1,630 research outputs found

    Self Organizing strategies for enhanced ICIC (eICIC)

    Get PDF
    Small cells have been identified as an effective solution for coping with the important traffic increase that is expected in the coming years. But this solution is accompanied by additional interference that needs to be mitigated. The enhanced Inter Cell Interference Coordination (eICIC) feature has been introduced to address the interference problem. eICIC involves two parameters which need to be optimized, namely the Cell Range Extension (CRE) of the small cells and the ABS ratio (ABSr) which defines a mute ratio for the macro cell to reduce the interference it produces. In this paper we propose self-optimizing algorithms for the eICIC. The CRE is adjusted by means of load balancing algorithm. The ABSr parameter is optimized by maximizing a proportional fair utility of user throughputs. The convergence of the algorithms is proven using stochastic approximation theorems. Numerical simulations illustrate the important performance gain brought about by the different algorithms.Comment: Submitted to WiOpt 201

    A dynamic distributed multi-channel TDMA slot management protocol for ad hoc networks

    Get PDF
    With the emergence of new technologies and standards for wireless communications and an increase in application and user requirements, the number and density of deployed wireless ad hoc networks is increasing. For deterministic ad hoc networks, Time-Division Multiple Access (TDMA) is a popular medium access scheme, with many distributed TDMA scheduling algorithms being proposed. However, with increasing traffic demands and the number of wireless devices, proposed protocols are facing scalability issues. Besides, these protocols are achieving suboptimal spatial spectrum reuse as a result of the unsolved exposed node problem. Due to a shortage of available spectrum, a shift from fixed spectrum allocation to more dynamic spectrum sharing is anticipated. For dynamic spectrum sharing, improved distributed scheduling protocols are needed to increase spectral efficiency and support the coexistence of multiple co-located networks. Hence, in this paper, we propose a dynamic distributed multi-channel TDMA (DDMC-TDMA) slot management protocol based on control messages exchanged between one-hop network neighbors and execution of slot allocation and removal procedures between sender and receiver nodes. DDMC-TDMA is a topology-agnostic slot management protocol suitable for large-scale and high-density ad hoc networks. The performance of DDMC-TDMA has been evaluated for various topologies and scenarios in the ns-3 simulator. Simulation results indicate that DDMC-TDMA offers near-optimal spectrum utilization by solving both hidden and exposed node problems. Moreover, it proves to be a highly scalable protocol, showing no performance degradation for large-scale and high-density networks and achieving coexistence with unknown wireless networks operating in the same wireless domain

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Pervasively Distributed Copyright Enforcement

    Get PDF
    In an effort to control flows of unauthorized information, the major copyright industries are pursuing a range of strategies designed to distribute copyright enforcement functions across a wide range of actors and to embed these functions within communications networks, protocols, and devices. Some of these strategies have received considerable academic and public scrutiny, but much less attention has been paid to the ways in which all of them overlap and intersect with one another. This article offers a framework for theorizing this process. The distributed extension of intellectual property enforcement into private spaces and throughout communications networks can be understood as a new, hybrid species of disciplinary regime that locates the justification for its pervasive reach in a permanent state of crisis. This hybrid regime derives its force neither primarily from centralized authority nor primarily from decentralized, internalized norms, but instead from a set of coordinated processes for authorizing flows of information. Although the success of this project is not yet assured, its odds of success are by no means remote as skeptics have suggested. Power to implement crisis management in the decentralized marketplace for digital content arises from a confluence of private and public interests and is amplified by the dynamics of technical standards processes. The emergent regime of pervasively distributed copyright enforcement has profound implications for the production of the networked information society

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    Distributed Capacity Based Multi-Channel Allocation Algorithm for Local Area Networks

    Get PDF
    The past decade has seen a vast growth in wireless communication, continuously fuelled by the users' ever-increasing demand for higher data rates. Various technologies are constantly competing with each other, trying to establish supremacy over other concurrent technologies and desperately vying to make its own space in the field of telecommunication. With the advent of 4G systems, we are at a crucial juncture. The all-important question has become: how to provide ubiquitous coverage for all the users in the network in a cost-efficient manner while at the same time satisfy high data rates and the Quality of Service (QoS) requirements proposed by ITU-R for IMT-Advanced systems? One technology which can provide an answer to the above question is low power home base stations called femtocells used for local area deployments such as residences, apartment complexes, offices, business centres and outdoor hotspot scenarios. Through this work, we propose a scalable and fully distributed solution called the Distributed Capacity Based Channel Allocation Algorithm to overcome the problem of interference management and efficient system operation in a local area environment. The proposed scheme is simple yet robust and helps Home eNodeBs select the best available radio resources which minimizes interference to the neighbouring nodes. Further, the scheme is subjected to various mitigating circumstances and interference-limited scenarios. The performance evaluation of the scheme is done under such conditions to ensure that it is scalable, flexible and can be considered as a practically viable option. Through this work, we try to not just improve the throughput experienced by the average user in a cell, but also the ones at the cell-edge who su_ers the most due to interference from the neighboring cells. The scheme proposed aims to be energy-e_cient as well by reducing the total number of component carriers used by each HeNB without compromising the average cell throughput values
    • …
    corecore