106,571 research outputs found

    Rethinking Timestamping: Time Stamp Counter Design for Virtualized Environment

    Full text link
    Almost every processor supports Time Stamp Counter (TSC), which is a hardware register that increments its value every clock cycle. Due to its high resolution and accessibility, TSC is now widely used for a variety tasks that need time measurements such as wall clock, code benchmarking, or metering hardware usage for account billing. However, if not carefully configured and interpreted, TSC-based time measurements can yield inaccurate readings. For instance, modern CPU may dynamically change its frequency or enter into low-power states. Also, time spent on scheduling events, system calls, page faults, etc. should be correctly accounted for. Even more complications arise when TSC measurements are done in virtual environments; virtual machines, on which TSC readings are taken, can be suspended, migrated, and scheduled on a machine with different clock rate and performance. In production virtualization systems, some management tasks are executed inside guests on behalf of the management system, effectively consuming end-user’s CPU time, which we believe should be excluded from end-user billing. We argue that the main problem with current TSC is that its hardware semantic is too vague to serve as a multi-purpose time source. In this thesis, we propose an improved TSC design, called Caviar, to address most of the issues. Caviar extends existing TSC hardware interface by adding a control-register based configuration interface through which a system can set up secondary TSCs whose behavior should be correct when accessed in a localized execution context including virtualized environment. We experimentally confirmed inaccurate readings with current TSC by conducting a series of TSC measurements on various x86 platforms, including virtualized cloud computing servers. We analyzed some of the results and argue that how our proposed solution can fix the problems. In conclusion, we believe that the simple interface of Caviar can solve most of current TSC complications, be implemented with minimal hardware cost, and be adopted easily by system software

    Real-Time Building Management System Visual Anomaly Detection Using Heat Points Motion Analysis Machine Learning Algorithm

    Get PDF
    The multiplicity of design, construction, and use of IoT devices in homes has made it crucial to provide secure and manageable building management systems and platforms. Increasing security requires increasing the complexity of the user interface and the access verification steps in the system. Today, multi-step verification methods are used via SMS, call, or e-mail to do this. Another topic mentioned here is physical home security and energy management. Artificial intelligence and machine learning-based tools and algorithms are used to analyze images and data from sensors and security cameras. However, these tools are not always available due to the increase in data volume over time and the need for large processing resources. In this study, a new method is proposed to reduce the usage of process resources and the percentage of system error in anomaly detection by reducing visual data to critical points by using thermal cameras. This method can also be used in energy management using home and ambient temperature and user activity measurements. The statistical results of the visual comparison between the proposed method and the legacy CCTV-based visual and sensory surveillance shown in the results section demonstrate its reliability and accuracy

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    TCG based approach for secure management of virtualized platforms: state-of-the-art

    Get PDF
    There is a strong trend shift in the favor of adopting virtualization to get business benefits. The provisioning of virtualized enterprise resources is one kind of many possible scenarios. Where virtualization promises clear advantages it also poses new security challenges which need to be addressed to gain stakeholders confidence in the dynamics of new environment. One important facet of these challenges is establishing 'Trust' which is a basic primitive for any viable business model. The Trusted computing group (TCG) offers technologies and mechanisms required to establish this trust in the target platforms. Moreover, TCG technologies enable protecting of sensitive data in rest and transit. This report explores the applicability of relevant TCG concepts to virtualize enterprise resources securely for provisioning, establish trust in the target platforms and securely manage these virtualized Trusted Platforms

    Fostering energy awareness in residential homes using mobile devices

    Get PDF
    There is considerable global effort being made towards identifying ways of reducing energy consumption to cope with growing demands. Although there is potential for energy saving in many sectors, our focus is on reducing energy consumption in residential homes. We have developed a system which combines home automation and energy usage monitoring technologies. The system offers a range of tools designed for mobile devices to assist users with monitoring their energy usage and provides mechanisms for setting up and controlling home appliances to conserve energy. In this paper we describe our system and a user study we have conducted to evaluate its effectiveness. The findings of the study show the potential benefits of this type of mobile technology

    Oceans of Tomorrow sensor interoperability for in-situ ocean monitoring

    Get PDF
    The Oceans of Tomorrow (OoT) projects, funded by the European Commission’s FP7 program, are developing a new generation of sensors supporting physical, biogeochemical and biological oceanographic monitoring. The sensors range from acoustic to optical fluorometers to labs on a chip. The result is that the outputs are diverse in a variety of formats and communication methodologies. The interfaces with platforms such as floats, gliders and cable observatories are each different. Thus, sensorPeer ReviewedPostprint (author's final draft

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally
    • …
    corecore