9 research outputs found

    Total atmospheric absorption of fixed satellite communication signal due to oxygen and water vapor in Nigeria

    Get PDF
    Total atmospheric absorption values due to oxygen and water vapor on terrestrial and Earth-space paths at frequencies between 1 GHz and 50 GHz were evaluated for 1% unavailability of an average year at two elevation angles of 5° and 55°, which are typical for terrestrial and Earth-space links, respectively. Practical links to the Nigerian communication satellite (NigComsat1) uplink/downlink in the Ku (12/14 GHz), Ka (20/30 GHz), and V (40/50 GHz) bands for 1% unavailability of an average year were also investigated. The basic input climatic data used included monthly and yearly mean meteorological parameters for each station, such as surface and vertical profiles of pressure, temperature, and relative humidity, obtained from the Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua spacecraft for seven years (2002 to 2009). The International Telecommunication Union Radio Propagation Recommendation (2009) procedure was used for the computation of gaseous attenuation for each of the 37 stations in Nigeria. The results obtained at various elevation angles (of 44° to 55°) for Earth-space links to NigComsat-1 showed that in the absence of rain, 99% availability was possible at Ku, Ka, and V bands for uplink and downlink at all of the 37 stations in Nigeria, as the gaseous attenuation values obtained were between 0.05 dB to 4.81 dB. For low elevation angles of 5°(terrestrial link) at V band, 99% availability was not practical, as atmospheric loss was between 15.30 dB to 17.62 dB in Nigeria. The results consistently showed that gaseous attenuation was very high at six stations across Nigeria; Calabar (South-South regions), followed, in descending order, by the Ikeja (South-West), Abakaliki (South-East), Abuja (Middle-Belt), Dutse (North-East), and Kastina (North-West) regions. The present results of gaseous attenuation will be very useful for satellite communication-system design engineers across the six regions in Nigeria

    Evaluation of radiative transfer schemes for mesoscale model data assimilation: a case study

    Get PDF
    The assimilation of Special Sensor Microwave Imager (SSM/I) data into the Mesoscale Model 5 (MM5) allows for improving the weather forecast. However the results suggested an update the Radiative Transfer Equation (RTE) within the three-dimensional variational (3DVAR) algorithm which is tailored for non rainy conditions only. To this purpose, a new RTE algorithm is tested, in order to account for radiometric response in rainy regions. The new brightness temperatures (<i>T<sub>B</sub></i>) are estimated by using hydrometeor profiles from the MM5 mesoscale model, running with two different microphysical parameterizations. The goodness of the results is assessed by comparing the new <i>T<sub>B</sub></i> with those of the original RTE algorithm in the 3DVAR code and the SSM/I observed data. The results confirm a better reliability of the new RTE compared to the old one

    A Physical Model to Estimate Snowfall over Land using AMSU-B Observations

    Get PDF
    In this study, we present an improved physical model to retrieve snowfall rate over land using brightness temperature observations from the National Oceanic and Atmospheric Administration's (NOAA) Advanced Microwave Sounder Unit-B (AMSU-B) at 89 GHz, 150 GHz, 183.3 +/- 1 GHz, 183.3 +/- 3 GHz, and 183.3 +/- 7 GHz. The retrieval model is applied to the New England blizzard of March 5, 2001 which deposited about 75 cm of snow over much of Vermont, New Hampshire, and northern New York. In this improved physical model, prior retrieval assumptions about snowflake shape, particle size distributions, environmental conditions, and optimization methodology have been updated. Here, single scattering parameters for snow particles are calculated with the Discrete-Dipole Approximation (DDA) method instead of assuming spherical shapes. Five different snow particle models (hexagonal columns, hexagonal plates, and three different kinds of aggregates) are considered. Snow particle size distributions are assumed to vary with air temperature and to follow aircraft measurements described by previous studies. Brightness temperatures at AMSU-B frequencies for the New England blizzard are calculated using these DDA calculated single scattering parameters and particle size distributions. The vertical profiles of pressure, temperature, relative humidity and hydrometeors are provided by MM5 model simulations. These profiles are treated as the a priori data base in the Bayesian retrieval algorithm. In algorithm applications to the blizzard data, calculated brightness temperatures associated with selected database profiles agree with AMSU-B observations to within about +/- 5 K at all five frequencies. Retrieved snowfall rates compare favorably with the near-concurrent National Weather Service (NWS) radar reflectivity measurements. The relationships between the NWS radar measured reflectivities Z(sub e) and retrieved snowfall rate R for a given snow particle model are derived by a histogram matching technique. All of these Z(sub e)-R relationships fall in the range of previously established Z(sub e)-R relationships for snowfall. This suggests that the current physical model developed in this study can reliably estimate the snowfall rate over land using the AMSU-B measured brightness temperatures

    Generalized Eddington analytical model for azimuthally dependent radiance simulation in stratified media

    Get PDF
    A fast analytical radiative transfer model to account for propagation of unpolarized monochromatic radiation in random media with a plane-parallel geometry is presented. The model employs an Eddington-like approach combined with the delta phase-function transformation technique. The Eddington approximation is extended in a form that allows us to unfold the azimuthal dependence of the radiance field. A first-order scattering correction to the azimuth-dependent Eddington radiative model solution is also performed to improve the model accuracy for low-scattering media and flexibility with respect to use of explicit arbitrary phase functions. The first-order scattering-corrected solution, called the generalized Eddington radiative model (GERM), is systematically tested against a numerical multistream discrete ordinate model for backscattered radiance at the top of the medium. The typical mean accuracy of the GERM solution is generally better than 10% with a standard deviation of 20% for radiance calculations over a wide range of independent input optical parameters and observation angles. GERM errors are shown to be comparable with the errors due to an input parameter uncertainty of precise numerical models. The proposed model can be applied in a quite arbitrary random medium, and the results are appealing in all cases where speed, accuracy, and͞or closed-form solutions are requested. Its potentials, limitations, and further extensions are discussed

    Uncertainty of microwave radiative transfer computations in rain

    Get PDF
    Currently, the effect of the vertical resolution on the brightness temperature (BT) has not been examined in depth. The uncertainty of the freezing level (FL) retrieved using two different satellites' data is large. Various radiative transfer (RT) codes yield different BTs in strong scattering conditions. The purposes of this research were: 1) to understand the uncertainty of the BT contributed by the vertical resolution numerically and analytically; 2) to reduce the uncertainty of the FL retrieval using new thermodynamic observations; and 3) to investigate the characteristics of four different RT codes. Firstly, a plane-parallel RT Model (RTM) of n layers in light rainfall was used for the analytical and computational derivation of the vertical resolution effect on the BT. Secondly, a new temperature profile based on observations was absorbed in the Texas A&M University (TAMU) algorithm. The Precipitation Radar (PR) and Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data were utilized for the improved FL retrieval. Thirdly, the TAMU, Eddington approximation (EDD), Discrete Ordinate, and backward Monte Carlo codes were compared under various view angles, rain rates, FLs, frequencies, and surface properties. The uncertainty of the BT decreased as the number of layers increased. The uncertainty was due to the optical thickness rather than due to relative humidity, pressure distribution, water vapor, and temperature profile. The mean TMI FL showed a good agreement with mean bright band height. A new temperature profile reduced the uncertainty of the TMI FL by about 10%. The differences of the BTs among the four different RT codes were within 1 K at the current sensor view angle over the entire dynamic rain rate range of 10-37 GHz. The differences between the TAMU and EDD solutions were less than 0.5 K for the specular surface. In conclusion, this research suggested the vertical resolution should be considered as a parameter in the forward model. A new temperature profile improved the TMI FL in the tropics, but the uncertainty still exists with low FL. Generally, the four RT codes agreed with each other, except at nadir, near limb or in heavy rainfall. The TAMU and the EDD codes had better agreement than other RT codes

    Potential of millimeter- and submillimeter-wave satellite observations for hydrometeor studies

    Get PDF
    The distribution of hydrometeors is highly variable in space and time, since it is the result of a complex chain of processes with scales from microphysical (1e-6 m) to synoptical (1e3 m). It is a challenging task to observe these highly variable atmospheric constituents on a global scale with a temporal and spatial resolution sufficient for numerical weather prediction (NWP) and hydrological purposes. This study investigates the potential of the millimeter- and submillimeter-wavelength range on space-borne sensors for hydrometeor and surface precipitation rate observations. The approach is based on simulations with cloud resolving models (CRMs) coupled to a radiative transfer (RT) model. The simulations are performed for mid-latitude cases covering a broad band of precipitation events such as heavy convective and light stratiform winter precipitation. Realistic atmospheric conditions were simulated with two mesoscale CRMs: the Meso-scale NonHydrostatic model (Meso-NH) on a 10 km and the COSMO-DE (COnsortium for Small-scale MOdeling-DEutschland) on a 2.8 km horizontal resolution. When calculating brightness temperatures for satellite observations with the one-dimensional radiative transfer model MWMOD (MicroWave MODel), the detailed cloud microphysics and the three-dimensional fields of temperature, humidity, and pressure of the CRMs are considered in the calculation of the interaction parameters. The model framework has been evaluated by comparing the simulated brightness temperature fields to observations of the Special Sensor Microwave Imager (SSM/I) as well as to those of the Advanced Microwave Sounding Unit-B (AMSU-B). The results show a good agreement as long as the CRMs capture the atmospheric situation correctly. Consequently, by coupling the radiative transfer model for microwave radiation to CRMs it is possible to evaluate these models through comparison to microwave satellite observations. Brightness temperatures for frequencies between 50 and 428 GHz at nine observation angles have been simulated for five mid-latitude cases at two time steps. In combination with the vertically integrated hydrometeor contents, these brightness temperature simulations have been used to set up a database. On the basis of this database simple retrieval algorithms have been developed to estimate the potential of the millimeter- and submillimeter-wavelength region for precipitation and hydrometeor observations. The results show, that especially for snow and graupel, the total column content can be retrieved accurately with relative errors smaller than 20% in stratiform precipitation cases over land and ocean surfaces. The performance for rain water path is similar to the one for graupel and snow in light precipitation cases. For the cases with higher precipitation amounts, the relative errors for rain water path are larger especially over land. The same behavior can be seen in the surface rain rate retrieval with the difference that the relative errors are doubled in comparison to the rain water path. Algorithms with a reduced number of frequencies show that window channels at higher frequencies are important for the surface rain rate retrieval. These are sensitive to the scattering in the ice phase related to the rain below. For the frozen hydrometeor retrieval, good results can be achieved by retrieval algorithms based only on frequencies at 150 GHz and above which are suitable for geostationary applications due to their reduced demands concerning the antenna size

    Passive millimeter-wave retrieval of global precipitation utilizing satellites and a numerical weather prediction model

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2007.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 229-234).This thesis develops and validates the MM5/TBSCAT/F([lambda]) model, composed of a mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative transfer model (TBSCAT), and electromagnetic models for icy hydrometeors (F([lambda])), to be used as a global precipitation ground-truth for evaluating alternative millimeter-wave satellite designs and for developing methods for millimeter-wave precipitation retrieval and assimilation. The model's predicted millimeter-wave atmospheric radiances were found to statistically agree with those observed by satellite instruments [Advanced Microwave Sounding Unit-A/B (AMSU-A/B)] on the United States National Ocean and Atmospheric Administration NOAA-15, -16, and -17 satellites over 122 global representative storms. Whereas such radiance agreement was found to be sensitive to assumptions in MM5 and the radiative transfer model, precipitation retrieval accuracies predicted using the MM5/TBSCAT/F([lambda]) model were found to be robust to the assumptions.(cont.) Appropriate specifications for geostationary microwave sounders and their precipitation retrieval accuracies were studied. It was found that a 1.2-m micro-scanned filled-aperture antenna operating at 118/166/183/380/425 GHz, which is relatively inexpensive, simple to build, technologically mature, and readily installed on a geostationary satellite, could provide useful observation of important global precipitation with ~20-km resolution every 15 minutes. AMSU global precipitation retrieval algorithms for retrieving surface precipitation rate, peak vertical wind, and water-paths for rainwater, snow, graupel, cloud water, cloud ice, and the sum of rainwater, snow, and graupel, over non-icy surfaces were developed separately using a statistical ensemble of global precipitation predicted by the MM5/TBSCAT/F([lambda]) model. Different algorithms were used for land and sea, where principal component analysis was used to attenuate unwanted noises, such as surface effects and angle dependence. The algorithms were found to perform reasonably well for all types of precipitation as evaluated against MM5 ground-truth. The algorithms also work over land with snow and sea ice, but with a strong risk of false detections. AMSU surface precipitation rates retrieved using the algorithm developed in this thesis reasonably agree with those retrieved for the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) aboard the Aqua satellite over both land and sea.(cont.) Surface precipitation rates retrieved using the Advanced Microwave Sounding Unit (AMSU) aboard NOAA-15 and -16 satellites were further compared with four similar products derived from other systems that also observed the United States Great Plains (USGP) during the summer of 2004. These systems include AMSR-E aboard the Aqua satellite, the Special Sensor Microwave/Imager (SSM/I) aboard the Defense Meteorological Satellite Program (DMSP) F-13, -14, and -15 satellites, the passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) aboard the TRMM satellite, and a surface precipitation rate product (NOWRAD), produced and marketed by Weather Services International Corporation (WSI) using observations from the Weather Surveillance Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather Radar (NEXRAD) program. The results show the reasonable agreement among these surface precipitation rate products where the difference is mostly in the retrieval resolution, which depends on instruments' characteristics. A technique for assimilating precipitation information from observed millimeter-wave radiances to MM5 model was proposed. Preliminary study shows that wind and other correction techniques could help align observations at different times so that information from observed radiances is used at appropriate locations.by Chinnawat Surussavadee.Ph.D

    Intercomparison of microwave radiative transfer models for precipitating clouds

    No full text
    Abstract—An intercomparison of microwave multiple scattering radiative transfer codes used in generating databases for satellite rainfall retrieval algorithms has been carried out to ensure that differences obtained from retrieval techniques do not originate from the underlying radiative transfer code employed for the forward modeling. A set of profiles containing liquid water and ice contents of cloud and rain water as well as snow, graupel and pristine ice were distributed to the participants together with a black box routine providing Mie single scattering, atmospheric background absorption and surface emissivity. Simulations were to be carried out for nadir and off-nadir (53.1 ) observation angles at frequencies between 10 and 85 GHz. Among the radiative transfer models were twostream, multiple stream and Monte Carlo models. The results showed that there were two major sources of differences between the codes. 1) If surface reflection/emission was considered isotropic, simulated brightness temperatures were significantly higher than for specular reflection and this effect was most pronounced at nadir observation and over ocean-type surfaces. 2) Flux-type models including delta-scaling could partially compensate for the errors introduced by the two-stream approximation. Largest discrepancies occured at high frequencies where atmospheric scattering is most pronounced and at nadir observation. If the same surface boundary conditions, the same multiple- stream resolution and the same scaling procedures are used, the models were very close to each other with discrepancies below 1 K

    Geophysical parameter estimation with a passive microwave spectrometer at 54 / 118 / 183 / 425 GHz

    Get PDF
    Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 263-271).(cont.) model of a convective cell is presented that provides a physical basis for this relationship.The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Aircraft Sounder Testbed-Microwave, or NAST-M, includes passive microwave spectrometers operating near the oxygen lines at 50-57 GHz, 118.75 GHz, and 424.76 GHz, and a spectrometer centered on the water vapor absorption line at 183.31 GHz. All four of the spectrometers' antenna horns are colocated, have 3-dB (full-width at half-max) beamwidths of 7.5⁰, and are directed at a single mirror that scans cross-track beneath the aircraft with a swath up to 100-km wide. The 183.31- and 424.76-GHz systems were developed as part of this thesis. The calibration techniques for two high-altitude airborne platforms are described and validated for two recent deployments. During these two deployments, various precipitation phenomena were imaged by NAST-M's radiometric and video instruments. Retrieval methods were developed and tested for single-pixel rain rate, precipitation cell-top altitude, and cloud-top altitude retrievals of convective cells. The basis of the single-pixel retrievals is a simplified convective-cell hydrometeor-profile model used with a radiative transfer solution that included absorption by atmospheric gases and by hydrometeor absorption and scattering. Two retrieval techniques were used to relate the simulated brightness temperatures to the actual brightness temperatures from the deployments. Case studies are presented from each deployment. In addition, a technique for estimating the cell-wide aggregate rain rate (km² · mm/hr) is presented based on the microwave radiometric signature. The cumulative 3-decibel perturbation areas of convective cells in the four frequency bands are shown to be related to their aggregate rain rates. A simple three-dimensionalby R. Vincent Leslie.Sc.D
    corecore