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Abstract: Stabilization of nonlinear feedback passive systems is achieved assigning a
storage function with a minimum at the desired equilibrium. For physical systems
a natural candidate storage function is the difference between the stored and
the supplied energies—leading to the so-called Energy-Balancing control, whose
underlying stabilization mechanism is particularly appealing. Unfortunately,
energy-balancing stabilization is stymied by the existence of pervasive dissipation,
that appears in many engineering applications. To overcome the dissipation
obstacle the method of Interconnection and Damping Assignment, that endows
the closed-loop system with a special—port-controlled Hamiltonian—structure,
has been proposed. If, as in most practical examples, the open-loop system already
has this structure, and the damping is not pervasive, both methods are equivalent.
In this brief note we show that the methods are also equivalent, with an alternative
definition of the supplied energy, when the damping is pervasive. Instrumental
for our developments is the observation that, swapping the damping terms in
the classical dissipation inequality, we can establish passivity of port-controlled
Hamiltonian systems with respect to some new external variables—but with the
same storage function.

1. INTRODUCTION AND BACKGROUND
MATERIAL

It is by now well-understood that equilibria of
nonlinear systems of the form 2

ẋ = f(x) + g(x)u (1)

with x ∈ R
n, u ∈ R

m, can be easily stabilized if it
is possible to find functions α(x), h(x) : R

n → R
m

and β(x) : R
m → R

m such that the system

ẋ= f(x) + g(x)α(x) + g(x)β(x)v

y = h(x)

1 This research was sponsored by the European Control
Training Site—Marie Curie Fellowships.
2 Throughout the paper, if not otherwise stated, it is
assumed that all functions and mappings are C∞, and all
vectors—including the gradient—are column vectors.

is passive with external variables (v, y) and a
storage function that has a minimum at the de-
sired equilibrium, say x∗ ∈ R

n. This class of
systems is called feedback passive and stabilization
is achieved feeding-back the “passive output” y
with a strictly passive operator—a technique that
is generically known as Passivity-Based Control
(PBC). (See (Byrnes et al., 1991; Schaft, 2000;
Isidori, 1995), or (Astolfi et al., 2000) for a recent
tutorial that contains most of the background ma-
terial reviewed in this section). From (Byrnes et
al., 1991) it is known that necessary conditions for
passification of the system (f, g, h) are that it has
relative degree {1, . . . , 1} and is weakly minimum
phase. The process is completed verifying the
conditions of the nonlinear Kalman-Yakubovich-
Popov lemma. The latter involves the solution of
a partial differential equation (PDE)—which is
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difficult to find, in general. An additional com-
plication stems from the minimum requirement
on the storage function that imposes some sort
of “boundary conditions” on the PDE.

Designing PBCs can be made more systematic for
systems belonging to the following class, which
contains many physical examples (Ortega et al.,
2001):

Definition 1. The system (1) with output y =
h(x) is said to satisfy the energy-balancing (EB)
inequality if, for some function H(x) : R

n → R,

H [x(t)] −H [x(0)] ≤
∫ t

0

u�(s)y(s)ds, (2)

along all trajectories compatible with u : [0, t] →
R
m. 3

Typically, u, y are conjugated variables, in the
sense that their product has units of power, and
H(x) is the total stored energy—hence the name
EB. The EB inequality reflects a universal prop-
erty of physical systems and it would be desirable
to preserve it in closed-loop. On the other hand,
since H(x) does not have (in general) a minimum
at x∗ it is suggested to look for a control action
u = α(x)+β(x)v such that the closed-loop system
satisfies the new EB inequality

Hd[x(t)] −Hd[x(0)] ≤
∫ t

0

v�(s)ỹ(s)ds. (3)

for a new output function ỹ = h̃(x) (that may
be equal to y) and some function Hd(x) : R

n →
R+ that has an isolated local minimum at x∗.
(As discussed in (Astolfi et al., 2000; Ortega et
al., 2001), see also below, the inclusion of a new
output function adds considerable flexibility to
the design procedure without loosing the physical
insight.)

A first, natural, approach to solve the problem
above is to try to make Hd(x) equal to the
difference between the stored and the supplied
energies. For that, we must find a function α(x)
such that the energy supplied by the controller
can be expressed as a function of the state. Indeed,
from (2) we see that if we can find a function α(x)
such that, for some function Ha(x) : R

n → R and
for all x and all t ≥ s, we have

Ha[φ(x, t)] −Ha[φ(x, s)] =

−
∫ t

s

α�[φ(x, τ)]h[φ(x, τ)]dτ,

3 Notice that no assumption of non-negativity on H(x) is
imposed. Clearly, if it is non-negative, then the system is
passive with external variables (u, y) and storage function
H(x). Also, notice that (2) implies h(x) = g�(x)∇H(x).

where φ(x, t) denotes the trajectory of the system
with control u = α(x)+v starting from the initial
condition x at time t, then the closed-loop system
satisfies (3) with y = ỹ and new energy function

Hd(x) = H(x) +Ha(x). (4)

Hence, x∗ can be easily stabilized with the desired
storage (Lyapunov) function, and we refer to this
particularly appealing class of PBCs as EB-PBCs.

The design of EB-PBCs also involves the solution
of a PDE, namely, 4

[f(x) + g(x)α(x)]�∇Ha(x) =

−α�(x)g�(x)∇H(x) (5)

that results taking the limit of (4), that is,
Ḣa(x(t)) = −α�(x(t))h(x(t)), and the fact that
h(x) = g�(x)∇H(x). But its applicability is
mainly stymied by the presence of pervasive dis-
sipation in the system. Indeed, it is clear that a
necessary condition for the solvability of the PDE
(5) is the implication

f(x̄) + g(x̄)α(x̄) = 0 ⇒ h�(x̄)α(x̄) = 0.

Evaluating, in particular, for x̄ = x∗ we see
that the power extracted from the controller (=
h�(x)α(x)) should be zero at the equilibrium.
(The interested reader is referred to (Ortega et
al., 2001) where the effect of pervasive dissipation
is illustrated with simple linear time-invariant
RLC circuits.)

In order to overcome the dissipation obstacle, the
method of Interconnection and Damping Assign-
ment (IDA) PBC, that assigns a special—port-
controlled Hamiltonian (PCH)—structure to the
closed-loop system, has been proposed in (Ortega
et al., 2002a). More specifically, in IDA-PBC we
fix the matrices Jd(x) = −J�

d (x) ∈ R
n×n and

Rd(x) = R�
d (x) ≥ 0 ∈ R

n×n, that represent
the desired interconnection and dissipation struc-
tures, respectively, and solve the PDE 5

f(x) + g(x)α(x) = [Jd(x) −Rd(x)]∇Hd(x),

which can be equivalently expressed in the nicer
form

g⊥(x)f(x) = g⊥(x)[Jd(x) −Rd(x)]∇Hd(x) (6)

where g⊥(x) is a left annihilator of g(x), that
is, g⊥(x)g(x) = 0. The PDE (6) characterizes
all energy functions that can be assigned to the
closed-loop PCH system with the given intercon-
nection and dissipation matrices, and the control
that achieves this objective is

4 Throughout the paper we denote ∇pH(p, q) = ∂H
∂p

(p, q).
When clear from the context the subindex will be omitted.
5 IDA-PBC is presented in (Ortega et al., 2002a) only for
systems in PCH form, but it is clear that all derivations
carry on to general (f, g, h) systems.



α(x) =
[
g�(x)g(x)

]−1
g�(x)

×{[Jd(x) −Rd(x)]∇Hd(x) − f(x)} .

Taking the derivative of Hd(x) along the closed-
loop trajectories we get

Ḣd(x) = −∇�Hd(x)Rd(x)∇Hd(x) ≤ 0.

Again, if we can find a solution for (6) such
that x∗ = arg min[Hd(x)] then stability of x∗ is
ensured. The main interest of IDA-PBC is that,
in contrast with EB-PBC, the PDE (6) is still
solvable (in principle) when the extracted power
is not zero at the equilibrium, hence the method is
applicable to systems with pervasive dissipation.
Another advantage of IDA-PBC is that the free
parameters in the PDE (6), Jd(x), Rd(x), have a
clear physical interpretation, while there are no
simple guidelines for the selection of α(x) in (5).

Although “Hamiltonianizing” the system may
seem like an artifice, there are close connections
between IDA-PBC and EB-PBC. 6 Namely, in
(Ortega et al., 2002a) conditions on the damping
are given so that IDA-PBC is an EB-PBC. More
precisely, it is shown that if

(1) the system is PCH, that is, 7

f(x) = [J(x) −R(x)]∇H(x)

h(x) = g�(x)∇H(x)

for some J(x) = −J�(x) ∈ R
n×n and

R(x) = R�(x) ≥ 0 ∈ R
n×n;

(2) Rd(x) = R(x), that is, no additional damping
is injected to the system;

(3) the assigned energy function Hd(x) and the
natural damping satisfy

R(x)[∇Hd(x) −∇H(x)] = 0, (7)

(This property was called “dissipation ob-
stacle” in (Ortega et al., 2001) and, roughly
speaking, states that there is no damping in
the coordinates where the energy function is
shaped.)

then,

Ḣd[x(t)] = Ḣ [x(t)] − α�[x(t)]h[x(t)],

and the storage function Hd(x) is equal to the
difference between the stored and the supplied
energies.

The main contribution of this paper is the estab-
lishment of a similar equivalence between IDA-
PBC and EB-PBC when the damping is “not
admissible”, that is when (7) is not satisfied.
Specifically, using an alternative definition of the

6 See (Ortega et al., 2001) for the interpretation of IDA-
PBC as control by interconnection (Schaft, 2000).
7 In (Ortega et al., 2002a) it is shown that all asymptoti-
cally stable vector fields admit such a PCH realization.

supplied energy, we prove that the methods are
also equivalent when the damping is pervasive.
Instrumental for our developments is the obser-
vation that, swapping the damping terms in the
EB inequality, we can establish passivity of PCH
systems with respect to some new external vari-
ables. Interestingly, as a kind of partial converse,
for mechanical systems and for PCH systems with
m = 1, we also prove that if the damping is
admissible then it cannot be swapped and the new
passivity property coincides with the classical one.

2. A NEW PASSIVITY PROPERTY FOR A
CLASS OF PCH SYSTEMS

The following lemma is instrumental for the proof
of our main result.

Lemma 1. Assume the matrices J(x) = −J�(x)
and R(x) = R�(x) ≥ 0 are such that rank[J(x)−
R(x)] = n, then

z�[J(x) −R(x)]−1z ≤ 0, (8)

for all z ∈ R
n.

Proof. The proof is completed with the following
simple calculations

z�[J(x) −R(x)]−1z

= 1
2z

�(
[J(x) −R(x)]−1 + [J(x) −R(x)]−�)

z

= 1
2z

�[J(x) −R(x)]−1
(
[J(x) −R(x)]

+[J(x) −R(x)]�
)
[J(x) −R(x)]−�z

= 1
2 z̃

�(
J(x) −R(x) + [J(x) −R(x)]�

)
z̃

= −z̃�R(x)z̃ ≤ 0,

where we have defined z̃ = [J(x)−R(x)]−�z, with
(·)−� = [(·)−1]�. �
Notice that, if J(x) − R(x) is rank deficient then
the open-loop system has equilibria at points
which are not extrema of the energy function.
Hence, the assumption rank[J(x) − R(x)] = n
does not seem to be restrictive in applications. For
this class of PCH systems the proposition below
establishes passivity with respect to a new set of
external variables.

Proposition 1. Consider the PCH system

ẋ = [J(x) −R(x)]∇H(x) + g(x)u

y = g�(x)∇H(x).
(9)

Assume J(x)−R(x) is full rank. Then, the system
satisfies the new EB inequality

H [x(t)] −H [x(0)] ≤
∫ t

0

ỹ�(s)u(s)ds, (10)

where ỹ = h̃(x, u), with



h̃(x, u) =−g�(x)[J(x) −R(x)]−�

×{[J(x) −R(x)]∇H(x) + g(x)u} .(11)

Furthermore, if H(x) is bounded from below, the
system is passive with external variables (u, ỹ) and
storage function H(x).

Proof. Under the assumption that rank[J(x) −
R(x)] = n, we can rewrite the PCH system (9)
in the following form

[J(x)−R(x)]−1ẋ = ∇H(x)+[J(x)−R(x)]−1g(x)u.
(12)

Premultiplying (12) by ẋ� we obtain

Ḣ(x) = ẋ�∇H(x)

= ẋ�[J(x) −R(x)]−1ẋ

−ẋ�[J(x) −R(x)]−1g(x)u

≤−ẋ�[J(x) −R(x)]−1g(x)u

= ỹ�u,

where we have invoked Lemma 1 to obtain the
inequality, and replaced ẋ and used (11) in the
last equality. The proof is completed integrating
the expression above from 0 to t. �

Remark 1. From the derivations above we have
that

Ḣ(x) = −z̃�R(x)z̃ + ỹ�u,

where z̃ = [J(x)−R(x)]−1ẋ. Comparing with the
classical power balance equation,

Ḣ(x) = −(∇H(x))�R(x)∇H(x) + y�u,

reveals that the new passivity property is estab-
lished “swapping the damping”.

Remark 2. Proposition 1 lends itself to an alter-
native interpretation that reveals the close con-
nections with the results reported in (Ortega et
al., 2002b), see also (Ortega and Shi, 2002). In
these papers a new passivity property for RLC
circuits is established and used to propose power-
shaping, as an alternative to energy-shaping, to
overcome the dissipation obstacle for stabiliza-
tion of systems with pervasive damping. From the
proof of the proposition it is clear that, introduc-
ing an input change of coordinates

ũ = [J(x) −R(x)]−1g(x)u, (13)

we also have passivity with the external coor-
dinates (ũ, ẋ)—hence, in some respect, we have
“added a differentiation” to the port variables
as done in (Ortega et al., 2002b; Ortega and
Shi, 2002). See Section 4 for an illustrative ex-
ample.

3. IDA-PBC AS AN ENERGY-BALANCING
CONTROLLER

As a corollary of Proposition 1 we prove in this
section that, even when the damping is pervasive,
IDA-PBC is an EB-PBC with the new definition
of supplied power u�ỹ.

Proposition 2. Consider the PCH system (9),
with rank[J(x)−R(x)] = n, in closed-loop with an
IDA-PBC, u = α(x), that transforms the system
into

ẋ = [J(x) −R(x)]∇Hd(x). (14)
Then,

Hd[x(t)] = H [x(t)] −
∫ t

0

u�(s)ỹ(s)ds. (15)

where ỹ = h̃(x, u), with h̃(x, u) defined in (11).

Proof. The PCH system (9), with u = α(x),
matches (14) if and only if

[J(x) −R(x)]−1g(x)α(x) = ∇Ha(x) (16)

where we have used (4) and the assumption
rank[J(x) − R(x)] = n. Premultiplying the latter
equation by ẋ� we obtain Ḣa(x) = −u�ỹ, which
upon integration yields the desired result. �

Remark 3. The proposition above is restricted to
IDA-PBC designs that do not modify the inter-
connection and damping matrices of the open-
loop system, but only shape the energy func-
tion. When Jd(x) �= J(x) and/or Rd(x) �= R(x)
the matching condition becomes, see (Ortega et
al., 2002a),

[Jd(x) −Rd(x)]−1 {[Ja(x) −Ra(x)]∇H(x)

+g(x)α(x)} = ∇Ha(x),

where Jd(x) = J(x) + Ja(x) and Rd(x) = R(x) +
Ra(x). Some simple calculations show that a term,
that is independent of α(x), appears in Ḣa. There-
fore, the latter cannot be made equal to some
(suitably defined) supplied power.

4. EXAMPLES

In this section we illustrate with several examples
the application of Proposition 1. First, we prove
that for some practically relevant multi-domain
systems, the new passivity property has a natural
interpretation in terms of classical concepts from
circuit theory. Then, we show that for (simple)
mechanical systems and for all single-input single-
output systems that do not suffer from the dissi-
pation obstacle the new passive output ỹ coincides
with y, hence Proposition 1 does not reveal any
new property.
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Fig. 1. (left) Thevenin representation of electromechanical systems with passive port variables
(Bu,L−1ψ); (right) corresponding Norton equivalent with passive port variables (R−1

e Bu, ψ̇).

4.1 Connection with Thevenin-Norton equivalence

We will now prove that for electromechanical
systems with ne unsaturated windings, perma-
nent magnets and one mechanical coordinate 8

the new passivity property appears as a corollary
of the well-known Thevenin and Norton equiva-
lence (Desoer and Kuh, 1969). For this class of
systems x = col(ψ, θ, p) ∈ R

ne+2, with ψ ∈ R
ne

the magnetic fluxes, θ, p ∈ R the mechanical
displacement and momenta, respectively, and u
denoting the external voltages applied to some of
the windings. The resulting PCH model is defined
with the matrices

J =


 0 0 0

0 0 1
0 −1 0


 , g =


 B

0
0


 ,

R =


 Re 0 0

0 0 0
0 0 0


 ,

(17)

where Re = R�
e > 0 ∈ R

ne×ne represents the
resistors (in series with the inductive elements),
and B ∈ R

(ne+2)×m defines the actuated electrical
coordinates. We recall at this point that the
electrical equations of this system are of the form

ψ̇ = −Rei+Bu

where i = ∇ψH(x) are the currents on the
inductors, which are related to the fluxes through
ψ = L(θ)i, with L(θ) = L�(θ) > 0 the inductance
matrix. The dynamics of the system is completed
applying Newton’s second law to the mechanical
subsystem, but this equation is not relevant for
the analysis given here.

The natural power port variables are the external
voltage sources u and the corresponding electrical
currents y = B�L−1(θ)ψ. On the other hand,
replacing the matrices (17) in (13) we get that

ũ�ẋ = u�B�R−1
e ψ̇

8 This class has been thoroughly studied in (Ortega et
al., 1998), to which we refer the reader for further details
on the model.

where R−1
e Bu are the current sources obtained

from the Norton equivalent of the Thevenin repre-
sentation of the classical passivity property, with
ψ̇ the associated inductor voltages. The equiva-
lence is depicted in Fig. 1 for the case of no mutual
couplings between the electrical elements, where
to underscore the transformation we have pulled
out from the system the resistors associated with
the actuated coordinates.

Remark 4. Notice that the systems considered in
this section are not stabilizable with EB-PBC
(using the natural outputs of the system y =
B�∇H(x)) due to the fact that all non-trivial
equilibria there is a current flowing through the
“unactuated resistors” B⊥Re. Hence, the power
extracted from the natural ports is nonzero at any
nonzero equilibrium point.

4.2 Systems without the dissipation obstacle

In this subsection we explore the implications of
Proposition 1 for some systems that are EB stabi-
lizable and, as a partial converse result, prove that
in this case the new passivity property exactly
coincides with the classical one.

We take as first example position regulation of
(simple) mechanical systems, which is the proto-
typical case study of EB stabilizable systems. For
these systems the total energy function is given
by

H(q, p) =
1
2
p�M−1(q)p+ V (q),

where q, p ∈ R
n/2 are the generalized dis-

placements and momenta, respectively, M(q) =
M�(q) > 0 is the inertia matrix and V (q) :
R
n/2 → R is the potential energy. Denoting x =

col(q, p) ∈ R
n, the system is described by the PCH

model (9) with the matrices

J =
[

0 I
−I 0

]
, R =

[
0 0
0 Rm

]
, g =

[
0
B

]
,

where Rm = R�
m ≥ 0 are the friction coefficients,

B ∈ R
n/2×m, and u ∈ R

m are the external forces.



Replacing the expressions above in (11), and doing
some simple calculations, we get

ỹ =−g�[J −R]−T ([J −R]∇H(x) + gu)

= g�
[
I 2Rm
0 I

]
∇H(x) − g�

[−Rm I
−I 0

]
gu

=B�∇pH(x)

= y

which completes our claim.

Let us move now to our second example. As dis-
cussed in Section 1, a necessary condition for an
IDA-PBC to be an EB controller is that—for all
assignable energy functions Hd(x)—the damping
verifies the condition (7), whose violation is re-
ferred as “dissipation obstacle”. The proposition
below shows that for single-port PCH systems
that do not suffer from the dissipation obstacle
we again have ỹ = y.

Proposition 3. Consider a PCH system (9) with
u, y ∈ R

1 and rank[J(x) − R(x)] = n. Assume
all energy functions that can be assigned using
IDA-PBC with Jd(x) = J(x) and Rd(x) = R(x)
satisfy (7). Then, the new output ỹ coincides with
the natural output y.

Proof. All energy functions that can be assigned
using IDA-PBC with Jd(x) = J(x) and Rd(x) =
R(x) are given by (4), where Ha(x) follows from
the integration of (16)—for a given α(x). For ease
of reference we repeat the latter equation here

∇Ha(x) = [J(x) −R(x)]−1g(x)α(x).

Combining (7) and (16) yields R(x)∇Ha(x) = 0,
or equivalently

R(x)[J(x) −R(x)]−1g(x) = 0. (18)

Hence, it remains to show that ỹ = y. Using (18)
we may write

[J(x) −R(x)][J(x) −R(x)]−1g(x) = g(x)

⇒ J(x)[J(x) −R(x)]−1g(x) = g(x)

⇒ g�(x)[J(x) −R(x)]−�g(x) = 0,

and by replacing the latter into (11), we obtain

ỹ=−g�(x)[J(x) −R(x)]−�[J(x) −R(x)]∇H(x)

= g�(x)∇H(x)

= y.

This completes the proof. �

5. CONCLUDING REMARKS

Summarizing, we have shown that, for the class of
systems with pervasive dissipation, the basic IDA-

PBC methodology reduces to an EB-PBC design.
Thus, if one accepts a set outputs other than
the natural ones, we can give an energy-balancing
interpretation of IDA-PBC. Instrumental for our
developments is that we swap the damping in
the classical power-balance in order to conclude
passivity with respect to a different set of external
port variables, while using the same storage func-
tion. The only necessary condition for swapping
the damping is that J(x) −R(x) needs to be full
rank. However, if J(x) − R(x) is rank deficient
then the open-loop system has equilibria at points
which are not extrema of the energy function.
Therefore, the full rank condition seems not re-
strictive in physical applications. Interestingly, the
new passivity property does not affect systems
that do not suffer from pervasive dissipation.
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