491 research outputs found

    Robust Hamiltonian passive control for higher relative degree outpus

    Get PDF
    We present an improvement of the well-know Interconnection and Damping Assignment-Passivity-based Control (IDA-PBC) technique. The IDA-PBC method is based on the Port –controlled Hamiltonian Systems description and requires the knowledge of the full energy (or Hamiltonian) function. This is a problem because, in general, the equilibrium point which is to be regulated depends on uncertain parameters. In this paper, we show how select the target port-Hamiltonian structure so that this dependence is reduced. This new approach allows to improve the robustness for higher relative degree outputs, and, for illustration purposes, is applied to a simple academic nonlinear syste

    A Constructive Methodology for the IDA-PBC of Underactuated 2-DoF Mechanical Systems with Explicit Solution of PDEs

    Get PDF
    This paper presents a passivity-based control strategy dealing with underactuated two-degree-of-freedom (2-DoF) mechanical systems. Such a methodology, which is based on the interconnection and damping assignment passivity-based control (IDA-PBC), rooted within the port-controlled Hamiltonian framework, can be applied to a very large class of underactuated 2-DoF mechanical systems. The main contribution, compared to the previous literature, is that the new methodology does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalised momenta are introduced by the controller. The proposed strategy is applied to two case studies: a) the stabilisation of a translational oscillator with a rotational actuator (TORA) system; b) the gait generation for an underactuated compass-like biped robot. The performances of the presented solution are evaluated through numerical simulations

    Putting energy back in control

    Get PDF
    A control system design technique using the principle of energy balancing was analyzed. Passivity-based control (PBC) techniques were used to analyze complex systems by decomposing them into simpler sub systems, which upon interconnection and total energy addition were helpful in determining the overall system behavior. An attempt to identify physical obstacles that hampered the use of PBC in applications other than mechanical systems was carried out. The technique was applicable to systems which were stabilized with passive controllers

    Matching in the method of controlled Lagrangians and IDA-passivity based control

    Get PDF
    This paper reviews the method of controlled Lagrangians and the interconnection and damping assignment passivity based control (IDA-PBC)method. Both methods have been presented recently in the literature as means to stabilize a desired equilibrium point of an Euler-Lagrange system, respectively Hamiltonian system, by searching for a stabilizing structure preserving feedback law. The conditions under which two Euler-Lagrange or Hamiltonian systems are equivalent under feedback are called the matching conditions (consisting of a set of nonlinear PDEs). Both methods are applied to the general class of underactuated mechanical systems and it is shown that the IDA-PBC method contains the controlled Lagrangians method as a special case by choosing an appropriate closed-loop interconnection structure. Moreover, explicit conditions are derived under which the closed-loop Hamiltonian system is integrable, leading to the introduction of gyroscopic terms. The λ\lambda-method as introduced in recent papers for the controlled Lagrangians method transforms the matching conditions into a set of linear PDEs. In this paper the method is extended, transforming the matching conditions obtained in the IDA-PBC method into a set of quasi-linear and linear PDEs.\u

    Discrete port-controlled Hamiltonian dynamics and average passivation

    Get PDF
    The paper discusses the modeling and control of port-controlled Hamiltonian dynamics in a pure discrete-time domain. The main result stands in a novel differential-difference representation of discrete port-controlled Hamiltonian systems using the discrete gradient. In these terms, a passive output map is exhibited as well as a passivity based damping controller underlying the natural involvement of discrete-time average passivity

    An Energy-Balancing Perspective of Interconnection and Damping Assignment Control of Nonlinear Systems

    Get PDF
    Stabilization of nonlinear feedback passive systems is achieved assigning a storage function with a minimum at the desired equilibrium. For physical systems a natural candidate storage function is the difference between the stored and the supplied energies—leading to the so-called Energy-Balancing control, whose underlying stabilization mechanism is particularly appealing. Unfortunately, energy-balancing stabilization is stymied by the existence of pervasive dissipation, that appears in many engineering applications. To overcome the dissipation obstacle the method of Interconnection and Damping Assignment, that endows the closed-loop system with a special—port-controlled Hamiltonian—structure, has been proposed. If, as in most practical examples, the open-loop system already has this structure, and the damping is not pervasive, both methods are equivalent. In this brief note we show that the methods are also equivalent, with an alternative definition of the supplied energy, when the damping is pervasive. Instrumental for our developments is the observation that, swapping the damping terms in the classical dissipation inequality, we can establish passivity of port-controlled Hamiltonian systems with respect to some new external variables—but with the same storage function.

    Current-constraint Speed Regulation for PMSM Based on Port-controlled Hamiltonian Realization and Deep Deterministic Policy Gradient

    Get PDF
    To ensure overcurrent protection, fast dynamic performance and good robustness, a novel speed regulation controller is proposed. The interconnection and damping assignment passivity-based control (IDA-PBC) of Port-controlled Hamiltonian (PCH) systems has the advantages of simple structure and explicit physical meaning. On account of fast dynamic performance and q-axis current-constraint are contradictory, this paper presents a current-constraint speed regulation method for the permanent magnet synchronous motor (PMSM) based on port-controlled Hamiltonian (PCH) realization and deep deterministic policy gradient (DDPG) to balance them. First, a modified IDA-PBC controller with integral action (IA) is constructed, which can regulate the speed and the current of the PMSM simultaneously, and be more suitable for practical applications due to the addition of IA. For both current-constraint and fast dynamic performance, the reinforcement learning of DDPG is utilized to find the optimal parameters of the controller. Finally, experiments are carried out to verify the effectiveness and robustness of the method

    Energy Shaping Control for Stabilization of Interconnected Voltage Source Converters in Weakly-Connected AC Microgrid Systems

    Get PDF
    With the ubiquitous installations of renewable energy resources such as solar and wind, for decentralized power applications across the United States, microgrids are being viewed as an avenue for achieving this goal. Various independent system operators and regional transmission operators such as Southwest Power Pool (SPP), Midcontinent System Operator (MISO), PJM Interconnection and Electric Reliability Council of Texas (ERCOT) manage the transmission and generation systems that host the distributed energy resources (DERs). Voltage source converters typically interconnect the DERs to the utility system and used in High voltage dc (HVDC) systems for transmitting power throughout the United States. A microgrid configuration is built at the 13.8kV 4.75MVA National Center for Reliable Energy Transmission (NCREPT) testing facility for performing grid-connected and islanded operation of interconnected voltage source converters. The interconnected voltage source converters consist of a variable voltage variable frequency (VVVF) drive, which powers a regenerative (REGEN) load bench acting as a distributed energy resource emulator. Due to the weak-grid interface in islanded mode testing, a voltage instability occurs on the VVVF dc link voltage causing the system to collapse. This dissertation presents a new stability theorem for stabilizing interconnected voltage source converters in microgrid systems with weak-grid interfaces. The new stability theorem is derived using the concepts of Dirac composition in Port-Hamiltonian systems, passivity in physical systems, eigenvalue analysis and robust analysis based on the edge theorem for parametric uncertainty. The novel stability theorem aims to prove that all members of the classes of voltage source converter-based microgrid systems can be stabilized using an energy-shaping control methodology. The proposed theorems and stability analysis justifies the development of the Modified Interconnection and Damping Assignment Passivity-Based Control (Modified IDA-PBC) method to be utilized in stabilizing the microgrid configuration at NCREPT for mitigating system instabilities. The system is simulated in MATLAB/SimulinkTM using the Simpower toolbox to observe the system’s performance of the designed controller in comparison to the decoupled proportional intergral controller. The simulation results verify that the Modified-IDA-PBC is a viable option for dc bus voltage control of interconnected voltage source converters in microgrid systems
    • 

    corecore