|ε(Q,B,A)| is the approximation error, given in [189, e.q (19)] as

|ε(Q,B,A)| ≈ 1
exp(A)− 1 +

∣∣∣∣∣∣2
−Q exp(A2 )

ln2 x

Q∑
q=0

(
Q

q

)
(−1)N+1+q<

M−SN+1+q/ ln(x)

SN+1+q


∣∣∣∣∣∣

• Fourier-Jacobi approach: The MD can also be reconstructed from its moments
using truncated Fourier-Jacobi expansion. Since this method uses the information
contained in the higher moments, a better accuracy is obtained; however, its
convergence properties are still not completely understood [167].

• Beta approximation: All the numerical methods reviewed so far permit to obtain
the PDF of a random variable from its Laplace transform inversion, or equivalently
its moments. Notice that the moment generating function is somehow related to
the Laplace transform of any random variable. But in general, it is not easy to
gain insights directly from numerical results and much less apply them to obtain
other analytical outcomes that help to interpret the system performance in response
to variations in the design variables. Since the support of the conditional success
probability Ps(θ) is [0, 1], the beta distribution is a simple and more tractable choice
to approximate the MD by matching the first and second moments M1 and M2 of
Ps(θ) to those of the beta distribution, i.e.,

F̄Ps(x) ≈ 1− Ix

M1(M1 −M2)
M2 −M2

1
,
(M1 −M2)(1−M1)

M2 −M2
1

, (20)

11Typical values are A = 10 ln(10), B = 10 and Q = 20, which guarantees an error of the order of
10−10 [187].
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where Ix(a, b) = 1
B(a,b)

∫ x
0 t

a−1(1−t)b−1 dt is the regularized incomplete beta function,
and B(a, b) is the beta function. This approach reduces computational complexity
because it only uses the first and second moments; therefore, it has been widely
used in the literature in different scenarios, e.g., [166, 179, 181, 183]. However,
one still may encounter some cases where the beta approximation does not offer
a good match. For example, authors in [177] provide fine-grained performance
analysis of the mm-Wave D2D communication networks where each receiver has
a single antenna and its corresponding transmitter is equipped with an antenna
array . It is observed that the standard beta distribution provides an excellent
match for the case with severe interference, while as the number of antennas
increases with narrower beams or the density of the nodes decreases, the beta
approximation to the MD starts to deviate from the exact results, especially when
operating at high reliabilities. This is because in mm-Wave systems, the interference
behavior is different from the microwave communications due to high propagation
loss, highly directional transmission, and sensitivity to blockage. Moreover, under
high operation frequency the noise power cannot be neglected. To cope with this
issue, the authors in [178] applied the generalized beta distribution to approximate
the MD by matching the first three moments in a D2D scenario, where the
randomness in the users’ distribution makes both strong and weak interference
scenarios possible. In general, the truncated Fourier-Jacobi expansion provides
better accuracy over the simple beta approximation in this type of scenarios [167].

• Known inequalities to bound the MD: A simple way to lower and/or
upper bound the MD is by using Markov’s12, Chebychev’s and Paley-Zygmund’s
inequalities. In fact, the last one is particularly useful to determine the fraction
of links that attain at least a certain fraction of the average performance. These
bounds depend only on low-order moments of the random variable, which makes
the computation faster than the numerical methods explained in this section, but
the accuracy of the results is very limited. However, it might be a handy tool to
obtain insights on the network performance in time-constrained design projects.
This approach was used in [166] to bound the MD in a Poisson bipolar network;
in [181], to analyze the performance of a cellular network with power control; and
later exploited in [183] to determine the maximum density of concurrently active
links that satisfies a certain outage constraint.

2.4.3 Meta distribution in non-Poisson networks

Analyzing the performance of non-Poisson networks becomes intractable in most cases
since non-PPPs are difficult to simulate and have weak mathematical tractability. This
problem becomes even worse in the HCNs case, where one needs to consider the intra-tier
as well as the inter-tier interference and BSs in each tier may form an arbitrary stationary
and ergodic PP. To cope with this issue, a simple and novel method is proposed in [190]
to obtain the MD for an arbitrary non-Poisson network by shifting the MD for a PPP of
reference by the asymptotic deployment gain G0 as

F̄ s(θ, x) ≈ F̄PPP(θ/G0, x). (21)
12This is used in [171] to bound the MD in a D2D scenario as the BS intensity changes.
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This method is called AMAPPP, which stands for “Approximate meta distribution
analysis using the PPP”, and becomes extremely accurate as the SIR threshold θ
decreases. Moreover, it becomes extremely handy since the moments of Ps(θ) are often
computed using the PGFL based on the assumption that the nodes are deployed using
a PPP, or at least it constitutes a close approximation. Notice that this approach is not
equivalent to apply a shift to the SIR distribution as in [191].
Authors in [192] present another interesting case where due to the high speed in

VANETs, the drivers maintain large safety distances, and consequently the PPP is not
a suitable modeling tool. Thus, a novel discretization model for vehicles’ locations is
proposed to approximate the MD of the SIR. It is assumed that the distribution of inter-
vehicle distance equals to the sum of a constant hardcore distance and an exponentially
distributed random variable. In other words, the model splits the contribution to the
PGFL into the near-field (modeled as a MHC process) and far-field terms (modeled as
a PPP) depending on interferers’ locations. The former contribution requires to average
over a uniform distribution for a vehicle’s location inside each interval.
Meanwhile, an analytical framework is proposed in [189] for computing the conditional

coverage probability distribution given the PP in a cellular network with BS locations
spatially correlated. This work introduces an inhomogeneous double thinning approach
to approximate a motion-invariant PP13 with the superposition of two inhomogeneous
PPPs with the appropriate spatial correlation, which provides equivalent performance
and simple simulations. Notice that inhomogeneous PPPs inherit all the main properties
of homogeneous PPPs that make them mathematically tractable, but they are non-
stationary and need the definition of a distance-dependent intensity function; thus,
the performance of a randomly chosen user depends on its actual location. Finally,
authors in [193] propose two useful distance-dependent intensity functions to create
inhomogeneity based on empirically observations in practical cellular networks.

2.4.4 Rate control as another feature of the SIR meta distribution

As stated in Section 1.3, communication among MTDs can be handled through different
network technologies, e.g., LoRa and Sigfox. However, these technologies suffer from
some fundamental limitations, e.g., they operate over unlicensed frequency bands, making
the communication links unreliable and susceptible to severe interference. Therefore,
it is challenging to support applications such as monitoring systems and V2V wireless
coordination that require a high degree of reliability. Moreover, network designers should
consider the intrinsic trade-offs among the data rate, reliability and network lifetime
arising in some applications. For instance, in precision agriculture, it is important to
prolong the network lifetime and improve reliability as much as possible, while data rate
requirements are less demanding.
Authors in [194] envision the importance of suitable rate control strategies to provide

reliability for new services and applications in future cellular systems, and devise NOMA
rate control mechanisms to increase the number of served users. Thus, implementing

13A PP can be invariant under translations (i.e., is stationary) and/or invariant under rotations around
the origin (i.e., is isotropic) [145]. This means that under both operations the distribution of the original
PP does not change.
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algorithms that allow a transmitter to decide on its rate such that each link in the
network achieves a certain success probability is extremely important. The idea is then
to find the target SIR threshold for each link such that the conditional success probability
in (11) is equal to the desired reliability 1− ε. This approach guarantees that all MTDs
meet their reliability requirements. Notice that due to the nodes’ random position,
each link experiences different levels of interference and fading; therefore, the optimal
SIR threshold, denoted as θ̃, is different for each link and can be considered a random
variable. Moreover, rate adaptation implies packet fragmentation to fit the time slot,
which imposes a sensitive trade-off between latency and reliability [195].
For an ergodic PP, the SIR MD yields the distribution of the per-link reliability for

a target SIR. Besides, authors in [196] reveal that calculating the MD as a function
of SIR threshold, using any of the approaches presented in Section 2.4.2, is equivalent
to compute the SIR threshold distribution such that each link is guaranteed a target
reliability. In other words, for a fixed SIR threshold θ̃ = θ, F̄Ps(θ, x) is the per-link
reliability distribution, while for a fixed reliability value x = 1 − ε, F̄Ps(θ̃, 1 − ε) is
the distribution of the conditional SIR threshold. Following this methodology, authors
in [197] propose a distributed rate control mechanism where the transmitter only knows
the distance from its receiver to the nearest interferer and the fading statistics. Based on
this local information, a semi-heuristic approach is devised to obtain the distribution of
θ̃ corresponding to the total interference power. Surprisingly, the random SIR threshold
corresponding to the total interference power is just a scaled version of that corresponding
to the nearest-interferer power. Finally, authors in [198] use the MD concept to analyze
the per-link rate control for open tiers (users can connect to an arbitrary tier) and closed
tiers (users can only communicate inside a single tier) in heterogeneous and hybrid cellular
networks. The term hybrid refers to direct communications using any of the D2D, M2M
or V2V technologies.

2.4.5 Related works

In [199] and more recently in [200], authors focus on the MD of the SINR ratio and rate
in HCNs with joint resource partitioning (disjoint frequency bands are allocated among
tiers) and offloading14, where users are associated with each tier with a biased average
received power. Results provide important insights into the impacts of heterogeneity,
resource coordination and user association. Authors in [170] study the effects of the
offloading biases on the entire network and each tier in terms of the first moment and
variance of Ps(θ). Using the beta distribution approximation to the MD, it is shown that
the coverage performance of the existing tiers benefits from offloading users to a new tier,
while the performance of the latter drops below the average of the whole network. Finally,
in [201], the MD is used to study a spatiotemporal cooperation strategy to mitigate the
inter-cell interference and enhance the cell-edge coverage for HCNs.
To cope with the massive access imposed by mMTC, radio access technologies such

as NOMA have been lately considered. The performance analysis of this technology
using the MD has been a topic of interest in recent years. For instance, authors in [116]
use the MD to optimize the power allocations for downlink NOMA users and extend the

14Offloading in this context means to drive users to small cells using an appropriate spectrum allocation
to lighten the data traffic of macro cells.
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optimization problem by incorporating constraints on the mean local delays for each user.
Meanwhile, the MD of the coverage probability in downlink NOMA networks is studied
in [202] for two schemes, namely, everywhere in the network, where user equipments
are distributed uniformly and independently in each Voronoi cell, and cell-center, where
user equipments are distributed uniformly and independently in a disk around the BS.
In [203], a novel user ranking technique is proposed such that the users from the cell
center and cell edge regions are paired for the non-orthogonal transmission. The MD is
used to provide information over the disparity in the link qualities of ranked users across
the network, considering not only path-losses and fading gains but also the correlation
in the inter-cell interference powers. Recently, authors in [204] show that the MD can
capture the statistics of the secrecy rate in downlink NOMA systems with randomly
located eavesdroppers15.
Additionally, LPWAN technologies such as LoRaWAN constitute a connectivity

solution for mMTC. To reduce energy consumption, a device in a LoRaWAN network
needs to adjust its transmit power according to the distance from its tagged gateway.
Authors in [206] use the MD of the SIR concept to show how fractional power control
influences the coverage probability in the uplink. This is illustrated by considering the
variance of the conditional coverage probability, which is lower when devices perform
power control, resulting in better fairness among individual links.
In this thesis, we perform a SG-based analysis of mMTC scenarios with QoS

requirements using the SIR MD tool. To gain more insights on the suitability of
the adopted approach, a comparison with the analysis based on the standard success
probability is also carried out.

15Secrecy capacity refers to the maximum transmission rate at which the eavesdropper is unable to
decode any information [205].
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3 A META DISTRIBUTION-BASED APPROACH FOR
MMTC WITH AGGREGATION AND SCHEDULING

We presented in Section 2.1 and Section 2.2 the benefits of using data aggregation and
resource scheduling, respectively. This chapter, combines the aforementioned techniques
and exploits the MD concept introduced in Section 2.4 to fully characterize the uplink
traffic performance in a Poisson network with cluster-based data aggregation. We present
the system model and provide analytical and simulation-based performance evaluation
for two scheduling mechanisms, namely RRS and CRS. Moreover, we show that the
standard success probability falls short of providing Qos guarantees when targeting
stringent communication errors.

3.1 System model

We investigate the uplink communication in a large-scale single-tire cellular network
overlapped with aggregator nodes distributed according to an independent and
homogeneous PPP, represented by Φp, with intensity λp (expected number of aggregators
per area unit). Since Φp is a stationary process, as stated in Section 2.3, the performance
analysis does not depend on each aggregator’s particular location. Thus, we consider a
“typical” aggregator located at the origin, which experiences interference generated by
non-intended transmitters in the network.
Figure 8 shows the system model under consideration. Notice that for illustration

purposes, Figure 8 also includes the MTD associated with the typical aggregator;
however, since we analyze only the uplink transmission, Monte Carlo simulations do not
require to draw any point in this position. Assuming that the MTDs have low mobility,
we ignore complex association protocols between MTDs and aggregators (e.g., nearest-
neighbor rule [207,208] and max-SIR association [209]); thus, we can model their locations
as an MCP, where the aggregators form the parent PP [77]. Notice that traffic generated
from low-mobility or static devices (except for V2V) is one of the MTC characteristics,
in contrast to highly nomadic smartphones.
The MCP can be defined as

Ψ ,
⋃

v∈Φp
v + Bv, (22)

where Bv denotes the offspring PP, and each point b ∈ Bv is independent and identical
distributed around the cluster center v ∈ Φp with distance distribution fRd(rd) = 2rd

R2
D
,

where RD is the radius of the clusters formed by the aggregators and its corresponding
MTDs [137]. Since the radius of the disks is fixed in the MCP, it might be the case that
a particular MTD falls within several aggregators’ coverage areas as shown in Figure
8; however, each MTD is associated with a single aggregator. Notice also that some
interferers fall closer to the typical aggregator than its corresponding MTD.
Consider that at any instant, the MTDs across the entire network transmit information

to their serving aggregators through the same set N of N orthogonal channels (N = |N |).
Each aggregator can accommodate only one MTD per channel, out of K requesting
service within its coverage area. Note that K is a Poisson distributed random variable
with mean m, i.e., K ∼ Poiss(m). Thus, the only contribution to the interference comes
from the MTDs in other aggregators’ serving zones using the same channel (inter-cluster
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Figure 8. System Model. Illustration of direct and interference (with respect to the
typical aggregator) links (left), and an MCP realization (right).

interference). Notice that each MTD transmits whenever it has new information to send,
and its corresponding aggregator has allocated resources for transmission conforming two
scheduling schemes described in the following sections.

3.1.1 Average channel occupation probability

The probability that any MTD within any cluster generates interference, or equivalently,
the average channel occupation probability is defined as [77]

P0 = EK
[

min(K,N)
N

]

=
N∑
k=0

k

N

mke−m

k! +
∞∑

k=N+1

mke−m

k!

= 1− Γ[1 +N,m]
N ! + mΓ[1 +N,m]− e−mmN+1

(N − 1)!N2 . (23)

Notice that P0 is independent of the aggregators’ density and the scheduling scheme
performed at the aggregator since it only depends on N and m. Figure 9 shows that P0
decreases as the number of channels available at the aggregators increases. This improves
the performance since the typical link experiences less interference compared to the case
where certain channel is occupied with high probability. Interestingly, for m < N , P0
shows a linear dependency with m with slope 1/N ; thus, P0 = m/N . Contrary, when
the average number of MTDS exceeds the available resources, a particular MTD may not
be assigned a channel due to the scarce resources and P0 = 1. In this case, it is critical
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to allocate the limited channels efficiently according to any metric that guarantees QoS,
e.g., channel state condition and transmission delay.
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Figure 9. Average channel occupation probability versus average number of MTDs per
aggregator.

3.1.2 Interfering process as a PPP

Notice that P0 is also independent among clusters; thus, it defines an independent
thinning operation and we can model the interference field observed from the typical
link as a homogeneous PPP denoted as ΦI with density λI = P0λp. This statement can
be properly understood by noticing that the resulting aggregators PP after selecting
all the MTDs aggregators pairs communicating over the same channel is a PPP
(independent thinning operation on a PPP). Moreover, each MTDs’ coordinate is a
random translation of that of their corresponding associated aggregators. Thus, according
to the displacement theorem [114], which loosely states that the random independent
displacement of points of a PPP on the same underlying space forms another PPP, we
can conclude that ΦI is a PPP as well.
For the sake of completeness, we use one of the methods introduced in Section 2.3.3 to

prove equivalence among PPs. We compare the contact distribution function FΦI (r) of
ΦI with the analytical expression corresponding to an homogeneous PPP with intensity
λI , FPPP(r) = 1 − e−λIπr. To make the comparison fair enough, it is important to
match the first order statistic corresponding to both PPs. Authors in [210] show that
for any Poisson cluster PP, F (r) approaches the one of the PPP as the clusters’ radius
increases to infinity and keeping the average number of points per clusters the same.
However, as Figure 10 reveals, the independent thinning operation performed in this
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Figure 10. Contact distribution function for the thinned MCP, or equivalent, the
interfering PP ΦI . Simulation parameters: N = 20, λp = 10−5, m = 60 and RD = 40.

model’s clusters allows perfect match of ΦI to a homogeneous PPP for even small cluster’s
radius (RD = 40). This is an important observation that permits us to use the tractable
PGFL that characterize the PPP and therefore obtain “weakly closed-form”1 solutions
for the MD as it is shown in the following sections. Moreover, [211] shows that the pair
correlation function of the MCP approaches that of the PPP when the average number
of points per cluster tends to zero since the points are less likely to belong to the same
cluster, which is the case in our model because at any time there exist at most one MTD
per cluster offering interference at the typical aggregator.
Figure 11 shows the spatial similitude between a PPP generated with intensity λI and

ΦI . It is clear that ΦI does not exhibit any attraction or repulsion tendency.

3.1.3 Channel and transmission model

We adopt a channel model that consists of the commonly used power-law path-loss as
the large-scale propagation effect. Thus, the signal power decreases at a rate of y−α with
the propagation distance y, and α ≥ 2 is the path loss exponent. Quasi-static fading
is considered as the small-scale effect, which means that the channel remains constant
during a transmission block and changes independently from block to block. Notice
that this statement is consistent with the assumption that MTDs stay static or have
low mobility. Additionally, Rayleigh fading impairs the desired and interference links,

1Different from the “closed-form” term that allows only elementary functions, we use the “weakly
closed-form” label for expressions involving hypergeometric, (incomplete) gamma functions, Meijer G-
function and the Lambert functions (see https://stogblog.net/category/other-points/).
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Figure 11. Interference PP ΦI (left) and PPP with intensity λI (right) for N = 20,
λp = 10−5, m = 60 and RD = 40.

with channel power gains—h and g, respectively—being exponential, independent and
identically distributed with unit mean, i.e., h, g ∼ Exp(1). Notice that this assumption
makes sense since the interferers’ positions do not have any spatial correlation. Moreover,
it allows us to examine the worst-case scenario without dominant propagation along a
LoS.
All MTDs use full inversion power control. This is, each device controls its transmit

power so that the average signal power received at the serving aggregator is equal to
a predefined constant value ρ. In other words, each MTD transmits to its aggregator
with a power equal to ρrαd to partially compensate the effect of path loss on the received
signal at the aggregator [212]. This guarantees a uniform user experience while saving
a critical amount of energy [101]. Since in large-scale cellular networks, the impact of
the co-channel interference limits all links’ performance, we consider an interference-
limited scenario, and the thermal noise at the receiver side is neglected; consequently,
the received SIR determines the network performance and the value of ρ is irrelevant.
However, without loss of generality, the same analytical approaches provided in the next
sections can also be applied to characterize performance metrics that consider the thermal
noise.

3.2 Random resource scheduling (RRS)

Under RRS, each aggregator randomly assigns the channels in N to the MTDs. Notice
that this mechanism does not need channel state information (CSI). Since the MTDs use
inversion power control, the SIR experienced by the typical user is

SIR = h

I
= h∑

i∈ΦI gir
α
di
y−αi

, (24)

where I is the aggregated interference from MTDs in other clusters transmitting over the
same channel, {yi} denotes the distance of the interfering MTDs respect the typical user,
h and {gi} are the fading power gains on the desired and interfering links, respectively,
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and {rdi} is the distance between the MTDs and their serving aggregators. For an
arbitrary but fixed realization of Ψ, the conditional success probability can be obtained
from (11) as

Ps(θ) = P

 h∑
i∈ΦI

girαdiy
−α
i

≥ θ

∣∣∣∣∣∣∣Ψ


= Egi

P
h ≥ θ

∑
i∈ΦI

gir
α
di
y−αi

∣∣∣∣∣∣gi,Ψ


(a)= Egi

exp
−θ ∑

i∈ΦI
gir

α
di
y−αi

∣∣∣∣∣∣Ψ


(b)=
∏
i∈ΦI

 1
1 + θ( rmi

yi
)α


(c)= lim

η→∞

η∏
i=1

[
1 + θ

(
rdi
yi

)α]−1

(d)
≤ lim

η→∞

∑η
i=1

[
1 + θ

(
rdi
yi

)α]
η

−η

(e)= lim
η→∞

[
1 + θ

η

η∑
i=1

(
rdi
yi

)α]−η

= lim
η→∞

[
1 + θ

η
β

]−η
(f)
≈ e−βθ, (25)

where (a) comes from applying the complementary CDF of the unit mean exponential
distribution of h; (b) follows from using the Laplace transform of the sum of independent
and identical distributed exponential random variables {gi}; in (c), we consider the
number of interfering nodes as η, and then use the relation between the geometric and the
arithmetic mean to obtain (d). Note that interchanging geometric and arithmetic means
was shown to conduce to accurate performance expressions in [213] for sufficiently dense
networks without aggregation. Finally, (e) comes from simple algebraic transformations;
and (f) results from making

β =
η∑
i=1

(
rdi
yi

)α
(26)

Remark 1. Obtaining the PDF of Ps(θ) directly from (b) seems infeasible for massive
network deployments; thus, in this case, we adopt approximation (25) to attain the final
SIR MD analytical expression.
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With (25) in hands, we can compute the MD for this scheduling scheme by plugging
it into (12). However, β is a random variable that depends on the network’s geometry;
thus, we need its PDF. We proceed as follows

Lβ(s) = EΦI ,rd

[
exp

(
− s

∑
i∈ΦI

(
rdi
yi

)α)]

= EΦI
∏
i∈ΦI

Erd
[

exp
(
− s

(
rdi
yi

)α)]
(a)= exp

(
− 2πλ

∫ ∞
0

(
1− Erd

[
exp

(
− s

(
rd
y

)α)])
ydy

)
(b)= exp

(
−2πλ
α

Erd
∫ ∞

0

[
1− exp

(−srαd
w

)]
w

2
α
−1dw

)
(c)= exp

(
− πP0λpErd

[
Ew
[(

w
(srd)α

)− 2
α

)])

= exp
(
− πP0λpErd [r2

d] Ew
[
w

2
α

])
= exp

(
− πP0λp

R2
D

2 Γ
(
1− 2

α

)
s

2
α

)
= exp

(
− ts

2
α

)
, (27)

where (a) comes from applying the PGFL defined in [146], [214]; (b) follows from the
substitution y−α = 1

w
; (c) is obtained using the following definition of moment of a non-

negative continuous real random variable E[zn] =
∫
nzn−1(1 − F (z))dz, and by noticing

that Ew
(
w

2
α

)
is the expected value of an exponential random variable with unitary mean.

Γ(·) is the gamma function defined in [215, Eq. (5.2.1)], which make (27) only valid for
α > 2. This is because for α < 2, the average cumulated contribution from many distant
interfererers do not decay fast enough to keep the interference power bounded. Finally,
(27) is obtained by performing the substitution t = 1

2P0λpπR
2
DΓ

(
1− 2

α

)
.

Result in (27) has the form of a stretched exponential or Kohlrausch function, i.e,
e−ts

2/α for a certain constant t [216]. In [217, Table I], the authors provide the PDF of
such random variables for different values of α. Herein, we adopt these results and set α
to 4 for simplicity. Then, the PDF of β is given by [217, Table I]

fβ(ω) = te
−t2
4ω

2
√
πω

3
2
. (28)

This is a Lévy distribution [218, 219], i.e., β ∼ Levy(0, t22 ), which belongs to the heavy-
tail2 distribution family; thus, large values of β have high occurrence probability, which
can have a dramatic effect on the system average behaviour. Thus, traditional conception
of average is not longer applicable since the law of large numbers does not hold. This
is extremely important to consider, as Figure 12 shows, specially when the aggregator’s

2Heavy-tailed distributions are probability distributions whose tails are not exponentially bounded;
it decays polynomially (slower decline) e.g., Pareto, Log-Normal, Weibull, Log-Gamma and Burr
distributions. [220] shows experimental evidences of the interference’s heavy tailed nature in the context
of IoT communications.
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Figure 12. PDF of β (Lévy distribution) for different aggregator’s intensity λp.

density increases and clusters fall closer to the typical point; in which case |yi| < |rdi | and
the interference levels increment. Notice the tremendous importance of (28) that even
for dense networks (λp > 10−4) it perfectly reflects the tail behaviour. Moreover, as we
consider a higher aggregators density, the simulation run-time increases; thus, analytical
expressions that provide fast insights into the network performance are essential for
network designers, particular in time constrained projects.

Combining (12), (25) and (28), we attain the SIR MD under RRS as

F̄ (θ, x) = P
(
e−βθ > x

)
= P

(
β <

− ln x
θ

)

=
∫ − ln x

ω

0
fβ(ω)dω

=
∫ − ln x

θ

0

te
−t2
4ω

2
√
πω

3
2
dω (a)

= b
∫ ∞

−θ
ln x

u
1
2−1e−audu

= ba−
1
2 Γ
(

1
2 ,−

θa

ln x

)
, (29)

where (a) comes from substituting 1
ω

= u, a = t2

4 and b = t
2
√
π
. Notice that the same

procedure to compute the SIR MD in (29) applies for any integer value of path loss
exponent α > 2. However, in these cases, the PDF of β have complicated forms that
depends on multiple Bessel and hypergeometric functions; thus, the previous integration
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procedure would be tedious and hard to obtain insights from the result. To cope with
this issue, we also provide an upper bound to the MD by combining (12) and (25) as

F̄ (θ, x) = P
(
e−βθ > x

)
= P

(
β <

− ln x
θ

)
(a)
≤ min

ξ≥0
e−

ln x
θ
ξE[e−ξβ]

(b)= min
ξ≥0

e
−
(

ln x
θ
ξ+tξ

2
α

)
, (30)

where (a) comes from applying Chernoff bound and (b) from realizing that the expectation
in (a) can be interpreted as the Laplace transform of β, and by substituting s = ξ in
(27). Notice that (30) is a decreasing exponential objective function; thus, it is enough
to find the minimum value of the argument that satisfy the constraint. By finding the
first derivative and equate to zero, we obtain that the optimal value is

ξ∗ =
[
−α ln x

2tθ

] α
2−α

. (31)

It is easy to note that ξ∗ ≥ 0; thus it satisfies the constraint. Figure 13 shows the
accuracy of Chernoff bound for RRS (30).
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Figure 13. Exact MD (29), and the bound obtained from (30) for λp = 10−5, α = 4,
RD = 40, N = 20 and m = 60.
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3.3 Channel-aware resource scheduling (CRS)

Contrary to the RRS scheme, the aggregators that implement CRS allocate the available
channel resources to the MTDs with better SIR (equivalently, better channel gains).
Herein, each aggregator is assumed with perfect CSI of the links of its associated MTDs.
From (11), we have that the conditional success probability corresponding to the ν-th
link with h(ν) channel power gain is

Ps(θ) , P(SIR > θ|Ψ) = 1− P(h(ν) < θI|Ψ), (32)

where ν = 1, ..., N corresponds to the selected MTDs ordered according their SIR as
h(1)>. . .>h(ν)>. . .>h(N). Then, the CDF of h(ν) using order statistics results is

Fh(ν)(v) =
K∑
l=q

(
K

l

)
[Fh(v)]l[1− Fh(v)]K−l, (33)

where q = K − ν + 1 and Fh(v) is the CDF of an exponential random variable. Then,
the SIR MD under CRS is obtained as

F̄ (θ, x) (a)= P
(

1−
K∑
l=q

(
K

l

)
EI
[
[1− e−Iθ]le−Iθ(K−l)

∣∣∣Ψ] > x

)

(b)= P
(

1−
K∑
l=q

l∑
r=0

(
K

l

)(
l

r

)
(−1)rEI

[
e−Iθ(K−l+r)

∣∣∣Ψ] > x

)

(c)= P
(

1−
K∑
l=q

l∑
r=0

(
K

l

)(
l

r

)
(−1)r

∏
i∈ΦI

1
1 + θl,r(

rdi
yi

)α
> x

)
, (34)

where (a) comes from combining (12), (32) and (33); (b) is obtained by using the
binomial expansion (1+z)l=∑l

r=0

(
l
r

)
zr; and (c) follows from considering the expectation

in (b) as the interference Laplace transform conditioned on the PP, and by making
θl,r=θ(K−l+r).

Figure 14 shows the MD (34) for different values of ν. Herein, we analyze the
worst-case performance, which is when ν = N . This is, we consider the link with the
smallest channel coefficient among all the links with access granted by the aggregator.
Thus, by setting q = K−N +1 in (34), we avoid averaging over all possibilities of ν,
reducing complexity while keeping the per-link performance guarantee concept. Notice
that considering all choices of ν would lead to an average result, which contradicts the
MD concept. Moreover, (34) allows a semi-analytical computation of the MD that
depends only on the interfering nodes’ position inside the clusters and with respect to
the typical link. Therefore, it is unnecessary to model either the channel fading or the
scheduling process, which reduces the computation time significantly.

3.4 Performance evaluation and numerical results

This section presents numerical results to analyze the per-link performance in an mMTC
setup with data aggregation under RRS and CRS. The aggregators are deployed in a
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Figure 14. MD of the SIR (semi-analytical (34)) according to different ordered channels
(ν). Simulation parameters: λp = 10−5, α = 4, RD = 40, θ = 0 dB, N = 10 and m = 20.

disk of radius 3 km with density λp = 3 × 10−6 aggregators/m2, which guarantees 100
aggregators deployed on average in the area while eliminating the impact of the border
effect in the simulation. As it was stated in Section 2.3.3, the edge effect can be neglected
as the simulation window is selected large enough. It was selected N = 20, m = 60, and
RD = 40 m to produce visualization errors in the order of 10−2. Monte Carlo based
results are obtained with 105 samples and are included in the figures with markers to
validate our analytical (for RRS) and semi-analytical (for CRS) expressions, which are
represented with lines.
Figure 15 shows the efficacy of the SIR MD for describing the system per-link

performance. One can realize that the traditional ps does not guarantee QoS for any node
in the network, which is even more remarkable when RRS is enabled in the aggregation
phase. This is because the channels are assigned to links that communicate with high
error probability. In contrast, having the MD in hand allows effective distribution of
these resources as the exact fraction of links communicating with a target reliability is
known in advance. Moreover, aggregators implementing CRS admit a higher percentage
of links achieving a target reliability in the resources-constrained communication system.
Figure 16 permits a more rigorous analysis of the fraction of links that achieve certain

reliability given the SIR threshold θ. For example, the marked point shows that the
transmission rate should be set no greater than log2(1 + 10−5/10) = 0.396 bits per
channel use (bpcu) to guarantee nearly 86% of the links achieving at least 99.9% success
probability when operating with RRS. One may notice that nearly the same fraction
of devices can transmit with the same rate under both scheduling schemes, but with
reliability improved from 0.9 when using RRS to 0.999 under CRS. If simplicity is desired
in the network, RRS is the solution, but only a small percentage of devices achieve high
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Figure 16. MD and traditional success probability (ps) as a function of θ for different
values of reliability (x).

reliability. However, if a larger number of devices need to communicate, CRS seems to
be the best option to provide them the required reliability.
Figure 17 visualizes the trade-off between the transmit rate and m. In general,

the transmit rate has to decrease when the number of MTDs requesting transmission
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Figure 17. Transmit rate versus average number of MTDs per aggregator for F̄ (θ, x) =
u = 0.99, 0.95 and x = 99% of reliability.

approaches the available resources. However, when this value exceeds N , the probability
of selecting a better channel under CRS increases, and the transmit rate can improve. In
contrast, under RRS the rate cannot exceed a constant value. Notice that the percentage
of devices communicating with the target reliability must remain the same in both cases.

Figure 18 shows an important trade-off that network designers need to consider. This
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Figure 18. Meta distribution as a function of λp for α = 4, θ = 0 dB and x = 0.999, 0.9.
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is, the aggregators’ density cannot increase loosely; otherwise, only a small fraction of
MTDs would communicate with the target reliability. Notice that this is due to the
static cluster-based hierarchy where increasing λp implies also increasing the number of
MTDs and therefore the interference. On the other hand, it is clear that as λp approaches
0, the percentage of MTDs achieving the target reliability increases, but obviously the
benefits from aggregation also disappear. Notice that, in general, the density of served
MTDs increases with λp. However, under RRS, almost no transmission satisfies 99%
of reliability. Moreover, based on these figure results, one can determine the density of
MTDs that allows reaching an SIR θ with reliability x, which is given by λpP0F̄ (θ, x).
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4 CONCLUSIONS

In this thesis, we exposed the main challenges arising from MTC compared to traditional
HTC. Moreover, the most promising technologies to support mMTC in the context of
IoT were described. Important SG aspects to model dense network deployments using
PPs were also presented. We analyzed the MD of the SIR to provide a more fine-
grained description of the per-link performance under RRS and CRS scheduling schemes
compared to the analyses derived from the traditional success probability. Our results
showed that RRS performs extremely poor in terms of per-link reliability compared to
CRS when a limited amount of resources can be scheduled among the MTDs. This
is, RRS guarantees the same per-link reliability performance as CRS but for a smaller
number of communication links. This difference is more significant when targeting
stringent reliability performance. We also revealed that CRS allows to increase the
transmission rate when the number of MTDs exceeds the available resources. Finally,
we showed that the percentage of successful transmissions meeting a target reliability
decreases as the aggregators density increases.
This work can be extended as follows:

• Exploring analytical approaches to characterize the MD under CRS.

• Implementing more sophisticated scheduling policies that consider others QoS
requirements suitable for delay-sensitive IoT applications. A spatio-temporal model
based on the MD and queuing theory to account for IoT devices’ spatial and
temporal attributes could be an interesting approach.

• Implement an algorithm that ensures efficient power and rate control in these
challenging scenarios.

• In this thesis, we assumed perfect CSI at the aggregators. However, an interesting
extension would also consider imperfect CSI and non-coherent decoding schemes.
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