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A Constructive Methodology for the IDA-PBC of Underactuated 2-DoF
Mechanical Systems with Explicit Solution of PDEs

Pierluigi Arpenti*(> , Fabio Ruggiero

, and Vincenzo Lippiello

Abstract: This paper presents a passivity-based control strategy dealing with underactuated two-degree-of-freedom
(2-DoF) mechanical systems. Such a methodology, which is based on the interconnection and damping assignment
passivity-based control (IDA-PBC), rooted within the port-controlled Hamiltonian framework, can be applied to a
very large class of underactuated 2-DoF mechanical systems. The main contribution, compared to the previous liter-
ature, is that the new methodology does not involve the resolution of any partial differential equation, since explicit
solutions are given, while no singularities depending on generalised momenta are introduced by the controller. The
proposed strategy is applied to two case studies: a) the stabilisation of a translational oscillator with a rotational
actuator (TORA) system; b) the gait generation for an underactuated compass-like biped robot. The performances
of the presented solution are evaluated through numerical simulations.
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1. INTRODUCTION

The interconnection and damping assignment passivity-
based control (IDA-PBC) is a well-established control
methodology, firstly introduced in [1], rooted within the
port-controlled Hamiltonian (pH) framework of nonlinear
dynamic systems. Differently from other nonlinear con-
trol methodologies, sliding mode control and feedback lin-
earization, for example, which have been used in several
applications [2], [3], [4], some of which explicitly de-
veloped for 2D nonlinear systems [5], IDA-PBC does not
aim at the cancellation of nonlinear terms but, instead, it
exploits the nonlinear nature of the plant. IDA-PBC brings
a given nonlinear system at the desired equilibrium point
by matching the original system’s dynamics with those of
the desired closed loop. The desired total energy in the
closed loop must exhibit a minimum in such an equilib-
rium. The matching involves the solution of a set of par-
tial differential equations (PDEs), called matching equa-
tions, which represent the main bottleneck of the control
design. These PDEs are parameterised by three matrices
that are, in general, related to the interconnection between
the subsystems, the damping, and the kernel of the input
matrix, respectively. These PDEs also include the plant’s
dynamics and the desired closed-loop total energy. Several
interpretations can be given to the role played by these
matrices, as explained in [6]. Throughout years, several

strategies have addressed constructive procedures avoid-
ing the solution of the PDEs [7], and they are distin-
guished by how the matching process is tackled. Referring
to the taxonomy introduced in [6], the described method-
ology can be grouped into three main classes: i) non-
parameterised IDA-PBC; ii) algebraic IDA-PBC; iii) pa-
rameterised IDA-PBC. The non-parameterised IDA-PBC
represents the standard formulation proposed in [1]. In this
case, the desired interconnection and the damping ma-
trices, as well as the input matrix, are fixed. The proce-
dure leads to a set of PDEs defining the family of the
proper desired total energy functions. A solution, having
a minimum in the desired equilibrium, is selected among
such a family. A constructive methodology based on a
dynamic extension is provided in [8], exploiting the no-
tion of the algebraic solution of the matching equations.
The authors proposed to asymptotically stabilise an equi-
librium point without involving the solution of any PDE
by constructing an auxiliary energy function in an ex-
tended state-space. As firstly proposed in [9], the alge-
braic IDA-PBC fixes the desired energy function for the
closed loop. This choice transforms the matching equa-
tions into algebraic ones with the interconnection matrix,
the damping matrix, and the input mapping port as un-
knowns. This approach, which is inherently constructive
and straightforward, is based on the exact knowledge of
the desired energy function that, in turn, requires proper
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physical considerations that are not always easy to de-
rive. The parameterised IDA-PBC fixes the structure (i.e.,
the family) of the desired energy function. This is conve-
nient in those physical systems which always exhibit the
same structure of the total energy. An example is given
by the mechanical systems whose desired energy func-
tion is the sum of a potential energy term, depending
only on the generalised positions, and the kinetic energy,
which is quadratic in the generalised momenta. Accord-
ing to [10], relatively to the class of underactuated two-
degree-of-freedom (2-DoF) mechanical systems with un-
deractuation degree one, such a parameterisation yields to
the decomposition of the original matching equations in
two separate PDEs. The former is referred to as kinetic
energy matching equation (KE-ME), and it depends on
the generalised momenta; the latter is referred to as po-
tential energy matching equation (PE-ME). Besides, such
a parameterisation introduces some degrees of freedom
which are helpful for the solution of the PDEs. Several
constructive solutions were presented for this methodol-
ogy. For instance, the results presented in [11] show that
if the original system’s inertia matrix, as well as the forces
induced by the potential energy, does not depend on the
unactuated coordinates, and given a particular parameter-
isation of the desired inertia matrix, then the KE-ME can
be solved as an algebraic equation. Besides, the PE-ME
admits a general solution, which is a given integral. Con-
versely, a solution that can be applied only to those sys-
tems having an inertia matrix depending exclusively on
the unactuated coordinates, and endowing a constant sub-
block matrix, is proposed in [12]. However, in this last
case, the pH structure of a mechanical system in closed
loop is not preserved. The recent methodology from [13]
proposes a constructive solution for underactuated 2-DoF
mechanical systems by relaxing some of the constraints
imposed by the previous works. In particular, the plant’s
inertia matrix can depend on both the actuated and the un-
actuated variables. Such a procedure avoids the explicit
solution of the matching equations by parameterising the
desired inertia matrix. However, it introduces a singular-
ity in the interconnection matrix depending on generalised
momenta. In this work, a new constructive solution is de-
signed to stabilise underactuated 2-DoF mechanical sys-
tems. Such a control law combines the main features of the
parameterised IDA-PBC and the algebraic IDA-PBC. The
desired closed-loop inertia matrix and the interconnection
matrix are suitably parameterised to provide the solutions
of the PDEs directly. In detail, an explicit solution for the
PE-ME is found, while the KE-ME is transformed into an
algebraic equation. Besides, singularities in the intercon-
nection matrix are explicitly avoided. The proposed solu-
tion can be applied to a broad class of underactuated 2-
DoF mechanical system, with a few assumptions on the
plant’s dynamics. The approach is thus tested on two me-
chanical systems, very different with respect to each other,

namely, the translational oscillator with rotational actua-
tor (TORA) and the underactuated compass-liked biped
robot (UCBR). Numerical tests are carried out also in the
presence of parametric uncertainties and noisy measure-
ments. The same systems were already deployed by the
authors in [14] and [15] to evaluate the performances of
the methodology presented in [13]. Such methodology
leads to a singularity, depending on generalised momenta,
in the controller. The singularity has been managed nu-
merically in [15], whereas an ad-hoc solution without sin-
gularity has been empirically found in [14]. This paper
proposes the analytical procedure to design the control law
without singularity structurally.

The outline of the paper is organised as follows. In Sec-
tion 2 the basic concepts about IDA-PBC are illustrated.
The main result is presented in Section 3, while sections 4
and 5 show two possible case studies of application, sup-
ported by the relative numerical simulations. Finally, con-
clusion and future work are discussed in Section 6.

2. PRELIMINARIES ON IDA-PBC FOR
APPLICATIONS TO UNDERACTUATED
2-DOF MECHANICAL SYSTEMS

This section is intended to give the preliminary con-
cepts about the IDA-PBC.

Assumptions: The underactuated 2-DoF mechanical
systems addressed in this paper have n = 2 degrees of
freedom, m = 1 control inputs, no natural dissipation,
constant input matrix, and continuous bounded elements
of the inertia matrix. Such assumptions are reasonable
and cover a very broad class of 2-DoF mechanical sys-
tems [16]. They can be described in the pH formalism as

7 0, I 0
{Z] = [_,22 022] VH(q,p)+ [5] u, (1)

with g = [ql qz] "€ R? the generalised coordinates vec-

tor, p = [p pz]T € R? the generalised momenta vec-
tor, I € R®* and Oy € R*¥ the identity matrix and the
zero matrix of proper dimensions, respectively, 0; € RF
the zero vector of proper dimension, G = [1 0] Tere
the constant input mapping port, and u € R the scalar con-
trol input. The scalar function H(g,p) : R* — R is the
Hamiltonian, expressing the total mechanical energy of
the original system as

1 _

H(g,p)=5p"M (g)p+V(q), 2)
where V(g) : R?> — R is the potential energy and M(q) €
R?*2 is the positive definite inertia matrix, whose generic
element is b; ;(q), with i, j = {1,2}.

The IDA-PBC wants to bring the system (1) into the
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desired closed-loop expression

1) — % M~ (q)Ma(q)
M a |:_Md(CI)M1(q) h(q,p) — GkaGT VHq(q,p),

3

where H;(q, p) : R* — R is the desired Hamiltonian scalar
function (i.e., Hy(q,p) = 3p"M; ' (q)p + Vu(g) for me-
chanical systems), and k; > 0 € R is a positive damping
gain. In addition, the following crucial conditions must be
satisfied:

C.1 My(q) € R**? is the desired mass matrix which
must be positive definite (M,;(q) > 0) and symmetric
(Ma(q) = Ma(q)"):

C.2 V,(g) : R? — R is the desired potential energy scalar
function which must admit a minimum in the desired
equilibrium ¢* = argminV,(q);

C.3 J,(q,p) € R is the assigned interconnection ma-
trix which must be skew-symmetric (J»(q,p) =
—J(q,p)").

Notice that, for mechanical systems, because of C.2,

the desired equilibrium point (g,p) = (¢*,0,) corre-

sponds to the minimum of the total energy (¢*,0,) =

argmin Hy(q, p).

Problem Statement: Find a control-law matching the
pH system (1) with the desired closed-loop pH system (3),
satisfying C.1, C.2, and C.3.

Matching (1) with the target closed-loop (3) yields the
following set of PDE:s (i.e., the matching equations)

GL (VqH(q’p) - Md(Q)Mil(q)Vqu(va) (4)
+h(q,p)M; ' (q)p) = 0.

Defined G- = [0 1] € R"*? as the left annihilator of G,
the matching process, as explained in the previous section,
changes accordingly to the methodology adopted. Notice
that, in case of fully actuated systems, the PDEs (4) are
trivially satisfied since G* is a null matrix. Therefore, the
potential and kinetic energies can be shaped as desired. In
general, for fully actuated system, only the potential en-
ergy is shaped to avoid nonlinear cancellations, reducing
the robustness of the closed loop. The non-parameterised
IDA-PBC fixes the structure of J(g,p) in (4), defining
the family of admissible Hy(q, p) satisfying the matching
equations. The algebraic IDA-PBC fixes the desired to-
tal energy Hy(q,p) exactly. For mechanical systems, this
means that M, (q) and V,(q) are previously defined. In this
way, the matching equations (4) become algebraic with
J2(g,p) as unknown. The parameterised IDA-PBC fixes
the structure of Hy(q,p). For mechanical systems, this
means that a parameterisation of M,(q) and V;(q) is de-
fined. This splits the matching equations (4) into two sub-
sets of PDEs, namely the KE-ME

G (Vy(p"M " (q)p) —Ma(q)M " (q)V4(p"M; " (q)p)
+24(q,p)My " (q)p) =0,

(5)
and the PE-ME
GH(VyV(q) —Ma(q)M ' (q)V4Va(q)) =0. (©6)

Both the KE-ME and the PE-ME are solved with respect
to the chosen parameterisation for M,(q) and V,;(¢), which
in turn gives some constraints on J, (g, p) as clear from (5).

Regardless of the chosen approach, at the end of the
matching process, the terms Vy(q), M;(q), and J>(q, p)
are known. Hence, the energy-shaping control law can be
computed as

tes = (G'G)~'G" (V4H (g, p) — Ma(q)M " (q)V 4Ha(q, p)
+1(q,p)M; " (9)p),
@)

which defines a strict minimiser of the potential energy
in the desired equilibrium (g, p) = (¢*,0,). Moreover, a
damping injection term

ugi = —kqG"V ,Hy(q. p) (8

guarantees the asymptotic stability of the desired equilib-
rium if the passive output

valg,p) = G"V,Hy(q,p) = G"M; ' (q)p )

is detectable (see Remark 3.2.21 in [17]). The final control
law is thus

U= Ups + Ug;. (10)

For more details see [10].

The key idea of the proposed methodology, described
in the the next section, is to combine the advantages of
the parameterised IDA-PBC and the algebraic IDA-PBC.
After giving a suitable parameterisation for M,;(g) com-
plying with C.1, it is possible to retrieve a family for the
desired potential energy V,;(q) in which impose the condi-
tion C.2. For the considered 2-DoF mechanical systems,
in order to comply with C.3, the interconnection matrix
can be uniquely defined as

h=1| | ,
> |=hlep) O

where j(q,p) : R* — R is a scalar function. Having at
disposition both My(g) and V,(g), as for the algebraic
IDA-PBC, the KE-ME becomes an algebraic equation in

JZ(Qap)

GV, ("M (q)p) — G Ms(g)M " (q)V, (p"M; " (q)p)
—2j2(q,p)G"M; ' p =0,
(12)
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whose solution is given by

j2 (CI7 p) =
G- (V,(p" M~ (q)p) — Mu(q)M(q) 'V, (p"M; " (q)p))
2G6"M; ' (q)p '

13)

Such a solution exhibits a singularity in the generalised
momenta p

G'M, (q)p=0=

man(q)  —mai2(q)| [P _
1o —ma12(q) mdll(Q)][[’2]_0 19

= (man(q)p1 —mai2(q)p2) = 0.

Hence, the singularity appears when either mg2,(q)p1 =
mg12(q) p2 or the system is at the equilibrium, p* = 0,.
The former condition is not predictable a priori. The lat-
ter is a consequence of the detectability-like condition re-
quired to guarantee the asymptotic stability of the closed-
loop equilibrium when (8) is introduced in the control
action. Such a condition requires that the passive out-
put yg = GTMd’l(q) p, which is exactly the denominator
of (13), nullifies at the equilibrium. This singularity due
to the generalised momenta p is a problem for mechanical
systems and it is present in many works [10, 13, 15, 18].
In these papers, the problem was worked around either
numerically or with ad-hoc solution for the peculiar ad-
dressed case-study. In the next section, it will be shown
how the presented methodology can remove such a singu-
larity in p structurally. Notice that further fractional func-
tions may be introduced within (13) from the choice of
M,(q): singularities in the generalised coordinates g must
be managed during the design of the target inertia matrix.
Remark. This work deals with undamped systems. This
is the standard in IDA-PBC literature, due to the additive
complexity in solving matching equations which arises
when accounting for natural dissipation. An extension to
IDA-PBC is presented in [19], with conditions for the ex-
istence of a control redesign capable of handling damping
terms in the original system. Such extension is beyond the
scope of the work and will not be further considered.

3. MAIN RESULT

Notation remark. In this section, with a little abuse
of notation, it will also be highlighted the dependency on
some parameters to be tuned. Besides, in the following,
given a generic function f(q), the notation f([q. qs))
means that the variable q, is substituted by q, and the
variable q, is substituted by qy, respectively. As explained
before, the key idea is to combine the advantages of both
the parameterised IDA-PBC and the algebraic IDA-PBC,
solving each singularity issue. Hence, the resulting ap-
proach provides an explicit solution of the PE-ME and re-
quires to solve the KE-ME as an algebraic equation, just

like the algebraic IDA-PBC does, without assigning the
exact values of M,(g) and V;(q), in the spirit of the param-
eterised IDA-PBC, and without introducing any singular-
ity in j2(g,p). As expressed in [13], the starting point is
the parameterisation of the desired inertia matrix in (3) as

6112(61;61) (15)

Md(q,Cl):A(CI) all(%Cl) azz(q,m)

ap(q,cr)

where A(q) = b11(q)b22(q) — b12(q)? is the determinant of
M(q), ¢y € R™ is a set of gains useful to design the con-
troller, with n., > 0, and a;;(q,c1) € R are scalar functions
to be defined and related to M,(g,c). Under this parame-
terisation, the PE-ME (6) becomes

GL (qu(q) - r(('bcl)qud(QaCZ)) = 07 (16)

with ¢, € R™2 a set of gains useful to design the controller,
with n., > 0, and

r I
Fe=taren i = [(00) 1)
(17)
where
Tii(g,c1) = an(q,c1)bn(q) — ain(g,c1)bi2(q),
Tia(g,c1) = an(q,c1)bri(q) —aii(g,c1)bia(q),
Ii(g,c1) = ain(g,c1)bn(q) —an(q,c1)bia(q),
In(g,c1) = axn(q,c1)bii(q) — an(g,c1)bi2(q).

The key of the approach is to introduce a scalar function
¥(g,c1) € R that parameterises the second row of I'(¢,¢;)
as

axn(q,c1)bia(q) — aiz(g,c1)baa(q) = kiy(g,c1),
(182)

ap(g,c1)bi2(q) —an(g,c1)bii(q) = kay(g,c1),
(18b)

with ki, k; € R and k; # 0. The specific case with k; =
0 and k, # 0 is presented in the next subsection. Such a
choice simplifies (16) as

VQZV(('I) + ’}/(qv Cl)(kl Vt]l Vd(qa CZ) +k2quvd(% CZ)) =0,
(19)

whose explicit solution is

kiga — kaq1 + ka0
RS ({G X
! d

Imf([c kigy — kliql + k20]>
1

k —k
+ /i (]q2k1 21 ,Cz> )

o

Va(g,c2) = —/1

(20)



A Constr. Methodol. for the IDA-PBC of Underact. 2-DoF Mech. Systems with Explicit Sol. of PDEs 5

with fi(-,-) € R any scalar function of its arguments.
Indeed, the PDE (19) admits an explicit solution pro-
vided that a right y(g,c;) is found to: (i) guarantee a
closed-form solution for the integral in (20); (ii) shape
Vi(g,c2) such as to comply with C.2; and (iii) avoid the
singularity in the interconnection matrix. The fulfilment of
the first requirement is explained in Appendix A.l. Con-
cerning the second requirement, the degrees of freedom
given by fi(-,-) and ¥(q,c;) may help in satisfying C.2
as well as to avoid singularities in the generalised coor-
dinates g. Otherwise, other choices for y(q,c;) must be
done. The fulfilment of the last requirement is addressed in
the following. For the moment, consider that the V;(g,c)
is found. Then, the desired inertia matrix can be computed
through (15) and (18). In particular, it is possible to re-
trieve the scalar functions a5 (g,c¢1) and ax(g,c1) as

_kiy(g,c1)bii(q) +ka¥(g,1)bia(q)

ain(q,c1) = 30 7
(21a)

azz(q, Cl) — _ kl 7(‘1, (& )bIZ(q)A_(;])CZ’}/(q,Cl )bzz(q) ,
21b)

while a1 (g,c;) is left free such as to satisfy C.1. If it is
not possible to find a desired inertia matrix which matches
the criteria expressed by C.1, it is then necessary to de-
sign again the set of gains c;, as well as, the scalar func-
tion fi(-,-), and eventually ¥(g,c;), until both C.1 and C.2
are simultaneously met. Once that M,;(g,c1) and V;(g,c¢7)
are found, the KE-ME (12) is an algebraic equation with
J2(g, p) as unknown and whose solution is (13). However,
as said, the solution (13) suffers of a singularity problem.
To avoid this, a suitable ¥(g,c;) must be found to fix this
problem. Therefore, not any ¥(g,c;) can be thus consid-
ered to deal with C.1 and C.2 through M,(q) and V,(q,c;)
in (21) and (20), respectively. The key for the solution is
to recognise j>(q, p) as a fractional function

n(q,p)
(g:p

j2(q,p) = (22)

QU
~—

G- (Vy(p"M~(9)p) — Ma(@)M(q)~' V(P M " (2)P))

2G6™M, (q)p

Let {(g,p) € R and 1(g, p) € R the quotient and the re-
minder of j,(q,p), respectively. The expression (22) be-
comes

(23)

Nullifying the remainder 7(g,p) brings the solution
n(g,p) = 0 implying j2(q,p) = §(q,p), which is struc-
turally not affected by any singularity in p. Taking into
account (21) and (22), the equation 1 (g, p) = 0 to nullify

the remainder can be written as

Y(q,c1)(kiy(g,c1)(—kiVg,b1i(q)

—kaV,b12(q) + ki1 Vg, b12(q) + 2V, 022(q))
+ (kib12(q) + kab2(q)) (k2V 4, 7(q,c1) (24)
+k1Vy,v(q,c1))) =0,

which is a PDE in the scalar function Y(g,c;). The
PDE (24) has two explicit solutions. The first one is trivial,
¥(g,c1) = 0, and it is not allowed because it would imply
both (21a) and (21b) to be zero, preventing the fulfilling
of C.1. The second solution is

kigs —kaqn )
776.] b

A (25)

Yg.er) = falgren) (

where f3(-,-) € R is any scalar, continuous, and nonzero
function of its arguments, while f>(g,c1) is

—oxn [ [ Vb () = Vg b12())
folg.c1) = P(/1 k1b12(')+k2b22(') 26)

ka(Vgpb12() = Vg b () 4 >
kibi2(+) + kabaa () ’

where b;;(-) = b;j([0  fi(g,0)]) to compact notation,
with i,j = {1,2}, exp(k) = ¢*, and fi(¢.0) = (kig2 —
kaqi + k,0) /ky. The expression (26) holds if the inte-
gral exists: the discussion and the proof is within Ap-
pendix A.2. The solution (25) gives the structure on
how construct (g, c;) to avoid the singularity in j,(g, p).
Hence, the function y(gq,c;) is given by two parts: (i)
f2(g,c1) that is fixed by (26) depending on ki, ky, and
M(q); (ii) f3(-,-) that is free to be chosen to comply
with C.1 and C.2 through V,(g,c,) and My(q,c;) in (20)
and (21), respectively. The gains are also useful to avoid
singularities in the generalised coordinates ¢ within the in-
troduced functions. Any other choice of ¥(g, ¢;) may bring
to a valid controller, but resulting in j,(q, p) with a singu-
larity in the generalised momenta that has to be managed
in other ways [13]. Finally, once got j>(g, p) as in (22), be-
ing sure that no singularity in p will appear, the control law
can be computed as in (10). The flow-chart represented in
Figure 1 resumes the derived constructive solution, which
existence is guaranteed by the existence of the integrals
within equations (20) and (26) (see Appendix).

The novelties introduced within this methodology do
not jeopardise the property of asymptotic stability of the
sought equilibrium guaranteed by the introduction of the
ug; control term. To check the detectability of the passive
output (9), it is sufficient to show that ¢ — ¢* when y,; =
0. Recalling the expression of y, in (9), since M,(q) is
always positive definite because of C.1, then y; = 0 <=
p = 0,. When p = 0,, the closed-loop (3) becomes

0,

Mg, )M (q) Y Valgoen)| = @7
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Given the expression of the target closed-loop Hamilto-

nian function H,(q, p) = %pTMd(q,cl)p +Vi(g,c2), the
equations in the last two rows of (27) are satisfied if one
of the following relationships holds:

1. det(—My(q,c1)M(g)~") = 0;

2. qud(q;CZ) = 02.
The former condition is not met because it requires that
det(My(q,c1)) = 0 which is false because C.1 holds. The
latter is satisfied at the equilibrium g* because of the valid-
ity of C.2. Hence, the detectability condition of the passive
output is locally guaranteed: the desired equilibrium is lo-
cally asymptotically stable with a basin of attraction that
can be estimated using the LaSalle’s invariance principle,
as shown in [1,17].

Take M(q) and V(g) from the original system. J

1

To get a suitable y(g,c;) function as in (25), ]

choose f3(+,-) and compute f>(g,c;) as
in (26). Compute V,(g,c,) as in (20).

N

l"d(%cz)

Verify with a
proper choice
of fi(-,-), ¢,
and ¢, that
Va(g,c») fits
C.2 and no
singularity
in g appears.

no

J/yes

Compute ai»(g,c) as in (21a) and ax(g,c1)
as in (21b). Choose ay(q) suitably.

le[(qacl)

Verify with a
proper choice
of ¢, that
Ma(g;c1)
fits C.1, no
singularity
in g appears,
and (A.2)
holds.

no

lyes

Compute j>(g,p) as in (22). Com-
pute the control law u as in (10)

Fig. 1. Flow chart of the proposed constructive solution.

Remark The proposed methodology can be applied to
underactuated mechanical system in the form (1). Indeed,

the parameterisation of the desired inertia matrix does not
pose limits on the applicability range of such a methodol-
0gy. Besides, unlike the method proposed in [13], it does
not introduce any singularity depending on generalised
momenta in the control law.

3.1. Constructive Methodology with k; =0 and k, #£ 0

A particular solution can be achieved through the
choice k; = 0 and k; # 0. In detail, the expressions (18)
become

an(q,c1)bia(g) — aa(g,c1)bn(q) =0, (28a)
aia(q,c1)bia(q) — axn(q,c1)bii(q) = ka¥(g,c1),
(28b)
Such a choice further simplifies (19) as

quv(q) + ’}/(% Cl)k2qu Va (Cb C2) =0, (29)

whose explicit solution is

2V, V(o ql)
Vd(q,Cz):_/l m

with fi(q1,¢2) € R is now function of ¢, only and some
gains. Once that the V,;(g,c;) is found and C.2 is estab-
lished, the desired inertia matrix can be computed as done
for k; # 0. The scalar functions a2(gq,c1) and ax(g,cr)
are now equal to

do+fi(q1,¢2), (30)

_kay(g,c1)bia(q)

(llz(q,C1) = A(q) 5 (31a)
k b
axa(q,c1) = ”(q’AC(‘;) 24, (31b)

while ay1(g,c;) is left free to satisfy C.1. The re-
maining part of the procedure is the same. Therefore,
once that M,(q,c1) and V,(g,c,) are found, the func-
tion j»(g,p) should be computed. However, the function
¥(g,c1) should be chosen properly to avoid singularity in
the generalised momenta in the denominator of j,(g,p).
Following the same idea, the equation to nullify the re-
mainder (24) simplifies into k3¥(q, c1)b2(q)Vy, ¥(g,c1) =
0 which is a PDE in the scalar function ¥(g,c1). The pre-
vious PDE has again two explicit solutions. The first is
trivial, ¥(g,c;) = 0, and it is not allowed because it would
imply (31a) and (31b) to be zero, preventing the fulfilling
of C.1. The latter solution is ¥(gq,c1) = f3(q1,c1), where
now f3(g1,c1) € R is any scalar, continuous, and nonzero
function of g, only and some gains. Therefore, in the par-
ticular case k; = 0 and k, # 0, the degrees of freedom
given by fi(-,-) and ¥(-,-) depend on ¢; only and some
gains. These should be employed to fulfil C.1 and C.2, as
well as to avoid singularities in g. Notice that, given the
arguments in the Appendix, the existence of the integral
within (30) is trivial. The flow-chart represented in Fig-
ure 1 holds also in the case of k; = 0 and &, # 0 with the
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Fig. 2. Scheme of a translational oscillator with a rota-
tional actuator system.

described changes. The possibility of choosing k; = 0 and
ky # 0 or not depends on the particular case study. It in-
deed simplifies the solution but bestows fewer degrees of
freedom to the control design. In the following, both ap-
proaches will be employed for two different case studies.

4. CASE STUDY A: THE TORA SYSTEM

4.1. Dynamic Model of the TORA

The TORA is an underactuated 2-DoF mechanical sys-
tem firstly studied in [20] and commonly employed in the
literature as a benchmark for several nonlinear control sys-
tems designs addressing underactuation. The TORA con-
sists of a translational oscillating cart with mass m, > 0
that is controlled via a rotational eccentric mass, here
schematised by a pendulum with mass m; > 0, radius
r > 0, inertia I = mr?, and a rigid link to the cart of
length / > 0. The (actuated) variable g;(¢) denotes the
angle of the mass m; with respect to the vertical, while
the displacement of the cart with mass m, is denoted by
the (unactuated) variable g,(¢). The relative generalised
momenta are identified by p; and p,, respectively. The
cart is forced to oscillate in the horizontal plane by a
spring with elastic coefficient k£ > 0. The actuated eccen-
tric mass damps the horizontal oscillations of the plat-
form. The TORA is illustrated in Figure 2. A standard
IDA-PBC approach, where the complexity of the kinetic
energy matching equations is reduced by choosing a con-
stant closed-loop mass matrix, is proposed in [21]. In [15],
instead, the constructive procedure from [13] is applied to
stabilise the TORA system at the equilibrium point, re-
sulting in a controller which numerically manages the sin-
gularity appearing at the denominator of (22). A dynamic
extension is proposed in [22] to achieve the asymptotic
stabilisation of the system with only position measure-
ments. The resulting controller is independent by the ve-
locity measurements because they are not present in the
potential energy due to a procedure that shapes the poten-
tial energy only, equates M(g) and M,(q), and cancels the
assigned interconnection matrix to get rid of the kinetic

energy PDEs. Besides, different feedback-stabilizing con-
trollers were tested on the TORA system [23]. Several
controllers based on cascade (linear cascade control, in-
tegrator backstepping) and passivity (feedback passivisa-
tion, passivisation without cancellation) paradigms can be
used to asymptotically stabilise the system. The former
class requires full state feedback linearization and non-
linearities cancellation. In contrast, the latter class leads
to controllers with a reduced set of measurements and
no cancellations, for input-output passive systems with
relative degree one and weakly minimum-phase. A par-
tial feedback linearization along with a Lagrangian-based
change of coordinates is addressed in [24] to reshape the
system as a nonlinear cascade system in a strict-feedback
form. The same change of coordinates plus a dynamic sur-
face control is proposed in [25] to ensure exponential sta-
bility. An experimental output regulation for the TORA
system is performed in [26], while a piece-wise multi-
linear model is considered in [27]. Finally, fuzzy control
is proposed in [28].

The pH model of the TORA system is given by (1) with
the elements of M(q) given below

bii =m*+1,b12(q) =milcos(qi), by =mi +m,. (32)

The Hamiltonian function H(g) for the TORA is equiva-
lent to (2), with

1
Vig) = Ekq%—i—mllg(l —cos(q1))- (33)

4.2. Control Design for the TORA

Without loss of generality, the procedure presented in
this paper is applied to stabilise the TORA at the de-
sired equilibrium point (¢*, p*) = (7,0,0,0). The follow-
ing procedure assumes k; # 0. To get a proper function
Y(q), a constant f3((k1g2 —k2q1)/ki) = ks is picked up,
with k3 # 0 a suitable gain. Taking into account (32),
the expression (26) becomes f>(q) = 1/(ka(m; +my) +
kimylcosqy), with ky > kymyl/(my + my) to avoid any
singularity in f>(g). Then, the suitable scalar function
Y(g,c1) in (25) becomes Y(q) = k3 / (kabay + kilm; cosqy ).
The fi ((kig2 — k2g1) /K1) function in (20) is chosen as fol-
lows

7 kiga — kaq —k kiga — kaqi a (34)
ki ki

with k4 € R a suitable gain. With the above choice and
expressions, the desired potential energy in (20) is

_ bykk3qt — 2bykkikagi g — 2kkikolmy cos gy

V.

kiqa —k241>2

—2kk%lm1q2 sing +2k%kgk4 ( A
1

+

2U3k3
(35)



8 Pierluigi Arpenti, Fabio Ruggiero and Vincenzo Lippiello

The evaluation of the gradient V,V,(¢) in ¢* = (,0)
yields

k% (bzzk + 2k3k4)7l'
- ktks 36
o _kz(b22k+2k3k4)7[ ’ ( )
kiks

qud (CI)

= 0, if the condition ks =
7
—bayk/(2k3) holds. The Hessian of V,(g), evaluated in
g = (m,0), is

which becomes V,V,(q)

2bykk3 + 4Kk3ksky — 2kkykym I

2 2k3 ks
VaVaD| =1 _op ks — dkrkeoksks + 20
2k3ks
—2bayrkk ks — 4kikoksks + Zkk%mll
2k3ks
2ky
(37
This last is positive definite if the conditions
kymyl bk
ki >0,k > M <0k = — 228 (38)
b22 2k3

are met. Since these conditions are not in contrast with the
ones found previously for the same gains, the procedure
can continue. The condition C.2 is thus checked.

The scalar functions a1, (g) and ax,(g) are evaluated us-
ing (21), while a;1(q) is free and it is here computed as
proposed in [13] a1 (q) = ksal,(q)/axn(q) with ks # 0 a
suitable gain. With the above choices, the desired inertia
matrix is

_ ksks(biiki +kamylcos i)

(b22k2 +k1m1lcosq1)2
_k3 (bllkl +k2mllcosq1)

b22k2 —|—k1mllcosq1
_ k3(biiki +komlcosgi)
b22k2+k1mllC0Sq1 5
_k3

My(q) =

(39)

whose determinant is equal to Ay(q) = (K(—1+
ks)(biiki + kamilcosqi)?)/(banky + kymilcosgr)?. To
comply with C.1, it should be proven that the desired in-
ertia matrix is positive definite. Thanks to the Sylvester’s
criterion, this is true if both aj;(g) > 0 and A4(q) > 0.
Given (38), the former is true if

ki (> +7?)

ky # 7

ks > 0. (40)

On the other hand, the latter condition is true if ks > 1.
k 1 (l 2 +r 2)
Therefore, k, # -

to fulfil C.1. The interconnection term j, (g, p) in (22) be-
comes

and ks > 1 are the conditions

k] (—bl]k% —|—b22k%)k3p1mllsinq]
baroky +k1mllCOSC]1)2(b11k1 —|—k2mllcosq1) ’
41)

Jj2(q;p) = (

which does not show any dependence on the generalised
momenta at the denominator and, therefore, on the pas-
sive output, as expected. However, to avoid any singular-
ity in the g variables, the conditions k, > k;ml/by; and
ky # ki (I> +r*) /I must hold. Both the conditions can be
dropped because already contained within (38) and (40),
respectively. Therefore, the set of gains avoiding any sin-
gularities and satisfying C.1, C.2, and C.3 are

Kyl ki (12 472
k>0, k> b )
my +myp l (42)
ky = — 228 ks> 1.
4 2]{3’ 5

Notice that the constant terms by; and by, were often not
explicitly expressed due to space constraints. In addition,
the condition k; > kymyl/(m; + my) agrees with (A.2),
ensuring the existence of the integral in (26) and in (20).

Finally, the sum between the energy shaping (7) and
the damping injection (8) is the total control action. The
Mathematica code for the derived controller is released
as a multimedia attachment. The code may be useful as a
template for other case studies.

4.3. Simulations for the Controlled TORA

The current section aims to demonstrate the effective-
ness of the designed controller for the TORA. To recap,
the sought control goal is to stabilise the system, described
by (33) and (32) at the desired equilibrium point (¢g*, p*) =
(7,0,0,0). The nominal dynamic parameters chosen for
the TORA model are m; = 1 kg, m, = 10 kg, [ = 1 m,
r=0.1m,k=25and g =9.81 m/s2. The performance of
the proposed control law is evaluated in presence of para-
metric uncertainties, noisy measurements, and a time de-
lay introduced by the discretization of the controller. The
test is carried out on a standard personal computer in the
MATLAB/Simulink environment using the ODE45 rou-
tine. The robustness in the presence of parametric uncer-
tainties is tested by considering, in the control law, an in-
crement of the 20 % in the value of the parameters m, m,
[, r and k contained inside the model. Moreover, in order
to evaluate the performance in presence of noisy measure-
ments, a white noise is added to the signals ¢;(¢), g2(¢),
pi1(t) and p,(t), with a variance of 0.05, 0.01, 0.05, and
0.01, respectively. The discretization of the controller is
also taken into account by sampling the control law each



A Constr. Methodol. for the IDA-PBC of Underact. 2-DoF Mech. Systems with Explicit Sol. of PDEs 9

0.01 s. The controller has been designed with gains k; =1,
ky =0.14, k3 = —1, ky = 39.6, ks = 2, k; = 20. They
comply with the conditions in (42). The simulation starts
with initial conditions ¢;(0) = /2 rad, ¢,(0) = 0.1 m,

p1(0) =0 kg rad , 12(0)=0 kg m and lasts for 100 s.
Figure 3 depicfs the time evolution of the closed-loop sys-
tems potential energy which, as expected, reaches its local
minimum located in ¢g*. As shown in Fig.4, the state trajec-
tories of the system asymptotically converge to the desired
values in roughly 40 s, with performance comparable with
the methodologies belonging to the state of art in the con-
trol of the TORA, exhibiting small amplitude oscillations

due to the presence of noisy measures.

(a) Front view of V,(g) surface.

02 6 a [rad

¢ [m

(b) Top view of V,(q) surface.

Fig. 3. Case Study A. Evolution of the closed-loop sys-
tem potential energy during a test carried out with
perturbed conditions. Potential energy (the green
curve) evolves from its initial value (the yellow
dot) until it reaches its minimum (the red dot).

5. CASE STUDY B: THE UNDERACTUATED
COMPASS-LIKE BIPED ROBOT

5.1. Dynamic Model of the Underactuated Compass-
Like Biped Robot

The compass-like biped robot (CBR) is a 2-DoF and
bipedal walking robot belonging to the class of passive
walkers (i.e., robots capable of walking down a shallow
slope without actuation, forced only by gravity). The sta-
ble walking exhibited by this class of systems is referred to
as passive gait. This is due to the constancy of the mechan-
ical energy during the whole gait, given by the restoration

d

a [ra

. . . . . . . . .
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£y

~o 10 20 30 40 50 60 70 80 90 100

(b) Time history of p,

. . . . . . . . .
o 10 20 30 40 50 60 70 80 90 100
t[s)

(c) Time history of ¢,

2 [k m/s

. . . . . . . . .
o0 10 20 30 40 50 60 70 80 90 100
£y

(d) Time history of p,

Fig. 4. Case Study A. Time histories of the generalised
coordinates and momenta during a test carried out
in presence of parametric uncertainties, noisy mea-
surements, and controller discretization.

of mechanical energy which takes place at each impact
between the robot legs and the ground, in hypotheses of
perfectly inelastic interactions, as shown in [29] in his pi-
oneering study. Differently from applications which are
mainly based on the notion of zero moment point [30], the
interest behind such a kind of passive robot is due to both
the intrinsic energetic efficiency and the similarity to hu-



10 Pierluigi Arpenti, Fabio Ruggiero and Vincenzo Lippiello

man walking [31], [32]. In particular, the CBR consists of
two legs joined by the hip of mass my > 0. Each leg has
mass m > 0 and length [ = a+ b, where a > 0 is the length
of the legs between m and the feet while b > 0 is the length
of the legs between my and m, supposing both my and m
to be point masses. A full actuation version of the CBR
can be considered to alter the passive gait. A representa-
tion of such a biped robot is depicted in Fig. 5.

Fig. 5. Scheme of a compass-like biped robot.

Although its simple kinematic structure (i.e., a double
inverted pendulum with lumped masses on both legs and
hip), the CBR exhibits a rich nonlinear dynamic due to
the hybrid nature of the walking [33]. Due to the core
role assumed by the restoration of mechanical energy in
the generation of passive gait, it seems natural to employ
passivity-based approaches to control such a kind of robot.
One example, which starts from the Lagrangian model of
the robot, is the work carried out in [34], where a po-
tential energy shaping control based on the controlled-
Lagrangian framework makes the biped’s gait invariant to
ground slope changes. A total energy shaping control, ad-
equate to regulate the biped’s forward speed as well as to
increase the robustness of the walking in the presence of
uncertainties on the initial conditions, is proposed in [35].
An underactuated version of the compass-like biped robot
(UCBR) is introduced in [36] to demonstrate the effects of
a kinetic energy shaping approach in terms of non-passive
gait generation, realising rapid and long steps, and exhibit-
ing proper robustness respect to uncertainties on the ini-
tial conditions. On the other hand, starting from the pH
modelling framework, a methodology based on the IDA-
PBC, which generates gaits characterised by slow and
short steps, is applied in [31].

In this section, a UCBR model is served as a test-bed
to demonstrate the effectiveness of the methodology pre-
sented in Section 3 to generate additional gaits to the pas-
sive one. No double-support phase is admitted (i.e., only
one leg at a time is in contact with the ground). The leg in
contact with the ground is referred to as support leg, while
the other one is referred to as nonsupport leg. Let g, be

the actuated variable, that is the angle between the vertical
relative to the ground and the support leg. Let g, be the
unactuated variable, that is the angle between the vertical
relative to the ground and the nonsupport leg. The rela-
tive momenta are denoted by p; and p», respectively. The
behaviour of the UCBR consists of two distinct phases.
The former phase, called swing phase, represents the be-
haviour of the UCBR before that the nonsupport leg hits
the ground. It is described by (1) with the elements of the
inertia matrix M(q) as

by = (my er)l2 +ma2,b12(q) = —mlbcos(q1 — q2)
bzz = mbz,
43)

with H(g) as in (2), where V(q) = (m(a + 1) +
myl)gcos (q1) —mbgcos (q,) with g ~9.81 m/s? the grav-
ity acceleration. The latter phase, called impact phase,
represents the instantaneous change in the angular veloci-
ties caused by the impact between the nonsupport leg and
the ground. The impact occurs when the conditions

la) = lleos (a1 +9) —coslgp +9) =0,
S

=1
yi(q) = l[sin (g2 + @)g2 — sin(q1 + @)q1] <O,

hold, with y, € R the distance between the nonsupport-
ing foot and the ground. Such a change, assuming per-
fectly inelastic and non-slipping contact between the non-
supporting foot and the ground, as well as an instanta-
neous transfer from supporting to nonsupporting one (no
double-support phase admitted), is described by ¢(t*) =
P(q(17))g(t™), where ¢ = [¢1  q2] " € R? is the velocity
vector, while the time instants just before and just after
the impact are given by ¢~ and ¢, respectively. The con-
servation of angular momentum law is used to derive the
expression of the matrix P(g(t~)) € R**2, which is

“yy - [P PE} B {pu plz]

Pal™) L’zﬁ Py Py P’ )
with pj; = ml(l — beos(q; — g5 ) +ma® + myl?, pj, =
mb(b — lcos(qy —q3))s Py = —mbl(cos(qy —q3)),
Py, = mb*, p;; = —mab + (myl* + 2mal) cos (¢, — g5 ),
P = Py = —mab, p5, = 0. Since the UCBR exhibits
a gait with left-right symmetry, at each impact the an-
gles are swapped and relabelled (i.e.,when an impact oc-
curs, the former nonsupport leg becomes the support one
and vice-versa). Hence, these angles are not associated
with a physical leg, but they are referred to as the action
played by the leg during the gait. This procedure is taken

1 0
g™ = Rq~ at each impact. In the literature regarding biped
locomotion, two parameters are introduced to describe
the gait synthetically: namely, the step length S and the

. . . 0 1 . .
into account via the matrix R = [ } which results in
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period T. The former is the step length evaluated every
two consecutive impacts between the nonsupport foot and
the ground, and the latter is the time interval occurring be-
tween two consecutive impacts (i.e., the duration of each
every single step). The interested reader can refer to the
work in [33] for further details. Hence, the UCBR hybrid
behaviour is given by the composition of the swing and
the impact phases.

5.2.  Control Design for the UCBR

The following procedure assumes k; = 0 and k; # 0.
The introduction of a controller, which exerts his action
during the swing phase, gives birth to gaits that the un-
controlled UCBR cannot exhibit unless to change the
mass/geometrical properties of the robot and/or the slope
of the surface on which the robot walks. These artificial
gaits are associated to several limit cycles in the state
space of the UCBR. These limit cycles, representing the
asymptotic behaviour of the closed loop, are due to the
impacts between the nonsupport leg and the ground. The
analytical detection of such periodic solutions is a diffi-
cult task, as the stabilisation of the asymptotic motion of
the robot to the desired limit cycle, namely the orbital sta-
bilization problem [37]. The goal of this section is nei-
ther the stabilisation of the system to the desired equi-
librium point, nor the orbital stabilisation to the desired
limit-cycle. Conversely, this section aims to show that the
introduction of a total energy shaping control action, like
the one presented in this work, effectively generates gaits
which cannot be exhibited by the uncontrolled biped and
whose stability is verified numerically a posteriori.

To get a proper function ¥(q;), a constant f3(q;) =
—1/k3 function is picked up. With such a choice, re-
sults that y(q;) = —1/k3. Then, choosing the function
fi(g1) in (30) as fi(q1) = ks(ma+ (m+my)l)gcos(q1),
with k3 € R a suitable gain, the desired potential energy
in (30) becomes V,(q) = —kabmgcos(q2) + ksg(ma +
(m+mpy)l)cos(q). Notice that the two gains k; and k3
weigh the components of the original system’s potential
energy relative to the nonsupporting and the supporting
leg, respectively. Since the UCBR without the impact re-
sembles a double inverted pendulum, the most natural
choice seems to assign g* = [717 0] " as equilibrium, like
the one in the mathematical model of the plant. In fact,
the sought goal is not to stabilise the system at the desired
equilibrium but rather to generate new gaits. The gradient
of Vd(q,CZ) is

| —ks(ma+ (m+my)l)gsin(q)
qud(qaCZ) - kzbmg sin (qz)’ (46)
which, evaluated in ¢*, becomes V,V;(q,c2)| = 0,. The
o

Hessian of V;(q,¢,), evaluated in ¢*, is

V2V(g,c2) . @)

_ |ks(ma+ (m+my)l)g 0
- - 0 kobmg

This Hessian matrix is positive definite if the conditions
ko > 0, k3 > 0 hold. Therefore, if k, and k3 are simul-
taneously positive, C.2 is satisfied. The scalar functions
a12(q) and ayy(g) are evaluated using, respectively, (31a)
and (31b) while the free term a;;(g) is chosen as a1 (q) =
kab11/(k2A(q)), with k4 € R a suitable gain. Thereby, the
desired inertia matrix becomes

1 [ kbii bia(q)
k> [b12(6]) by } ’ “8)

whose determinant is Ay(q) = (kab11(q)baa(q) —
b3,(q))/k3. To comply with C.1, it should be proven that
the desired inertia matrix is positive definite. Thanks again
to the Sylvester’s criterion, this is true if both a;;(g) > 0
and Ay(g) > 0. The former is true if both k&, > 0 and
k4 > 0. On the other hand, the latter condition is true if
k4 > (mlb)? /(b11b2). Hence, the choice

My(q,c1) =

Ib)?
ko> 0k > 0,k > OS (49)
b11by
satisfies both C.1 and C.2.
The scalar interconnection term j,(g,p), computed as
in (22), has the following expression
_ vilg:p) + valg,p)

2(q,p) = ) 50

with

Wi(q,p) = b b1 (—1+ka)lm(—8b7, bk ps
+ 3b4l4m4p2 +4b bzzlm(—Zbllbzg(l + k4)
+3b*1Pm?*) p1 cos(q1 — q2)),

V2 (g, p) = b byi (—1 +ka)Im(4b* 1*'m* p, cos(2(q
—q2)) +4D°boy P’ pycos(3(q1 — q2))
+b*1*m* py cos (4(q1 — ¢2)) sin (g1 — ¢2)).

¥3(q) = 8ka(br1bay — b*I*m* cos (q1 — q2)°)*(b11bxks
— bV PPm? cos (g1 — q2)?).

Both the denominator of (50) and the passive output are in-
dependent from the generalised momenta. The gains cho-
sen as in (49) avoid any singularity depending on ¢, assur-
ing that the denominator of (50) never becomes zero.
Notice that the terms by, by, and b12(g) were often

not explicitly expressed due to space constraints. The total
control action is given by (10).

5.3.  Simulations for the Controlled UCBR

The current section aims to demonstrate the effective-
ness of the designed controller for the UCBR in generat-
ing new gaits. The nominal dynamic parameters chosen
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for the UCBR are my = 10 kg, m =5 kg, a = 0.5 m,
b=0.5m, g=9.8 m/s?, and ¢ = 3 deg. The objective
is the generation of two different gaits which cannot be
exhibited by the uncontrolled UCBR. Recalling the S and
T parameters describing a generic gait, the formerly de-
sired gait is characterised by a smaller step length S and
a bigger period 7': it will be referred to as small gait. The
latter desired gait features an increased step length S and a
reduced period T': it will be referred to as large gait. Tests
are performed on a standard personal computer, using the
Matlab ODEA4S5 routine together with the event detection
option active, to evaluate the hits between the nonsupport-
ing foot and the ground. The controller is implemented at
a discrete-time step of 0.01 s.

5.3.1 Case Study B-1: Small Gait

In order to generate the small gait, the controller is de-
signed through the following set of gains k, = 1.25, k3 =
0.45, k4 = 1.05 and k; = 0.1, experimentally tuned com-
plying with (49). The simulation starts with initial con-
ditions gy = [0.2187 —-0.3234 —1.0918 —0.3772]T
and is carried out for 30 s. As shown in Fig.6, the step
length S and the step period 7 asymptotically converge
to values 0.4871 m and 0.7854 s, which are respectively
smaller and bigger than the parameters S = 0.5347 m and
T = 0.7347 s characterising the passive gait. This last is
generated by turning off the controller and using the same
initial conditions.
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Fig. 6. Case Study B-1. Time histories of the step length
and the step period with a controller generating a
small gait.

5.3.2 Case Study B-2. Large Gait

Large gait is achieved by designing the controller
with gains ky = 0.8, ks = 1.1, k4 = 09 and k; =
0.0, which fulfil again (49). The simulation, as for the
small gait case study, starts with initial conditions gy =
[0.2187 —0.3234 —1.0918 —0.3772]T and lasts for
30 s. Figure 7 depicts the step length S and the step period
T which asymptotically converge to values 0.5387 m and
0.7322 m, which are respectively bigger and smaller than
the parameters S and T characterising the passive gait.
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Fig. 7. Case Study B-2. Time histories of the step length
and the step period with a controller generating a
large gait.

5.3.3 Comparison Between the Small Gait and the
Large Gait

Figure 8 represents the comparison between the limit
cycles associated respectively to the small gait (the red
one), the passive gait (the green one), and the large gait
(the blue one). As a consequence of the designs proposed
in the previous subsections, the small gait limit cycle is
enclosed by the passive limit cycle, which is, in turn, con-
tained by the large gait limit cycle.

6. CONCLUSION

In this paper, a constructive solution to deal with IDA-
PBC for underactuated two-degree-of-freedom mechani-
cal systems was introduced. The proposed strategy com-
bines the attributes of the parameterised IDA-PBC with
those of the algebraic IDA-PBC: i) it provides explicit
solutions of the PDEs arising from the matching process
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Fig. 8. Case Study B. Comparison between the passive-
gait limit cycle (the green one), the small-gait limit
cycle (the blue one), and the large-gait limit cycle
(the red one). The black vertical lines indicate the
resetting events at the impact between the nonsup-
porting leg and the ground.

without requiring the a priori knowledge of the desired
total energy; ii) the singularity in the generalised mo-
menta, usually appearing in the desired interconnection
matrix within state-of-the-art methodologies is avoided;
iii) it does not put any constraint on the structure of the
original system’s inertia matrix. For these reasons, the pro-
posed methodology overcomes the limitations inherent to
both parameterised IDA-PBC and algebraic IDA-PBC. It
is indeed a useful tool in the control of two-degree-of-
freedom mechanical systems with underactuation degree
one. Numerical simulations are carried out on two well-
known systems, namely, the TORA and the UCBR. The
results remarked the high performance of such a new con-
trol strategy, as for the classical equilibrium point stabil-
isation as for the stable periodic gait generation. Future
extensions of this paper aim to generalise the approach to
systems with higher dimensions and higher underactua-
tion degree.
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APPENDIX A
1. EXISTENCE OF THE INTEGRALS

Existence of the integral within equation (20)

To guarantee a closed-form solution for the integral
in (20), from the fundamental theorem of calculus, it is
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necessary to show that the integrand is an integrable func-
tion. Since the continuity implies the integrability, in the
Riemann sense, to accomplish the task, it is sufficient to
show that the argument of the integral is a continuous
function over the set [1 g |. The integrand of (20) is a frac-
tional function. Notice that the quotient of two continuous
functions is continuous if the denominator is not equal to
zero. The numerator is the gradient of the plant’s potential
energy. Therefore, it is a conservative force that is contin-
uous everywhere by definition (V(g) is a class C, function
due to its relationship with the Hamiltonian). Regarding
the continuity of the denominator, specific conditions will
be expressed in the next subsection. As a matter of fact,
the integrand’s continuity in (20) is strongly related to the
integrand’s continuity in (26).

A.2. Existence of the integral within equation (26)

Starting from the considerations provided in the previ-
ous subsection, the integrand of (26) is a fractional func-
tion too. The numerator and the denominator are contin-
uous because they are a linear combination of the plant’s
inertia matrix terms and their gradients. Hence, the conti-
nuity of the integrand reduces to avoid that the denomina-
tor becomes zero, as given by the following condition

kibiz ([0 fa(q,0)]) +kbr ([0 falg,0)]) #0,

which yields to

kibi2 ([0 fa(g,0)])
b22([c f4(q,0')])

It is thus necessary to find upper and lower bounds for k;
to satisfy (A.1). This is equivalent to compute the bounds
for b12(q1,92) and b2(q1,42). Such bounds exist if and
only if M(g) is bounded too. A study about the bound-
edness of the inertia matrix of serial robot manipulators
was carried out in [38]. At the same time, several exam-
ples are provided for many underactuated 2-DoF mechan-
ical systems (the Acrobot, the Pendubot, the cart-pole,
the crane, the rotating pendulum, the inertia-wheel pen-
dulum, the magnetic suspension, the ball-and-beam, and
the TORA) [16], that are precisely the target of this pa-
per (where the compass-like biped robot is added to the
list, and others can be found in the literature). Moving
from this assumption, it is possible to always satisfy (A.1)
through the following (very) conservative condition

(A1)

kymax(biy ([0 fa(g,0)]))
min(bx ([0 fi(g,0)]))

, (A2)

where the given bounds exist due to the boundedness of
M(q). Hence, the integral in (26) exists and it is well-
defined. In turn, this yields to the existence of the integral
in (20). As a matter of fact, f>(g,c;) in (26) cannot be zero
since it is an exponential continuous function. Therefore,

the function ¥(g,c1) in (25) cannot be zero since f3(-,-)
is a nonzero continuous function. Since the product of a
finite number of continuous functions is still a continuous
function, and since ¥(q, ¢;) cannot be zero, the denomina-
tor in (20) is a nonzero continuous function. This yields to
the existence of the integral in (20).
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