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A fast analytical radiative transfer model to account for propagation of unpolarized monochromatic
radiation in random media with a plane-parallel geometry is presented. The model employs an
Eddington-like approach combined with the delta phase-function transformation technique. The Edding-
ton approximation is extended in a form that allows us to unfold the azimuthal dependence of the
radiance field. A first-order scattering correction to the azimuth-dependent Eddington radiative model
solution is also performed to improve the model accuracy for low-scattering media and flexibility with
respect to use of explicit arbitrary phase functions. The first-order scattering-corrected solution, called the
generalized Eddington radiative model (GERM), is systematically tested against a numerical multi-
stream discrete ordinate model for backscattered radiance at the top of the medium. The typical mean
accuracy of the GERM solution is generally better than 10% with a standard deviation of 20% for radiance
calculations over a wide range of independent input optical parameters and observation angles. GERM
errors are shown to be comparable with the errors due to an input parameter uncertainty of precise
numerical models. The proposed model can be applied in a quite arbitrary random medium, and the
results are appealing in all cases where speed, accuracy, and�or closed-form solutions are requested. Its
potentials, limitations, and further extensions are discussed. © 2005 Optical Society of America

OCIS codes: 290.4210, 280.1310.

1. Introduction

The quantitative evaluation of the electromagnetic
(e.m.) radiance field is of major interest for various
purposes and applications, as testified in the open
literature. The latter go from astrophysics such as the
study of the transfer of solar radiation1–3 to remote
sensing such as the retrieval of Earth and planetary
atmospheres by passive and active remote sensing
techniques4–7 and to telecommunications such as the
effect of Earth’s atmosphere on microwave
signals.8–10 In these applications the theory of radi-
ative transfer plays a major role as a suitable model
to describe the e.m. interaction and propagation of
radiation intensity through a random medium such
as a planetary atmosphere and surface.11–14 In addi-
tion to forward modeling, use of fast and fairly accu-

rate radiative transfer solutions can also be essential
to solve inverse problems by variational approaches
where the solution is searched by minimizing a cost
function depending on the measured and simulated
radiance observables.15

In an absorbing and scattering random medium
the radiative transfer equation (RTE) takes the gen-
eral form of an integrodifferential equation for a
monochromatic unpolarized radiance. Its full solu-
tion can be accomplished by using several numerical
techniques that generally reduce the problem to a set
of differential equations in a matrix form with pre-
scribed boundary conditions.13,16,17,10,9 The interest
and the importance in developing analytical approx-
imate solutions of the radiative transfer problem
arises from the need to have relatively fast algo-
rithms and from the difficulty to derive precise solu-
tions for many practical applications where the
medium properties are not generally known with suf-
ficient accuracy. In this respect, uncertainties in the
input parameter description within a given radiative
transfer problem tend to reduce the need of calcula-
tions with a high degree of precision.18,19 As already
mentioned, the precision of numerical RTE models is
obtained at the expense of a long computational time,
which is unwanted for applications that require a fast
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response such as iterative remote sensing tech-
niques.5,6 (e.g., Kummerow5; Tanrè et al.6).

A number of fast analytical models, with various
effective approximations, have been proposed for the
solution of the RTE, sacrificing a certain degree of
mathematical precision in favor of a closed-form
rapid algorithm.3,12,18–24 The so-called second-order
Eddington approximation is probably the most com-
mon and effective between these, even though it is
generally referred to as the azimuthally averaged
form of the RTE for flux calculations.21,26,27 Azimuth-
ally dependent radiance models represent valuable
approximated methods that can yield both irradiance
and radiance results.3,19,28 In particular, these mod-
els can be developed in extension of either the two-
stream or the Eddington approach19,20 or are based
on the Sobolev approximation framework.12,28 To
maintain consistency between their radiance and ir-
radiance solutions, several approximate solutions
need to resort to ad hoc numerical integrations so
that they could prove unsuitable for applications in-
volving the integration of single RTE solutions over
various angular, spectral, and time intervals.

In this paper a fast and fully analytical radiative
transfer solution used to calculate the unpolarized
monochromatic radiation in a random medium is de-
veloped using an Eddington-like approach combined
with the delta phase-function transformation tech-
nique.22 In Section 2 the Eddington approximation
scheme, proposed by Shettle and Weinman,21 is ex-
tended in a natural way, allowing us to unfold the
azimuthal dependence of the radiance field. This ap-
proximation, further refined to adequately describe
single-scattering phenomena, shows itself sufficiently
flexible to be adapted to the treatment of radiation in
inhomogeneous random media, schematized through a
series of plane-parallel homogeneous adjacent layers.
We try to avoid ad hoc correction procedures to further
improve the overall accuracy; this exercise would re-
duce the generality of the proposed solution and can
always be played for specific applications.28 In Section
3 results from the generalized Eddington model are
then compared over a wide range of optical parameters
and observation geometries, with the corresponding
solutions generated by a fully numerical and fairly
accurate algorithm such as the discrete ordinate radi-
ative transfer (DISORT) method for backscattered ra-
diance at the top of the medium.

2. Generalized Eddington Radiative Model

In this section, we will first introduce the notation of
RTE in a rigorous way, then we will illustrate the
generalized Eddington model to take into account
azimuthal dependence of the radiance field, and fi-
nally we will conclude by modifying the analytical
solution by means of a first-order scattering correc-
tion. The latter choice will also be numerically justi-
fied in Section 3.

A. Radiative Transfer Theory

Even though some of the definitions and equations that
are given below are quite well known in the literature, we

will briefly overview the background concepts with the
basic aim to clarify the adopted notation.

The transfer of unpolarized monochromatic radia-
tion in a plane-parallel homogeneous random me-
dium is regulated by the integrodifferential RTE12–14:

�
dI(�, �, �)

d�
� �I(�, �, �) � J(�, �, �), (1a)

where I��, �, �� is the diffuse specific intensity (or
radiance) along the direction ��, �� at the optical
depth � and J��, �, �� is the source function, given by

J(�, �, �) �
�

4� �
0

2� �
�1

1

P(�, �; ��, ��)

	 I(�, ��, ��)d��d��

�
�

4�
F0P(�, �; �0, �0)exp(����0).

(1b)

The first term of J is sometimes referred to as the
multiple-scattering source, and the second term rep-
resents the coherent contribution due to an incident
collimated e.m. wave (either a plane wave or a direc-
tive beam) along the direction ��0, �0�. Thermal emis-
sion is assumed to be negligible with respect to the
incident beam.13

The notation in Eqs. (1a) and (1b) is in accordance
with a spherical coordinates system ��, 
, ��, with �
the vertical optical thickness between 0 and �s and is
as follows (see also Fig. 10 in Appendix B): � is the
zenith (or nadir) angle, � � cos 
 with � � 0 indicat-
ing downward radiance and � � 0 indicating upward
radiance; � is the azimuth angle; � is the single-
scattering volumetric albedo; �0 is the cosine of the
incident radiation zenith angle 
0; �0 is the azimuth
angle of the incident radiation; and F0 is the power
flux density, or irradiance, of the incident radiation at
z � 0. For brevity, the dependence on the wavelength
is omitted because, in a way, it is implicitly included
in the medium optical parameters �, �, and P.

It is worth mentioning that if the incident e.m.
source is highly but not infinitively directive, that is,
it has a finite field of view such as a pencil beam, Eq.
(1a) can be generalized by replacing Eq. (1b) with

J(�, �, �) �
�

4� �
0

2� �
�1

1

P(�, �; ��, ��)

	 I(�, ��, ��)d��d�� �
�

4�

	�
0

2� �
�1

1

P(�, �; ��, ��)I0(��, ��)

	 exp(����0)d��d�, (2)

where I0 is the incident radiance field at z � 0. If I0
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has a sufficiently narrow beam width, then the sec-
ond term of Eq. (2) can be approximated by the anal-
ogous term in Eq. (1b), as in the case of radar and
laser sources. In the same perspective, once the ra-
diance field is computed from Eqs. (1) at a given
position, the received power of an antenna (or detec-
tor) with a directive gain G can be derived from10,13

Wr �
2

4� �
0

2� �
�1

1

G(�, �; ��, ��)

	 I(�, ��, ��)d��d��, (3)

where � is the e.m. wavelength in the medium.
The zenith opacity at height z can be related to the

volumetric extinction coefficient ke�z� as follows:

� ��
0

z

ke(z�)dz�, (4)

where � is allowed to vary in the range �0, �s� because
�s is the total optical depth (see Fig. 10). The irradi-
ance F �Wm�2 Hz�1� at a given � is related to radiance
through the following integral relationship:

F↓(�) ��
0

2� �
0

1

I(�, ��, ��)d��d��,

F↑(�) ��
0

2� �
0

1

I(�, ���, ��)d��d��, (5)

where F↓ and F↑ represent the downward and up-
ward fluxes, and from now on we assume � as a
positive quantity (i.e., � � |cos 
|) so that �� can be
used to designate the upwelling direction. The diffuse
upward and downward flux densities, then, are given
by Eqs. (5), integrating from 0 and 1 with respect to
��� and ��, respectively.

In Eq. (1b), P��, �; ��, ��� is the so-called volumet-
ric scattering phase function (normalized to 4�), de-
fining the intensity of a radiation incident at
direction �� � ���, ��� that is scattered into direction
� � ��, ��. In an absorbing and scattering medium
with spherical particles, for example, it can be com-
puted by means of Mie theory. The phase function
can also be expressed in terms of the scattering angle
� (i.e., angle between the incident and the scattered
radiances). A well-known expansion of the phase
function is given by a N-term series of Legendre poly-
nomials Pn (Ref. 13):

P(cos �) � �
n�0

N

(2n � 1)bnPn(cos �)

� �
n�0

N

(2n � 1)bnPn{��� � [(1 � �2)

	 (1 � ��2)]1�2 cos(� � ��)}, (6)

where Pn�cos �� exhibits orthogonality in a ��1, 1�
interval. The coefficients bn are the moments of P
with respect to the polynomials Pn, defined by

bn �
1
2 �

�1

1

P(cos �)Pn(cos �)d cos �, (7)

with P0�cos �� � 1, P1�cos �� � cos � and recursively
for higher-order polynomials. Note that b0 � 1 be-
cause of the normalization of the phase function,
whereas, by definition, b1, the first moment of the
phase function, is called the volumetric asymmetry
factor of the phase function.13,17 This parameter, usu-
ally indicated as g, is zero for isotropic scattering and
increases as the diffraction peak of the phase function
becomes increasingly sharpened. As an example, the
Henyey–Greenstein phase function clearly shows
more noticeable diffraction peaks associated with
higher values of g.1

However, Eq. (6) is inadequate to represent
strongly asymmetric phase functions. The sharp for-
ward diffraction peaks that characterize phase func-
tions for strongly scattering conditions (i.e., g � 0.5)
are difficult to reproduce by low-degree polynomials.
This implies the need to use higher values of N that
would involve an increasing mathematical complex-
ity.29

To adequately approximate P�cos �� with a low
number of moments, a delta-function transformation
technique can be adopted, introducing a Dirac func-
tion describing the sharp peak of the phase function
and a series expansion representing the phase func-
tion without the peak18,22:

P(cos �) � P�(cos �)
� 2f�(1 � cos �) � P*(cos �)

� 2f�(1 � cos �) � �
n�0

2M�1

(2n � 1)bPn(cos �),

(8)

where f is the fractional scattering into the forward
peak. Joseph et al.22 demonstrated that the solution
of the RTE (i.e., calculation of the radiance I) using
the actual phase function P is equivalent to the solu-
tion of the same problem in which P is replaced with
the smoothed function P*, if one set f � b2M and the
optical parameters �, �, and g are modified as follows:

g* �
g � f
1 � f, �* �

1 � f
1 � �f �, �* � (1 � �f)�.

(9)

The advantage in using P* is related to the fact that
its series expansion can be truncated to a small-order
Legendre term, since it represents only the smoothed
part of the original phase function. It is worth noting
that the choice of the peak fraction f is quite arbi-
trary.

Thus, by use of the delta transformation of the
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phase function, analytical complexities of the RTE
solution in absorbing and scattering random media,
characterized by quite asymmetric phase functions,
can be significantly reduced. In Subsections 2.B and
2.C we will always assume that the optical parame-
ters have been transformed by Eqs. (9) with f � g2,
derived from imposing the second moment of P equal
to that of the Henyey–Greenstein function.22 For sim-
plicity of notation, later on we will indicate �*, g*,
and �* by �, g, and �, if not otherwise stated.

B. Generalized Solution with an Eddington-Like
Approximation

We consider a scattering and absorbing homogeneous
random medium with a plane-parallel geometry (i.e.,
Fig. 10 with N � 1). The radiative transfer is gov-
erned by Eqs. (1a) and (1b), where all the coefficients
are constant. It is clear, however, that a solution for
I in a closed form can be derived only under given
simplifying approximations.

The generalized Eddington approximation consists
of expanding the diffuse radiance in the form of a
Fourier cosine series truncated to the first order, that
is,

I(�, �, �) � I0(�, �) � I1(�, �)cos �, (10a)

where the functions I0��, �� and I1��, �� are approxi-
mated in accordance with the standard Eddington
approach21:

I0(�, �) � I00(�) � �I01(�), (10b)

I1(�, �) � I10(�) � �I11(�). (10c)

The approach, summarized by Eqs. (10), closely re-
sembles the theoretical framework of the discrete or-
dinate numerical method30 even though our objective
here is to derive a closed-form solution, paying the
price of simplifying approximations that will reflect
in a less overall accuracy.

From Eqs. (10), the source function J in Eq. (1b)
can be rewritten as

J(�, �, �) � �[I00(�) � �gI01(�)] �
3
8 ��g(1 � �2)1�2

	 I10(�)cos � �
�

4�

	 F0P(�, �; �0, �0)exp(����0), (11)

with the phase function approximated by a delta-
transformed Sobolev function12,28:

P � 1 � 3g cos �. (12)

Assuming �0 � 0 and integrating Eq. (1a) over �
between 0 and 2�, after dividing by 2�, one obtains

1
2� �

0

2�

�
dI(�, �, ��)

d�
d�� � �

d
d�

[I00(�) � �I01(�)]

� �[I00(�) � �I01(�)] � �[I00(�) � �gI01(�)]

�
�

4�
F0(1 � 3g��0)exp(����0). (13)

Performing the same integration on Eq. (1a) multi-
plied by cos �, we obtain

1
2� �

0

2�

�
dI(�, �, ��)

d�
cos ��d�� � �

d
d�

[I10(�)

� �I11(�)]

� �[I10(�) � �I11(�)] �
3
8 ��g(1 � �2)1�2I10(�)

�
3�

4�
F0g[(1 � �2)(1 � �0

2)]1�2exp(����0).

(14)

With the aim to find the solution for I00��� and I01���,
it is convenient to integrate Eq. (13) over � between
�1 and 1 and then do the same for Eq. (13) multiplied
by �, obtaining

dI01(�)
d�

� �3(1 � �)I00(�) �
3�

4�
F0 exp(����0),

(15a)

dI00(�)
d�

� �(1 � g�)I01(�) �
3�

4�
F0g�0 exp(����0).

(15b)

The same procedure, carried out for Eq. (14), yields
an analogous system of nonhomogeneous differen-
tial linear equations for I10��� and I11���:

dI11(�)
d�

� �3I10(�)	1 �
3�2

32 �g
�
9

16 F0�g(1

� �0
2)1�2 exp(����0), (16a)

dI10(�)
d�

� �I11(�). (16b)

Solutions of the differential equation system, given
in Eqs. (15) are

I00(�) � C01 exp(�k0�) � C02 exp(k0�) � �0

	 exp(����0), (17a)

I01(�) � p0[C01 exp(�k0�) � C02 exp(k0�)] � �0

	 exp(����0), (17b)

where
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k0 � [3(1 � �)(1 � g�)]1�2, (17c)

p0 � �3(1 � �)
1 � g� �1�2

, (17d)

�0 �
3�

4�
F0�0

2
I � g(1 � �)

1 � k0
2�0

2 , (17e)

�0 �
3�

4�
F0�0

1 � 3g(1 � �)�0
2

1 � k0
2�0

2 . (17f)

Analogously, the solution of the differential equation
system given by Eqs. (16) is

I10(�) � p1[C11 exp(�k1�) � C12 exp(k1�)] � �1

	 exp(����0), (18a)

I11(�) � C11 exp(�k1�) � C12 exp(k1�) � �1

	 exp(����0), (18b)

where

k1 � �3	1 �
3�2

32 g�
�1�2

, (18c)

p1 �
1
k1

, (18d)

�1 �
(9�16)��0F0g(1 � �0

2)1�2

1 � �0
2k1

2 , (18e)

�1 �
(9�16)��0F0g(1 � �0

2)1�2

1 � �0
2k1

2 . (18f)

Substituting Eqs. (17) and (18) into Eqs. (10), it is
possible to obtain the general solution for azimuth-
dependent diffuse radiance, rewritten for clarity in
the following way:

I(�, �, �) � I00(�) � �I01(�) � [I10(�) � �I11(�)]cos �.
(19)

To completely determine the RTE solution, bound-
ary conditions need to be imposed. For a nonreflecting
surface, the boundary conditions to compute the in-
tegration constants C01, C02, C11, and C12 of Eqs. (17)
and (18) can be written as

I(� � 0, �, �) � 0, (20a)

I(� � �s, ��, �) � 0, (20b)

that is, using the generalized Eddington expansion:

I00(0) � �I01(0) � [I10(0) � �I11(0)]cos � � 0, (21a)

I00(�s) � �I01(�s) � [I10(�s) � �I11(�s)]cos � � 0. (21b)

Trying to determine a solution for the previous sys-
tem of equations that are valid for all � and for all �
would require us to make equal to zero every term
Iij�0� of Eq. (21a) and every term Iij��s� of Eq. (21b),
that is, to solve a system of eight equations with the
four unknown constants C01, C02, C11, and C12.

A possible procedure that allows to compute the
above-mentioned constants consists of fixing a proper
constant value � � �c in Eqs. (21). This choice allows
us to reduce Eqs. (21) to the following system of four
equations with four unknown quantities:

I00(0) � �cI01(0) � 0,

I10(0) � �cI11(0) � 0,

I00(�s) � �cI01(�s) � 0,

I10(�s) � �cI11(�s) � 0. (22)

The constant value �c can be selected in a manner
that, for the azimuthally independent radiance field
[i.e., fixing cos � � 0 in Eq. (19)], the solution coin-
cides with that obtained adopting the classical Ed-
dington approximation.

To do this, considering that the downward and up-
ward diffuse irradiance, respectively, at the top and
the bottom of the medium are zero, it is possible to
write from Eqs. (5) the following boundary conditions
in terms of downward and upward flux densities (ir-
radiances):

F↓(0) ��
0

2� �
0

1

I(0, ��, ��)d��d��

� ��I00(0) �
2
3 I01(0)�� 0,

F↑(�s) ��
0

2� �
0

1

I(�s, ���, ��)d��d��

� ��I00(�s) �
2
3 I01(�s)�� 0, (23)

which suggests that we choose �c � 2�3. In Appendix
A, a further detailed discussion on this issue from a
complementary point of view is provided.

After substituting Eqs. (17) and (18) into Eqs. (22),
it is possible to solve the last ones for the unknown
constants C01, C02, C11, and C12 adopting the value
�c � 2�3, yielding
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For several applications, the calculation of the back-
scattered (or reflected) radiance at the top of the me-
dium is particularly interesting. We call this solution
the azimuth-dependent Eddington radiative model
(AERM) to distinguish it from that derived in Sub-
section 2.C. The formal expression of the AERM so-
lution is

IAERM(0, ��, �) � I(0, ��, �)
� C01 � C02 � �0 � �(p0C01 � p0C02

� �0) � [p1C11 � p1C12 � �1 � �(C11

� C12 � �1)]cos �, (25)

where each term on the right-hand side is derived
from Eqs. (17), (18), and (24) together with Eqs. (9).
As expected, the upwelling irradiance, computed
from Eq. (25), is equal to the one given by the classical
Eddington approximation:

F↑(�) ��
0

2� �
0

�1

I(�, ��, ��)��d��d��

� �[I00(�) � (2�3)I01(�)], (26)

as found by Shettle and Weinman.21

C. First-Order Scattering Correction

The RTE solution for azimuthally dependent radi-
ance, as was shown in Subsection 2.B, is subject to
various approximations regarding the form of the
phase function and the imposition of the boundary
conditions. The truncation of the actual phase func-
tion P and its consequential representation with low-
order Legendre polynomials allows some essential
analytical simplifications, but on the other hand it

tends to smooth the angular details of the P behavior
and modifies the scattering phenomena description.

By looking at the generalized solution given by Eq.
(19) together with Eqs. (24), we realize that the ex-
plicit expression of the phase function is no longer
traceable. Indeed, from the scattering theory, it is
well known that the low orders of radiation scatter-
ing, and in particular the single-scattering contribu-
tion, are quite sensitive to the approximated
representation of P.3,24,28

To remove this problem in our theoretical frame-
work, a first-order scattering correction can be car-
ried out. It simply consists of (i) canceling the single-
scattering contribution I� (biased by the truncation of
the phase function) from the radiance solution I ob-
tained by adopting the Eddington-like scheme of ap-
proximation and (ii) replacing I� with IFOSM, the exact
weight of the single-scattering effects calculable by
the so-called first-order scattering model (FOSM).14

In Section 3 we will show that this improvement is
numerically significant because of this correction.

In the absence of multiple-scattering phenomena,
the FOSM represents the exact solution for RTE. For
the reflected radiance for a finite homogeneous me-
dium bounded on two sides at � � 0 and � � �s, the
FOSM solution is given by

IFOSM(0, ��, �) �
�

4�
�0F0

P(��, �; �0, �0)
� � �0

	 1 � exp���s	1
�

�
1
�0

��, (27)

where, from now on, IFOSM will be indicated as a first-
order scattering (FOS) solution. In the FOS correc-
tion scheme, IFOSM is calculated using the actual
phase function P and the original optical parameters

C01 �

	�0 �
2
3 �0
	1 �

2
3 p0
exp(��s��0) � 	�0 �

2
3 �0
	1 �

2
3 p0
exp(k0�s)

	1 �
2
3 p0
2

exp(�k0�s) � 	1 �
2
3 p0
2

exp(k0�s)
, (24a)

C02 � �	�0 �
2
3 �0
� C01	1 �

2
3 p0
� 1

	1 �
2
3 p0
, (24b)

C11 �

	�
2
3 �1 � �1
	�p1 �

2
3
exp(��s��0) � 	2

3 �1 � �1
	p1 �
2
3
exp(k1�s)

�	p1 �
2
3 
2

exp(�k1�s) � 	p1 �
2
3
2

exp(k1�s)
, (24c)

C12 � �	2
3 �1 � �1
� C11	p1 �

2
3
� 1

	�p1 �
2
3


. (24d)
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�, g, and � (i.e., not scaled to account for the delta
transformation). Note that only upward backscat-
tered radiance is given here; for the transmitted ra-
diance, similar expressions can be easily derived from
an analogous approach.

The single-scattering contribution I� to the gener-
alized solution I, given by Eq. (19), can be computed
by removing the multiple-scattering terms within the
generalized Eddington model itself. This means that,
within the hypothesis of only a single process of scat-
tering, the source function J in Eq. (11) can be ap-
proximated by

J(�, �, �) � JFOS(�, �, �)

�
�

4�
F0(1 � 3g{��0 � [(1 � �2)

	 (1 � �0
2)]1�2cos �})exp(����0). (28)

Repeating the same mathematical steps to obtain the
solution for I expressed by Eq. (19), one can simply
verify that in this case the general solution for radi-
ance maintains the same form:

I�(�, �, �) � I00�(�) � �I01�(�)
� [I10�(�) � �I11�(�)]cos �, (29)

with

I00�(�) � C01� exp(�k0��) � C02� exp(k0��) � �0�

	 exp(����0), (30a)

I01�(�) � p0�[C01� exp(�k0��) � C02� exp(k0��)]
� �0� exp(����0), (30b)

I10�(�) � p1�[C11� exp(�k1��) � C12� exp(k1��)]
� �1� exp(����0), (30c)

I11�(�) � C11� exp(�k1��) � C12� exp(k1��) � �1�

	 exp(����0). (30d)

However, for the FOS solution the constants in Eqs.
(30a)–(30d) are given by

k0� � �3, (30e)

p0� � �3, (30f)

�0� �
3�

4�
F0�0

2
1 � g

1 � k0�
2�0

2, (30g)

�0� �
3�

4�
F0�0

1 � 3g�0
2

1 � k0�
2�0

2, (30h)

k1� � �3, (30i)

p1� �
1

k1�
, (30j)

�1� �

9
16 ��0F0g(1 � �0

2)1�2

1 � �0
2k1�

2 , (30k)

�1� �

9
16 ��0

2F0g(1 � �0
2)1�2

1 � �0
2k1�

2 . (30l)

Moreover, the new constants of integration
C01�, C02�, C11�, and C12� are now

C01� �

	�0� �
2
3 �0�
	1 �

2
3 p0�
exp(��s��0) � 	�0� �

2
3 �0�
	1 �

2
3 p0�
exp(k0��s)

	1 �
2
3 p0�
2

exp(�k0��s) � 	1 �
2
3 p0�
2

exp(k0��s)
, (31a)

C02� � �	�0� �
2
3 �0�
� C01�	1 �

2
3 p0�
� 1

	1 �
2
3 p0�
, (31b)

C11� �

	�
2
3 �1� � �1�
	�p1� �

2
3
exp(��s��0) � 	2

3 �1� � �1�
	p1� �
2
3
exp(k1��s)

�	p1� �
2
3 
2

exp(�k1��s) � 	p1� �
2
3 
2

exp(k1��s)
, (31c)

C12� � �	2
3 �1� � �1�
� C11�	p1� �

2
3
� 1

	�p1� �
2
3


. (31d)
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Again, the reflected radiance at the top of the medium
is

I�(0, ��, �) � C11� � C02� � �0� � �(p0�C01� � p0�C02�

� �0�) � [p1�C11� � p1�C12� � �1�

� �(C11� � C12� � �1�)]cos �. (32)

In the formulas, the single-scattering correction
scheme for simulating the backscattered radiance at
the top of the medium can be expressed as

IGERM(0, ��, �) � I(0, ��, �) � I�(0, ��, �)
� IFOSM(0, ��, �), (33)

where I�0, ��, ��, I��0, ��, ��, and IFOSM�0, ��, ��
are given, respectively, by Eqs. (25), (32), and (27).
Equation (33) can be regarded as the closed-form so-
lution of the generalized Eddington radiative model,
herein referred to as GERM.

The GERM solution, as well the AERM solution
given in Eq. (25), can be simply adapted to the treat-
ment of radiation in inhomogeneous media, schema-
tized through a series of plane-parallel homogeneous
adjacent layers, as shown in Appendix B.

3. Numerical Tests

In this section we will show the numerical evaluation
of the accuracy of the generalized Eddington model,

for both the AERM and the GERM versions, by sup-
posing an arbitrary medium characterized by a large
set of optical parameters and observed under several
angles.

A. Model Setup

Optical parameters represent the inputs to RTE and
their considered variability the domain of the numer-
ical validation test. As an example, Fig. 1 shows the
optical parameters in terms of albedo and asymmetry
factor as a function of extinction coefficients, as ob-
tained from Mie scattering and absorption simulation
for spherical raindrops, graupel particles, ice crys-
tals, and snow particles for microwaves between 3
and 90 GHz and a rain rate between 0 and
100 mm�h.9,10

To derive the optical parameters in Fig. 1, an in-
verse exponential particle size distribution (PSD) has
been assumed with the slope parameter parameter-
ized to a surface rain rate. The latter has been de-
rived from the Marshall–Palmer PSD for raindrops,
the Sekhon–Srivastava PSD for ice crystals and grau-
pel, and the Gunn–Marshall PSD for snow aggre-
gates.17 A Gamma PSD has been chosen for cloud
droplets. Radius size ranges of cloud droplets, rain-
drops, ice graupel, ice crystals, and snow have been
fixed to 0.001–0.01, 0.1–3.0, 0.1–5, 0.1–1.5, and
0.1–5.0 mm, respectively. Density of ice graupel, ice
crystals, and snow has been set to 0.5, 0.2, and

Fig. 1. Optical parameters in terms of albedo and asymmetry factor versus extinction coefficients, as obtained from Mie scattering and
absorption simulation for spherical raindrops (upper left panel), graupel particles (upper right panel), ice crystals (bottom left), and snow
particles (bottom right) for microwaves between 3 and 90 GHz and a rain rate between 0 and 100 mm�h.
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0.1 g cm�3, respectively. Snow dielectric constant has
been derived by a second-order Maxwell–Garnett for-
mula for inclusions of air in an ice matrix. Ambient

temperature has been set to 10 °C for cloud droplets
and raindrops, 0 °C for ice graupel, and �10° for ice
crystals and snow aggregates.

Looking at Fig. 1 and analogous results for visible
and infrared radiance in the presence of aerosols and
clouds,6 the variability of input optical parameters of
a homogeneous slab has been discretized as shown in
Table 1. We have chosen the strategy to stress the
approximate solution by letting the optical parame-
ters vary without any physical constraint and corre-
lation. In this respect, we can consider the results
below as the worst case in a test scheme. Emphasis
will be given to the analysis of backscattered (or re-
flected) specific intensity at the top of the medium,
even though tests on the transmitted specific inten-
sity have also been performed obtaining similar re-
sults.

The accuracy of the generalized Eddington solution
can arise from the quantitative comparison with RTE
numerical solutions, such as the DISORT model.16

The discrete ordinate model gives highly accurate
results in the solution of the RTE so that it is usually
considered as a reference.24,25,28 In the following
treatment, then, deviations of the analytical model
results from the DISORT solution, obtained with a
number M of streams set to 48, are regarded as er-
rors. All simulations are normalized to the incident

Fig. 2. Accuracy of the AERM solution, given in Eq. (25), illustrated by means of contour plots showing the PFE given in Eq. (34) as a
function of optical thickness � � �s and albedo � for asymmetry factor g equal to 0 (right column), 0.4 (middle column), and 0.8 (right
column). Incident angles are �0 � 0.6 and �0 � 0°, and the backscattering (reflection) angles are � � 0.2 (upper row), � � 0.6 (middle row),
and � � 1.0 (bottom row) and � � 90°. Discrete values of �s and � are those prescribed in Table 1.

Table 1. Discrete Values Given to the Optical Parameters (albedo �,
asymmetry factor g, and optical thickness �s) and Observation

Parameters (incident zenith angle �0, incident azimuth angle �0,
scattering zenith angle �, scattering azimuth angle �) Whose Full

Combination Defines the Various Test Casesa

Parameters

Optical Observation

� � g �0 � cos 
0 � � cos 
 � �°� �0 �°�

0.1 0.91 0.01 0 0.2 0.1 0 0
0.2 0.92 0.03 0.1 0.4 0.2 15
0.3 0.93 0.1 0.2 0.6 0.4 30
0.4 0.94 0.3 0.3 0.8 0.6 60
0.5 0.95 1 0.4 1 0.8 90
0.6 0.96 3 0.5 1 105
0.7 0.97 10 0.6 120
0.8 0.98 30 0.7 150
0.9 0.99 100 0.8 165

300 0.9 180

aThe total number of performed tests is equal to 540,000. Note
that for the incident wave front it is always assumed that �0

� 0.
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radiance by setting F0 equal to 1, whereas �0 is set to
0 in all tests without loss of generality. A delta-M
Henyey–Greenstein phase function, as given in ap-
proximation (8), is used for the DISORT phase func-
tion.

Differences between the backscattered intensities,
calculated by means of each proposed model and the
DISORT algorithm, are evaluated for each of the
540,000 test cases of Table 1. These differences are
expressed as percentage fractional errors (PFEs) as
follows:

�f �
IGEdd � IDISORT

IDISORT
100, (34)

where IGEdd refers to AERM, FOSM, or GERM solu-
tions, and IDISORT refers to the DISORT radiance so-
lution.

B. Numerical Results

To illustrate the various steps of the proposed mod-
els, a comparison between AERM and DISORT is
first discussed. Figure 2 shows the accuracy of the
AERM solution, given by Eq. (25), in terms of contour
of the PFE as a function of optical thickness �s and
albedo � for asymmetry factor g equal to 0, 0.4, and
0.8. Incident angles are �0 � 0.6 and �0 � 0°, and the
backscattering angles are � � 0.2, � � 0.6, and �
� 1.0 and � � 90°. Discrete values of �s, g, and � are
those prescribed in Table 1.

We note that for � � 0.2 there is a systematic
underestimation (up to �65%), which converts to an
overestimation for � � 0.6 (up to 100%) and �
� 1.0 (larger than 300%). AERM also shows a sub-
stantial sensitivity to variations of optical parame-
ters g and �; this model tends to have its greatest
accuracy for thick atmospheres and for nearly con-
servative scattering conditions �� � 0.9�, especially
for backscattering zenith angles far from nadir (val-
ues of � much smaller than 1). For brevity, we do not
show the results for decreasing values of �0, but they
confirm the trends commented as above. AERM per-
forms worst in the single-scattering limit, that is, �
� 0.1 (Ref. 23); in these conditions, FOSM is expected
to be one of the most accurate among the approxi-
mated models.

Therefore, before we illustrate the results relative
to the GERM algorithm, Fig. 3 shows the same as in
Fig. 2, but for the FOSM solution given in Eq. (27)
and with incident angles �0 � 0.6 and �0 � 0°. The
FOSM solution systematically underestimates the
DISORT results, even if it exhibits a smaller � sen-
sitivity than the AERM method. For a given � and �,
for any � the percentage error tends to become
greater as g increases. Furthermore, FOSM has been
confirmed to be a suitable method in the single-
scattering limit, especially for scattering conditions
far from the conservative case (small values of �). To
a certain extent, FOSM errors exhibit an error trend
opposite to that of AERM; it should not be a surprise

Fig. 3. Same as in Fig. 2, but for the FOSM solution given in Eq. (27) and incident angles �0 � 0.6 and �0 � 0°.
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that the combination of the two closed-form solutions
can give better results.

Figure 4 shows the same as in Fig. 2, but for the
GERM solution given in Eq. (33) and incident angles
�0 � 0.6 and �0 � 0°. To complete the analysis of this
intercomparison, Fig. 5 shows the same as in Fig. 4,
but for incident angles �0 � 1.0 and �0 � 0°, and Fig.
6 refers to incident angles �0 � 0.2 and �0 � 0°. Note
that for �0 � 1.0 the RTE solution becomes indepen-
dent from �.

The comparison of Fig. 4 with Figs. 2 and 3 clearly
reveals the significant improvement gained by adopt-
ing the GERM solution. Maximum error is contained
within 25%–30%, except for high albedo �� � 0.8�,
small scattering zenith angles �� � 0.2�, and optical
depths near unity. The latter behavior is dominated
by the AERM solution: It is known from the literature
that the Eddington approximation works worst in the
neighborhood of optical depth unity.29 For low scat-
tering conditions, instead, FOSM is predominant.
The analysis of Figs. 5 and 6, characterized by �0
� 1 and �0 � 0.2, respectively, confirms the above-
mentioned overall error trends for the GERM solu-
tion. Furthermore, in the worst conditions (i.e., for
� � 0.8 and � near unity), Figs. 5 and 6 point out that
maximum errors can be found when � � �0. This
result can be explained by noting that, when �
� �0, the medium opacity tends to increase so that
the diminished transmittance tends to reduce the
overall fractional error.

Finally, Fig. 7 illustrates the GERM behavior for
extreme values of � and g and for an intermediate
zenith angle ��0 � 0.6�. In these conditions, classifi-
able as the worst case from a medium scattering point
of view, the GERM accuracy decreases and the PFE
grows to values of �70%. Again, the GERM accuracy
becomes particularly worse for values of � near 1.

The angular dependence of the overall error budget
is shown in Fig. 8, where the mean relative error plus
and minus its standard deviation band of the PFE are
plotted for each zenith cosine angle � and azimuth
angle �, obtained by performing all possible tests
prescribed in Table 1 as in Figs. 2–7. From Figs. 2–7
it emerges that the overall mean error is contained
within �20%, with underestimations for � less than
�0.8 �37°� and overestimations for � larger than 0.8.
The latter behavior can be noted for the azimuth
dependence as well for � � 150° and � � 150°, re-
spectively. In both cases the standard deviation of the
PFE is �15%. Analogous figures for the FOSM algo-
rithm (not shown) yield a mean PFE of approximately
�30%, and for AERM the mean error ranges from
�100% to �100% as the angle increases.

As a summary for the comparison of AERM,
FOSM, and GERM, Fig. 9 shows the relative accu-
racy of these different algorithms in terms of a his-
togram of the PFE obtained by performing all tests
prescribed in Table 1. The overall PFE mean and
standard deviation are 10.0% and 152.8% for AERM,
�24.1% and 37.9% for FOSM, and �9.4% and 20.1%

Fig. 4. Same as in Fig. 2, but for the GERM solution given in Eq. (33) and incident angles �0 � 0.6 and �0 � 0°.
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Fig. 5. Same as in Fig. 2, but for the GERM solution given in Eq. (33) and incident angles �0 � 1.0 and �0 � 0°.

Fig. 6. Same as in Fig. 2, but for the GERM solution given in Eq. (33) and incident angles �0 � 0.2 and �0 � 0°.
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for GERM. If a subset of scattering conditions char-
acterized by � ranging from 0.1 to 0.9 is considered,
leaving unchanged all the other optical parameter
values of Table 1 (i.e., 270,000 test cases), the overall

PFE mean and standard deviation come down to
7.9% and 16.6% for GERM, respectively.

Such a level of accuracy in the radiance computa-
tion can be considered acceptable for several applica-
tions since errors and uncertainties in the measure of
the absorbing and scattering properties of the me-
dium can produce comparable errors in the retrieval
of the radiance field.19 Numerical experiments have
been carried out by supposing uncertainties in the
knowledge of input optical parameters uniformly dis-
tributed in the range 0%–10%. The true and the bi-
ased intensities have both been calculated by the
DISORT model, the biased values being computed
using input optical parameters affected by uncer-
tainty. An analysis of the results shows that the stan-
dard errors are �15% due to the nonlinearity of the
RTE and thus are substantially comparable with
those obtainable from GERM.

As a final comment, it is opportune to remark that
the above analysis has been conducted over a wide
range of absorbing and scattering conditions of the
medium, considering an exhaustive number of ob-
serving geometries. Once the particular application
requiring the retrieval of the radiance field is speci-
fied, a better accuracy can be obtained by restricting
the analysis to the corresponding range of optical
parameters and viewing geometries. In particular, a
tuning of the exponent of the �0 term in the numer-
ator of both the �1 and the �1 coefficients given by
Eqs. (18e) and (18f), in a way similar to that proposed

Fig. 7. Same as in Fig. 4 for the GERM solution, but with extreme values of � and g.

Fig. 8. Top panel: Overall accuracy of the GERM solution in
terms of moments of the PFE given in Eq. (34) as a function of
azimuth angle � by performing all tests prescribed in Table 1,
derived from all possible combinations of optical parameter dis-
crete values. Mean relative error plus and minus its standard
deviation band are plotted for each zenith angle �. Bottom panel:
Same as in top panel, but as a function of azimuth angle �.
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by Xiang et al.,28 allows us to improve the accuracy for
the specified application by halving the obtained er-
ror results.31

4. Conclusions

A fast analytical approximated method of a solution
for the RTE, based on the generalization of the Ed-
dington approximation and capable of unfolding the
azimuthal dependence of the radiance field, has been
developed in this paper. Performances of this new
radiative model, called GERM, in simulating the
backscattered (reflected) intensity field due to a
plane-parallel homogeneous medium excited by a in-
cident radiation, have been evaluated by comparison
with the DISORT model.

The consequences of this approximation used to
express the radiance field are mean percentage errors
in the intensity calculations less than �10% with a
standard deviation of �20% over an extremely wide
range (540,000 samples) of independent values of
single-scattering albedo, asymmetry factor, optical
depth, and incident radiation direction. The signifi-
cance of such errors is less relevant in problems
where the input parameters are known with a certain
degree of uncertainty. In particular, it has been
shown that the related level of accuracy is sufficient
when the uncertainties in the knowledge of the opti-
cal parameters are uniformly distributed in the range
0%–10%.

The overall accuracy is comparable, if not better,
than available azimuthally dependent analytical
models such as those by Davies19 and Xiang et al.,28

based on the Eddington and Sobolev approximations,
respectively. A thorough comparison might be possi-
ble even though each analytical model tends to use ad
hoc corrections to improve the numerical accuracy. It
is worth mentioning that the results shown in Section
3.B are obtained without any specific tuning of the
model parameters. This approach, justified by the
need to illustrate results depending as less as possi-
ble on arbitrary choices, opens, indeed, a wide possi-
bility in the refinements of GERM for specific
applications.31

The worse accuracy in reproducing the radiance
field, as compared with the DISORT model, is obvi-
ously balanced by a more rapid calculation of the
radiance itself. In this respect, we note that the com-
putational time of the DISORT model is approxi-
mately proportional to N2, with 2N the number of
streams, whereas the generalized Eddington model
has a constant computational complexity. This fea-
ture makes the proposed GERM well suited to prob-
lems that require iterations over finite spectral
and�or time intervals. Moreover, as mentioned
above, for a specific application requiring the compu-
tation of the radiance field, a better accuracy can be
obtained by restricting the analysis to the corre-
sponding range of optical parameters and viewing
geometries.

The main theoretical limitations of GERM are re-
lated to the assumption of (i) stratified medium ge-

Fig. 9. Comparison of relative accuracy of AERM (top panel),
FOSM (middle panel), and GERM (bottom panel) solutions in
terms of a histogram of the PFE given in Eq. (34) by performing all
tests prescribed in Table 1 from all possible combinations of optical
parameter discrete values. Mean relative error and its standard
deviation are also indicated.
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ometry and (ii) unpolarized radiation. With respect to
the first item, the plane-parallel geometry allows us
to simplify the general expression of the RTE in a
three-dimensional (3-D) space and to unfold the an-
gular dependence of radiance through the general-
ized Eddington approximation. A way to apply
GERM to a 3-D problem is to resort to a one-
dimensional (1-D) slant geometry along the viewing
angle, that is to construct an equivalent 1-D problem
from the given 3-D one.9,32 The limitation due to the
hypothesis of unpolarized radiance can be removed
only if the elements of the rotated phase matrix can
be approximated by means of a Sobolev phase func-
tion as in Eq. (12). The validity of this approximation
would, of course, depend on the properties of the par-
ticle distribution.

Future work will be devoted to possibly extend
GERM to a polarized radiation and to perform a sys-
tematic comparison with other numerical solutions
such the finite-element method10 and available ana-
lytical approximated models. Application to the re-
mote sensing of the atmosphere is also foreseen, and
its tests could be carried out by following an approach
similar to that of Smith et al.25

Appendix A: Boundary Conditions

In Subsection 2.B it was shown that computation of
the integration constants C00, C01, C10, and C11, rela-
tive to the radiance general solution, is subject to
some approximations. In this appendix we point out
the proposed approach in an explicit way.

The choice of the above-mentioned approximations
can be justified through a direct comparison with
those proposed by Xiang et al.28 The latter boundary
conditions, expressed in terms of irradiances, assume
the following form:

�
0

2� �
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1

I(0, ��, ��)d��d��
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These expressions have a general validity, so they
can be applied to the generalized Eddington model
solution, expressed by Eq. (19).

Thus, substituting into Eqs. (1) the expression of
radiance given by Eqs. (10), one obtains

�
0

2� �
�1

1

{[I00(0) � ��I01(0)] � [I01(0)

� ��I11(0)]cos ��}d��d��

� � 2 �
0

2� �
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1

{[I00(0) � ��I01(0)] � [I10(0)

� ��I11(0)]cos ��}��d��d��, (A5)

and then integrating, we obtain

I00(0) � �
2
3 I01(0). (A6)

Starting from approximation (A2), with analogous
mathematical passages, we obtain

I00(�s) �
2
3 I01(�s). (A7)

Inserting now the expression of radiance into approx-
imation (A3), the latter can be rewritten as follows:
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1
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1
dI1(�, ��)
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(1 � ��2)cos2 ��d��d��,

(A8)

where the intensity terms, multiplied by cos �, have
been omitted for brevity as they cancel when inte-
grated over �.

Considering Eqs. (10c) and (18), it is simple to ver-
ify that

dI1(�, �)
d�

� �I11(�) � ���k1C11 exp(�k1�)

� k1C12 exp(k1�) �
�1

�0
exp(����0)�,

(A9)
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so that approximation (8) becomes

�
0

2� �
�1

1

[I10(0) � I11(0)](1 � ��2)1�2 cos2 ��d��d��

�
2
3 �

0

2� �
�1

1

��I11(0) � ��	k1C11 � k1C12 �
�1

�0

�

	 (1 � ��2)1�2 cos2 ��d��d��,

that is,

I10(0) � �
2
3 I11(0). (A10)

In the same way, approximation (4) produces the
following relation:

I10(�s) �
2
3 I11(�s). (A11)

Equations (A6), (A7), (A10), and (A11) are analogous
to the approximations expressed by Eqs. (22),
adopted in Subsection 2.B for the calculation of the
constants C01, C02, C11, and C12 and consequently for
the computation of the radiance field.

Appendix B: Generalized Solution for Vertically
Inhomogeneous Media

Electromagnetic propagation in a vertically inhomo-
geneous random medium is usually approached by
approximating the medium through a series of homo-
geneous adjacent layers (e.g., Ishimaru,13 Stamnes et
al.30).

In particular, media can be represented with a
number Nl of plane-parallel layers, as shown in Fig.
10. Each layer is characterized by different values of
�i and gi, with

d�i

d�
�

dgi

d�
� 0, i � 1, 2, . . . , N. (B1)

Thus the solution of the RTE through the generalized
Eddington approximation is appropriate within each
layer. For the ith layer with optical thickness �s

i

� �i � �i�1, the RTE allows for the following analytical
solution:

Ii(�, �, �) � I00
i(�) � �I01

i(�) � [I10
i(�)

� �I11
i(�)]cos �, �i�1 � � � �i,

(B2)

where �0 � 0 and �N � �s, and the general solution is
given by

I(�, �, �) � Ii(�, �, �), �i�1 � � � �i. (B3)

Furthermore, it holds that

I00
i(�) � C01

i exp(�k0
i�) � C02

i exp(k0
i�)

� �0
i exp(����0), (B4a)

I01
i(�) � p0

i[C01
i exp(�k0

i�) � C02
i exp(k0

i�)] � �0
i

	 exp(����0), (B4b)

I11
i(�) � C11

i exp(�k1
i�) � C12

i exp(k1
i�) � �1

i

	 exp(����0), (B4c)

I10
i(�) � C11

i exp(�k1
i�) � C12

i exp(k1
i�) � �1

i

	 exp(����0), (B4d)

where

k0
i � [3(1 � �i)(1 � gi�i)]

1�2,

p0
i � [3(1 � �i)�(1 � gi�i)]

1�2,

�0
i �

3�i

4�
F0�0

2
1 � gi(1 � �i)

1 � (k0
i�0)

2 ,

�0
i �

3�i

4�
F0�0

1 � 3gi(1 � �i)�0
2

1 � (k0
i�0)

2 ,

k1
i � �3	1 �

3�2

32 gi�i
�1�2

,

p1
i � 1�k1

i,

�1
i �

9
16 �i�0F0gi(1 � �0

2)1�2

1 � (k1
i�0)

2 ,

�1
i � �0�1

i.

Fig. 10. Representation of an inhomogeneous random medium
with a plane-parallel geometry with N homogeneous scattering
layers characterized by albedo � and phase function P.
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Calculation of the four unknown constants C00
i, C01

i,
C10

i, and C10
i for each of N layer needs 4N equations.

Four of these equations derive from the boundary
conditions given below:

I1(� � �0, �, �) � 0, (B5a)

IN(� � �N, �, �) � 0, (B5b)

where � is fixed to 2�3, while the remaining 4N
� 4 are determined by requiring that I00

i, I01
i, I10

i, and
I11

i are continuous:

�
I00

i(�i) � I00
i�1(�i)

I01
i(�i) � I01

i�1(�1)
I10

i(�i) � I10
i�1(�i)

I11
i(�i) � I11

i�1(�1)

i � 1, 2, . . . , N � 1. (B6)
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