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Abstract 
 
This thesis develops and validates the MM5/TBSCAT/F(λ) model, composed of a 
mesoscale numerical weather prediction (NWP) model (MM5), a two-stream radiative 
transfer model (TBSCAT), and electromagnetic models for icy hydrometeors (F(λ)), to 
be used as a global precipitation ground-truth for evaluating alternative millimeter-wave 
satellite designs and for developing methods for millimeter-wave precipitation retrieval 
and assimilation.  The model’s predicted millimeter-wave atmospheric radiances were 
found to statistically agree with those observed by satellite instruments [Advanced 
Microwave Sounding Unit-A/B (AMSU-A/B)] on the United States National Ocean and 
Atmospheric Administration NOAA-15, -16, and -17 satellites over 122 global 
representative storms.  Whereas such radiance agreement was found to be sensitive to 
assumptions in MM5 and the radiative transfer model, precipitation retrieval accuracies 
predicted using the MM5/TBSCAT/F(λ) model were found to be robust to the 
assumptions.  Appropriate specifications for geostationary microwave sounders and their 
precipitation retrieval accuracies were studied.  It was found that a 1.2-m micro-scanned 
filled-aperture antenna operating at 118/166/183/380/425 GHz, which is relatively 
inexpensive, simple to build, technologically mature, and readily installed on a 
geostationary satellite, could provide useful observation of important global precipitation 
with ~20-km resolution every 15 minutes.  AMSU global precipitation retrieval 
algorithms for retrieving surface  precipitation rate, peak vertical wind, and water-paths 
for rainwater, snow, graupel, cloud water, cloud ice, and the sum of rainwater, snow, and 
graupel, over non-icy surfaces were developed separately using a statistical ensemble of 
global precipitation predicted by the MM5/TBSCAT/F(λ) model.  Different algorithms 
were used for land and sea, where principal component analysis was used to attenuate 
unwanted noises, such as surface effects and angle dependence.  The algorithms were 
found to perform reasonably well for all types of precipitation as evaluated against MM5 
ground-truth.  The algorithms also work over land with snow and sea ice, but with a 
strong risk of false detections.  AMSU surface precipitation rates retrieved using the 
algorithm developed in this thesis reasonably agree with those retrieved for the Advanced 
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) aboard the 
Aqua satellite over both land and sea.  Surface precipitation rates retrieved using the 
Advanced Microwave Sounding Unit (AMSU) aboard NOAA-15 and -16 satellites were 



 4

further compared with four similar products derived from other systems that also 
observed the United States Great Plains (USGP) during the summer of 2004.  These 
systems include AMSR-E aboard the Aqua satellite, the Special Sensor 
Microwave/Imager (SSM/I) aboard the Defense Meteorological Satellite Program 
(DMSP) F-13, -14, and -15 satellites, the passive Tropical Rainfall Measuring Mission 
(TRMM) Microwave Imager (TMI) aboard the TRMM satellite, and a surface 
precipitation rate product (NOWRAD), produced and marketed by Weather Services 
International Corporation (WSI) using observations from the Weather Surveillance 
Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather Radar 
(NEXRAD) program.  The results show the reasonable agreement among these surface 
precipitation rate products where the difference is mostly in the retrieval resolution, 
which depends on instruments’ characteristics.  A technique for assimilating precipitation 
information from observed millimeter-wave radiances to MM5 model was proposed.  
Preliminary study shows that wind and other correction techniques could help align 
observations at different times so that information from observed radiances is used at 
appropriate locations.   
 
 
Thesis Supervisor: David H. Staelin 
Title: Professor of Electrical Engineering 
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Chapter 1 
 
Introduction 
 
Global monitoring of precipitation is important because of its significant human 
consequences.  However, accurate global observations of precipitation using satellites 
have been impeded by lack of reliable global ground truth.  Rain gauges, ground-based 
and satellite-borne radars, visible and infrared sensors, and various passive microwave 
sensors all have deficiencies.  For example, rain inhomogeneities, wind, and the lack of 
good global coverage significantly degrade rain gauge measurements.  Infrared satellite 
observations only see the tops of clouds, and almost all remote sensors respond to 
precipitation aloft, not that reaching the ground.  Radar is expensive and global coverage 
is sparse.  Both ground-based radars and passive microwave satellite sensors sense 
precipitation aloft and are generally unable to discern how much of that precipitation 
evaporates before impact.  Both are also sensitive to unknown local hydrometeor size, 
form, and vertical velocity distributions, as are simple single-frequency radars on 
satellites.  In addition, existing radar and satellite precipitation retrieval algorithms are 
largely based on error-prone backscattered signals and coincident rain gauge 
observations.  The resulting lack of adequate ground truth seriously complicates 
development and validation of global precipitation sensing methods. 
 

1.1  Problem Statement 
 
This thesis is composed of 6 main studies; five out of six were documented in five 
separate manuscripts for publication [1]-[5].  First, to overcome the lack of accurate 
global ground truth, this thesis starts by developing and validating the use of the 
MM5/TBSCAT/F(λ) model composed of a Numerical Weather Prediction (NWP) Model, 
MM5 [6], a forward radiance program, TBSCAT [7], and electromagnetic scattering 
models (F(λ)) for icy hydrometeors aloft [1], as a rich new statistical form of ground truth 
for global precipitation.  The MM5/TBSCAT/F(λ) model was validated by comparing its 
predicted brightness temperature distributions 50-191 GHz with those simultaneously 
observed by the Advanced Microwave Sounding Unit (AMSU) on operational NOAA-
15, -16, and -17 satellites for a global set of 122 storms between 83N and 73S over a year 
between July 2002 and June 2003 [1].  Second, sensitivity of predicted radiances to 
assumptions in MM5 and the radiative transfer model, and the robustness of predicted 
retrieval accuracies of millimeter-wave instruments were studied [2].  Third, appropriate 
specifications for geostationary microwave satellites and their precipitation retrieval 
accuracies were studied [3].  Fourth, a new global precipitation retrieval algorithm for 
AMSU was developed by using information from the MM5/TBSCAT/F(λ) model as a 
global ground-truth [4].  AMSU surface precipitation rates retrieved using the algorithm 
developed in this thesis were compared to those retrieved from the Advanced Microwave 
Scanning Radiometer for the Earth Observing System (AMSR-E) aboard the Aqua 
satellite [8]-[9] over both land and sea.  Fifth, AMSU surface precipitation rates retrieved 
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using the algorithm developed in this thesis were compared to the surface precipitation 
rate product (NOWRAD) [10] that was retrieved by the Weather Services International 
(WSI) from the Weather Surveillance Radar-1988 Doppler (WSR-88D) systems of the 
Next-Generation Weather Radar (NEXRAD) program and to those retrieved for the 
Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) 
aboard the Aqua satellite [9], the passive Tropical Rainfall Measuring Mission (TRMM) 
Microwave Imager (TMI) aboard the TRMM satellite [11], and the Special Sensor 
Microwave/Imager (SSM/I) aboard the Defense Meteorological Satellite Program 
(DMSP) F-13, -14, and -15 satellites [11], over the United States Great Plains from June 
to August of 2004 [5], where all observations are within the same 15-minute period.  
Sixth, this thesis also explores possibilities to assimilate satellite radiances into MM5 
with the objective of improving the model forecasts so that they are close to satellite 
observations as possible.  To help navigate this thesis, Table 1.1 lists important questions, 
short answers, and consequences of these 6 main studies appearing in chapters 4-10.  
 
 

TABLE 1.1 
IMPORTANT QUESTIONS, ANSWERS, AND CONSEQUENCES OF  

RESULTS FROM CHAPTERS 4-10 
Chapter Question Answer Consequence 

4 1. How well does 
MM5/TBSCAT/ F(λ) 
model match coincident 
satellite millimeter-wave 
observations?  
 

1. Reasonably well for 
convective, stratiform, 
snow, and non-glaciated 
precipitation using the 
Goddard explicit cloud 
model, TBSCAT with 
two streams, and Mie 
scattering from spheres 
with ice densities F(λ)  
found using DDSCAT 
for graupel and snow 

1. The MM5/TBSCAT/ 
F(λ) model could be 
used to simulate and 
evaluate alternative 
precipitation 
observation and retrieval 
concepts 

5 1. How sensitive are the 
simulated radiances to 
assumptions in MM5, the 
radiative transfer model? 
 
2. How well should 
millimeter-wave surface 
precipitation rate 
retrievals perform using 
AMSU, ATMS and 
GEostationary 
Microwave satellites 
(GEM)?  
 
3.  Are the predicted 

1. Fairly sensitive 
 
2. Reasonably well 
above ~1 mm/h 
  
 
3. Not very sensitive 

1. With the findings in 
Chapter 5, assumptions 
in the 
MM5/TBSCAT/F(λ) 
model and the MM5 
prediction should be 
close to reality 
 
2. MM5/TBSCAT/F(λ) 
model could be used as 
a global ground-truth for 
evaluating alternative 
millimeter-wave 
satellite designs and for 
developing methods for 
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accuracies sensitive to 
imperfections of MM5, 
TBSCAT, and F(λ)?  
 

retrieval and 
assimilation 

6 1. What specifications 
for Geo-microwave 
sounders appear 
attractive? 
 
2. How well should such 
Geo-microwave 
sounders perform? 
 
3. Does image 
sharpening technique 
help for filled-aperture 
antennas? 

1. 1.2-m micro-scanned 
filled-aperture antennas 
operating at 
118/166/183/380/425 
GHz  
 
2. Reasonably well 
except cell tops below 2 
km 
 
3. Yes, especially for 
small and isolated 
precipitation 

1.  Simple, practical, 
technologically mature 
geo-microwave 
sounders could be 
implemented 
 
2. Geo-microwave 
sounders could provide 
useful continuous 
mapping of important 
global precipitation at 
~15 minute intervals 
 
3. Image sharpening 
technique can increase 
resolution for filled-
aperture antennas and 
help capture small and 
isolated precipitation 
 

7 1. How good is the 
retrieval accuracy using 
the new algorithm 
AMSU? 
 
2. How do AMSU 
precipitation rate 
retrievals compare to 
those of AMSR-E? 

1. Reasonably good 
above ~1 mm/h (better 
for stratiform, worse for 
convective rain) 
 
2. Reasonably well 

1. The newly developed 
AMSU surface 
precipitation retrieval 
algorithm could be used 
operationally with 
reasonable accuracy 
 

8 1. How do AMSU 
precipitation rate 
retrievals compare to 
those of other 
instruments over land? 

1. Reasonably well 1. This emphasizes that 
the newly developed 
AMSU surface 
precipitation retrieval 
algorithm could be used 
operationally 

9 1. What are the 
difficulties in 
assimilating brightness 
temperatures into MM5? 

1. Rapid evolution, 
translation, and 
evaporation of 
precipitation  
 
2. Very large number of 
atmospheric variables 

1. Wind and other 
correction techniques 
could help align 
observations at different 
times  
2. Projected-principal 
component analysis 
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compared to number 
degrees of freedom in 
satellite radiance 
observations 

could help find key 
degrees of freedom that 
should be adjusted 

 

1.2  Prior Work 
 
This thesis constitutes 6 main studies appearing in Chapters 4-9.  Prior work for each 
main study is described in the introductions to these chapters. 
 

1.3  Thesis Outline 
 
Chapter 2 addresses background that helps understand this thesis, including thermal 
radiation, microwave interaction with atmospheric constituents, radiative transfer 
equation, image sharpening, aperture antennas, principal component analysis, neural 
network, and descriptions for AMSU.  Chapter 3 addresses details about MM5 model and 
globally representative storm systems used in this thesis. 
 
 Chapters 4-9 address 6 main studies and were written in order of how this thesis has 
evolved.  All results presented in Chapters 4-8 are from [1]-[5], respectively.  Chapter 4 
validates the MM5/TBSCAT/F(λ) model against AMSU observations.  Chapter 5 
addresses the sensitivity of predicted radiances to assumptions in MM5 and the radiative 
transfer model, and the robustness of predicted retrieval accuracies of millimeter-wave 
instruments.  Chapter 6 addresses appropriate specifications for geostationary microwave 
sounders and their precipitation retrieval accuracies.  Chapter 7 addresses the 
development of a new global precipitation retrieval algorithm for AMSU by using 
information from the MM5/TBSCAT/F(λ) model as a global ground-truth.  Chapter 8 
compares AMSU surface precipitation rates retrieved using the new algorithm developed 
in this thesis with those retrieved by other radar and microwave instruments.  Chapter 9 
presents the idea, difficult issues, and preliminary results for assimilating satellite 
radiances into MM5 with the objective of improving the model forecasts.  Chapter 10 
summarizes and concludes the thesis. 
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Chapter 2 
 
Background 
 

2.1  Thermal Radiation  
 
The solar electromagnetic radiation is the main source of energy in the planet.  From 
thermodynamic principles, absorbed electromagnetic energy by a material medium will 
be transformed to thermal energy that produces a rise in the temperature of the material.  
Hence, a substance has to radiate the same thermal energy it absorbs in order to have a 
finite absolute temperature.  This process is called thermal emission. 
 
 A blackbody is ideally defined as a material that absorbs all the incident radiation at 
all frequencies without any reflection and is thus also a perfect emitter.  From Planck’s 
radiation law, a blackbody radiates uniformly in all directions with an intensity of  
 

                                  ⎟
⎠
⎞⎜

⎝
⎛

−
=

1
12),,( /2

3

kThfbb ec
hffI φθ   [Wm-2sr-1Hz-1]                           (2.1) 

 
where ),,( φθfIbb  = blackbody radiation intensity [Wm-2sr-1Hz-1] 
           h = Planck’s constant = 6.63×10-34 [J] 
           f = frequency [Hz] 
           k = Boltzmann’s constant = 1.38×10-23 [JK-1] 
           T = physical temperature [K] 
           c = velocity of light = 3×108 [ms-1] 
 
 The factor of two in the numerator of (2.1) accounts for both polarizations.  In the 
Rayleigh-Jeans limit where 1/ <<kThf , (2.1) is reduced to 
 

                                         2
2),,(
λ

φθ kTfIbb ≅      [Wm-2sr-1Hz-1]                             (2.2) 

 
 Hence, the intensity, ),,( φθfIbb , is directly proportional to absolute temperature in 
the microwave region.  The brightness of a blackbody having a temperature T over a 
narrow frequency bandwidth fΔ  centered at a frequency f is  
 

                                 fkTffIB bbbb Δ=Δ= 2
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λ

φθφθ       [Wm-2sr-1]                       (2.3) 
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 Real materials, called grey bodies, reflect some incident energy and hence emit less 
than a blackbody does.  The brightness temperature, ),( φθBT  [K], for a homogeneous 
material having a uniform physical temperature of T is defined as 
 

                                     fTkB B Δ= ),(2),( 2 φθ
λ

φθ         [Wm-2sr-1]                                   (2.4)  

 
Or 
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TB =                                                        (2.5) 

 
and the emissivity, ),( φθε , is defined as 
 

                                          
T
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),(),(),( φθφθφθε ==                                                  (2.6) 

 
where bbBB ≤),( φθ  and thus, 1),(0 ≤≤ φθε  and TTB ≤),( φθ .  The reflectivity, ),( φθR , 
is the fraction of incident power reflected from the object.  Hence, from conservation of 
energy principles, 1),(),( =+ φθεφθR .   
 

2.2  Microwave Interaction with Atmospheric Constituents  
 
 The interaction between electromagnetic wave and atmospheric constituents could be 
divided into two main categories, including absorption and emission by atmospheric 
gases, and extinction and emission by hydrometeors. 
 

2.2.1  Absorption and Emission by Gases 
 
 In the microwave spectrum, oxygen and water vapor are the only constituents of the 
various gases in the earth’s atmosphere that exhibit significant absorption bands below 
the stratopause.  The oxygen molecule has absorption bands in the vicinity of 54, 118, 
and 425 GHz among others.  Water vapor has absorption bands in the vicinity of 22, 183, 
and 380 GHz among others.  Fig. 2.1 shows zenith opacity for the microwave spectrum 
for a ground-based zenith-observing radiometer in the clear sky situation.  The opacity of 
the atmosphere, θτ , is the optical depth of the entire atmosphere along a path at a zenith 
angle θ , and is defined as 
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where )(zeα  is the extinction coefficient.  Fig. 2.1 shows the opacity spikes around the 
oxygen and water vapor absorption bands, and the spectral coverage for microwave 
instruments.  Hence, satellite-borne radiometers having frequency channels observing at 
these frequencies would sense high in the atmosphere.  These channels are called opaque 
channels.  On the other hand, those observing at frequencies far away from these 
frequencies would be sensitive to the surface and are called window channels.  
Temperature and water vapor profiles are strongly correlated with precipitation.  The 
Advanced Microwave Sounding Unit (AMSU) observed primarily near the 54-GHz 
oxygen band and the 183-GHz water vapor band. 
 
 

 
Fig. 2.1. Zenith opacity for the microwave spectrum for a ground-based zenith-observing 
radiometer in the clear sky situation and spectral coverage for microwave instruments. 

 
 

2.2.2  Extinction and Emission by Clouds and Hydrometeors  
 
Hydrometeors are liquid or frozen water particles either suspended or falling in the 
atmosphere, including rain water, cloud liquid water, cloud ice, snow, and hail/graupel, 
for example.  Consider an electromagnetic wave with the power density iS  [Wm-2] that 
propagates in the atmosphere and is incident upon a suspended material particle of 
geometrical cross-sectional area A.  The particle could be a rain drop, snow, graupel/hail, 
or a cloud ice particle, for example.  Some part of the energy will get absorbed by the 
particle and some will be scattered in all directions.  The absorption cross-section aQ  is 
the ratio of absorbed power aP  to incident power density iS : 
 



 28

                                                         
i

a
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PQ =            [m2]                                               (2.8) 

 
and the absorption efficiency factor aξ  is the ratio of aQ  to the physical cross-section A, 
which is   
 

                                                         2r
Qa

a π
ξ =                                                                 (2.9) 

 
for a spherical particle of radius r, 2rA π= .  The scattering cross-section sQ  and the 
scattering efficiency factor sξ  are similarly defined as  
 

                                                         
i

s
s S

PQ =             [m2]                                            (2.10) 

                                                         2r
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s π
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where sP  is the total power scattered by the particle. 
 
 The total power removed from the incident wave is sa PP + , and the corresponding 
extinction cross-section eQ  and efficiency eξ  are 
 
                                     sae QQQ +=        [m2]                                            (2.12) 

       sae ξξξ +=                                                             (2.13) 
 
 The scattering and absorption of electromagnetic waves by a dielectric sphere of 
arbitrary radius r could be solved by Mie’s theory [12] using an iterative computational 
procedure [13].  Rayleigh approximations could be used when the particle size is much 
smaller than the wavelength of the incident wave.  The scattering and absorption of 
electromagnetic waves by arbitrary shapes could be approximated using the Discrete-
Dipole Approximation method [14], which is described later in Section 4.3.1.  These 
cross-sections are functions of mass, size, frequency, dielectric permittivity, shape, 
orientation, and polarization.  Dielectric permittivity is a function of temperature and 
frequency and is computed using [15] and [16] for water and ice, respectively. 
 

Consider a volume of rain or ice where particles are randomly distributed so that 
there are no coherent phase relationships between fields scattered by these particles.  The 
total scattering cross-section of a given volume is thus equal to the sum of the scattering 
cross-sections of all particles contained in the volume.  The scattering coefficient is equal 
to 
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where )(rp  is the drop-size distribution describing number of particles having different 
drop radii, r [m], in the volume.  Similarly, absorption ( aα ) and extinction ( eα ) 
coefficients are, respectively 
 

                                               drrQrp a

r

r
a )()(

2

1

∫=α             [Np m-1]                             (2.15) 

 
and 
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2.2.3  Dielectric Constant of Ice and Ice Factor (F(λ)) 
 
Snow and graupel are heterogeneous materials composed of ice and air.  In an attempt to 
reproduce an approximate electromagnetic description of these materials, a mixing rule 
[17]-[18] is used to compute the effective permittivity.  The effective permittivity of a 
random medium, effε , is defined as:  
 

              ED effε=                                                             (2.17) 
 

where D  = average displacement 
      E  = average electric field  
with the limitation that the inhomogeneity has to be smaller scale than the wavelength. 
 
 The effective permittivity of a random medium, effε , is characterized by the ice 
factor, F(λ), which is a fractional volume of ice in an air matrix.  Since the density of ice 
is ~1 [g cm-3], ice factor is an inherent density of the heterogeneous mixture.  For a given 
mass, it gives the volume of the mixture. 
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Fig. 2.2. A mixture model for icy hydrometeors. 

 
 

 Equations (13) and (14) in [17] were used to compute the effective permittivity for a 
mixture of air and ice, and υ  was from equation (22) in [18], where spherical ices with 
complex permittivity ''

1
'
11 εεε j−=  are  inclusions occupying a volume fraction F(λ), and 

air with permittivity 0ε  is the background material, as Fig. 2.2 shows.  If the losses of the 
inclusions are small and the background material is lossless, the real and imaginary parts 
of the effective permittivity '''

effeffeff jεεε −=  can be solved approximately as: 
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 It is interesting to consider two extremes.  First, 0)( =λF  means that the mixture is 
purely air without ice.  effε has to be equal to 0ε .  Second, 1)( =λF  means the mixture is 

purely ice without air.  effε  has to be equal to ''
1

'
11 εεε j−= .  Let us consider these two 

extremes in detail. 
 
 When 0)( =λF ,    
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Substitute (2.28) in (2.29), 0'' =effε .  Hence, when 0)( =λF , 0εε =eff  as it should be.  
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Substitute (2.40) in (2.42), ''

1
'' εε =eff .  Hence, when 1)( =λF , 1εε =eff  as it should be. 

 

2.3  Radiative Transfer Equation 
 
Radiative transfer is the equation describing the flow of radiant energy to be measured by 
a radiometer.  In the non-scattering atmosphere, contributions to observed brightness 
temperature at the top of the atmosphere are from four components [19] 
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, as Fig. 2.3 shows, where ∫=
L

z
a dzzz )()( ατ  is the optical depth, and )(zaα  is the 

absorption coefficient [Np m-1].  The first term is the contribution from the sky 
brightness, cT , propagating downward and reflecting from the ground back to the top of 
the atmosphere.  Energy is attenuated twice by the atmosphere ( oe τ2− ).  The second term 
corresponds to radiation emitting downward by the atmosphere and then reflected back 
upward by the surface.  The third term is the energy radiated from the surface, which is 
equal to the surface emissivity ε  times the ground temperature sT , attenuated once by 

oe τ− .  The fourth term is the direct emission by the atmosphere.  The surface reflectivity 
R  is equal to ε−1 .   
 
 

 
Fig. 2.3. Geometry for observed radiation, including reflected components [19]. 

 
 

 Radiometers operating in the 50-60 GHz oxygen band are used to derive temperature 
profiles in clear and cloudy atmospheres.  Measurements around the 22-GHz water-vapor 
line are used to obtain column water abundance and the measurements around the 183-
GHz water vapor line are used to obtain humidity profiles.  To see effect of temperature 
and water vapor profiles on observed brightness temperatures, assume the surface 
reflectivity 0=R  for simplicity.  (2.43) is reduced to  
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α  is called the weighting function. 
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 Consider a more general situation involving scattering.  Since clouds and rain cells 
have horizontally large scales compared to their vertical scale, a plane-parallel 
atmosphere is often useful for computing brightness temperatures.  Fig. 2.4 shows the 
geometry for a plane-parallel atmosphere.  Three processes are involved in the change in 
intensity, I, as it propagates through a layer of atmosphere.  The first, second, and third 
terms are due to attenuation by extinction, multiple scattering, and emission from the 
layer, respectively.  The general equation of radiative transfer for plane-parallel 
atmospheres is  
 

   )]([''
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     (2.45) 

 
where θμ cos= , φ  is the azimuthal coordinate, aα , sα , and eα  are the absorption, 
scattering, and extinction coefficients, respectively, and )',',,( φμφμP  is the phase 
function denoting the redirection of the incoming intensity defined by )','( φμ  to the 

outgoing intensity defined by ),( φμ .  Define the single-scattering albedo 
e

s

α
αω =  or 

e
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αω =−1  and the optical depth ∫
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Fig. 2.4. Geometry for plane parallel atmosphere. 
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2.3.1  Method of Successive Orders of Scattering 
 
(2.48) can be solved many ways [20].  The successive orders of scattering method is very 
intuitive and gives good physical understanding.  Number of times that photons scatter 
and contributions of each scattering time to the total brightness temperature for a given 
atmospheric profile could be computed.  Since (2.48) is linear, superposition can be 
applied, that is, 
 
                       .....)2,,;()1,,;()0,,;(),;( +++= ndTstTthTT φμτφμτφμτφμτ             (2.49) 
 
where )0,,;( thT φμτ , )1,,;( stT φμτ , )2,,;( ndT φμτ  are brightness temperature 
components from no scattering, scattering once, and scattering twice, respectively.  From 
(2.48), the zeroth-order scattering component, )0,,;( thT φμτ , is 
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d
thdT −+−=−                              (2.50) 

 
Multiply both sides by τ−e  and integrate over thickness dz from τ  to 1τ  leading to 
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Consider a slab with an equilibrium temperature T1 and optical depth 1τ .  (2.52) becomes 
 
                            )1()1()0,,;()0,,;0( 11

11
ττ ωφμτφμ −− −−=− eTethTthT                      (2.53) 

 
Hence, we have  
 
                            )1()1()0,,;()0,,;0( 11

11
ττ ωφμτφμ −− −−+= eTethTthT                       (2.54) 

 
 The successive order method is very intuitive and is best illustrated by a simple 
example.  Fig. 2.5 shows a simple atmospheric model composed of 2 layers.  Let us 
compute observed brightness temperature at the top of the atmosphere.  Left of the 1st 
layer is the ground, and right of the 2nd layer is the sky.  Assume aα  = 0.01, sα  = 0.09, 
and zΔ = 1 km for both layers.  Hence, eα  = 0.1 and τΔ = 0.1.  Consider two-stream, 
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forward and backward, situation with asymmetry g = 0.5 for both layers and assume I is 
independent of azimuthal coordinate.  In the two-stream situation, fractions of power 
scattering forward and backward are equal to )1(5.0 g+  and )1(5.0 g− , respectively.  
Calculations below show how the method of successive orders of scattering works. 
 
 

 
Fig. 2.5. Geometry for SOS example (1). 

 
 

Step 1: compute zeroth-order brightness temperatures at boundaries as power propagates 
downward from the top of the atmosphere. 
 
 

 
Fig. 2.6. Geometry for SOS example (2). 

 
 

Apply (2.54), we have  
3)0(3 =− thT  

6178.4)1)(9.01(2003)0( 1.01.0
2 =−−+= −−− eethT  

1768.6)1)(9.01(2106178.4)0( 1.01.0
1 =−−+= −−− eethT  

0884.153)5.01(3005.01768.6)0(1 =−+⋅=+ thT  
5185.140)1)(9.01(2100884.153)0( 1.01.0

2 =−−+= −−+ eethT  
0496.129)1)(9.01(2005185.140)0( 1.01.0

3 =−−+= −−+ eethT  
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where these components are illustrated in Fig. 2.6. 
 
Step 2: compute intensity lost from 1st scattering in both layers. 
 
 

 
Fig. 2.7. Geometry for SOS example (3). 

 
 
Layer #1: 

1761.13)1(0884.153)1)(0()0( 09.0
111

1 =−=−= −−+ eethTthL dzsα  
3974.0)1(6178.4)1)(0()0( 09.0

212
1 =−=−= −−− eethTthL dzsα  
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1)0( 12111 =⎟
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⎝
⎛ −+⎟
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⎜
⎝
⎛ += LgLgthL p  
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2

1
2

1)0( 12111 =⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −= LgLgthL m  

where 11L  and 12L  are scattering losts due to propagation of )0(1 thT +  and )0(2 thT −  
through the atmospheric layer #1, respectively.  )0(1 thL p  and )0(1 thL m  are illustrated in 
Fig. 2.7. 
Similarly, Layer #2: 

0943.12)1(5185.140)1)(0()0( 09.0
221

2 =−=−= −−+ eethTthL dzsα  
2582.0)1(3)1)(0()0( 09.0

322
2 =−=−= −−− eethTthL dzsα  

1353.9
2

1
2

1)0( 22212 =⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ += LgLgthL p  

2172.3
2

1
2

1)0( 22212 =⎟
⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛ −= LgLgthL m  

 
Step 3: compute sources, ijJ , from scattering, as illustrated in Fig. 2.8, to be used for 
computation of next order brightness temperatures. 
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Fig. 2.8. Geometry for SOS example (4). 
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Step 4: compute 1st order brightness temperatures. 

6086.1)0()1( 33 ==− thJstT m  
8602.44047.36086.1)1()1( 1.0

232
2 =+=+= −Δ−−− eJestTstT m

τ  
1937.67960.18602.4)1()1( 1.0

121
1 =+=+= −Δ−−− eJestTstT m
τ  

0876.89907.41937.65.0)1()1( 111 =+×=+⋅= −+
pJstTRstT  

8764.165584.90876.8)1()1( 1.0
212

1 =+=+= −Δ−++ eJestTstT p
τ  

8381.195677.48764.16)1()1( 1.0
323

2 =+=+= −Δ−++ eJestTstT p
τ  

 
Now, iterate steps 2, 3, and 4, respectively, that is, 
 
Compute lost from scattering in both layers. 

6961.0)1(0876.8)1)(1()1( 09.0
111

1 =−=−= −−+ eestTstL dzsα  
4183.0)1(8602.4)1)(0()1( 09.0

212
1 =−=−= −−− eethTstL dzsα  
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Compute source from scattering to be used to compute next order brightness 
temperatures. 
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Compute 2nd  order brightness temperatures. 

2326.0)1()2( 33 ==− stJndT m  
6870.04765.02326.0)1()2()2( 1.0

232
2 =+=+= −Δ−−− estJendTndT m

τ  
8655.02439.06870.0)1()2()2( 1.0
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1 =+=+= −Δ−−− estJendTndT m
τ  

7462.03134.08655.05.0)1()2()2( 111 =+×=+⋅= −+ stJndTRndT p  
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Keep repeating these steps until +

3T  becomes a very small number.  The brightness 
temperature observed at the top of the atmosphere is equal to 

++++= +++ ...)2()1()0( 333 ndTstTthTTb higher order terms.  Application of method of 
successive orders of scattering is illustrated in Section 7.3.5.  
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2.3.2  TBSCAT 
 
TBSCAT is an efficient radiative transfer program by P. W. Rosenkranz, where the 
radiative transfer equation (2.48) in a planar-stratified atmosphere with multiple 
scattering is solved by numerically integrating an ensemble of trial functions that are 
constructed to satisfy the boundary conditions at the top of the atmosphere [7] and the 
boundary conditions at the surface are imposed after integration through the atmosphere.  
It assumes that the radiance I is independent of azimuthal coordinate and the phase 
function is scalar.  Its two-stream variant is used here in this thesis. 
 

2.4  Image Sharpening 
 
The power spectrum propagating down a single-mode transmission line [19] from a 
matched load at temperature T is  
 

                                         
1

)(
−

≅+ kThfe
hffP         [WHz-1]                                           (2.55) 

 
In the Rayleigh-Jeans limit where kThf << , (2.55) is reduced to  
 
                                              kTfP ≅+ )(         [WHz-1]                                               (2.56) 
 
Hence, the total thermal power within some bandwidth B [Hz] is  
 
                                                 kTBP ≅   [W]                                                              (2.57) 
 
If a transmitter having antenna gain ),( φθTG  transmits a power of TP , with the 
assumption that the signals arriving from different directions are statistically independent, 
the power received at the receiver at a distance R  away from the transmitter is 
 
                                Ω⋅= ∫ dfIfAfP rrr ),,(),,()(

4

φθφθ
π

    [WHz-1]                            (2.58) 

 
where ),,( φθfAr  is the effective area of the receiver’s antenna and has relationship with 
the gain of the receiver’s antenna ),,( φθfGr  as 
 

                                     ),,(
4

),,(
2

φθ
π
λφθ fGfA rr =       [m2]                                       (2.59) 

 
and ),,( φθfIr  [Wm-2Hz-1ster-1] is the intensity at the receiver and is equal to 
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Power received at the antenna is generally coupled to a coaxial cable, which is a TEM 
transmission line.  In the Rayleigh-Jeans limit, power spectrum in (2.56) and (2.60) are 
equal.  Hence, the antenna temperature can be obtained by equating (2.56) and (2.60) 
 
                                   Ω= ∫ dIAkT rrA

π

φθφθ
4

),(),(       [WHz-1]                                    (2.61) 

 
If the antenna can intercept both polarizations, then each polarization would yield its own 
separate AT .  Substituting the Rayleigh-Jeans expression for intensity 2λBr kTI =  for 
each polarization yields 
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    [K]                                        (2.63) 

 
 The following explains how to estimate the true sky brightness distribution )( SBT φ  

as a function of the two-dimensional source angle Sφ , where the overbar signifies a 

vector quantity.  The finite resolution antenna is pointed at angle Aφ  at any instant, and 
the antenna response to radiation arriving from the source angle Sφ  depends on the 

antenna gain in that direction, )( SAG φφ − .  If the radiation arriving from different angles 

is uncorrelated, then (2.63) applies and the antenna temperature )( AAT φ  becomes 
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                                             )()(
4
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where “∗ ” signifies two-dimensional convolution.  Fourier transforming (2.65) from 
angular coordinates φ  into angular frequency coordinates s  [cycles/radian],  
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Where 
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and underbar signifies a complex quantity. 
 
 From (2.65), the antenna brightness temperature, )( AAT φ , is a blurred function of the 
true brightness temperature, )( ABT φ .  We can see from (2.66) that )( ABT φ  can be 
estimated as  
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(2.68) 
 
where ^ signifies estimated value and 1−F  is the inverse Fourier transform.  In the no-
noise situation, the optimum window function )(sWoptimum  for deblurring is a 2-D boxcar 

just to avoid the singularity introduced at angular frequencies s  for which the gain is 
zero.  In general situation, the antenna temperature )( AAT φ  is corrupted by noise.  With 
the reasonable assumption that the antenna temperature and receiver noise contributions 
are uncorrelated, the optimum window function can be shown [19] to be 
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which is a 2-D boxcar tapered gently to zero where the signal-to-noise-ratio (SNR) is 
low.  From (2.68), the sharpening pattern is 
 
                                            { })()( 1 sWFGsharpening

−=φ                                                   (2.70) 
 
Application of image sharpening is illustrated in Section 6.3.2.  
 

2.5  Aperture Antennas 
 
Fig. 2.9 shows an aperture in the x-y plane picking up multiple plane waves arriving from 
different directions ),( yx ϕϕ .  Typically these waves are statistically independent and that 
is assumed here.  By integrating contributions from all separate plane wave arriving from 
different directions, ),( yxE ϕϕ , over π4  steradians, the total observed complex electric 

field distribution on the aperture, ),( yxE , can be written as [19] 
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ϕϕ
λ
π

π
ϕϕ                                 (2.71)  

 
where an underbar and upperbar denote a complex quantity and a vector, respectively.  
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The electric field pattern, ),( yxE ϕϕ , can be written as 
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Ayx

)(2
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π
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∫≅                                           (2.72)  

 
where A is the area of the aperture and λ  is the wavelength. 
 

 

Fig. 2.9. An aperture antenna [19]. 
 

By defining λλ xx =  and λλ yy = , (2.71) and (2.72) become 
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and  
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 (2.73) and (2.74) are a Fourier transform pair.  Hence, the autocorrelation function, 
)( λτER , of the electric field distribution in the aperture, ),( λλ yxE , can be related to the 

angular intensity, ),( yxI ϕϕ , of transmitting or arriving electric fields, ),( yxE ϕϕ , in 
different directions as  
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where 
~
↔  denotes a Fourier transform pair, ↓  denotes one way relationship, which is not 

reversible, ∫ ∫
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*
, ),( yxG ϕϕ  is the antenna gain of the 

transmitting antenna, and oη  is the characteristic impedance of the free space equal to 

πεμ 120=oo  [Ω].   

For narrowband uncorrelated stochastic signals, (2.75) becomes 
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where []E  is the expectation operator, )]()([)( * txtxEx ττφ −= , ),( fI ϕ  is the intensity, 

),( fTB ϕ  is the brightness temperature, and ↔  and  are time/frequency and 
space/angle Fourier transforms, respectively.       

 

2.5.1  Filled-Aperture Antennas 
 
(2.75) shows that the antenna gain of the transmitting antenna, ),( yxG ϕϕ , is proportional 
to a magnitude squared of the Fourier transform of the electric field distribution in the 
aperture, ),( λλ yxE .  Hence, a uniformly-illuminated circular aperture with a diameter D  
[m], which has a Fourier transform equal to a sinc function, yields 3-dB beamwidth  

DB
λθ 2.1

≅  radians.  In practice, there is a tradeoff between the antenna resolution and the 
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amplitude of sidelobes.  The electric field distribution is generally tapered toward the 

edges to reduce sidelobes.  A reasonable illumination tapering yields 
DB
λθ 3.1

≅  radians.  

As discussed in Section 2.4, Nyquist sampling and image sharpening can increase the 
resolution with some noise amplification. 
 

2.5.2  Passive Aperture Synthesis 
 
Passive aperture synthesis combines signals intercepted by multiple small apertures to 
yield the angular response characteristics of much larger antennas.  (2.77) illustrates the 
important relationship between autocorrelation function, ),( fE λτφ , and angular 

distribution of the intensity, ),( fI ϕ .   
 

 
 
Fig. 2.10. A U-shaped antenna array and its corresponding observed space of 
autocorrelation function. 
 
 Fig. 2.10 shows a U-shaped antenna array with three equal length arms of length A 
and the spacing between adjacent antennas equal to L and its corresponding observed 
space of autocorrelation, which is equivalent to the weighting function ( )λτW  times the 

true autocorrelation function ),( fE λτφ .  Note that an autocorrelation function is 

conjugate symmetric, that is, ),(),( * ff EE λλ τφτφ −= .  The dimension of the observed 

autocorrelation function is a square of 2A×2A.  Note that the observations of ),( fE λτφ  is 
composed of discrete samples arranged on a square.  Hence, what is actually observed is  
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                                   )(),()(]2/),([ ϕϕτητφ λλ WfIWBf oE
∗↔⋅                            (2.78) 

 
where ∗  is the convolution.  Fig. 2.11 shows graphically the effect of discrete sampling 
of an autocorrelation function. 
 

 
Fig. 2.11. Resolution and aliasing of synthesized images due to discrete samples of 
autocorrelation function [19]. 
 

Hence, the antenna beamwidth 
AB 2
λθ =  and there is aliasing in synthesized images every 

L
λ  because of the discrete nature of observation, as Fig. 2.12 shows.  

L
λ  has to be chosen 

appropriately so that the effect of aliasing is acceptable.  Since a sinc function is infinitely 

long, there is still aliasing no matter how large 
L
λ  is, but its effect will be less as the 

amplitude of a sinc function gets smaller for increasing 
L
λ .  Application of aperture 

antenna concept is illustrated in Chapter 6. 
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Fig. 2.12. Synthesized image with aliasing [19]. 

 
 

2.6  Principal Component Analysis (PCA) 
 
A multivariate dataset, such as brightness temperatures observed by satellites, generally 
contains a large number of variables with high correlations among them.  This multi-
dimensional dataset can be compressed to lower dimensions with little loss of 
information using principal component analysis (PCA) to eliminate correlations among 
the variables.  PCA is also called as Karhunan-Loeve expansion.  It could also be used to 
get rid of unwanted noise in the dataset, which is illustrated later in Section 7.4.  There 
are variants of PCA with different objectives. 
 

2.6.1  Basic PCA 
 
Let x  be a zero-mean random vector with dimension of n, that is, [ ]Tnxxxx ⋅⋅⋅= 21 .  

A reduced-dimension data vector is [ ] xWyyyy TT
m =⋅⋅⋅= 21  with dimension of m 

where m<n could be found using PCA with the main objective to optimally minimize 
mean-square reconstruction error, where W is an n-by-m transform matrix.  The cost 
function is  
 

                                                   )]()[()(
∧∧

−−=⋅ xxxxEC T                                            (2.79)          
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where 
∧

x  is the reconstruction estimate of the original data, x .  PCA is also often used to 
get rid of noises or unwanted signals that are embedded in the original data, x .  PCA 
linearly transforms the data to a new coordinate system such that projection of the data on 
the first coordinate, called the first principal component, has the greatest variance, 
projection of the data on the second coordinate, called the second principal component, 
has the second greatest variance, and so on. 
 
 The first principal component is xwT

1 , where w1 is defined as 
 
                                            }]{[maxarg 2

1
1 xwEw T

w =
=                                             (2.80) 

 
w1 has the same dimension, n, as x.  Having found the first k-1 principal components, the 
k-th principal component is xwT

k , where 
 

                                   }])({[maxarg 2
1

11
∑
−

==
−=

k

i

T
ii

T

w
k xwwxwEw                                     (2.81) 

 
The reduced-dimension data y has dimension m, where m<n can be obtained by  
 
                                             xwwwy T

m ]|||[ 21 ⋅⋅⋅=                                                 (2.82) 
 
and the reconstructed estimate of x is 
 

                                                       xWWx T=
∧

                                                            (2.83) 
 
 Computation of wi could be shown [21] to be eigenvectors of xxC  corresponding to n 
largest eigenvalues.  Intuitively, ]|||[ 21 nn wwwW ⋅⋅⋅=  spans subspace of xxC .  So, if we 
want to reduce the dimension of the subspace spanning by iw  from n dimensions to m 
dimensions with the cost function in (2.79), we want to keep m eigenvectors iw  that 
capture most variance in x.  Application of basic PCA is illustrated in Section 7.4.  
 

2.6.2  Projected Principal Component Analysis (PPC) 
 
PPC is a flavor of PCA.  Let us assume that a multivariate signal, x, is a random vector 
with a dimension of n. The main objective of PPC is to find a reduced-dimension data 
vector xWy T=  with a dimension m, where m<n, from the original data x such that the 
resulting mean-square error is minimized when we linearly estimate s from y.  That is a 
reduced-dimension data y keeps information about s in x as much as possible in the linear 

least-square sense for a given dimension of y.  The linear least-squares estimate 
∧

s  of s  is 
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                     xWWCWWCyCCs T
xx

T
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11 ][ −−
∧

==                                      (2.84) 
 
where sxC is the cross-covariance of s and x.  The cost function to be minimized is  
 

                                              )]()[()(
∧∧

−−=⋅ ssssEC T                                                  (2.85)                               
 
W that minimizes (2.85) can be shown [21] to be the m right eigenvectors with highest 
singular values of the reduced-rank regression matrix mL  
 
                                                  1−= xxsx

T
mmm CCVVL                                                         (2.86) 

 
where ]|||[ 21 mm vvvV ⋅⋅⋅=  are m most-significant eigenvectors of xsxxsx CCC 1− .   
 
 PPC could be understood intuitively.  Say, we want to estimate a zero-mean random 
vector s from x having a dimension of n by using linear least-squares estimation, the 

linear- least-squares estimate of s  is LxxCCs xxsx == −
∧

1  where 1−= xxsxCCL  is the regression 
matrix.  The error covariance is equal to xsxxsxss CCCC 1−− .  Let eigenvectors 

]|||[ 21 nn vvvV ⋅⋅⋅=  span the subspace of xsxxsx CCC 1− .  To minimize the error covariance 

xsxxsxss CCCC 1−− , we want xsxxsx CCC 1−  to be as large as possible.  So, if we want to reduce 
the dimension of the subspace spanning by ]|||[ 21 nn vvvV ⋅⋅⋅=  from n dimensions to m 
dimensions with the cost function in (2.85), we want to keep m most significant 
eigenvectors of nV .  Hence, the reduced-rank regression matrix mL  becomes (2.86) and 
PPC of x is equal to xW T , where W is the m right eigenvectors with highest singular 
values of the reduced-rank regression matrix mL .  Application of PPC is illustrated in 
Section 9.2.  
 

2.7  Neural Network (NN) 
 
The relationship between atmospheric parameters and brightness temperatures observed 
by satellites is very complex and nonlinear.  Hence, the optimal estimator should be 
nonlinear.  A neural network is composed of interconnecting artificial neurons working in 
parallel.  It was designed to mimic biological nervous system.  It can be used to learn and 
compute complex functions for which the relationships between inputs and outputs are 
unknown or computationally complex and is useful for pattern recognition, classification, 
and estimation.  Fig. 2.13 shows a multilayer neural network, where xi is the ith input, n 
is the number of inputs, wij is the weight associated with the ith input to the jth node, bi is 
the bias of the ith neuron, m is the number of neurons in the hidden layer, f is the transfer 
function in the hidden layer, vi is the weight between the ith neuron and the output 
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neuron, c is the bias of the output neuron, g is the transfer function of the output node, 
and y is the output, which is  
 

                                     ⎟⎟
⎠

⎞
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⎝
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⎜
⎝
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1 1
                                     (2.87) 

In this thesis, f(x) was chosen to be a nonlinear function to capture nonlinear relationship 

between inputs and output, and g(x) is a linear function, that is, xx

xx

ee
eexxf −

−

+
−== tanh)( , 

and xxg =)( . 

 The most important assumption when applying a neural network is that the training 
data composed of vectors of inputs and output is a good representative of most, if not all, 
possible relationships.  To train a neural network, a general practice is to divide training 
data into three disjoint sets, including training, validation, and testing sets.  The training 
set is used by the neural network to adjust its weights and biases during the training to 
minimize a defined cost function.  The validation set is used to determine when the 
training should stop to avoid over-training the neural network.  The testing set is used to 
evaluate the resulting neural network.  Applications of neural networks are illustrated in 
Chapters 4-9.  

 

 

Fig. 2.13. A 2-layer feedforward neural network with one output node [22]. 
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2.8  Advanced Microwave Sounding Unit (AMSU) 
 
The Advanced Microwave Sounding Units (AMSU) on the operational satellites NOAA-
15, -16, and -17, and -18 have been providing extensive observations of millimeter-wave 
spectral images of Earth at 20 frequencies (19 on NOAA-18) since May, 1998.  AMSU is 
composed of two units, AMSU-A and AMSU-B (the Microwave Humidity Sounder 
(MHS) replaces AMSU-B on NOAA-18), and observes the frequencies and bandwidths 
shown in Tables 2.1 and 2.2.  AMSU-A observes 15 channels centered mostly in oxygen 
absorption bands with 50-km resolution near nadir, and AMSU-B observes five channels 
near water vapor resonances with 15-km resolution near nadir [23]-[24].   
 
 AMSU-A and AMSU-B scan cross-track ±48.33 and ±48.95 degrees from nadir, 
respectively, mapping a ~2200 km swath beneath the spacecraft with 30 AMSU-A views 
and 90 AMSU-B views.  Similar microwave sounding instruments include 
AMSU/Humidity Sounder for Brazil (HSB) [25] on the NASA Aqua satellite and the 
future Advanced Technology Microwave Sounder (ATMS) [26] on NPOESS.  HSB 
resembles AMSU-B with the lack of the 89-GHz channel, and the spatial resolution of 
the AMSU-A channels are improved to ~33 km on ATMS, along with the addition of two 
channels.  Tables 2.1 and 2.2 list for each AMSU channel the frequencies, bandwidths, 
and altitudes where the temperature weighting function peaks, based on nadir views of 
the 1976 U.S. standard atmosphere over a non-reflecting surface.  Fig. 2.14 shows 
weighting functions for AMSU-A and AMSU-B channels. 
 
 

TABLE 2.1 
FREQUENCIES, BANDWIDTHS, WEIGHTING FUNCTION PEAK HEIGHTS COMPUTED USING THE 

1976 US STANDARD ATMOSPHERE AT NADIR OVER A NONREFLECTIVE SURFACE, AND 
RADIOMETRIC SENSITIVITY VALUES FOR AMSU-A 

Ch Channel Frequencies  
(MHz) 

Bandwidth  
(MHz) 

Weighting 
Function Peak 
Height (km)  

NEΔT Measured at 
18 degree C 

1 23,800±72.5 2×125 0 0.211 
2 31,400±50 2×80 0 0.265 
3 50,300±50 2×80 0 0.219 
4 52,800±105 2×190 0 0.143 
5 53,596±115 2×168 4 0.148 
6 54,400±105 2×190 8 0.154 
7 54,940±105 2×190 9.5 0.132 
8 55,500±87.5 2×155 12.5 0.141 
9 57,290.344±87.5 2×155 16.5 0.236 
10 57,290.344±217 2×77 20.5 0.250 
11 57,290.344±322.2±48 4×35 24.5 0.280 
12 57,290.344±322.2±22 4×15 29.5 0.400 
13 57,290.344±322.2±10 4×8 34.5 0.539 
14 57,290.344±322.2±4.5 4×3 40.5 0.914 
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15 89,000±1000 2×1000 0 0.116 
 
 

TABLE 2.2 
FREQUENCIES, BANDWIDTHS, WEIGHTING FUNCTION PEAK HEIGHTS COMPUTED USING THE 

1976 US STANDARD ATMOSPHERE AT NADIR OVER A NONREFLECTIVE SURFACE, AND 
RADIOMETRIC SENSITIVITY VALUES FOR AMSU-B 

Ch Channel Frequencies  
(GHz) 

Bandwidth  
(GHz) 

Weighting 
Function Peak 
Height (km)  

NEΔT Measured at 
16 degree C 

1 89±0.9 2×1 0 0.35 
2 150±0.9 2×1 0 0.76 
3 183.31±1 2×0.5 6.1 0.98 
4 183.31±3 2×1 4.0 0.68 
5 183.31±7 2×2 1.8 0.55 

 
 

 
Fig. 2.14. AMSU-A and AMSU-B weighting functions, where numbers indicate channel 
numbers. 
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Chapter 3    
 
A Numerical Weather Prediction Model 
MM5 
 
MM5 [6] is the fifth-generation NCAR/Penn State Mesoscale Model used for numerical 
weather prediction research and mesoscale modeling applications. It is a nonhydrostatic, 
three-dimensional, limited-area, primitive-equation, nested grid model with a terrain-
following vertical coordinate. NOAA NCEP global atmospheric analyses 
(http://dss.ucar.edu/datasets/ds083.2/) from the National Center for Atmospheric 
Research (NCAR) were used for temporal and spatial boundary conditions in this study.  
These analyses have 1-degree resolution at 0Z, 6Z, 12Z, and 18Z for 24 pressure levels 
extending to 10 mbar.  MM5 employs nested grids or domains, where the outermost grids 
have reduced resolution, as listed in Table 3.1 along with domain sizes and time steps.  
All domains are co-centered and have thirty-four terrain-following levels. Planetary 
boundary layer parameterization for the Medium-Range Forecast model [27] was used 
for all three domains. 
 
 Although the positions of MM5-predicted 15-km scale convective cells are 
meaningful only on the ~100-km scales of the NCEP initialization data, the statistics of 
their predicted microwave emission on a 15-km scale are generally consistent with 
satellite observations for ice habits observed aloft, as Chapter 4 shows later. 
 

3.1  MM5 Physic Options and Domain Configurations  
 
MM5 offers 7 implicit schemes and 8 explicit schemes for treating precipitation [6] and 
one of each is chosen for each domain.  The explicit and implicit schemes treat resolved 
and unresolved precipitation, respectively, where unresolved precipitation is 
characterized by the aggregate nature and effects of precipitation averaged over a region 
that could, for example, include multiple independent convective cells.  Kain-Fritsch has 
been shown to perform best among implicit schemes [28], and a newer version, Kain-
Fritsch 2 [29], was used in this study for the lower resolution grids--domain1 and 
domain2.  The implicit output of Kain-Fritsch 2 does not include the hydrometeor 
profiles needed to compute brightness temperatures, although it does forecast surface 
precipitation rates.  Since the domain3 5-km grid size is so small, no implicit scheme is 
needed there and only the explicit scheme is used [6].  
 
 Only three explicit schemes available to us--Goddard [30], Reisner 2 [31], and 
Schultz [32]--have complete sets of frozen hydrometeor types.  These three options were 
tested while keeping other options identical.  Whereas Goddard and Reisner 2 agreed 
well with coincident satellite observations, Schultz generally predicted too little 
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precipitation coverage and intensity, as illustrated in Fig. 3.1 for a representative storm.  
Note the general agreement between AMSU observations and MM5 predictions, although 
the detailed positions of convective cells differ somewhat due to coarse initialization and 
the role of chaos.  Since Reisner 2 required 17 percent more computer time than 
Goddard, Goddard was used in this study.  Goddard microphysics includes a 
parameterized Kessler-type two-category liquid water scheme, including cloud water and 
rain, and parameterized three-category ice-phase schemes [33], including cloud ice, 
snow, and hail/graupel.  Table 3.1 shows MM5 domain configurations. 
 

 Hydrometeors are assumed in the Goddard model [30] to have size distributions that 
are inverse-exponential functions of diameter (D) [cm] as 

 

                       )exp()( DNDN o λ−=                                              (3.1) 
 

where N(D) [cm-4] is the number of drops per cubic centimeter, per centimeter of 
diameter D.  The intercept values, No = N(0), for rain, snow, and graupel are assumed to 
be 0.08, 0.04, and 0.04 cm-4, respectively.  By assumption the decay rate λ = 
(πρNo/ρoq)0.25  [cm-1] where ρ is the density for rain, snow, and graupel, and q is the mass 
mixing ratio given by MM5 for each species as a function of altitude; ρo is the density of 
moist air.  All cloud ice is assumed to have a single diameter D = 2×10-3 cm and a density 
of 0.917 g·cm-3.   The same expression (3.1) was used when computing brightness 
temperatures, but with ρ = F(λ), as given later in Table 4.2.  The dependence of N(D) 
upon ρ shifts the size distribution for graupel to larger D values than for snow because of 
graupel's lower values for F(λ).  If the densities used within MM5/Goddard are used in 
the N(D) expression instead of F(λ), then the radiance histograms presented later shift 
only very slightly; these Goddard densities are 1, 0.1, and 0.4 g cm-3 for rain, snow, and 
graupel, respectively.  
 

Because the available global initialization data from NCEP was on a ~110-km grid, 
MM5 required ~4 hours or more to generate realistic 15-km resolution precipitation 
profiles.  Each satellite overpass considered in Chapter 4 occurred between 4 and 6 hours 
after MM5 initialization.  Predictions further than 6 hours become less reliable at the 15-
km scale.  The output data used in the forward radiance program was interpolated to 42 
equally spaced pressure levels, 10 to 1000 mbar.  More details about submodels of MM5 
and assumptions used are presented in Appendix A.2.  

 
 

TABLE 3.1 
MM5 DOMAIN CONFIGURATIONS 

Domain Number 
of cells 

Cell 
size 
(km) 

Implicit scheme Explicit scheme Time 
step 
(sec) 

1 100*100 45 Kain-Fritsch 2 Goddard 40 
2 190*190 15 Kain-Fritsch 2 Goddard 13.33 
3 190*190 5 None Goddard 4.44 
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Fig. 3.1. Brightness temperatures (K) at 150 GHz for AMSU and three explicit physics 
schemes for a storm system viewed 0555 UTC 22 June 2003 at: (a) AMSU-B, (b) 
Goddard, (c) Reisner 2, and (d) Schultz. 
 
 

3.2  Ensemble of Global Precipitation 
 
To span a wide range of precipitation types and rates, 255 globally representative storm 
systems July 2002 – June 2003 were selected by examining AMSU data.  These storms 
included 20 for each month plus 15 that were not glaciated (~warm rain).  Unglaciated 
pixels are defined here as those with microwave ice signatures too weak to be flagged as 
precipitation [34], but for which more than 0.25-mm of cloud liquid water is retrieved 
[35].  These satellite passes typically overlap with MM5 storm systems over an area ~ 
2200 km × 2200 km.  
 
 One challenge in initializing MM5 with low-spatial-resolution data is that the 
morphology of the MM5 forecast can sometimes differ significantly from the reality 
sensed by satellite, as illustrated by two extreme examples in Fig. 3.2.  The dominant 
discrepancies between AMSU observations and co-located 4-6 hour MM5 forecasts are 
in the positions and character of precipitation rather than in radiance values.  For 
example, the concentrated convection shown in Fig. 3.2(b) resulted directly from a strong 
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feature in the initial NCEP field, as did the oversized typhoon eye shown in Fig. 3.2(d).  
Such obvious morphological discrepancies, as well as storms embracing either pole or 
very high mountains, led to deletion of approximately half the initial set of 255 storms, 
leaving 122 storms for further study.  Discrepancies in radiance values were not used as a 
deletion criterion.  Analysis of the causes of morphological disagreements between MM5 
and AMSU could be informative, but was beyond the scope of this study.  Fig. 3.3 shows 
examples of MM5 forecasts that morphologically agree with coincident AMSU 
observations and were used further in this study.   
 
 

 
Fig. 3.2. Examples of unacceptable forecast/AMSU differences.  Brightness temperatures 
at 183±7 GHz: (a) TB observed by AMSU at 0420 UTC 7 October 2002, (b) TB predicted 
by NCEP/MM5 for (a), (c) TB observed by AMSU at 0438 UTC 2 July 2002, (d) TB 
predicted by NCEP/MM5 for (c). 
 
 
 Fig. 3.4 shows the locations and months of 122 representative storm systems that 
agree morphologically with coincident AMSU observations and were chosen for this 
study from the initial set of 255.  The numbers 1-12 indicate the months of the storms, 
January through December, and the number 14 indicates the predominantly non-glaciated 
storms.  These storm systems were chosen to be diverse and globally representative in 
terms of location, time of year, and precipitation type and rate.  Typhoon Pongsona over 
Guam at 1625 UTC 8 December 2002 and Hurricane Isidore over Gulf of Mexico at 1642 
UTC 22 September 2002 are included.   Table 3.2 presents the numbers of precipitating 
15-km MM5 pixels in various categories for the 122 chosen storms.  Over 640 thousand 
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precipitating 15-km MM5 pixels were studied, where a pixel is designated as 
precipitating if MM5 rain water or snow at 1000 mbar is non-zero.  The categories were 
defined using AMSU and MM5 data as explained later in Section 4.5.2.  The most under-
represented category is perhaps pure snow.  For purposes of analyzing AMSU 
observations of snow in Section 4.5.2.2, pure snow (no mixed rain) was defined as 
precipitation for which the MM5 surface temperatures were below 266K, and only 3200 
pixels satisfied these criteria.  That these pure-snow criteria are too strict is indicated by 
the fact that there are 44,000 MM5 rain-free precipitating pixels.  Detailed list of the 
initial set of 255 global storms and 15 storms over the North Pole, which were simulated 
using MM5 but were not used in this study because it is very difficult to model icy 
surface correctly, could be found in Appendix A.1. 
 
 

 

Fig. 3.3. Examples of acceptable forecast/AMSU.  Brightness temperatures at 183±7 
GHz: (a) TB observed by AMSU at 2344 UTC 31 December 2002, (b) TB predicted by 
NCEP/MM5 for (a), (c) TB observed by AMSU at 1003 UTC 2 January 2003, (d) TB 
predicted by NCEP/MM5 for (c). 
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Fig. 3.4.  122 representative storm systems; the numbers 1-12 stand for January-
December, and 14 indicates largely unglaciated cases. 
 
 

TABLE 3.2 
NUMBERS OF MM5 PRECIPITATING PIXELS (IN THOUSANDS)  

IN VARIOUS PRECIPITATION CATEGORIES 
Category Pixels (000) Category Pixels (000) 
|lat| ≤ 25 112 Winter 115 

25 < |lat| ≤ 55 356 Spring 132 
55 < |lat| ≤ 90 172 Summer 173 
Convective 10 Autumn 221 
Stratiform 631 Rain only  558 

Non-glaciated 
(Land) 

37 Mixed rain, snow 39 

Non-glaciated 
(Ocean) 

35 Snow only (per 
MM5) 

44 

  Snow only (surface 
T < 266K) 

3 
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Chapter 4    
 
AMSU vs MM5/TBSCAT Radiances, and 
EM Models for Hydrometeors 
 
All results in this chapter are from [1]. 
 

4.1  Abstract 
 
This chapter addresses: 1) millimeter-wave scattering by icy hydrometeors, and 2) the 
consistency between histograms of millimeter-wave atmospheric radiances observed by 
satellite instruments (AMSU-A/B) and those predicted by a mesoscale numerical weather 
prediction (NWP) model (MM5) in combination with a two-stream radiative transfer 
model (TBSCAT).  This observed consistency at 15-km resolution supports use of 
MM5/TBSCAT as a useful simulation tool for designing and assessing global millimeter-
wave systems for remotely sensing precipitation and related parameters at 50-200 GHz.  
MM5 was initialized by NCEP NWP analyses on a 1-degree grid approximately 5 hours 
prior to each AMSU transit and employed the Goddard explicit cloud physics model.  
The scattering behavior of icy hydrometeors, including snow and graupel, was assumed 
to be that of spheres having an ice density F(λ) and the same average Mie scattering 
cross-sections as computed using a discrete-dipole approximation implemented by 
DDSCAT for hexagonal plates and 6-pointed rosettes, respectively, which have typical 
dimensional ratios observed aloft. No tuning beyond the stated assumptions was 
employed.  The validity of these approximations was tested by varying F(λ) for snow and 
graupel so as to minimize discrepancies between AMSU and MM5/TBSCAT radiance 
histograms over 122 global storms.  Differences between these two independent 
determinations of F(λ) were less than ~0.1 for both snow and graupel.  Histograms of 
radiances for AMSU and MM5/TBSCAT generally agree for 122 global storms and for 
subsets of convective, stratiform, snowy, and non-glaciated precipitation. 
 

4.2  Introduction 
 
Global monitoring of precipitation is important because of its significant human 
consequences.  However, the multiplicity of hydrometeor types and their small- and 
large-scale spatial inhomogeneity make accurate measurements difficult.  For example, 
rain gauge measurements are significantly impaired by wind, poor global coverage, and 
the non-uniformity of rain.  Both ground-based radars and passive microwave satellite 
sensors sense precipitation aloft and are generally unable to discern how much of that 
precipitation evaporates before impact.  Both are also sensitive to unknown local 
hydrometeor size, form, and vertical velocity distributions, as are simple single-frequency 
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radars on satellites.  The resulting lack of adequate ground truth seriously complicates 
development and validation of global precipitation sensing methods. 
 
 Fortunately, mesoscale and cloud-scale numerical weather prediction models such as 
the fifth-generation NCAR/Penn State Mesoscale Model (MM5) [6] have evolved to the 
point that they can provide substantially improved understanding of retrieval errors and 
their origins, as demonstrated in a preliminary way in this chapter. 
 

The general goals of this chapter are therefore as follows: 1) to describe and evaluate 
a software testbed (NCEP/MM5/TBSCAT/F(λ)) that should enable more detailed 
understanding of the strengths and weaknesses of alternative millimeter-wave-based 
precipitation and hydrometeor profile estimation algorithms than can conventional 
ground-truth instruments; 2) to describe and evaluate a millimeter-wave radiative transfer 
algorithm (TBSCAT/F(λ)) useful in such a testbed; and 3) to describe and evaluate a 
configuration of MM5 appropriate for the same testbed. 

 
Numerous references describe alternative radiative transfer algorithms useful at 

millimeter wavelengths [7], [36], [37], and others characterize MM5 modules that predict 
hydrometeor populations in explicit cloud models [30]-[32].  The principal contribution 
of this chapter is the demonstration that simple radiative transfer assumptions and simple 
models for icy hydrometeors are sufficient to match histograms of satellite-observed 50-
190 GHz radiances to those based on coincident mesoscale weather prediction models 
incorporating explicit cloud models.  Furthermore we found that this match is sensitive to 
relatively small departures from those assumptions, as discussed later. 
  

Development of scattering models for various types of icy hydrometeors is described 
in Section 4.3.  The initialization of MM5 and computation of predicted radiances using a 
radiative transfer program (TBSCAT) are then described in Section 4.4.  Comparison of 
these predicted radiances with those observed by the Advanced Microwave Sounding 
Unit (AMSU) [23]-[24] on the United States National Ocean and Atmospheric 
Administration NOAA-15, -16, and -17 satellites is described in Section 4.5 together with 
an alternative characterization of scattering by graupel and snow that maximizes 
agreement between histograms of the predicted and AMSU-observed radiances.  Section 
4.6 compares the satellite and MM5 radiance histograms for a variety of precipitation 
types, showing that a single simple pair of ice factors F(λ) for graupel and snow results in 
reasonable agreement between MM5 and AMSU at all ice-affected frequencies and for 
essentially all precipitation types evaluated, including convective, stratiform, snow, and 
unglaciated precipitation.  Section 4.7 then summarizes and concludes the chapter. 
 

4.3  Electromagnetic Models for Known Ice Habits 
 
Frozen hydrometeors usually assume habits resembling hexagonal columns, hexagonal 
plates, or rosettes.  Since evaluation of electromagnetic wave interactions with these 
complex shapes is computationally expensive, icy hydrometeors were approximated by 
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spheres that are mixtures of ice and air having average densities F(λ) (0 < F < 1) that 
depend on habit and wavelength λ.  Hereafter this density parameter is called the ice 
factor F(λ).  It is important to note that the density F(λ) can be quite different from the 
density of the ice itself (~0.9 g cm-3) and different from the average ice density within an 
envelop bounding the hydrometeor.  That is, F(λ) is defined as that density which yields 
the correct Mie scattering cross-section, as explained below, and can differ from common 
perceptions, as discussed in Section 2.2.3. 
 
 Liu [38] and others [39] have utilized this spherical approximation to hydrometeors 
at millimeter wavelengths, which simplifies computations because spherical 
hydrometeors are readily characterized by Mie scattering.  For a sphere of given mass, 
F(λ) determines its volume; therefore the effective size distribution for a given set of 
spheres becomes a function of wavelength in this approximation. 
 

The density F was then used to determine an effective complex electric permittivity ε 
of each sphere using an ice-air mixing model in which ice inclusions are distributed 
within an air matrix [17]-[18].  As explained further below, to find F(λ) the average 
electromagnetic scattering cross-section of each ice habit was computed using the 
Discrete Dipole Approximation program, DDSCAT6.1 [14], and equated to the Mie 
scattering cross-section of an equal-mass sphere having the ice factor F(λ). 
 

4.3.1  Discrete Dipole Approximation Program DDSCAT6.1 
 
The discrete dipole approximation represents the target by a dense finite array of 
polarizable points. It can approximate electromagnetic extinction, scattering, and 
absorption by arbitrary geometries with dimensions smaller than a few wavelengths [14].  
 

4.3.2  Ice Models 
 
The ice models studied include spheres, hexagonal columns, hexagonal plates, and bullet 
rosettes having the densities and shapes of observed ice habits [40]-[42].  Bullet rosettes 
here comprise three long orthogonal hexagonal columns joined at their centers to form a 
three-dimensional orthogonal cross.  These model densities and shapes are listed in Table 
4.1, where S and L are the small and large dimensions, respectively.  The shapes and 
dimensions are also illustrated in Fig. 4.3.  The hydrometeor lengths varied from 0.2 to 5 
mm.  Snow was modeled as hexagonal plates and graupel was modeled as 6-point bullet 
rosettes.  Cloud ice and all liquid hydrometeors, including rain water and cloud liquid 
water, were ultimately modeled as spheres.   
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TABLE 4.1 
OBSERVED ICE HABIT  DIMENSIONS AND DENSITIES 

Ice Habit Dimensional Ratios (mm) Densities [40] (g cm-3) 
Column S = 0.238·L0.938       [41] 0.848·L-0.014 

Plate S = 0.0478·L0.474   [42] 0.9 
Rosette S = 0.185·L0.532         [40] 0.848·L-0.014 

 
 

4.3.3  Ice Factors of Spheres Best Imitating Snow and Graupel 
 
Fig. 4.1 illustrates the method used to find F(λ) for spheres having the same mass and the 
same Mie scattering cross-sections as hexagonal plates (snow) and rosettes (graupel) 
computed by DDSCAT.  The scattering and absorption cross-sections computed using 
DDSCAT6.1 were averaged over 125 target orientations of the ice models; some 
orientations were redundant, depending on hydrometeor geometry.  To simplify the 
DDSCAT computations, ice temperatures of -15oC were assumed since the permittivity 
of cold ice is a weak function of temperature.  Since the absorption cross-sections for ice 
were much smaller than the scattering cross-sections, they did not influence F(λ).  
Although functions of the angular scattering behavior other than the average scattering 
cross-section could have been matched between Mie and DDSCAT, this simplification 
worked well, as shown in Sections 4.5 and 4.6.  This is not entirely unexpected since the 
average permittivity over all habit orientations would be spherically symmetric. 
 
 

 
Fig. 4.1.  Method for using DDSCAT to yield ice factors F(λ) for graupel and snow. 
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4.3.4  Results 
 
Fig. 4.2 illustrates the sensitivity of the computed scattering cross-sections to both F(λ) 
and particle size L for the representative cases of hexagonal plates at 89.9 GHz and 
rosettes at 183±7 GHz.  Thus the illustrated scattering cross-sections of hexagonal plates 
and equal-mass spheres are equal if F(λ) = 0.2±0.02.  Fig. 4.2 also reveals the important 
fact that F(λ) is largely independent of particle size L for hexagonal plates and rosettes, 
so assumptions in MM5/TBSCAT about hydrometeor size distributions do not impact 
F(λ), although they do impact the computed scattering itself.  Although hexagonal 
columns exhibit some dependence on L, they appear to be less influential in controlling 
emission spectra, as discussed in Section 4.5.1.  Fig. 4.2 also shows the back-scattering 
fraction β for hexagonal plates, rosettes, and spheres for specific cases.  In a two-stream 
radiative transfer model β is the fraction of the scattered energy directed backwards.  For 
both snow and graupel β decays monotonically with length, although for graupel the 
decay for equal-mass spheres is more rapid, potentially leading to TBSCAT 
overestimates of graupel brightness temperatures.  One possible implication of this is 
addressed in Section 4.7. 
 
 

 
Fig. 4.2.  Scattering cross-sections and back-scattering fractions as a function of particle 
length L for (a) hexagonal plates at 89.9 GHz and (b) rosettes at 183±7 GHz, both 
compared to those of equal-mass spheres having three different values for F(λ). 
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 Such estimates for F(λ) for all AMSU frequencies are plotted in Fig. 4.3 for spheres, 
columns, plates, and rosettes.  Those for hexagonal plates (snow) and rosettes (graupel) 
are fit to a minimum-square-error straight-line function of λ.  Table 4.2 presents 
equations for the best-fit ice factors F(λ) for snow, graupel, and cloud ice (spheres), as 
derived from DDSCAT. These expressions lose some validity above 200 GHz because 
F(λ) becomes size dependent, and because expressions for permittivity become less 
certain.  The formulas in Table 4.2 are generally consistent with the findings of Liu [38] 
that at the longer millimeter wavelengths lower density (softer) ice spheres match 
DDSCAT computations better.  The weak dependence of F(λ) upon hydrometeor size 
distribution below 200 GHz reduces any incentive to make F(λ) size or altitude 
dependent.  Although F(λ) for graupel is less than for snow for a given length L, 
implying that graupel might scatter less, this effect is compensated by the tendency for 
graupel to be larger and to have water paths several times greater; stronger scattering by 
graupel relative to snow is evident later in the simulated brightness images of Figs. 3.1 – 
3.3. 
 
 

 
Fig. 4.3. Values for F(λ) that match the scattering cross-sections of spheres (○), 
hexagonal columns (□), hexagonal plates (◊), and rosettes (+) found using DDSCAT, and 
the corresponding best-fit linear approximations (solid lines).  Best-fit values for Fopt(λ) 
for snow (*) and graupel (x) found from MM5/AMSU comparisons, and the 
corresponding best-fit linear approximations (dashed lines). 
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TABLE 4.2 
ICE FACTORS FOR SNOW, GRAUPEL, AND CLOUD ICE BASED ON DDSCAT 

Ice Species Ice Factors (F(λ)) (g cm-3) 
Snow 0.863·fTHz + 0.115 

Graupel 0.815·fTHz + 0.0112 
Cloud ice 0.917 

fTHz is frequency in units of THz. 
 
 

4.4  Computation of MM5/TSCAT Predicted Radiances 
 
The generation of microwave brightness temperature images from numerical weather 
prediction models had several steps.  First, United States National Center for 
Environmental Prediction (NCEP) analyses at ~110-km resolution were interpolated to 
times 4-6 hours prior to passage of the satellites over storm systems, and were then used 
to initialize MM5 at the outermost domain (45-km resolution).  The atmospheric states 
predicted by MM5 at the time of satellite transit were input to the radiative transfer 
program TBSCAT [7] in its two-stream formulation to simulate AMSU millimeter-wave 
brightness temperatures (TB’s) using the F(λ) values presented in Table 4.2.  All 
brightness temperature comparison presented in this chapter is over 122 global storms 
from July 2002 to June 2003 with details discussed earlier in Section 3.2. 
 
 AMSU-A and AMSU-B radiances were simulated by using a forward radiance 
program, TBSCAT, in its two-stream Mie-scattering approximation.  TBSCAT was 
developed and provided by P. W. Rosenkranz (personal communication) based on his 
radiative transfer algorithm [7], improvements on standard millimeter-wave atmospheric 
transmittance models [43]-[44], and the complex permittivities for water and ice given by 
[15] and [16], respectively.  To simulate brightness temperatures using TBSCAT, all 
hydrometeors were assumed to be spherical and homogeneous [45]-[46] with size 
distributions that are inverse-exponential functions of diameter as given in (3.1), where 
F(λ) for each ice species was used in place of the density ρ.  Because F(λ) is generally 
not dependent upon hydrometeor diameters below 200 GHz, F(λ) was made independent 
of altitude or size distribution functions. 
 
 The surface emissivity for ocean was computed using FASTEM [47], where the sea 
surface temperature and wind at 10 meters were provided by MM5.  This program 
includes the effects of geometric optics, Bragg scattering, and foam coverage.  Since 
there was no prior knowledge of land emissivity, it was assumed to be uniformly 
distributed randomly between 0.91 and 0.97, which are typical values [48].  The 
atmosphere is sufficiently opaque at these frequencies that surface emissivity errors are 
usually secondary except over dry snow (e.g. the coldest pixels in Fig. 4.12(a) at 89 and 
150 GHz), and over water misclassified as land (e.g. a few pixels along the Amazon 
river; see Fig. 4.12(b) at 89 GHz and Fig. 4.14 at 89 and 150 GHz).  Furthermore, 
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although random land emissivities within the assumed range noticeably alter the 
simulated brightness for individual pixels, such random shuffling does not alter the 
brightness histograms much. 
 
 Since computing MM5 forecasts with 5-km resolution over the full swath width 
observed by satellites would have been prohibitively time consuming, only the 15-km 
MM5 domain-2 output was utilized, even though the inner ~1000-km domain-3 block 
had 5-km resolution.  To validate MM5 domain-2 outputs at 15-km resolution, brightness 
temperatures for AMSU channels above 85 GHz simulated by using MM5 domain-2 
outputs (15-km resolution) were compared with those simulated by using MM5 domain-3 
outputs (5-km resolution) for 24 test cases, where the 5-km resolution brightness 
temperatures were first smoothed using a Gaussian filter with a full-width-half-maximum 
(FWHM) resolution of 15 km.  A sample histogram comparison is shown in Fig. 4.4, 
which exhibits good agreement.  Based on this agreement and the excessive computer 
time that would have been required for TBSCAT simulations at 5-km resolution over 
comparable global areas, all MM5 comparisons with satellite data were performed using 
MM5 domain-2 outputs at 15-km resolution. 
 
 

 
Fig. 4.4.  Comparison of MM5 183.3±7 GHz brightness temperatures at 15-km resolution 
with those simulated by filtering MM5 5-km resolution output with a 15-km Gaussian 
filter. The histograms present the numbers of samples within each 1-K interval. 
 
 
 To simulate AMSU-A radiances, a Gaussian filter with 50-km FWHM resolution was 
used to smooth 15-km resolution MM5 radiances. Radiances were computed using 
TBSCAT at the appropriate incidence angle, and assuming constant 50-km resolution 
without compensating for blurring at extreme scan angles. 
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4.5  Comparison of MM5/TBSCAT and AMSU Radiances 
 
The radiance-simulation algorithm NCEP/MM5/TBSCAT/F(λ) has no discretionary 
parameters other than the choice of this particular combination of routines and physical 
models.  The validity of the resulting radiance simulations were evaluated by comparing 
them to AMSU observations in two ways.  First the AMSU radiance histograms were 
compared to those generated using NCEP/MM5/TBSCAT/F(λ) for the same global set of 
122 storms.  Section 4.5 presents a preliminary comparison and Section 4.6 presents 
comparisons for specific types of precipitation.  Second, the MM5/TBSCAT/F(λ) 
simulated radiance histograms were made to approximate those observed by AMSU by 
adjusting F(λ) for each of snow and graupel to see how well these empirically optimized 
values of F(λ) agreed with those derived in Section 4.3.4 using DDSCAT. 
 

 

 
Fig. 4.5. Satellite radiances near 50.3 GHz (a) and 52.8 GHz (b); precipitation appears 
colder (darker), similar to the limb effects seen in (b). 
 
 
 Because the ice factor F(λ) is a weak function of λ, it suffices to evaluate F at only 
one representative frequency in the 54-GHz band--that frequency with the best ice 
signature relative to surface "noise".  The strongest ice signatures in the 54-GHz band 
appear in the most transparent channels at 50.3 and 52.8 GHz.  The other channels in this 
band sound levels above some or all of the ice aloft.  Fig. 4.5(b) shows that the 52.8-GHz 
channel of AMSU-A exhibits limb effects at larger scan angles that resemble the 
signatures from ice aloft, while the 50.3-GHz channel (Fig. 4.5(a)) distinguishes 
precipitation much more clearly.  Therefore only the 50.3-GHz channel was analyzed in 
this band. 
 
 The surface effects for the window channels, including AMSU-A channels 1-4 and 
AMSU-B channels 1-2, were diminished by evaluating only pixels over land at those 
frequencies, thus reducing the effects of highly reflective water surfaces that mimic icy 
signatures.  For example, the AMSU and MM5 land/sea flags excluded from the radiance 
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histograms most of the Amazon River pixels visible in the top part of Fig. 4.5(a).  Low 
radiances in these channels produced by highly reflective high-altitude snow were largely 
avoided by excluding pixels having |lat| > 60o and terrain elevation above 500 m.  
Because icy hydrometeor signatures generally do not contribute to brightness 
temperatures above ~260K, histogram inconsistencies there are generally insensitive to 
F(λ).   
 
 Subject to the restrictions noted above, the radiance histograms in Fig. 4.6(a) suggest 
that good agreement was obtained between MM5-simulated and satellite-observed 
radiances over 122 representative storm systems that contain over 185,580 AMSU-A (23-
90 GHz) and 1,674,964 AMSU-B (88-191 GHz) footprints.  In the figure the AMSU 
channels are arranged in order of increasing opacity: 50.3, 89, 150, 183±7, 183±3, and 
183±1 GHz; the 89 GHz data was observed by AMSU-B.  The high sensitivity of this 
comparison to the ice factor F(λ) used in TBSCAT is indicated in Fig. 4.6(b), for which 
F(λ) was increased by 0.05 at all frequencies for both snow and graupel; the effects of the 
small cloud ice particles are not evident in these histograms. The small differences 
between Figs. 4.6(a) and 4.6(b) at certain wavelengths suggest that ice effects near 50.3 
GHz are also small and that the 183±1 GHz weighting function peaks above most ice 
aloft.  The largest differences between AMSU and MM5 in Fig. 4.6(a) (at 150 GHz) are 
small compared to those induced when the ice factor is increased slightly (Fig. 4.6(b)).  
 

Histograms like those in Fig. 4.6 are used extensively in this chapter.  Their main 
purpose is to illustrate the differences between AMSU and MM5 brightnesses, not their 
absolute values, which are included with stated offsets.  These differences between 
AMSU and MM5 histograms are generally smaller than those induced by minor 
adjustments of the model itself, as Fig. 4.6(b) illustrates. 
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Fig. 4.6. Brightness temperature histograms (pixels per degree K) for channels near 50.3, 
89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing opacity from left to right, 
for 122 storms using: (a) F(λ) and (b) F(λ)+0.05.  Only TB’s below 250 K are plotted. For 
clarity, the absolute TB’s were shifted to the right by 0, 140, 260, 330, 390, and 450 K, 
respectively. 
 
 

4.5.1  Best-fit Ice Factors for Snow and Graupel 
 
To help validate the values of F(λ) found for snow and graupel using DDSCAT, F(λ) for 
these two species was also found empirically by minimizing at each frequency separately 
the difference between radiance histograms produced by AMSU and 
NCEP/MM5/TBSCAT/F(λ) for 122 storms.  Since cloud ice particles are generally too 
small to affect millimeter-wave brightness temperatures, the value for F(λ) in Table 4.2 
was used instead.  The error metric for the difference between two histograms is defined 
as: 
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⎢ ⎥⎣ ⎦∑                       (4.1) 

 
where each bin i corresponds to a brightness temperature, and NSATi and NMM5i are, 
respectively, the number of  satellite-observed radiance pixels and MM5-simulated 
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radiance pixels falling in radiance bin i for all 122 storms.  The denominator normalizes 
the histogram, increasing the relative contribution to E of the coldest ice-sensitive pixels 
relative to the far more numerous brighter pixels unaffected by ice.  The algorithm used 
to find the values F(λ) that minimize E is presented in Fig. 4.7. 
 
 The resulting values of Fopt(λ) for snow and graupel are presented in Fig. 4.3, and are 
fit to straight lines that minimize mean-square-error on a linear scale.  The best-fit 
straight line to F(λ) for snow differs from that for hexagonal plates, as computed using 
DDSCAT, no more than 0.096 out of 0.38 (25 percent), this worst case being at 200 GHz.  
The best-fit line for graupel differs from that computed for rosettes no more than 0.015 
out of 0.19 (8 percent).  The F values for hexagonal columns and spheres deduced from 
DDSCAT differ so greatly from the graupel and snow values found from the 
MM5/AMSU comparisons that these ice habits are unlikely to be major contributors to 
AMSU observations, as expected. 
 
 

 
 

Fig. 4.7.  Method for comparing AMSU observations with MM5/TBSCAT radiance 
predictions to yield best-fit ice factors Fopt(λ) for graupel and snow. 
 
 

4.6  Tests of Ice Factor Validity 
 
To test the validity of the values for F(λ) given by the DDSCAT experiment results, 
brightness temperatures were computed using MM5/TBSCAT/F(λ) for 122 storms.  The 
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TB histograms in Fig. 4.6 suggest that the DDSCAT values of F(λ) are usually within 
~0.1 of those providing optimum agreement.  This global agreement was then tested 
further by separating the data into different latitude bands and precipitation types.  Note 
that part of the discrepancy between histograms considered below could be due to 
misclassification of precipitation type. 
 

4.6.1  Histogram Comparisons for Different Latitude Bands 
 
The 122 storm systems were divided into three different latitude bands: |lat| ≤ 25; 25 < 
|lat| ≤ 55; and 55 < |lat| ≤ 83.  Each latitude band continues to show good agreement at all 
frequencies, as illustrated in Fig. 4.8.  The worst discrepancy, somewhat less than that 
due to a modest ice factor increment of 0.05 (see Fig. 4.6), occurs at 89 GHz in the 
tropics, where MM5/TBSCAT/F(λ) produces too many cold pixels.  This residual 
discrepancy could originate from: 1) any of the radiative transfer approximations, 2) 
excessively concentrated convection arising from the initial NCEP fields, as suggested in 
Fig. 3.2(b), or 3) excessive convective strength and graupel production by MM5.  
Radiative transfer approximations include use of: F(λ) for Mie spheres, a two-stream 
scattering model, the assumed hydrometeor form factors, and the method of fitting F(λ) 
to total DDSCAT scattering cross-section rather than to some other angular scattering 
function.  Further extensive comparisons of models and observations would be required 
to evaluate these alternative explanations.  The mismatches for the ~100 coldest pixels in 
Fig. 4.8(c) at 183±3 and 183±1 GHz are generally not due to MM5 or radiative transfer 
flaws, but to extremely dry air that was not anticipated by NCEP/MM5 and that exposes 
highly reflective dry snow. 
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Fig. 4.8. Brightness temperature histograms (pixels per degree K) for channels near 50.3, 
89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing opacity from left to right, 
for 122 storms: (a) |lat| ≤ 25, (b) 25 < |lat| ≤ 55, and (c) 55 < |lat| ≤ 83.  Only TB’s below 
250 K are plotted. For clarity, the absolute TB’s were shifted to the right by 0, 140, 260, 
330, 390, and 450 K, respectively. 
 

4.6.2  Histogram Comparisons for Various Precipitation Types 
 
To further test these results, the precipitating pixels in the 122 storm systems were 
categorized as convective, stratiform, snow storm, and non-glaciated.  The same radiance 
algorithm was used for classifying both AMSU and MM5 pixels, although this 
categorization selected different pixels for AMSU and MM5 data because their 
convective cells were located differently.  Since our purpose here is only to support 
histogram comparisons that might reveal weaknesses in the observed global consistency 
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of MM5/TBSCAT/F(λ)/AMSU comparisons, perfect separation by precipitation type is 
not required. 
 

4.6.2.1  Convective versus Stratiform Precipitation 
 
The estimated peak vertical wind (wpeak) for each pixel was used to distinguish 
convective from stratiform precipitation.  Pixels were flagged as convective when the 
estimated peak vertical wind exceeded 0.45 ms-1.  Higher wind threshold values would be 
more appropriate for spatial resolutions of 5 km or less, as opposed to the 15-km 
resolution velocities used here.  The 0.45 ms-1 threshold was that value which balanced 
and minimized the errors when dividing pixels into convective and stratiform classes 
using the neural network described below.  
 
 Fifteen percent of the MM5-simulated radiances and corresponding vertical winds 
were used as statistical ground-truth to train a neural network to estimate peak layer 
vertical wind by using AMSU-B observations at the three frequencies near 183 GHz, 
which have ice signatures strongly correlated with vertical wind speed. The MM5 peak 
vertical wind was negatively correlated with brightness temperatures at 150, 183±7, 
183±3, and 183±1 GHz with correlation coefficients of -0.2, -0.53, -0.43, and -0.25, 
respectively, for the test ensemble of storms.  These correlation coefficients were less 
than 0.08 for the other AMSU channels.  Different neural network configurations were 
tested for their ability to estimate peak vertical wind.  The best configuration employed 
three layers comprising 10, 5, and 1 neurons.  Tan-sigmoid transfer functions were used 
for neurons in the first two layers, and a linear transfer function was used at the output. 
The Levenberg-Marquardt [49] training algorithm has been shown to be efficient [22] 
and was used. To facilitate convergence of the neural net weights during training, the 
weights of the neural net were initialized by using the Nguyen-Widrow method [50]. 
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Fig. 4.9. Performance of the peak vertical wind (wpeak) estimator: (a) Every 5th pixel of 
estimated wpeak vs. MM5 truth, and (b) histogram comparisons over 100 linear-scale bins 
of MM5-estimated and satellite estimated wpeak values. 
 
 
 Fig. 4.9(a) plots every 5th pixel of estimated MM5 peak vertical wind wpeak versus 
MM5 truth. This estimator misclassifies 25 and 26.6 percent of MM5 stratiform and 
convective pixels, respectively.  Fig. 4.9(b) exhibits general agreement between 
histograms for wpeak estimated by using AMSU and MM5-simulated radiances, with 
AMSU sensing roughly twice as many "convective" pixels, presumably due to the larger 
sizes of AMSU-sensed cirrus anvils relative to the convective columns below.  Based on 
this classification, Fig. 4.10 exhibits good agreement between MM5/TBSCAT and 
AMSU brightness temperature histograms for both convective and stratiform 
precipitation.  The small differences between simulated and observed radiances in the 
stratiform case could be due to surface effects, small values for F(λ, stratiform), or weak 
MM5 stratiform hydrometeor production; these differences are again smaller than those 
associated with an ice factor increment of 0.05. 
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Fig. 4.10. Brightness temperature histograms (pixels per degree K) for AMSU and MM5 
channels near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing 
opacity from left to right: (a) convective pixels, and (b) stratiform pixels.  Only TB’s 
below 240 K are plotted. For clarity, the absolute TB’s were shifted to the right by 0, 160, 
270, 400, 510, and 580 K, respectively, for (a), and 0, 60, 90, 110, 130, and 160 K, 
respectively, for (b). 
 
 

4.6.2.2  Snow versus Rain 
 
All precipitating pixels in the set of 122 storms were divided into rain and snow 
categories using MM5 surface temperature as the predictor and the hydrometeor state at 
the MM5 1000-mbar level as the criterion, as illustrated in Fig. 4.11.  To reduce the risk 
of pixel misclassification, only those with MM5 surface temperatures below 266K were 
designated "snow", and only those above 294K were designated "rain".  Based on this 
classification, Fig. 4.12 exhibits good agreement between MM5/TBSCAT and AMSU 
brightness temperature histograms for both rain and snow.  The substantial discrepancies 
at 89 and 150 GHz are most likely due to our simplified assumption that land surface 
emissivities range randomly between 0.91 and 0.97, whereas the emissivity of dry fallen 
snow can drop below 0.8 to produce the histograms presented in Figure 4.12(a).  Under 
this hypothesis the observed histogram agreement at 50.3 and 183±7 GHz could result if 
the fallen snow were sufficiently shallow that it could still be penetrated at 50 GHz, and 
if the humidity were sufficiently high that 183±7 GHz retained some limited 
opacity.  Since "snow" was defined as those few pixels where the MM5 surface 
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temperature was below 266K, these results could be due to only ~1600 shallow-snow 
pixels out of ~3000, and less than one-tenth of a single MM5 image.  The alternative 
hypothesis that falling snow has an unexpectedly high albedo near 89-150 GHz is not 
readily reconciled with the noticeably higher brightness temperatures seen at 183±7 GHz, 
a frequency that normally penetrates at least to the upper levels of any snowstorm so as to 
be similarly affected.  Thus validating dry snowfall observations requires knowledge of 
the surface emissivity spectrum for those channels that sense it, where this spectrum may 
depend on snow depth, temperature, and history [51].  The small gaps in Fig. 4.12(b) near 
210K in these histograms are most likely due to excessive upper tropospheric humidity in 
the NCEP initializations, as explained later in Section 7.3.4. 
 
 

 
Fig. 4.11. Histograms (pixels per degree K) for MM5 surface rain and snow 
classifications, as a function of MM5 predicted surface temperature. 
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Fig. 4.12. Brightness temperature histograms (pixels per degree K) for AMSU and MM5 
channels near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing 
opacity from left to right: (a) snowing pixels, and (b) raining pixels.  Only TB’s below 
260 K are plotted. For clarity, the absolute TB’s were shifted to the right by 0, 80, 150, 
190, 230, and 270 K for (a) and 0, 140, 260, 350, 410, and 480 K for (b). 
 
 

4.6.2.3  Non-glaciated Rain 
 
A pixel was classified as non-glaciated rain if TB(183±7 GHz) ≥ 250 K, and over 0.1-mm 
integrated rain water W were retrieved.  The neural network used for estimating W was 
trained using 15 percent of the MM5 simulations for 122 storms; the inputs were 
brightness temperatures at all five AMSU frequencies above 85 GHz.   Tests of various 
network architectures led to the same architecture found for estimating vertical winds.  
Every 50th estimate of the rain water W is plotted versus the corresponding "true" MM5 
value in Fig. 4.13(a), and Fig. 4.13(b) exhibits general agreement between histograms for 
W values estimated by using AMSU and MM5-simulated radiances.  Utilizing this 
classification scheme, Fig. 4.14 exhibits good agreement between MM5 and observed 
AMSU brightness temperature histograms for non-glaciated rain (e.g., warm rain).  The 
limited brightness range shown for 183±7 GHz is due to the definition used here for non-
glaciated precipitation—TB must be equal or greater than 250K, and only TB's below 
260K are plotted.  Those few pixels that AMSU observed at 89 and 150 GHz with 
brightness temperatures of ~220K, about 10 degrees below MM5 predictions, may have 
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been glaciated despite having been classified otherwise, or may backscatter more 
efficiently than expected. 
 
 

 
Fig. 4.13. Performance of the integrated rain water (W) estimator: (a) estimated W vs. 
MM5 truth, and (b) histogram comparisons over 100 linear-scale bins of MM5-estimated 
and satellite-estimated W values. 
 
 

 
Fig. 4.14. Brightness temperature histograms (pixels per degree K) for AMSU and MM5 
channels observing non-glaciated rain near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, 
in order of increasing opacity from left to right.  Only TB’s below 260 K are plotted. For 
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clarity, the absolute TB’s were shifted to the right by 0, 60, 110, 145, 190, and 240 K, 
respectively. 
 
 

4.6.2.4  Sensitivity to Errors in MM5 and F(λ) 
  
To determine the sensitivity of observed brightness temperatures to the MM5 convective 
cloud models, the amounts of snow, graupel, and cloud ice were arbitrarily increased 25 
percent to yield the brightness temperature histograms presented in Fig. 4.15.  The 
resulting discrepancies associated with the reduced MM5 radiances are comparable to the 
consequences of increasing F(λ) by 0.05, shown in Fig. 4.6b.  The discrepancies in Fig. 
4.15 are largest for those channels most sensitive to ice aloft (89-183±7 GHz), whereas 
50 GHz responds well only to the very largest hydrometeors, and water vapor partially 
shields the two most opaque 183-GHz channels from most hydrometeors at lower 
altitudes.  Interestingly, the increase in MM5 ice production has closed the small gap 
between AMSU and MM5 183±1 GHz radiances shown in Fig. 4.6(a).  Thus the icy 
hydrometeor production of the Goddard explicit cloud model in MM5 appears to be 
generally consistent with AMSU observations within perhaps 10-15 percent, assuming 
the TBSCAT/F(λ) model is correct. 
  

The high sensitivity of such histograms to changes in F(λ) were illustrated earlier in 
Fig. 4.6(b).  Unfortunately, due to the spatial offsets and morphological differences 
between MM5-predicted and AMSU-sensed precipitation, same-storm brightness 
histograms for precipitation types of interest constitute the most robust comparison 
metric available.  Only simulated comparisons such as those illustrated in Figs. 4.6(b) and 
4.15 and others presented in Chapter 5 yield discrepancy probability distributions as a 
function of given parameters.  The results in Chapter 5 corroborate the relatively high 
sensitivity of brightness histograms to altered MM5 and radiative transfer assumptions.  
They also demonstrate the considerable hydrometeor water path retrieval capabilities of 
millimeter-wave sensors, and the strong correlation of virga effects (~0.5 correlation 
coefficient) with surface precipitation rate retrieval errors.   
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Fig. 4.15. Brightness temperature histograms (pixels per degree K) for AMSU and MM5 
channels near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing 
opacity from left to right, using 1.25 times the amount of MM5-predicted snow, graupel, 
and cloud ice.  Only TB’s below 250 K are plotted. For clarity, the absolute TB’s were 
shifted to the right by 0, 140, 260, 330, 390, and 450 K, respectively. 
 
 

4.7  Summary and Conclusions to Chapter 4 
 
A method has been demonstrated for generating millimeter-wave brightness temperature 
spectra for precipitating regions that approximate well those observed by AMSU on 
polar-orbiting satellites viewing the same events at frequencies 50-190 GHz.  A two-
stream radiative transfer model (TBSCAT) generates these spectra using the temperature, 
humidity, and hydrometeor profiles predicted by a mesoscale NWP model (MM5) 
incorporating an explicit cloud model (Goddard).  Only histograms of brightness 
temperatures can be matched because four hours are generally required for MM5 to 
create small realistic precipitation features from one-degree initialization data, and their 
locations and intensities have a random element that precludes perfect co-registration 
with satellite observations.  These brightness temperature histograms generally matched 
well near 50, 89, 150, and 183 GHz for all types of precipitation tested, including 
convective, stratiform, cold snowfall, unglaciated, tropical, and snow-free rain. 
 
 Since millimeter-wave scattering phenomena and explicit cloud models are complex, 
the general agreement between these two sets of brightness histograms for AMSU and 
MM5 in five frequency bands and for multiple categories of precipitation is somewhat 
unexpected.  This is particularly so because only Mie scattering from spheres with ice 
densities F(λ) was assumed, where F(λ) was chosen to match the total scattering cross-
section deduced from DDSCAT for hexagonal plates and rosettes, the two habits found to 
dominate the spectrum.  Improvements in MM5 and its initialization, and in the radiative 
transfer algorithm, would presumably further increase this agreement.  Study of residual 
disagreements could be rewarding; preliminary examination suggests weaknesses in the 
NCEP initialization field are often involved. 
 
 The sensitivity to assumptions of the link between NWP initialization data and 
predicted millimeter-wave spectra was tested in three ways using the observed spread 
between AMSU and MM5 brightness histograms.  First the ice factor was increased by 
0.05, i.e., five percent of its dynamic range, and the resulting histogram spread exceeded 
that observed in essentially all comparisons.  Next the ice production by MM5 was 
increased at all altitudes by twenty-five percent with a similar result.  Finally, F(λ) for 
snow and graupel was independently determined by minimizing empirically the 
histogram spread for a 122-storm global data set, leading in most cases to values within 
~0.1 of those determined using DDSCAT.  Thus the histogram comparison technique 
provides a reasonably sensitive metric for evaluating alternative means for generating 
realistic millimeter-wave spectra. 
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 The reasons why relatively simple radiative transfer assumptions work so well might 
include the following.  First, using principal component analysis of MM5/TBSCAT 
millimeter-wave spectra for 122 storms we found that the normalized variances of the 
first three principal components of the hydrometeor-induced perturbations of AMSU-A 
channels 1-8 and AMSU-B channels 1-5 are 95.72, 3.16, and 0.67, respectively, where 
the hydrometeor-induced perturbations are the differences in brightness temperatures 
simulated using normal MM5 outputs and those simulated by setting all MM5 icy 
hydrometeors to zero.  This means that over 99.5 percent of all variance in icy-
hydrometeor-induced perturbations 50-190 GHz was explained by only three degrees of 
freedom, consistent, for example, with dominance of the spectrum by cell-top altitude 
and the abundances of snow and graupel.  Second, the angular scattering properties of 
hydrometeors might deviate from our assumptions and yet small adjustments in 
abundances might plausibly compensate for any errors in snow or graupel albedo, or for 
errors resulting from the two-stream approximation in TBSCAT; such abundance 
adjustments presumably are less than ~25 percent, as suggested by Fig. 4.15.  Larger 
abundance adjustments would be allowed if graupel production were traded for snow 
production.  For example, replacing half the graupel with a roughly equal mass of snow 
would not change brightness temperatures much, as suggested by Fig. 5.5.  Such 
substitution could occur simultaneously with an increase in F(λ) for graupel that would 
narrow the gap in β between DDSCAT and Mie scattering shown in Fig. 4.2(b); 
optimization of such model adjustments is studied further in Section 7.3.5 of this thesis. 
 

Finally, it may be that the average scattering behavior over any ensemble of icy 
hydrometeor shapes, sizes, and orientations approximates the scattering behavior of a 
spherically symmetric dilute object having an electric permittivity distribution in space 
that declines with radius.  An ensemble of homogeneous dilute spheres having inverse-
exponential size distributions, as assumed in our model, would also have a spherically 
symmetric dilute permittivity that declines with radius, and perhaps two such models for 
hydrometeors and spheres would be observationally similar.  These issues will be further 
discussed in Section 7.3.5. 

 
Because there may be small residual errors in the MM5/TBASCAT/F(λ) model 

presented here, any use of it for training operational precipitation retrieval algorithms 
should be tuned against traditional precipitation measurements; such tuning is beyond the 
scope of this chapter.  The immediate application of these results might therefore be to 
simulation and evaluation of alternative precipitation observation and retrieval concepts, 
for which any residual errors in the model are less critical.  As will be shown in Chapter 
5, the precipitation retrieval accuracies predicted using this model are relatively 
insensitive to the values of F(λ) chosen.  Finally, we have found that extending DDSCAT 
above 200 GHz leads to F(λ) values that are more dependent on the size distribution, 
warranting caution in their use.     
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Chapter 5 
 
Sensitivity of Simulated Radiances and 
Predicted Retrieval Accuracies to 
MM5/RTM Assumptions 
 
All results in this chapter are from [2]. 
 

5.1  Abstract 
 
Brightness temperature histograms observed 50-191 GHz by the Advanced Microwave 
Sounding Unit (AMSU) on operational NOAA satellites are shown to be consistent with 
predictions made using a mesoscale NWP model (MM5) and a radiative transfer model 
(TBSCAT/F(λ)) for a global set of 122 storms coincident with the AMSU observations.  
Observable discrepancies between the observed and modeled histograms occurred when: 
1) snow and graupel mixing ratios were increased more than 15 and 25 percent, 
respectively, or their altitudes increased more than ~25 mb, 2) the density, F(λ), of 
equivalent Mie-scattering ice spheres increased more than 0.03 g/cm3, and 3) the two-
stream ice scattering increased more than ~1 percent.  Using the same 
MM5/TBSCAT/F(λ) model, neural networks were developed to retrieve from AMSU 
and geostationary microwave satellites: hydrometeor water paths, 15-minute average 
surface precipitation rates, and cell-top altitudes, all with 15-km resolution.  Simulated 
AMSU rms precipitation-rate retrieval accuracies ranged from 0.4 to 21 mm/h when 
grouped by octaves of MM5 precipitation rate between 0.1 and 64 mm/h, and were ~3.8 
mm/h for the octave 4-8 mm/h.  AMSU and GEM precipitation rate retrieval accuracies 
for random 50-50 mixtures of profiles simulated with either the baseline or a modified-
physics model were largely insensitive to changes in model physics that would be clearly 
evident in AMSU observations if real.  This insensitivity of retrieval accuracies to model 
assumptions implies that MM5/TBSCAT/F(λ) simulations offer a useful testbed for 
evaluating alternative millimeter-wave satellite designs and methods for retrieval and 
assimilation, to the extent that surface effects are limited. 
 

5.2  Introduction 
 
In order to assimilate passive microwave precipitation observations or retrievals into 
numerical weather prediction (NWP) models, the modeled radiances must be consistent 
with those observed.  This chapter tests the sensitivity of that consistency to assumptions 
in a particular radiative transfer model (RTM), and in a cloud-resolving numerical 
weather prediction (NWP) model that predicts hydrometeor habits and profiles.  The 
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precipitation and water path retrieval accuracies are shown to be less sensitive to the 
physical models than are the radiances, provided that the retrieval method is tuned to 
reality. 
 
 These model-sensitivity results are most relevant to imaging microwave 
spectrometers such as the Advanced Microwave Sounding Unit (AMSU) flying on the 
National Ocean and Atmospheric Administration (NOAA) polar orbiting satellites 
NOAA-15, -16, -17, and -18 [23], [24], [34], [52], and its planned successor, the 
Advanced Technology Microwave Sounder (ATMS) [26].  These instruments observe 
frequencies above 23 GHz with spatial resolution of ~15-50 km.  Retrieval accuracies at 
nadir are also predicted for proposed geosynchronous microwave sounders that could 
monitor precipitation at intervals as short as ~5-15 minutes [53]-[54].  Development and 
analysis of AMSU precipitation retrieval algorithms for use at all angles is presented to in 
Chapters 7 and 8. 
 
 The use of cloud-resolving NWP model-based simulations for developing and 
evaluating microwave precipitation retrieval methods is motivated by the lack of 
trustworthy ground truth coincident with microwave observations.  For example, there is 
no practical method for accurately observing the three-dimensional density, size, and 
habit distributions of various hydrometeor species at the same time their microwave 
emission spectrum is being continuously mapped from above. Although multi-frequency 
Doppler radar systems offer some hope for accurate three-dimensional imaging of 
hydrometeors, such studies are rare and require simultaneous microwave spectrometers 
operating overhead to complete the experiment. Even rain gauge measurements of 
surface rainfall are suspect because of the influence of local winds and because arrays of 
gauges are seldom sufficiently extensive to compensate for the non-uniformity of rain, 
particularly convective rain. Moreover, since the character of precipitation varies 
substantially over the globe, high quality ground-truth instrumentation must be mobile or 
replicated. 
 

One way to obtain more precise precipitation retrieval training data is to use cloud-
resolving NWP models in combination with radiative transfer models (RTM) that 
together match satellite observations with acceptable fidelity over a global set of co-
located test cases.  For example, simulated cloud radiation databases linking 
meteorological parameters to emergent microwave spectra have long been used to train 
"physically based" retrieval algorithms designed for TRMM data (e.g., [55]-[56]).  
Another model-based approach to precipitation retrievals involves Bayesian schemes 
based on Gaussian assumptions, as demonstrated by Bauer et al. [57] for a hypothetical 
sensor with five window channels 18-150 GHz plus 8 channels in the 54- and 118-GHz 
oxygen absorption bands 

 
A simpler approach is to evaluate the separate impacts of various modifications to 

the NWP and RTM models.  This was done, for example, for TRMM frequencies by 
Tassa et al. [58], and for AMSU frequencies 23-191 GHz in a limited way by 
Surussavadee and Staelin [1].  In the latter work, observed AMSU radiance histograms 
agreed within ~±10K at all frequencies with those predicted by the NWP model 
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NCEP/MM5 followed by the RTM model TBSCAT/F(λ), not only for global averages 
over 122 diverse storms observed between 83N and 73S over a year, but also for subsets 
of convective, stratiform, snowy, and other types of precipitation.  This chapter extends 
this initial sensitivity analysis to several additional model assumptions and to their impact 
upon predicted retrieval accuracies.   

 
Section 5.3 reviews briefly the physical basis for the link between millimeter-wave 

spectra and surface precipitation rates.  Section 5.4 explores the sensitivity of the 
brightness temperature histograms to various assumptions in the radiative transfer model 
and MM5.  Section 5.5 then presents analyses of: 1) precipitation retrieval accuracies for 
AMSU and a proposed geostationary microwave sounder using frequencies 150-430 
GHz, and 2) the sensitivity of those predicted accuracies to model assumptions and 
meteorological conditions.  Section 5.6 summarizes the prospects for assimilation of 
millimeter-wave precipitation-sensitive radiances and retrievals into numerical models, 
and the conclusions to be drawn from these studies.  MM5 domain configurations, 
AMSU observations over 122 global storms, and computation of MM5/TBSCAT 
predicted radiances used in this chapter are described in Sections 3.1, 3.2, and 4.4, 
respectively. 
 

5.3  Physical Basis  
 
Most prior centimeter-wave precipitation observations from satellites have used dual-
polarized window channels below 90 GHz viewed at large constant zenith angles that 
permit surface emissivity and temperature to be partially distinguished, thus permitting 
atmospheric absorption and water paths to be estimated [59].  In contrast, millimeter-
wave spectrometers rely more on scattering signatures deduced as a function of altitude 
and wavelength for wavelengths that span the transition between Rayleigh and geometric 
scattering for typical hydrometeors.  Thus millimeter-wave spectra reveal information 
about hydrometeor size and altitude distributions, both of which are correlated with 
precipitation intensity.  Millimeter-wave observations in window channels over ocean 
also yield water path information, but multiple channels are required to help distinguish 
the effects of water vapor and ocean roughness from absorption by water droplets.  The 
instrument of primary interest in this chapter (AMSU) scans cross-track with only a 
single angle-dependent polarization. 
 
 The altitude distributions of hydrometeors can be inferred, for example, using the 
opaque oxygen band channels near 54, 118, and 425 GHz.  Only frequencies penetrating 
down to cell-top levels can sense their scattering signature [60]-[61], and these 
penetration depths are frequency dependent, ranging from the surface to the mesosphere.  
The observable cell tops are defined by hydrometeors of ~1-5 mm diameter, which 
generally dominate millimeter-wave scattering, and these tops can lie well below the 
visible cloud top.  The signature of an icy cell top can be strong because its albedo can 
exceed 50 percent and yield local perturbations over 100 K, large compared to nominal 
satellite receiver sensitivities of ~0.2 K.  This "altitude slicing" phenomenon associated 
with frequency-dependent penetration depths is also evident in 183-GHz water vapor 



 86

observations because, for example, only the highest cell tops rise to the dry altitudes 
observable from space near 183.7±1 GHz [34], [62].  
 
 Hydrometeor size distributions are revealed by the frequency dependence of 
scattering signatures 50-200 GHz because the transition between Rayleigh and geometric 
scattering for most hydrometeors lies within this band.  The larger hydrometeors are more 
evident in the 50-100 GHz region, while smaller ones dominate above 100 GHz [60], 
[62], [63].  Because hydrometeor size and weight are related to the vertical wind 
necessary to maintain them aloft, there is significant correlation between the presence of 
larger hydrometeors, higher vertical winds, and stronger convective rain. 
 
 The information content in the millimeter-wave brightness temperature spectrum 
relevant to icy hydrometeor distributions can be estimated from the variances of the 
eigenvectors characterizing the millimeter-wave spectral difference between atmospheric 
columns with and without such icy hydrometeors.  Studies of ~1.6 million 15-km 
resolution differential microwave emission spectra 21-190 GHz computed for 122 storms 
distributed over the globe and year, as described in more detail in section 3.2, yielded 
normalized variances for the first three differential spectral eigenvectors of 95.7, 3.2, and 
0.7 percent.  Millimeter-wave aircraft and satellite data have shown that both cell-top 
altitudes and particle-size distributions are separately revealed by such spectra [61]-[63].  
These parameters are correlated to some degree, however, and are also correlated with 
precipitation rate. 
 

5.4  Sensitivity of Radiance Histograms  
 

5.4.1  Sensitivity to the radiative transfer model 
 
Successful assimilation of observed radiances into NWP models requires that simulated 
radiances match the observations, and therefore both the NWP and radiative transfer 
(RTM) models must be correct.  The same is true if precipitation retrievals are 
assimilated instead of radiances because retrievals are trained and tested using such 
models. 
 
 This section characterizes the effects of radiative transfer assumptions on the quality 
of brightness-temperature-histogram matches between NWP models and AMSU 
observations for 122 global storms described in Section 3.2.  Histograms are matched 
instead of values at individual pixels because the precise locations and strengths of 
simulated convective instabilities are partially determined by chaotic processes within 
MM5 that are not resolved or predicted by available NWP initialization fields.  Even 
pixel-to-pixel radiance comparisons for stratiform systems would be problematic, as 
suggested in Fig. 3.3 where AMSU and NCEP/MM5/RTM radiances at 183±7 GHz are 
compared for two storms.  Surussavadee and Staelin [1] demonstrated earlier that 
histogram comparisons are sensitive to modest changes in MM5 and AMSU radiative 
transfer models. 
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 Modeling radiative transfer in precipitation at millimeter wavelengths is problematic 
because ice habits are diverse and have unknown three-dimensional distributions in form, 
size, and density, all of which affect microwave scattering and absorption.  Both complex 
[37] and simpler approximations (e.g., [55]) have been used to model radiative transfer in 
these cases. The related simple radiative transfer model used here [1], [7] is generally 
consistent with AMSU observations, as demonstrated below, and is designated the 
TBSCAT/F(λ) model, which names its two most significant components. 
 
 The sensitivity of computed brightness temperature histograms to RTM assumptions 
was tested by comparing radiance histograms computing using: 1) a baseline RTM versus 
2) RTM's with alternative ice factors, loss tangents, back-scattering fraction, and 
hydrometeor size distributions.  Fig. 4.6(a) presents the brightness temperature 
histograms observed by AMSU at six frequencies for the 122 global storms characterized 
in Table 3.2, and the corresponding histograms for simulated NCEP/MM5/TBSCAT/F(λ) 
brightnesses for the same storms.  The worst-case discrepancy in these histograms 
between observed and modeled brightness temperatures is roughly 10K, and this is used 
as the nominal threshold for detecting possible failures in the MM5 and RTM models as 
their parameters are varied.  Because these observed and modeled storms overlap almost 
exactly in time and space for a very large number of pixels, these histogram comparisons 
are more sensitive to model deficiencies than are comparisons lacking concurrence or 
scale. 
 
 Fig. 5.1 presents the same data as in Fig. 4.6(a), but subdivided by precipitation type; 
only those three frequencies most sensitive to icy hydrometeors are illustrated, i.e., 89, 
150, and 183±7 GHz.  The six types include convective, stratiform, snow-only, rain-only, 
tropical (|lat| ≤ 25), and non-glaciated (warm) rain, as classified for each pixel using its 
observed or simulated brightness spectrum [1].  The baseline RTM generally matches the 
AMSU brightness temperature histograms for these diverse types of precipitation, 
suggesting its ability to match reality despite its simplicity.  The strong exception is 
snow-only pixels, for which the window channels at 89 and 150 GHz respond to the 
frozen surface and possible deep snow, which is not consistent with the current 
assumption of 0.91-0.97 surface emissivity.  Although existing frozen-surface emissivity 
models could be used, these two window channels would remain problematic for 
hydrometeor retrievals over ice or snow fields.  Fortunately the more opaque bands near 
183 GHz are insensitive to the surface, but are sensitive to snow and graupel, as 
suggested here and later in Fig. 5.5.  The next largest type of discrepancy in Fig. 5.1 
involves a few of the very coldest pixels observed by AMSU, but some of these are 
located over water misclassified as land. 
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Fig. 5.1. Brightness temperature histograms (pixels per degree K) for channels near 89, 
150, and 183±7 GHz, for each precipitation type in order of increasing opacity from left 
to right, for 122 storms using F(λ) from Table 4.2.  (a) Convective vs. stratiform where 
only TB’s below 240 K are plotted and the absolute TB’s were shifted to the right by 0, 
110, 240, 350, 410, and 460 K, respectively; (b) snow-only vs. rain-only where only TB’s 
below 260 K are plotted and the absolute TB’s were shifted to the right by 0, 90, 140, 350, 
460, and 550 K, respectively; (c) |lat| ≤ 25 with TB’s <250K, vs. warm rain with TB’s < 
260K, where the absolute TB’s were shifted to the right by 0, 100, 190, 300, 350, and 410 
K, respectively.  The vertical bar for each histogram represents 230K. 
 
 
 The first change made to the RTM was an arbitrary increase in the ice factor F by 0.1 
for snow alone and graupel alone, as shown in Figs. 5.2(a) and 5.2(b), respectively.  
These perturbations to F(λ) are generally small compared to its possible range between 0 
and 1, but nonetheless produce a noticeable change in the MM5/TBSCAT/F(λ) 
brightness temperature distributions.  This sensitivity of radiance to F(λ) is consistent 
with the difficulty encountered in some earlier studies that effectively used larger values, 
leading to conjectures that modeled ice densities should be lowered [58].  Note that 
183±3 GHz responds more strongly to graupel than to snow, and therefore senses strong 
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convection.  Fig. 5.2(c) compares the histograms for all 122 storms for the case where the 
ice loss tangent has been decreased by reducing the imaginary part of the permittivity ε" 
by a non-physical factor of ten.  Fig. 5.2 implies that only reasonably apt RTM's will 
produce agreement across all precipitation types.  Changes of ~0.1 in F(λ) for snow and 
graupel produce worst-case discrepancies of ~40K in the Fig. 5.2 histograms, suggesting 
that changes or errors in F(λ) of ~0.025 might be detectable, and certainly changes of 
~0.05, which are small fractions of the possible range from 0 to 1.  It should be noted that 
the baseline MM5 and RTM models incorporated no tuning other than the model 
architecture itself, and they nonetheless yield few discrepancies in Fig. 4.6(a) beyond 
10K for the benchmark 122 storms. 
 
 

 
Fig. 5.2.  Brightness temperature histograms for AMSU and MM5 for channels near 50.3, 
89, 150, 183±7, 183±3, and 183±1 GHz, from left to right, for: (a) F(λ) increased by 0.1 
for snow, (b) F(λ) increased by 0.1 for graupel, (c) imaginary part of ice permittivity, ''ε , 
decreased by 10 times.  Only TB’s below 250 K are plotted.  The absolute TB’s were 
shifted to the right by 0, 140, 260, 330, 390, and 450 K, respectively.  The vertical bar for 
each histogram represents 230K. 
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 This conclusion is reinforced by Figs. 5.3(a) and 5.3(b), which respectively illustrate 
for 122 storms the effects of increasing the backward scattering slightly, and the particle 
size distribution by a significant factor.  The Mie back-scattering fraction was increased 
by 0.02.  The Mie back-scattering fraction is the fraction of radiance scattering backward 
and equals (1-G)/2, where G is the scattering asymmetry factor from the Mie calculation 
for the assumed particle size distribution, which is defined by (3.1).  The worst-case 
brightness discrepancies for a 0.02 increase in BS ratio in the two-stream Mie scattering 
model are ~30K in Fig. 5.3(a), so a change of ~0.01 would produce a noticeable 
discrepancy with the AMSU histograms.  This sensitivity is high because it is ~10-20 
percent of the nominal BS ratio for typical particle sizes (~0.05 – 0.1), and is therefore 
equivalent to ~10-20 percent change in scattering cross-section in the two-stream 
radiative transfer limit.  Since scattering can cool brightness temperatures ~50 – 100K, 
this high sensitivity is not unexpected. 
 
 The exponentially distributed particle sizes assumed in (3.1) were decreased by 
increasing the zero-diameter intercept No for snow (Ns) and graupel (Ng) from 0.04 to 3; 
this increases the numbers of particles because the mass mixing ratio was held constant.  
Because the volume of a sphere varies as D3 and its scattering cross-section in the 
Rayleigh and geometric limits varies as D4 and D2, respectively, scattering for constant 
mass will decrease in the Rayleigh limit and increase in the geometric limit as a result of 
increasing No, depending on wavelength λ and the initial value of No.  The warmer 
MM5/TBSCAT brightness temperatures in Fig. 5.3(b) are generally increased for a given 
histogram pixel count, consistent with reduced scattering by smaller hydrometeors in the 
Rayleigh limit.  The colder temperatures remain unchanged, however, which is consistent 
with the coldest pixels scattering more strongly and being characterized by hydrometeors 
somewhat closer to the geometric scattering limit.  The worst-case brightness 
discrepancies are no more than 10K, however, so the histogram comparisons do not 
strongly constrain No.  
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Fig. 5.3.  AMSU and MM5 brightness temperature histograms for 122 global storms for 
channels near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, from left to right, for: (a) 
Mie back-scattering fraction increased by 0.02, and (b) the intercepts, both Ns and Ng, for 
snow and graupel exponential hydrometeor size distributions increased from 0.04 to 3, 
respectively.  Only TB’s below 250 K are plotted.  The absolute TB’s were shifted to the 
right by 0, 140, 260, 330, 390, and 450 K, respectively.  The vertical bar for each 
histogram represents 230K. 
 
 

5.4.2  Sensitivity to MM5/RTM model assumptions  
 
Successful assimilation of observed radiances into NWP models also requires that the 
NWP model produce hydrometeor profiles faithful to the true atmosphere.  The potential 
NWP benefits from assimilated radiance information increases with the sensitivity of 
radiances and their histograms to hydrometeor profiles.  Figs. 5.4(a) and 5.4(b) illustrate 
for 122 storms the sensitivity of radiance histograms to increases in MM5 predicted mass 
profiles of snow and graupel.  The worst-case brightness discrepancies resulting when 
snow and graupel mass distributions are increased by 50 and 75 percent, respectively, are 
both ~25K, corresponding to detectable 10K excursions of ~20 and ~30 percent in MM5 
snow and graupel production, respectively.  Only snow and graupel significantly affect 
these millimeter wavelengths, while the impacts of cloud ice and liquid water were 
usually found to be negligible in comparison. 
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Fig. 5.4.  Sensitivity of radiances near 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz, 
from left to right, to increases in MM5-predicted: (a) snow ×1.5, (b) graupel ×1.75.  Only 
TB’s below 250 K are plotted.  The absolute TB’s were shifted to the right by 0, 140, 260, 
330, 390, and 450 K, respectively.  The vertical bar for each histogram represents 230K. 

 
 

 Fig. 5.5 shows that increasing and decreasing the MM5-predicted altitudes of snow 
and graupel by 75 and 50 mb, respectively, does not always produce comparable 
histogram effects, where the MM5 pressure levels are equally spaced at 25 mb.  This 
figure also indicates the substantial sensitivity of the 183-GHz band to the altitudes of icy 
hydrometeors as a result of the water vapor altitude-slicing effect.  The worst-case 
brightness discrepancies shown in Fig. 5.5 are ~35K for 75-mb altitude changes, so 
systematic errors in MM5 snow/graupel altitudes of ~20 mb would be marginally 
detectable using the AMSU brightness histograms. 
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Fig. 5.5.  Sensitivity of radiances to: (a) increases of snow and graupel altitudes by 75 
mbar, and (b) decreases of snow and graupel altitudes by 50 mbar.  Only TB’s below 250 
K are plotted.  The absolute TB’s for channels near 50.3, 89, 150, 183±7, 183±3, and 
183±1 GHz, from left to right, were shifted to the right by 0, 140, 260, 330, 390, and 450 
K, respectively.  The vertical bar for each histogram represents 230K. 
  
 
 The sensitivity of radiance histograms to MM5 and the RTM was also evaluated by 
computing the rms difference between simulated radiances for the baseline case and the 
same radiances computed using different MM5/RTM variations.  The measure for the 
difference is defined as: 
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where Q is the number of brightness-temperature histogram bins, Ni is the number of 
baseline pixels that fall in brightness bin i, jx and jy  are brightness temperatures from 

the baseline case and the perturbed case, respectively, for a given pixel j and bin i, x  is 
the sample mean of jx  for bin i, and the variance within bin i is σi

2.   This rms ΔTB 
sensitivity metric is presented in Table 5.1 for the same 122 storms and the six AMSU 
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frequencies 50.3-183±1 GHz used before: AMSU-A channel 3 (A3) at 50.3 GHz, and 
AMSU-B channels 1-5 (B1-B5) at the frequencies 89, 150, and 183±1, ±3, and ±7 GHz, 
respectively. 
 

 
TABLE 5.1 

  ΔTB [K] (RMS) FOR DIFFERENT VARIANTS OF RTM AND MM5 
Variations A3 B1 B2 B3 B4 B5 
FS + 0.1 1.57 9.82 11.86 2.28 6.54 10.16 
FG + 0.1 2.76 16.24 11.81 15.36 15.18 13.05 
FI = 0.1 0.50 2.12 1.27 0.36 0.28 0.87 

BS + 0.02 0.75 6.53 10.92 10.39 12.61 13.41 
ε''ice × 6 0.67 12.74 22.43 8.80 16.80 21.46 
ε''water × 2 0.84 2.18 1.39 0.47 0.46 0.73 

Ns = Ng = 3 2.58 12.68 7.25 2.99 4.22 4.72 
S × 1.5 1.48 7.44 9.61 2.33 6.15 9.30 

G × 1.75 1.20 6.85 5.70 11.31 10.16 8.13 
I × 20 0.51 6.24 14.13 6.17 11.66 14.70 

W × 20 5.69 14.94 15.99 3.54 9.04 11.84 
S/G ↓ 50 mb 0.72 6.62 9.75 18.47 17.68 13.00 

A3 signifies AMSU-A ch. 3 (50.3 GHz).  B1-B5 signify AMSU-B chs. 1-5 (89, 150, 
183±1, 183±3, and 183±7 GHz).  FS, FG, and FI indicate F(λ) for snow, graupel, and 
cloud ice, respectively.  S, G, I, and W signify snow, graupel, cloud ice, and rain and 
cloud liquid water, respectively.  BS signifies  Mie back-scattering fraction.  ε''ice and 
ε''water signify imaginary parts of ice and water permittivity, respectively.  Ns and Ng 
characterize the exponential size distributions (3.1) for snow and graupel, respectively, 
where nominal Ns = Ng = 0.04 and larger values imply smaller hydrometeors.  ↓ signifies 
movement to lower altitude. 
 
 
 The model-sensitivity results presented in Table 5.1 are generally consistent with 
those inferred from Figs. 5.2-5.5, but also reveal the insensitivity of the brightness 
temperature histograms to three parameters: F(λ) for cloud ice, ε" for water (related to the 
loss tangent for water), and the abundances of cloud ice and rain water.  The table 
suggests a modest sensitivity to ε" for ice, however, to within a factor of ~3, where ε" is 
highly sensitive to ice temperature, particularly near the melting point.  The table also 
shows that AMSU-B channels are usually at least three times more sensitive than the 
50.3-GHz window channel to changes in hydrometeor distributions or propagation 
physics.  Thus with respect to snow and graupel mixing ratios and altitudes, F(λ), and ice 
scattering, the baseline MM5/RTM model cannot depart from physical truth very far 
before yielding clearly observable differences of ~10K between simulated and observed 
brightness temperatures. 
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5.5  Retrievals of Hydrometeor Profiles and Precipitation 
Rates 
 

5.5.1  Retrieval accuracies 
 
Retrievals of precipitation rates and hydrometeor profiles can also be assimilated into 
NWP models.  Two different instruments are analyzed here: the operational instrument 
AMSU, characterized in Table 5.2, and a proposed GEostationary Microwave (GEM) 
spectrometer, also characterized in Table 5.2, that could map and assimilate precipitation 
for important storms at ~15-minute intervals with ~15-km resolution.  The GEM 
frequencies were selected to be consistent with a practical instrument employing a 2-
meter diameter filled-aperture antenna that could readily be integrated on geostationary 
satellites such as GOES [53].  In particular, the 380-GHz water vapor resonance and the 
425-GHz oxygen resonance were selected for their abilities to sense individual 
convective cells larger than ~10 km, and the 183-GHz water vapor band was selected 
because it can sense to the surface except in the tropics.  For simplicity the sensitivity of 
all channels is assumed to be 0.2K rms, although for precipitation retrievals this 
specification is not critical because hydrometeor perturbations can exceed 100K.   
 

Fig. 5.6 shows that F(λ) providing matches between Mie spheres with hexagonal 
plates at 424.763 ± 4.0 GHz or rosettes at 380.197 ± 4.0 GHz are size-dependent when 
the particle size is large.  This makes electromagnetic models for snow and graupel more 
complicated.  Fortunately, since Section 5.5.2 later demonstrates that estimated retrieval 
accuracies are reasonably insensitive to errors in F(λ) even when random F(λ) were used 
for both snow and graupel, the size-dependent characteristics for F(λ) at large particle 
size should not affect predicted precipitation retrieval accuracies.  For simplicity, F(λ) for 
frequency higher than 200 GHz used in Chapters 5 and 6 in this thesis was defined as the 
average of the values given by Table 4.2 and F(200 GHz), which was generally consistent 
with preliminary DDSCAT calculations at these higher frequencies, for GEM 
simulations.  The assumed zenith angle was 40 degrees. 

 
 

TABLE 5.2 
FREQUENCIES AND WEIGHTING FUNCTION PEAK HEIGHTS FOR AMSU-A/B AND GEM, AS 

COMPUTED USING THE 1976 US STANDARD ATMOSPHERE VIEWED AT NADIR OVER A 
NONREFLECTIVE SURFACE 

AMSU-A/B GEM 

Ch. Center 
frequency 

(GHz) 

Weighting 
function 

peak height (km) 

Ch. Center 
frequency 

(GHz) 

Weighting 
function 

peak height (km) 
A1 23.8 ± 0.07 0 A1 150 ± 0.9 0 
A2 31.4 ± 0.05 0 A2 183.31 ± 1 6.1 
A3 50.3 ± 0.05 0 A3 183.31 ± 3 4.0 
A4 52.8 ± 0.11 0 A4 183.31 ± 7 1.8 
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A5 53.6 ± 0.12 4 B1 380.197 ± 1.5 8.5 
A6 54.4 ± 0.11 8 B2 380.197 ± 4.0 6.6 
A7 54.9 ± 0.11 9.5 B3 380.197 ± 9.0 4.6 
A8 55.5 ± 0.09 12.5 B4 380.197 ± 18.0 3.1 
B1 89 ± 0.9 0 C1 424.763 ± 0.6 14.5 
B2 150 ± 0.9 0 C2 424.763 ± 1.0 11.5 
B3 183.31 ± 1 6.1 C3 424.763 ± 1.5 7.5 
B4 183.31 ± 3 4.0 C4 424.763 ± 4.0 4 
B5 183.31 ± 7 1.8    

 
 

 
Fig. 5.6. Scattering cross sections as a function of particle length L for (a) hexagonal 
plates at 424.763 ± 4.0 GHz and (b) rosettes at 380.197 ± 4.0 GHz, both compared with 
those of equal-mass spheres having three different values for F(λ). 
 
 
 Because the RTM is non-linear and the statistics of precipitation are non-Gaussian, 
the optimum estimator is non-linear.  For that reason neural networks were used to 
estimate for both AMSU and GEM the 15-minute average surface precipitation rates for 
rain and snow, and also the water paths for graupel, snow, cloud ice, rain water, and the 
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sum of graupel, snow, and rain water.  The neural networks were trained using 5-km 
resolution MM5/RTM brightness temperatures blurred to 15-km resolution.  The pixels 
used for training were distributed uniformly over the blurred 4.4 million 5-km pixels in 
the 122 globally distributed MM5/TBSCAT/F(λ) storms that were selected from a larger 
set of 255 storms to best match concurrent AMSU observations [1].  Only large sets of 
representative cloud-resolved physical model data permit neural networks to yield 
realistic retrievals in the absence of precise in situ ground truth.  It is reassuring that this 
MM5/TBSCAT/F(λ) physical model data yields brightness temperature distributions that 
reasonably match those observed by AMSU over the same set of storms (see Figs. 4.6(a) 
and 5.1).   
 
 All neural networks had three layers with 10, 5, and 1 neurons, respectively, where 
the first two layers employed tangent sigmoid operators, and the final layer was linear.  
Limited experimentation with network architectures did not reveal significant 
opportunities for improvement, probably because the 10-5-1 networks were more 
complex than needed, but were sufficiently simple that the extensive training data was 
adequate.  These networks were trained using MM5/TBSCAT/F(λ) simulations of nadir 
radiances for 122 globally representative storms, and have three layers with 10, 5, and 1 
neurons, respectively.  The first two layers employed tangent sigmoid operators, and the 
final layer was linear.  Other network architectures did not offer noticeable improvement.  
The Levenberg-Marquardt [49] training algorithm was used and the net weights were 
initialized using the Nguyen-Widrow method [50].  Each of the 122 MM5 storms has 
190×190 15-km pixels, and altogether 293 thousand pixels were used for training and 
validating, and all 4.4 million were used for testing.  The same neural network was used 
for both land and sea without introducing significant coastal artifacts, as illustrated later 
in Fig. 5.11(a).    
 
 The retrieval architectures used for AMSU and GEM are illustrated in Figs. 5.7(a) 
and 5.7(b), respectively.  The simulated AMSU data included 18 numbers: the brightness 
temperatures for channels 1-8 of AMSU-A and all AMSU-B channels, plus the five 
estimated brightness perturbations due to icy hydrometeors for AMSU-A channels 4-8.  
The perturbations were estimated using the method described by Chen and Staelin [34], 
but were left at 50-km resolution.  Such perturbations are the difference between 
simulated AMSU-A icy signatures at locations detected using 183±7 GHz data, and 
brightness temperatures determined by Laplacian interpolation of AMSU-A brightness 
temperatures surrounding the icy patch.   
 
 The architecture for estimating surface precipitation rates using GEM has two stages, 
the first of which merely determines which of the following two neural networks should 
be used.  This two-stage complexity was not necessary for the water path estimates, 
which were extracted at point A in Fig. 5.7(b).  Each estimated parameter was produced 
by its own neural network, independent of others.  The input data for GEM simulations 
included only the 15-km and 33-km resolution brightness temperatures at the frequencies 
listed in Table 5.2; no perturbations were estimated.   
 



 98

 
Fig. 5.7.  Architectures of neural networks used to retrieve surface precipitation rate 
R̂ and water paths for various hydrometeor species for (a) AMSU and (b) GEM; GEM 
water path estimates appear at port A. 
 
 
 Since millions of globally and seasonally representative pixels were used in this 
study, the size of the data set is believed to be adequate for the purposes of this chapter.  
The simulated radiances are believed to be relevant and adequate because MM5 models 
the altitude distributions of snow, ice, rainwater, graupel, and cloud ice, all of which are 
uniquely handled by the radiative transfer model with 5-km resolution.  Any residual 
biases relative to reality are believed to have minor consequences in view of: 1) the 
similarity between observed and simulated radiance histograms despite the sensitivity of 
these histograms to several critical assumptions, as demonstrated in this chapter, 2) the 
agreement shown in Fig. 5.1 between observed and simulated radiance histograms for 
five precipitation types (convective, stratiform, tropical, rain only, and warm rain), and in 
similar comparisons for three latitude bands (tropical, mid-latitude, and beyond ±55 
degrees) [1], and 3) the insensitivity of the predicted rms retrieval accuracies to changes 
in many key model parameters, as demonstrated later in Section 5.5.2 and Tables 5.3 and 
5.4. 
 
 Scatter plots characterizing retrieval accuracies are presented for AMSU and GEM in 
Figs. 5.8(a) and 5.8(b), respectively; water paths of snow, graupel, other ice, and rain 
water (mm) are evaluated.  Because surface precipitation is shielded by overlying opacity 
at most millimeter wavelengths and because precipitation that evaporates before reaching 
the ground (virga) is difficult to detect, better retrieval accuracies are obtained for ice 
water paths near the cell tops than for rain water at lower altitudes. 
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Fig. 5.8.  Scatter diagrams for simulated water-path retrievals for snow, graupel, other 
ice, and rain water for (a) AMSU and (b) GEM, based on 122 global atmospheres over 
both land and sea. 
 
 
 Fig. 5.9 illustrates the simulated 15-minute surface precipitation-rate retrieval 
accuracy of AMSU and GEM relative to MM5 truth for 15-km resolution.  AMSU 
estimates are based on one look at the end of the 15-minute averaging period.   It was 
found that a small improvement was obtained when the GEM estimates were based on 
two looks 15-minutes apart (before and after), partially accounting for the effect of virga; 
this doubled the number of inputs to the GEM neural network from 12 to 24.  The scatter 
plots suggest useful accuracy for precipitation rates above ~1 mm/h.   
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Fig. 5.9. Scatter diagrams for retrieved surface precipitation rates (mm/h, 15-minute 
averages) for (a) AMSU and (b) GEM based on 122 global atmospheres over both land 
and sea. 
 
 
 Fig. 5.10 presents the accuracy with which cell-top altitudes can be estimated using 
GEM, where cloud-top altitude is defined as the highest altitude for which the summed 
rain, snow and graupel water paths to space exceeds 0.05 mm.  The mean and rms 
altitude errors above 5-km for GEM are approximately zero and 0.7 km, respectively, and 
±0.5 km and ~0.9-1.2 km below 5-km altitude.  The accuracy degradation in the low 
troposphere is consistent with the limited penetration depths above 140 GHz for tropical 
humidity.  Similar simulations of cell-top altitude retrievals using AMSU yielded mean 
errors near zero at all altitudes and rms errors of ~0.9-1.2 km, consistent with the results 
from earlier airborne 118-GHz spectrometers observing oxygen absorption bands [61].  
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Fig. 5.10. Scatter diagram for simulated cloud-top altitudes (km) retrieved using GEM 
based on 122 global atmospheres over both land and sea. 
 
 
 The accuracies for surface rain and snowfall rates are determined largely by their 
statistical correlation with the abundance and altitudes of snow and graupel, which at 
millimeter wavelengths can be estimated more accurately than precipitation rates.  
Although this statistical relationship is climate-dependent, climate information is 
provided by the temperature and humidity profiles sensed by the same millimeter-wave 
sounding channels.  The accuracy of the resulting surface precipitation retrievals is 
suggested in Fig. 5.11, which presents MM5 ground-truth precipitation rates and the 
corresponding rates derived for simulated AMSU and GEM observations of: a) a mid-
latitude front over France at 1003 UTC 2 January 2003, b) the ITCZ at 0553 UTC 15 
April 2003, c) snow (top half) plus rain (bottom half) over the western U.S. observed at 
0423 UTC 10 November 2002, and d) a non-glaciated front observed at 0503 UTC 16 
November 2002.  The boundaries of raining regions are generally retrieved reasonably 
well with a 1-mm/h threshold, and only a few smaller convective cells located within 
stratiform zones are missed.  The snow events (c) are better bounded with a 0.25-mm/h 
threshold.  The largest errors occur when warm rain is observed by GEM, which usually 
cannot penetrate well the lowest 1-2 kilometers of the atmosphere where warm rain may 
reside, and therefore may fail to register some or all of it. 
 
 It is interesting to note that it took ~22 minutes to train a neural network to retrieve 
precipitation using AMSU data and 2.9×105 MM5 training pixels.  Once trained, it 
retrieved ~2×105 pixels per second with a conventional 2.8-GHz PC and the MATLAB 
neural network toolbox operating in its computationally inefficient interpretive mode; it 
could therefore reduce one satellite year of data in a couple of hours.  The most time 
consuming step was generation of the 2.9×105 brightness temperature and MM5 training 
pixels.  To predict a single storm for 1 hr using the MM5 configurations shown in Table 
3.1 took ~254 minutes using a conventional 2.4-GHz PC.  To simulate AMSU-A and –B 
brightness temperatures for a single MM5 output with 190×190 pixels in the inner 
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domain required ~1 hour with a 2.4 GHz PC.  Clusters of 20 PC's were typically used for 
the 255 storms analyzed. 
 
 One important metric involves the ability of retrieval algorithms to distinguish 
precipitating from non-precipitating pixels.  Such errors commonly occur near true 
precipitation, as suggested in Fig. 5.11, and depend upon the threshold definition for 
precipitation.  For example, MM5 pixels with surface precipitation rates above 0.3 mm/h 
and retrievals less than 0.3 mm/h contribute ~3.2 and 3.0 percent of MM5 total surface 
precipitation rates for AMSU and GEM, respectively.  On the other hand, MM5 pixels 
with surface precipitation rates below 0.3 mm/h and retrievals above 0.3 mm/h contribute 
~7.9 and 11.8 percent of AMSU and GEM total surface precipitation rates, respectively.  
Both AMSU and GEM retrieve some excess precipitation when heavy cirrus spreads 
beyond convective cores. 

 
 
 

 
Fig. 5.11.  Surface precipitation rates (mm/h; 15-minute integration) for: (a) summer 
frontal system over France at 1003 UTC 2 January 2003, (b) ITCZ at 0553 UTC 15 April 
2003, (c) snow (top half) plus rain (bottom half) over land at 0423 UTC 10 November 
2002; the threshold is 0.25 mm/h, and (d) non-glaciated system over ocean at 0503 UTC 
16 November 2002.  From top to bottom are displayed the MM5 simulated values, the 
instantaneous AMSU retrieval, and the two-sample 15-minute GEM retrieval. 
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5.5.2  Sensitivity of predicted accuracies to model imperfections 
 
Retrieval accuracies determined using only simulations rather than field observations are 
suspect because they depend on how well the simulations model reality, which is often 
unknown.  This section examines the degree to which the deduced retrieval accuracy 
depends upon the fidelity of the simulated world, designated "planet MM5", to Earth.  
The approach involves computation of retrieval accuracies for an ensemble of planets 
MM5 for which the physics has been varied over a dynamic range that arguably 
approximates or exceeds the unknown true differences between planet MM5 and Earth.  
Since the deduced retrieval accuracies are surprisingly independent of these large 
simulated physical variations, it can be inferred that the retrieval accuracies deduced from 
these simulations are reasonably reliable and probably would be achievable in practice. 
 
 Table 5.3 presents MM5-simulated AMSU rms surface-precipitation-rate retrieval 
accuracies for the baseline NCEP/MM5/TBSCAT/F(λ) model discussed in Chapter 4, 
and for a variety of altered physical assumptions involving the ice factors, abundances, 
altitudes, backscattering, loss tangent, and size distributions for snow and graupel.  The 
table also presents the rms water-path accuracies derived for snow S, graupel G, cloud ice 
I, rain water R, and summed snow/graupel/rain (S+G+R) for the same baseline model.  
Blank entries in the table indicate that too few examples were available to compute 
reliable statistics.  The same neural network architecture and strategy described in section 
5.5.1 were used for all retrievals in Table 5.3; each estimated parameter utilized a 
different network trained on 293 thousand pixels selected uniformly from the same set of 
122 storms; all 4.4 million pixels were used for testing.   
 
 The water path accuracies listed for AMSU in Table 5.3 correspond to the scatter 
plots presented in Fig. 5.8(a).  The derived rms accuracies are less than the corresponding 
mean values in any octave range of interest, suggesting that all water path retrievals are 
useful, although rain-water path estimates are less accurate than those for icy 
hydrometeors.  They also suggest that retrievals of the total water path for S+G+R are 
more accurate than are sums of the estimated components, and sometimes more accurate 
than single contributors (S, G, or R). 
 
 The baseline AMSU surface precipitation rate accuracies tabulated in Table 5.3 
correspond to the scatter plot in Fig. 5.9(a), and suggest that surface precipitation rate 
retrievals are useful primarily above 1 mm/h.  The baseline case, however, assumed a 
fixed: 1) set of F(λ)'s, 2) mixing-ratio-dependent hydrometeor size distribution function 
N(D) given by (3.1), 3) MM5 strategy for determining hydrometeor altitudes and 
abundances, 4) backscattering dependence on particle diameter, permittivity, and 
wavelength, and 5) temperature-dependent ice loss tangent.  In fact, these assumptions 
represent averages of behaviors that vary, even within a single storm.  For example: 1) 
hydrometeor habits and F values vary far more than assumed here in the DDSCAT 
computations for simple hexagonal plates, 6-pointed rosettes, and spheres, 2) the back-
scattering ratio depends on those ice shapes, 3) the size distribution N(D) can vary with 
electrification, storm age, turbulence, and other variables, and 4) hydrometeor loss 
tangents and ε"ice can depend on temperature and impurities.  Therefore it is not sufficient 



 104

simply to evaluate rms retrieval accuracies under different fixed sets of assumptions.  
Instead the simulated retrievals must reflect uncertainties and variations that can occur 
within a single test ensemble of storms.  How best to accomplish this is the 
"randomization problem". 
 
 The retrieval system was randomized here by assuming that half the time 
MM5/RTM physics was governed by the baseline assumptions, and half the time by a 
relatively extreme modification of one of those assumptions.  For example, the third 
column in Table 5.3 corresponds to a Planet MM5 for which, at random, half the time the 
physics is that of the baseline, and half the time the ice factors FS and FG for snow and 
graupel are both increased by 0.1, a change that produced clear disagreement with AMSU 
observations in Figs. 5.2(a) and 5.2(b).  The neural network retrieval system was both 
trained and tested with the same fifty-percent ratio.  The fourth column of the table 
similarly mixes the baseline with cases for which all ice is doubled, while columns 5, 6, 
and 7 present the rms retrievals errors for which the non-baseline cases involve lifting the 
snow and graupel by 100 mbar in altitude, increasing the back-scattering ratio by 0.1, and 
increasing ε"ice by a factor of six, respectively. 
 
 Table 5.4 corresponds to Table 5.3, but for the geostationary sounder GEM. The 
results are similar, although the rms retrieval accuracies for GEM are ~20 percent worse 
than for AMSU due to the lack of GEM observations below ~140 GHz.  Random 
doubling of snow and graupel abundances degrades the rms retrieval accuracy only 11 
percent.  For all physical assumptions, all estimated retrieval accuracies for each octave 
range are below the octave maximum for rain rates above 1 mm/h, and below the octave 
minimum for AMSU rates above 4 mm/h, and for GEM rates above 8 mm/h. 
 
 The important result derived from Tables 5.3 and 5.4 is that the predicted rms 
retrieval accuracies for all surface precipitation rates are surprisingly independent of the 
changes in physical assumptions, provided the statistics of the randomization are known.  
For example, for MM5 precipitation rates of 2-4 mm/h, the rms retrieval error varied no 
more than ±7 percent over all assumptions tested, the worst case being a reduction when 
the snow-to-graupel ratio increased an average of 50 percent.  For rates of 32-64 mm/h 
the maximum departure from baseline was only ±4 percent in predicted rms retrieval 
errors.  When the percentage increases in predicted rms retrieval errors are averaged over 
all rain-rate octaves, they increased ~1.3, 9.0, 4.6, 2.2, -1.0, and 0.8 percent for detectably 
different F(λ), snow/graupel abundances, snow/graupel altitudes, backscattering, ice loss 
tangents, and snow/graupel size distributions, respectively.  The largest increase in 
simulated retrieval errors is only 9 percent and corresponds to an average increase in 
snow and graupel mixing ratios of 50 percent, approximately twice the increase that 
would make the modeled brightness temperature histograms inconsistent with those 
observed by AMSU.  The second largest increase, 4.6 percent, corresponds to increases 
in snow/graupel altitudes averaging 50 mb, also approximately twice the changes that 
could be detected using AMSU brightness histograms.  That is, the retrieval accuracies 
estimated using MM5 vary less than a few percent for changes in the tested assumptions 
that would produce noticeable degradation in the demonstrated agreement (Fig. 4.6(a)) 
between MM5 and observed AMSU brightness temperature distributions for 122 storms.  
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The reason for this surprising insensitivity of predicted retrieval accuracies to physical 
uncertainties is still unclear.  
 
 As a result of this insensitivity to physical model uncertainties, quantified in Table 
5.3, NCEP/MM5/TBSCAT/F(λ) simulations should yield reasonably reliable predictions 
of precipitation rate retrieval performance for a variety of millimeter-wave instruments 
and algorithms, and these accuracies should be reasonably achievable in practice. 
  

 
TABLE 5.3 

RMS ERRORS FOR 15-KM RESOLUTION AMSU RETRIEVALS UNDER VARIOUS PHYSICAL 
ASSUMPTIONS 

MM5 
Range 
(mm/h 
or mm) 

Precipitation Rate Retrieval Accuracies (mm/h, rms) Hydrometeor Water-path Retrievals 
(mm, rms) for Baseline Case 

 Basel
ine 

FS,G 
+ 0.1* 

(S/G) 
× 2* 

S/G 
↑100 
mb* 

BS 
+ 0.1* 

ε''ice 
× 6* 

Ns, Ng 
= 3 

S G I R RS
G 

0 – 
0.125 

0.39 0.37 0.43 0.45 0.39 0.39 0.41 0.02 0.04 0.06 0.06 0.07 

0.l25 – 
0.25 

0.68 0.69 0.83 0.76 0.73 0.70 0.74 0.05 0.19 0.10 0.16 0.08 

0.25 – 
0.5 

0.84 0.84 0.96 0.87 0.88 0.83 0.87 0.07 0.30 0.12 0.25 0.11 

0.5 – 1 1.09 1.11 1.24 1.10 1.14 1.05 1.08 0.10 0.52 0.11 0.40 0.18 
1 – 2 1.44 1.45 1.60 1.44 1.46 1.36 1.38 0.18 0.93 0.41 0.78 0.35 
2 – 4 2.27 2.21 2.36 2.26 2.21 2.15 2.11 0.35 1.56 - 1.34 0.70 
4 – 8 3.84 4.01 4.09 3.99 3.78 3.78 3.78 0.59 2.24 - 2.23 1.54 

8 – 16 6.97 7.37 7.25 7.07 7.06 7.08 7.25 1.62 3.31 - 4.58 3.17 
16 – 32 11.8 12.0 11.5 11.8 12.1 12.2 11.9 - 3.91 - 9.98 5.19 
32 - 64 20.8 21.2 20.6 21.7 21.2 20.4 20.1 - - - 18.7 8.03 
64-174 38.8 40.4 45.4 42.7 40.7 38.8 40.2 - - - - - 
S, G, I, R, and RSG signify the water paths for snow, graupel, cloud ice, rain water, and 
the sum of rain, snow, and graupel, respectively.  BS is the Mie back-scattering fraction.  
ε''ice is the imaginary part of ice permittivity.   ↑ signifies movement to higher altitude.  * 
indicates that baseline and modified pixels were mixed 50/50 for training and testing.  
Italics: rms errors that exceed the maximum value bounding the octave.  Boldface: rms 
errors less than the minimum for the octave. 

 
 

TABLE 5.4 
RMS ERRORS FOR 15-KM RESOLUTION GEM RETRIEVALS UNDER VARIOUS PHYSICAL 

ASSUMPTIONS 
MM5 
Range 
(mm/h 
or mm) 

Precipitation Rate Retrieval Accuracies (mm/h, rms) Hydrometeor Water-path Retrievals 
(mm, rms) for Baseline Case 

 Basel
ine 

FS,G 
+ 0.1* 

(S/G) 
× 2* 

S/G 
↑100 
mb* 

BS 
+ 0.1* 

ε''ice 
× 6* 

Ns, Ng 
= 3 

S G I R RS
G 
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0 – 
0.125 

0.53 0.57 0.60 0.54 0.53 0.56 0.55 0.03 0.05 0.04 0.07 0.07 

0.l25 – 
0.25 

0.93 1.04 1.10 0.88 0.95 0.96 0.97 0.07 0.22 0.08 0.21 0.11 

0.25 – 
0.5 

1.13 1.28 1.32 1.03 1.12 1.12 1.14 0.09 0.35 0.09 0.34 0.17 

0.5 – 1 1.42 1.54 1.61 1.30 1.42 1.42 1.42 0.14 0.59 0.10 0.52 0.28 
1 – 2 1.72 1.84 1.89 1.65 1.68 1.76 1.73 0.24 0.98 0.22 0.93 0.47 
2 – 4 2.42 2.55 2.67 2.55 2.41 2.47 2.52 0.45 1.75 0.58 1.61 0.91 
4 – 8 4.11 4.08 4.59 4.24 4.21 3.99 4.13 0.79 2.60 - 2.82 2.02 

8 – 16 7.5 7.20 8.30 7.41 8.06 7.36 7.52 1.90 3.39 - 5.45 3.81 
16 – 32 13.0 12.8 13.6 13.4 14.4 13.5 13.7 - 4.29 - 11.3 6.20 
32 - 64 23.5 25.1 24.1 24.1 25.6 25.2 24.5 - - - 20.1 9.10 
64-174 43.9 53.3 46.5 43.2 46.1 44.3 45.1 - - - - - 
S, G, I, R, and RSG signify the water paths for snow, graupel, cloud ice, rain water, and 
the sum of rain, snow, and graupel, respectively.  BS is the Mie back-scattering fraction.  
ε''ice is the imaginary part of ice permittivity.  ↑ signifies movement to higher altitude.  * 
indicates that baseline and modified pixels were mixed 50/50 for training and testing.  
Italics: rms errors that exceed the maximum value bounding the octave.  Boldface: rms 
errors less than the minimum for the octave. 

 

5.5.3  Characterization of Retrieval Errors  
 
Improved understanding of the origins of retrieval errors can facilitate future retrieval 
improvements and understanding of limits to performance potentially available from 
cloud-scale precipitation assimilation methods.  This understanding was sought by 
computing correlation coefficients between various storm-characterization parameters 
and "fractional surface-precipitation-rate error" Δ, where for each 15-km pixel Δ is 
defined as: ˆ( ) /( 1)R R RΔ = − + , where R̂  and R  are the estimated and MM5 true surface 
precipitation rates, respectively.  The additive constant 1 mm/h in the denominator of the 
Δ definition was empirically selected to yield reasonable results; values much less than 
~1 unduly exaggerated the error contributions of low rain rates, while much larger values 
excessively muted them. 
 
 The single most highly correlated explanatory variable for fractional error Δ is the 
dimensionless "virga parameter", which is defined here for each 15-km pixel as: 

max groundV ( 0.2) /( 0.2)= ρ + ρ + .  In this expression maxρ is the maximum sum of rain, 
snow, and graupel densities (g m-3) for any MM5 level, and groundρ  is the corresponding 
summed density at 1000 mb.  The correlation coefficient between virga V and fractional 
error Δ over 122 storms was found to be 34 percent for AMSU and 50 percent for GEM, 
as listed in Table 5.5.  The additive constant 0.2 in the expression for V was empirically 
found to yield a reasonable compromise between excessive emphasis of low surface 
densities and excessive muting of low precipitation rates.  Another way to characterize 
typical values of virga is by the ratios: max groundρ 2.54ρ =  and 

max( 0.05) /( 0.05) 1.79groundρ ρ+ + = , where <x> is the sample mean for x.  Thus, very 
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roughly, only half of all MM5 precipitation reaches the surface, and most microwave 
sensors have difficulty detecting the virga phenomenon.  The standard deviation 
associated with the second ratio is 1.35 for 15-km pixels.  Corrections for descent 
velocity would refine these ratios.  GEM retrievals are more sensitive to virga than are 
AMSU retrievals because AMSU has window, water vapor, and temperature-sounding 
channels that penetrate to the surface, whereas GEM usually does not. 
 

 
TABLE 5.5 

CORRELATION COEFFICIENTS, CORRCOEF(X,Y), BETWEEN MM5 PARAMETERS AND 
SURFACE-PRECIPITATION-RATE FRACTIONAL ERRORS 

MM5 parameter AMSU 
fractional error Δ 

GEM 
fractional error Δ 

Virga 0.34 0.50 
Cloud-top altitude 0.13 0.21 
Snow/graupel ratio -0.04 0.005 
Precipitation rate R -0.12 -0.13 

 
 
 On the other hand, by assimilating GEM data directly into cloud-scale convective 
models at ~15-minute intervals there is hope that virga might be predicted by MM5 with 
sufficient fidelity that GEM-assimilated retrievals of surface precipitation rates could be 
noticeably improved.  In addition, such assimilation success would also more properly 
account for the tendency of snow to spread laterally away from strong convective 
regions, mimicking stronger rain in millimeter-wave spectra.  Thus there is substantial 
opportunity for improvement in the retrieval accuracies presented in Table 5.4.  Success 
with precipitation assimilation on such spatial and time scales remains a grand challenge, 
however.  Table 5.5 also presents correlation coefficients between fractional error Δ and 
the MM5 snow/graupel integrated mass ratio, cell-top altitude, and surface precipitation 
rate, none of which are strongly correlated.   
 

5.6  Summary and Conclusions to Chapter 5 
 
This chapter makes four technical points.  First, there is an observable increase in the 
differences between NCEP/MM5/TBSCAT/F(λ) simulated radiance histograms and 
those observed by AMSU over coincident storm systems as certain properties of MM5 
and the RTM are varied modestly. That is, changes in the equivalent Mie ice sphere 
density [F(λ)] of more than ~0.03 produced observable discrepancies with observations, 
as did increases in: two-stream ice scattering of more than ~1 percent, snow production 
more than ~15 percent, graupel production more than 25 percent, and the altitudes of 
snow and graupel more than ~25 mb.  Less sensitive were ice loss tangents characterized 
by ε" and particle size distributions characterized by their zero intercept No; increases in 
ε" and No by factors of 4 and 7, respectively, were detectable.  However physically 



 108

plausible changes in cloud ice and rain water mixing ratios and water loss tangents were 
largely undetectable. 
 
 The second point is that the rms retrieval accuracies inferred from MM5 simulations 
are relatively insensitive to MM5 and RTM model variations that are sufficient to cause 
the MM5 simulations to differ from the AMSU radiance-histogram observations.  When 
the model changes were randomly inserted half the time, and the changes were at least 
twice those detectable by the observed AMSU radiance histograms for 122 storms, the 
predicted rms retrieval errors for surface precipitation rate typically increased less than 
five percent, and sometimes declined.  This result suggests that retrieval accuracies 
predicted using physical models comparable to MM5/TBSCAT/F(λ) should be 
achievable by satellites in orbit once the model physics is tuned to the actual 
observations.  The AMSU retrievals tested here emphasized opaque frequencies and 
therefore these conclusions may not apply to retrievals for sensors relying more on 
surface channels since variations of the sea and land models described earlier were not 
tested.  
 
 Thirdly, the simulated retrieved precipitation-rate images (Fig. 5.11), scatter plots for 
surface precipitation rate and water paths versus model truth (Figs. 5.8 and 5.9), and 
predicted rms retrieval errors for each rate and water-path octave (Tables 5.3 and 5.4) 
suggest the utility of operational NOAA satellites carrying AMSU and successor 
instruments such as ATMS.  The 2-3 such satellites now typically in orbit each map most 
of the earth in wide swaths twice daily, yielding repeat sampling by the constellation 
every ~4-8 hours. 
 
 Finally, it was shown in Table 5.4 that geostationary satellites could approach 
AMSU precipitation retrieval performance with a two-meter diameter filled-aperture 
antenna that could be integrated on current operational polar satellites.  Such 
geostationary microwave precipitation sounders could observe significant storms on the 
spatial and time scales at which they evolve by making ~15-minute repeat observations 
with ~15-km resolution. 
 
 One implication of these results is that simulated assimilation experiments using 
appropriate NWP/RTM models should predict with reasonable accuracy the performance 
of actual systems for which the NWP and RT models are fine-tuned before operational 
use.  Therefore it may not be necessary to place more experimental millimeter-wave 
systems in orbit before estimating their potential retrieval performance and contributions 
to NWP; rather accurate performance predictions can arguably now be made using proper 
simulations alone. 
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Chapter 6 
 
Precipitation Retrieval Accuracies for 
Geo-Microwave Sounders 
 
All results presented in this chapter are from [3]. 
 

6.1  Abstract 
 
Only instruments on geostationary or comparable platforms can view global precipitation 
at the ~15-minute intervals necessary to monitor rapidly evolving convective events.  
This chapter compares the abilities of eleven such alternative passive microwave sensors 
to retrieve surface precipitation rates and hydrometeor water paths--five instruments 
observe selected frequencies from 116 GHz to 429 GHz with a filled-aperture antenna, 
and six observe from 52 to 191 GHz with a U-shaped aperture synthesis array.  The 
analysis is based on neural network retrieval methods and 122 global MM5-simulated 
storms that are generally consistent with simultaneous AMSU observations.  Several 
instruments show considerable promise for retrieving hydrometeor water paths and 15-
minute average precipitation rates ~1-100 mm/h with spatial resolutions that vary from 
~15 km to ~50 km.  This space/time resolution is potentially adequate to support 
assimilation of precipitation information into cloud-resolving numerical weather 
prediction models 
 

6.2  Introduction 
 
One major current remote sensing challenge is to monitor global precipitation accurately 
on the time and spatial scales at which it evolves--e.g., ~10-30 km and ~10-30 minutes.  
Such a system could not only provide better nowcasting, but may also permit cloud-scale 
assimilation of precipitation into numerical weather prediction (NWP) models so as to 
improve both precipitation retrievals and weather forecasts.  

 
 Current geostationary (GEO) satellites permit better than 15-minute and 10-km 

resolution at infrared wavelengths, but cannot penetrate overlying clouds, while the more 
accurate low-earth-orbit (LEO) satellites with cloud-penetrating ~15-km microwave 
resolution generally repeat their observations only at intervals of hours or more.  
Although dense radar and rain gauge networks provide good local coverage, they are too 
costly and land-bound to cover most nations and their surrounding waters.  Even the 
NEXRAD 158-radar system covers only ~20 percent of the continental United States 
within its best-performance 110-km range, and less than 60 percent within 220-km range. 
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Geo-microwave systems that resolve important storms in both time and space have 
been proposed for many years [53], [64], but generally without analysis of their 
precipitation and hydrometeor retrieval performance, which is the focus of this chapter.  
The main conclusion is that most precipitation can be retrieved at ~15-60 minute 
intervals from geosynchronous orbit, and that at least one relatively inexpensive approach 
exists--use of a micro-scanned aperture antenna ~1.2 meters in diameter.  
 

6.3  Filled Aperture Antennas 
 

6.3.1  Spatial Resolution 
 
Approaches to achieving the required high angular resolution include a single 
mechanically steered filled-aperture antenna of ~1-3 meter diameter D operating at 
frequencies up to 425 GHz, designated here as GEM [53], and aperture synthesis systems 
incorporating hundreds of antenna feeds and amplifiers, designated GeoSTAR [65].  A 
uniformly-illuminated circular aperture yields 3-dB beamwidths θB ≅ 1.2 λ/D radians, 
where λ is wavelength, while reasonable illumination tapering yields θB ≅ 1.3λ/D.  
Nyquist sampling and image sharpening can yield θB ≅ 0.95λ/D, as discussed later.  
Aperture synthesis systems yield, for example, beamwidths of ~0.7λ/D, where D is the 
diagonal length of a square U-shaped antenna array.  The spatial resolution of GEM at 
nadir ranges from 12 km for an image-sharpened 2-m antenna operating near 425 GHz, to 
values over 45 km below 118 GHz.  For a single-band aperture synthesis system the 
resolution ranges from 25 km for a 600-receiver system to 50 km for 300 receivers, 
independent of wavelength, as discussed further in Section 6.4.1. 

 

6.3.2  Image Sharpening 
 
From Section 2.4, Nyquist sampling and image sharpening can yield θB ≅ 0.95λ/D, as 
illustrated in Fig. 6.1 for reasonable assumptions about receiver sensitivity.  Image 
sharpening involves deconvolving the antenna pattern G(θ,φ) from the antenna 
temperature observations TA(θ,φ) to yield the estimated angular brightness temperature 

distribution ),( φθ
∧

BT  with improved spatial resolution: 
 

)]},([/)],([{),( 1 φθφθφθ GFTFWFT AB ⋅= −
∧

     [K]                        (6.1) 
 

where F and F-1 are the angular Fourier- and inverse-Fourier-transform operators, 
respectively, and W is a weighting function in angular frequency space (cycles/radian) 
that maximizes the signal-to-noise ratio, partly by canceling nulls in F[G(θ,φ)].  It can be 
shown by differentiating the total mean-square error with respect to W(f), and assuming 
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the noise is uncorrelated with the image, that W(f) at any two-dimensional angular 
frequency f is:                                             
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where A  is the expected value of A, N(f) is the complex two-dimensional angular 
Fourier transform of the additive thermal noise, and TA(f) is the same for the antenna 
temperature.  F[G] = G(f) is purely real when G(θ,φ) is an even function, as assumed 
here.  
 
 

 
Fig. 6.1.  Original, blurred, and sharpened images using Nyquist sampling and assuming 
ΔTrms = 0.5K for 30-km steps, which is equivalent to ΔTrms = 3K for 5-km steps. 
 
 
 Fig. 6.1 (top left) shows a rainstorm 555-km square viewed at 183±7 GHz with 5-km 
resolution, as simulated using the numerical weather prediction and radiative transfer 
models NCEP/MM5/TBSCAT/F(λ) described in Section 6.6.1.  This was then blurred 
with the illustrated original antenna pattern, which is 30-km wide at half-power.  The 
image was then sharpened using (6.1) and (6.2).  It was assumed in (6.2) that the signal-
to-noise ratio |TA |2/|N|2 = 20•G(f), where G(0) = 1, and that the receiver sensitivity for 
independent 30-km pixels was 0.5K rms, which corresponds to 3K rms when the 
integration time is shortened to permit 5-km sample spacing.  The sharpened image is 
shown at the lower left, and the synthesized antenna pattern Gs(θ,φ) with its 22.1-km 
half-power width is at the lower right, where it can be seen from (6.1) that: 
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 Any image to be sharpened must be sampled above its Nyquist rate to avoid aliasing.  
For aperture antennas of maximum aperture width D the Nyquist angle of maximum 
sample separation is λ/2D.  Such frequent sampling reduces the integration time and 
sensitivity per spot, but this loss is partially recovered by the averaging that occurs in 
image reconstruction.  Sharpening increases the high-angular-frequency noise, which is 
evident in the non-precipitating areas of the illustrated sharpened image.  The resulting 
rms noise in the quiet portions of the sharpened image is ~2K.  Since the dynamic range 
of precipitation signatures is generally large compared to noise of less than a few degrees, 
sharpening often exacts little penalty.  This penalty was incorporated in the retrieval 
analyses presented in Section 6.6. 
 

6.3.3  Micro-Scanned Filled-Aperture Antennas 
 
The principal advantage of filled-aperture microwave systems is their simplicity and low 
cost even when observing many frequency bands and channels within bands.  Their 
principal disadvantage is that they must be scanned mechanically, which may affect the 
pointing of other instruments on the same satellite.  Fortunately, the momentum impact of 
scanning can be significantly reduced by using a small rapidly tilting/translating 
subreflector in a Cassegrain configuration, as suggested in Fig. 6.2.  The large primary 
reflector can then be scanned very slowly without disturbing other instruments. 
 
 

 
Fig. 6.2.  Microscanned aperture antenna. 

 
 
 The main beam efficiencies of 425-GHz beams scanned ten 3-dB beamwidths (0.3 
degrees) off axis by a 15-cm diameter tilted and translated subreflector are not 
significantly degraded for a 2-m aperture with a 1-meter focal length f.  Tilting the 
subreflector without translating it produces higher sidelobes [66].  If adjacent scan lines 
are separated by 10 km, which is Nyquist spacing at 425 GHz, then 20 or more 
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beamwidths can be "microscanned" cross-track each second as the main reflector scans 
orthogonally down-track at only ~0.016 degree per second, approximately one-sixth the 
angular speed of the minute hand on a watch.  With such slow scan rates open-loop 
momentum compensation can readily handle the residual momentum transfer to the 
satellite due to the scanning.  Also, the required scan power is less than a watt for both 
the subreflector and main reflector, neglecting bearing friction.  Even when slewing from 
one storm to another the average scan rate could still be less than 0.2 degrees per second, 
twice the angular speed of a minute hand.  For nominal total-power receiver noise 
temperatures near 400 GHz of 3000K, and a scan retrace time of 0.2 seconds, the 
integration time would be 40 ms per 425-GHz beamwidth of 17 km; the receiver 
sensitivity ΔTrms would then be ~0.47K for a 1-GHz bandwidth, generally consistent with 
the retrieval studies presented in Section 6.6. 
 
 Although the entire earth cannot readily be scanned rapidly with a 2-meter antenna, 
most or all economically significant precipitation could be scanned at ~15-minute 
intervals with ~20-km resolution, sufficient to resolve most storm evolution.  For 
example, if each 20-km grid point were observed for ~0.04 seconds, consistent with one 
20-beam microscan line being scanned per second with ~0.2-second retrace time, then in 
15 minutes approximately 7.2×106 km2 could be surveyed.  This compares to the 
~2.3×106 km2 and ~0.4×106 km2 typically observed by AMSU to be precipitating above 1 
and 5 mm/h, respectively, within a circular geostationary field of view bounded by ±50-
degree latitude.  If the precipitating areas are surveyed inefficiently with swaths ~200 km 
wide rather than pixel by pixel, the required survey areas increase very approximately to 
~13.5×106 km2 for the 1-mm/h rate, deduced by dilating three days of AMSU data using 
an annulus of 75 km about each precipitating pixel. 
 
 Based on this example, a 2-meter GEM could survey 10 storms of size 600×600 km 
every 15 minutes, plus all other 1-mm precipitation every hour.  More could be surveyed 
with smaller GEM antennas, or by using only frequencies below 200 GHz, with the 
attendant loss in spatial resolution.  Conversely, if image sharpening is used when 
surveying severe storms every 15 minutes, then only five such storms could be studied at 
once.  The areas to be surveyed could be selected in real time by computer algorithms 
using a combination of prior microwave images, current GOES infrared data showing 
new cloud growth, and numerical model output. 
 
 The technical risks below 500 GHz are low because a mechanically scanned 1.6-
meter parabolic reflector with a 640-GHz sub-millimeter spectrometer has already flown 
on the Microwave Limb Sounder (MLS) on the NASA Aura satellite [67] and is working 
successfully more than two years after launch.  Moreover, studies have shown that such 
2-m micro-scanned instruments could be integrated and launched on GOES platforms 
and vehicles used in the 1990's [68], and more capable geostationary platforms are 
available today. 
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6.4  Aperture Synthesis Systems 
 

6.4.1  Complexity versus Resolution 
 
An alternate approach to achieving high spatial resolution involves aperture synthesis 
techniques long used in radio astronomy [69].  One advantage of this approach is that it 
yields beamwidths θB ≅ 0.7λ/D instead of 0.95λ/D or even 1.3λ/D, where D is the 
diagonal length of a square U-shaped antenna array.  However the practical cost limit in 
this case is not posed by the aperture size D but rather by the very large numbers of RF 
receivers and correlators required to avoid aliasing of the earth within the field of view of 
interest.  That is, the synthesized image of the earth contains duplicate overlapped images 
spaced at θI = λ/L radians, where L is the distance between adjacent antennas, and the 
desired image width θI = MθB ≅ 0.3 radians in order to avoid earth aliasing; M is the 
number of independent pixels across the image.  If the antenna array is U-shaped and 
comprises three equal length arms of length A that each have N antennas equally spaced 
L apart in a straight line, then A ≅ NL and θB = λ/2A = λ/2NL.  It follows that M = 2N 
since M = θI/θB = (λ/L)/(λ/2NL).  For resolution near nadir of S km, θB ≅ S/35,000, and 
the required number of antennas and RF units for each spectral line or broad band 
observed is: 
 

3N = 1.5θI/θB ≅ 16,000/S                                            (6.4) 
 
System cost, power, and complexity all increase with N, and therefore N rather than 
aperture length would generally limit system size. 
 
 For the choices of N analyzed in this chapter, the resolution θB available from 
aperture synthesis systems is either 25 or 50 km.  The assumed antenna array 
configuration is always a U-shaped square with a smaller maximum dimension than Y-
configurations offering equivalent resolution [65].  A U-shaped array could also be 
wrapped around a rectangular spacecraft, simplifying and perhaps even avoiding 
deployment.  If the length of each of the three connected arms is A = 2 meters, then near 
53-GHz the synthesized antenna beamwidth θB ≅ λ/2A radians, peak-to-first-null. This 
corresponds to 50-km nadir resolution and a U-array hypotenuse of ~2.8 m, larger than 
the 2-meter filled-aperture antenna diameter assumed here.  If 100 equally spaced 
antennas and receivers are used in each arm (300 units total), the recovered image would 
exhibit aliased images of the earth in a square grid at angles of 100λ/A ≅ 16.2 degrees, 
and provide a non-aliased square clear zone of ~200 50-km pixels that measures ~10,000 
km across.  Thus 50-km resolution requires ~300 receivers per band, and 25-km 
resolution requires ~600.  Slightly more non-aliased area per antenna can be obtained 
with the Y-configuration, although its maximum dimension also increases. 
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 Since the bandwidths of millimeter-wave receivers are much less than an octave, 
separate antenna arrays are required for each observed band.  However several channels 
within each band can be observed sequentially by repeatedly retuning the local 
oscillators.  The principal advantage of synthesis systems is lack of mechanical scanning 
and large area coverage, and their principal disadvantages are their relatively high power, 
weight, and cost, in addition to their current unproven laboratory performance at scale or 
above 60 GHz. 

 

6.4.2  Receiver Sensitivity 
 
The sensitivity of an aperture synthesis system can be estimated by noting that its 
effective area is ~3NAe, where 3N is the number of antennas and Ae is the effective area 
of each [69].  The effective area Ae is governed by the beam solid angle that embraces the 
earth, and is only ~10λ2.  This disadvantage relative to a filled aperture is almost 
perfectly compensated by the fact that all 4N2 pixels on the earth are viewed 
simultaneously, increasing the available integration time correspondingly.  Thus synthetic 
and unsharpened filled apertures yield comparable image noise levels for comparable 
receivers and total integration times, provided that both systems survey the entire visible 
earth and have the same bandwidth and receiver noise temperature.  Since GEM could 
image critical precipitating regions arbitrarily frequently by narrowing the survey area, its 
integration time per pixel and its sensitivity could be correspondingly greater.  In addition 
the bandwidth for most GEM channels is ~1 GHz instead of the 100 MHz reported for 
GeoSTAR [70], which offers an opportunity to reduce GEM integration times another 
factor of ten, making it feasible for GEM to view storms with 0.5K rms sensitivity and 
20-km resolution at 425 GHz and 15-minute intervals rather than the 30-minute or longer 
intervals required by comparably sensitive aperture synthesis systems, even with receiver 
noise temperatures of 1000K. 

 

6.5  Physical Basis for Frequency Selection 
 

6.5.1  Introduction 
 
The principal historical barrier to placing microwave systems in geostationary orbit has 
been the high projected costs resulting from the large antenna diameters D required to 
achieve a useful angular resolution θB ≅ 1.3λ/D, where λ is the wavelength and the 3-dB 
antenna beamwidth θB is diffraction limited.  The recent successful measurement of 
precipitation by the Advanced Microwave Sounding Unit (AMSU) on NOAA-15 and 
successor instruments has motivated renewed exploration of microwave frequencies 
above 120 GHz for this purpose, permitting use of smaller practical antennas.  Such 
microwave systems can also help cloud-clear geostationary hyperspectral infrared 
imagery, as demonstrated for the infrared and microwave sensors on the NASA Aqua 
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satellite by Cho and Staelin [71] and others.  This section reviews the key features of the 
candidate millimeter-wave bands. 
 
 The four most important microwave signatures of precipitation arise from: 1) 
emission over cold reflective oceanic backgrounds, 2) scattering by ice aloft at altitudes 
revealed by comparing observations at nearby frequencies that penetrate to different 
known altitudes in oxygen absorption bands, 3) scattering by ice aloft observed at 
different frequency- and humidity-dependent altitudes within water vapor absorption 
bands, and 4) diameter-dependent scattering from icy hydrometeors observed at well-
spaced frequencies sounding comparable altitudes.  The use of these signatures is 
discussed below. 
 
 

6.5.2  Emission over Cold Backgrounds 
 
Global vapor and liquid water emission is routinely measured by the U.S. Department of 
Defense Special Sensor Microwave/Imager (SSM/I) and similar sensors [59] by using 
cross-polarized antennas in "window" bands below 90 GHz to help separate the effects of 
surface temperature from surface emissivity.  Although dual polarization does not work 
well for equatorial regions viewed from geostationary orbit because of the small zenith 
angles there, good performance can be achieved with a single polarization because 
equatorial oceanic emissivity is reasonably predictable.  Geosynchronous dual 
polarization will work at mid-latitudes and above over both land and sea because of the 
large zenith angles.  Separation of humidity and rain water effects is straightforward for 
SSM/I because most hydrometeors are in the linear Rayleigh scattering regime, and the 
water vapor band near 22 GHz is sufficiently transparent to both water vapor and liquid 
water that spectral observations respond almost linearly to their superposition with 
known frequency-dependent coefficients.  The resulting equations can be solved to 
retrieve both constituents.  Unfortunately geosynchronous antennas systems that resolve 
convective precipitation cells near 22 GHz could be prohibitively large 
 

6.5.3  Sensing of Cell-Top Altitudes 
 
The use of adjacent frequencies in opaque oxygen bands to infer the altitudes of icy cell 
tops was first demonstrated using aircraft observations near the 118-GHz oxygen 
resonance [60]-[61].  Discrepancies between retrieved cell-top altitudes and those 
inferred from optical parallax observations were estimated to be ~1-km rms due to 
microwave uncertainties.  The same technique can also be used in the 54-GHz oxygen 
band.  Since icy cloud tops lie above most humidity, even the 425-GHz oxygen band can 
be used for this purpose, although it usually cannot penetrate atmospheric humidity to 
reach the tops of warm rain cells below ~3-5 km altitude. 
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 The altitudes of icy cell tops relative to the humidity profile can be determined from 
observations in opaque water vapor bands such as those near 183 and 380 GHz.  That is, 
strong convection can carry hydrometeors higher into dryer layers of the atmosphere so 
they become more visible in the most opaque water vapor channels.  This is evident, for 
example, in typhoons where only the most intense convection produces strong signatures 
in the 183±1 GHz band [72]. 
 

6.5.4  Hydrometeor Size Distribution 
 
Finally, the size distributions of icy hydrometeors can be inferred from the relative 
scattering signatures at frequencies located an octave or more apart in the 50 - 200 GHz 
region.  Most snow and graupel has diameter d of 1-5 mm, so this spectral region 
includes the transition from Rayleigh to geometric scattering where scattering cross-
sections are proportional to d6 and d2, respectively.  Thus comparable scattering near 50 
and 150 GHz implies large hydrometeors, while strong scattering above 150 GHz and 
very little near 50 GHz indicates smaller ones.  This ability to sense variations in d below 
the visible cloud tops has been demonstrated using aircraft observations over convective 
cells at frequencies from 50 to 430 GHz [60], [62], [63].  These ice scattering signatures 
include albedos that can exceed 50 percent and yield perturbations over 100K, which is 
substantially greater than nominal rms receiver sensitivities <1K.  Because large 
hydrometeors require higher vertical winds to create and hold them aloft, d is positively 
correlated with higher vertical wind speeds and stronger convective rain. 

 

6.5.5  Frequencies Selected for Study 
 
The altitude hλ to which any wavelength λ penetrates is suggested by its weighting 
function W(h,λ), where temperature weighting functions at opaque oxygen band 
wavelengths are given by: 
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where TB is brightness temperature (K), T(h) is the atmospheric temperature profile, and 
α(h,λ) is the absorption coefficient at wavelength λ and altitude h.  The temperature 
weighting function peak height hλ is defined as the altitude where W(h,λ) peaks.  Similar 
weighting functions can be defined for water vapor sounding channels. 
 
 Table 6.1 indicates the frequencies of interest in this study and the altitudes hλ at 
which their temperature weighting functions peak for the U.S. standard atmosphere.  For 
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simplicity, only four observing frequencies are listed for each band, although optimum 
sensors might reasonably incorporate more.  However, as suggested by the retrieval 
results reported later in Table 6.3, the additional retrieval performance enabled by 
including more frequencies is believed to be modest. 
 
 

TABLE 6.1 
INSTRUMENT FREQUENCIES AND WEIGHTING FUNCTION PEAK HEIGHTS FOR THE 1976 U.S. 

STANDARD ATMOSPHERE VIEWED AT NADIR OVER A NONREFLECTIVE SURFACE 
Center frequencies 

(GHz) 
Weighting 

function peak 
height (km) 

Center frequencies 
(GHz) 

Weighting 
function peak 
height (km) 

52.8 0 183.31 ± 3 4.0 
53.6 4 183.31 ± 7 1.8 
54.4 8 380.197 ± 1.5 8.5 
55.5 12.5 380.197 ± 4.0 6.6 

118.75 ± 0.5 12.5 380.197 ± 9.0 4.6 
118.75 ± 1.15 7.5 380.197 ± 18.0 3.1 
118.75 ± 1.5 4.5 424.763 ± 0.6 14.5 
118.75 ± 2.05 0 424.763 ± 1.0 11.5 

166 0 424.763 ± 1.5 7.5 
183.31 ± 1 6.1 424.763 ± 4.0 4 

 
 

6.6  Retrieval Method 
 

6.6.1  Simulation of Brightness Temperatures 
 
The brightness temperature spectra used for training the retrieval algorithm were based 
on NCEP-initialized MM5 forecasts computed for 122 global storms in all seasons 
described in Section 3.2.  The NCEP analyses had 1-degree resolution at 0Z, 6Z, 12Z, 
and 18Z for pressure levels extending to 10 mbar.  MM5 was then run with 5-km 
resolution for 4-6 hours after initialization so as to coincide with simultaneous 
observations by AMSU on NOAA-15, -16, and -17.  These 122 storms represent about 
half the original set of 255 storms that were evaluated, the remainder typically having 
been discarded because the NCEP initialization fields were not sufficiently accurate, as 
determined using concurrent AMSU observations [1].   
 

 The brightness temperatures were computed using: 1) domain 3 of MM5 at 5-km 
resolution, 2) radiative transfer computations using TBSCAT in its two-stream 
formulation, together with Mie scattering from spheres of density F(λ) defined as the 
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average of the values given by Table 4.2 and F(200 GHz) as discussed in Section 5.5.1, 
which was generally consistent with preliminary DDSCAT calculations at these higher 
frequencies where Section 5.5.2 demonstrates that estimated retrieval accuracies are 
reasonably insensitive to errors in F(λ), and then 3) Gaussian blurring of the brightness 
temperatures with the spatial resolution indicated in Table 6.2; the resolutions shown for 
options B and D are sharpened beamwidths. 

 
 Since uncertainties in surface emissivity and brightness can significantly affect 

retrieval accuracies, the emissivity of land was assumed to be random and uniformly 
distributed between 0.91 and 0.97.  Ocean emissivity was modeled using FASTEM [47].  
Only 12 percent of the 1.5 million available pixels were used for training; these were 
arranged in a rectangular grid that was maximally offset from the validation pixel grid. 

 

6.6.2  Neural Network Design and Training 
 
Because the retrieval problem is nonlinear and non-Gaussian, neural networks trained 
with the Levenberg-Marquardt training algorithm [49] were used.  All sensors were 
compared using the same method, which utilizes three feed-forward neural networks [2].  
If the first network estimated over 8 mm/h, then the second neural network was used to 
estimate the 15-minute average precipitation rate; otherwise the third network was used.  
The networks were trained with MM5 precipitation rates blurred to 25 km, a land/sea 
flag, and the channel brightness temperatures. 
 
 Each neuron in the first layer of the network utilized two inputs per channel, i.e., the 
current brightness temperatures and those observed 15 minutes earlier.  The three layers 
of each network with more than 9 inputs had 10, 5, and 1 neuron, respectively, and 5, 5, 
and 1 neuron otherwise.  The first two layers used a tanh(θ) sigmoid function.  For each 
network and task the best of 100 tested networks was used. For hydrometeor water path 
retrievals one feed-forward neural network and one observation time were used for each 
hydrometeor species.  The precipitation retrieval accuracy predicted using these 
techniques is relatively insensitive to modest errors in MM5 and in the radiative transfer 
model [2]. 
 

6.6.3  Instrument Options Analyzed 
 
Table 6.2 lists the sets of frequencies and nadir spatial resolutions for each instrument 
type and frequency band for which performance was evaluated; these include five filled-
aperture options (A-E), and six aperture-synthesis options (F-K).  Four channels are 
observed in each band, each channel having assumed sensitivities ΔTrms of 0.5K for 40-
ms integration times.  When image sharpening is used the integration time per sample is 
reduced a factor of 8, increasing the rms noise to 1.41K.  Simulations indicate that rms 
sensitivities as poor as 1K do not significantly degrade most precipitation retrievals 
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because millimeter-wave precipitation signatures are so strong. 
 
 

TABLE 6.2 
FREQUENCIES AND NADIR RESOLUTION (KM) FOR 11 INSTRUMENT OPTIONS 

 
 
 

 Two of the filled-aperture options (B-C) employ a Cassegrain antenna 2 meters in 
diameter, small enough to be readily integrated on an operational GOES satellite, and 
three employ an even smaller and more practical one of diameter 1.2 m (A, D, E).  
Options B and D employ image sharpening with full-width-half-power (FWHP) 
beamwidths of 0.95λ/D resolution, while the other options have FWHP beamwidths of 
1.3λ/D. 
 
 The largest aperture synthesis systems (F and I) measure ~5.6 meters on the diagonal 
for a U-shaped configuration operating near 53 GHz with 4-m arms; the corresponding Y 
configuration with 25-km resolution would be even larger [65].  Options G, H, and J 
measure 2.8 meters, and K measures only ~1.2 meters.  The nominal set of 300 
antenna/amplifier/mixer assemblies assumed for options J and K may already stress 
feasible cost, weight, and power limits while yielding a synthesized resolution of ~50 km 
at nadir in any 10-percent spectral band if we accept some aliasing near the limb.  Use of 
600 RF assemblies permits spectral observations in two bands (option G), or ~25-km 
resolution in one band (option I), while 900 RF assemblies permit AMSU-like 50- and 
25-km resolution near 53 and 183 GHz (H), respectively, and 1200 yield 25-km 
resolution at both 53 and 118 GHz (F). 

 

6.6.4  Precipitation Rate Retrieval Results 
 
Precipitation-rate retrieval images (mm/h) for four representative precipitation types are 
presented in Fig. 6.3 for instrument configurations C, D, E, F, G, and H, arranged left to 
right.  The left-most image in each row is the corresponding MM5 simulation.  From top 
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to bottom the precipitation corresponds to a typhoon (12/8/02; ~15N/145E), stratiform 
rain (12/14/02; ~40N/125W), a strong front over France (1/2/03; ~50N/5E), and oceanic 
warm rain (11/16/02; ~50N/35W).  The images suggest that even the 1200-receiver 5.6-m 
aperture synthesis system F cannot always surpass the performance of the inexpensive 
1.2-meter diameter GEM option E, particularly for the typhoon.  Comparison of systems 
F and G show the image degradation when the resolution grows to 50 km, and 
comparison of systems D and E show that the benefits of image sharpening are restricted 
primarily to relatively rare isolated storms such as the ones in the upper left and lower 
right of the French frontal system, and within the warm rain event, and that the noise 
introduced by sharpening is otherwise unwelcome.  Comparison of the images for the 
unsharpened 2- and 1.2-meter GEM systems (C and E) does not suggest a major 
advantage for the 2-meter option except for its important ability to retrieve the warm rain 
event.  The demonstration that such a small simple and relatively inexpensive system E 
rivals larger more expensive alternatives is one of the key contributions of this chapter.   
 
 Table 6.3 presents the rms errors in retrieved 15-minute, 25-km surface precipitation 
rates averaged over the same 122 storms, but for an offset grid of pixels, 1369 pixels per 
storm and 167,018 total.  The 25-km resolution MM5 rates were determined by 
convolving the 5-km rates with a 25-km gaussian, which is the resolution for which all 
neural network estimators were trained.  Training and evaluating retrievals with better 
resolution should favor the sharpened results more.  The error statistics are computed for 
each octave (factor of two) of surface precipitation rate, as defined by MM5.  The table 
also presents rms retrieval errors for instantaneous graupel, snow, and rain water paths, 
and for the sum of these three paths. 
 
 Table 6.3 suggests that surface precipitation rates and rain water paths are estimated 
most accurately by the 5.6-meter 1200-receiver 25-km resolution 54/118-GHz aperture 
synthesis system (F), and that the rms errors for the 1.2-meter antenna without image 
sharpening (E) are only ~16 percent worse.  However, this comparison assumes both 
instruments have comparable sensitivity, which implies much longer integration times 
(less frequent repeat visits) for system F, as discussed in Section 6.4.2.  When retrieving 
snow water paths the 54/183-GHz AMSU-like aperture synthesis system (H) performs 
best, while systems E and F are each about 20 percent worse.  These results reflect the 
fact that higher rain rates are most evident between 54 and 118 GHz because it is in this 
frequency range that hydrometeors aloft transition from Rayleigh to geometric scattering 
with an observable microwave signature.  Snow particles in the upper troposphere are 
smaller, however, which favors the more sensitive 183-GHz band relative to 54 GHz 
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Fig. 6.3.  Comparisons of MM5-simulated surface precipitation rates (left-most image) 
with 555-km images retrieved by four-band GEM's: (C) 2-m without image sharpening, 
(D) 1.2-m with image sharpening, and (E) 1.2-m without image sharpening.  Also images 
retrieved by GeoStar systems with: (F) 1200 receivers at 54/118 GHz with 25-km 
resolution, (G) 600 receivers at 54/118 GHz with 50-km resolution, and (H) 900 receivers 
at 54/166/183 GHz with 50-km resolution.  From top to bottom the images correspond to 
a typhoon (12/8/02; ~15N/145E), stratiform rain (12/14/02; ~40N/125W), a strong front 
over France (1/2/03; ~50N/5E), and oceanic warm rain (11/16/02; ~50N/35W); the units 
are mm/h. 
 
 
 The table also shows that image sharpening generally increases average errors 
(compare B to C, and D to E for the 2-m and 1.2-m antennas, respectively).  Fortunately 
the precipitation-rate retrieval images of Fig. 6.3 reveal more clearly the benefits and 
liabilities of image sharpening.  The MM5 truth is on the left of the figure, and instrument 
options C, D, E, F, G, and H appear in order to the right.  The benefit is evident in the 
comparison of D and E, where the sharpened images capture better small convective 
events that would otherwise be blurred and lost, such as in the northwest and southeast of 
the French front, and in the warm rain event.  The decision to employ image sharpening 
can be made on a case-by-case basis during ground processing if the scan lines are 10-km 
apart.  More generally, the unsharpened 1.2-m antenna (E) appears to capture the typhoon 
and stratiform images best, while the 5.6-m 1200-receiver 54/118-GHz system (F) and the 
2-m unsharpened GEM (C) capture the warm rain best.  For the French front, all systems 
are roughly comparable except for the inferior 50-km resolution 54/118-GHz system (G), 
which is blurred.  In general the 1200-receiver 54/118-GHz system F senses the typhoon 
and warm rain better than the 900-receiver 54/183-GHz system H. 
 



 123

 The apparent rankings of systems for the illustrated storms can also vary depending 
on weather; for example, the strong convective events and warm rain illustrated here tend 
to favor higher resolution data and use of lower frequencies such as 54/118 GHz.  The 
apparent differences in system ranking by rms errors versus imagery can be due in part to 
the choice of error metric (25-km smoothed MM5 data), and the preference of the eye for 
low noise and underlying features in the correct position, even if the values are biased. 
 
 

TABLE 6.3 
RMS RAIN AND HYDROMETEOR RETRIEVAL ERRORS 
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Fig. 6.4. MM5-simulated and retrieved water-paths for rain water (RW), snow (S), 
graupel (G), and rain water + snow + graupel (RW+S+G) (left-to-right in pairs) by a 
four-band GEM with a 1.2-m Cassegrain antenna without image sharpening (E).  From 
top to bottom the images correspond to a typhoon (12/8/02; ~15N/145E), stratiform rain 
(12/14/02; ~40N/125W), a strong front over France (1/2/03; ~50N/5E), and oceanic 
warm rain (11/16/02; ~50N/35W); the units are mm.  Each image is 555-km square. 

 
 

6.6.5  Hydrometeor Water Path Retrievals 
 
The same neural network architecture can be used to estimate water paths for snow, 
graupel, and rain water, as presented in Fig. 6.4 for four storms along with the MM5 
ground truth used for these simulations.  The retrievals of snow water path, and the sum 
of rain water, snow, and graupel water paths are most accurate, followed closely by 
graupel and then rain water.  Rain water scatters less and is located at lower altitudes so it 
is retrieved with less precision than are hydrometeors aloft.  Such retrievals of rain water 
paths by neural networks are based primarily upon multivariate statistical relationships 
among channels rather than upon the direct detection of rain water itself.  This was shown 
by the very small change in the brightness temperature spectrum that resulted when rain 
water was artificially increased in MM5 without changing any other parameters [2]. 
 
 The various instrument precipitation-rate retrieval performances shown in Table 6.3 
are surprisingly indifferent to instrument frequencies or spatial resolution.  Examination 
of the images suggests that most differences above ~1 mm/h arise because the boundaries 
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of precipitation features and intensity levels are often misplaced, typically within ~30km 
of the correct location.  For example, snow at 10-km altitude can take more than 30 
minutes to reach the ground, during which time the ice aloft can increase, decrease, or 
translate ~20 km.  One expected result of such space/time offsets would be that slightly 
blurry observations of convective events would be nearly as accurate numerically as 
perfect ones suffering the same offsets.  Although higher spatial resolution sensors see 
smaller isolated cells, such cells with microwave signatures less than ~10 km in diameter 
generally contribute little to overall error statistics or rainfall.  In contrast, the snow water 
path retrieval accuracies presented in Table 6.3 vary more than a factor of two from 
instrument to instrument.  Snow retrievals are more sensitive to instrument configuration 
because snow resides at altitudes more readily sensed by satellite, particularly by 
instruments with high spatial resolution above 150 GHz 
 

6.6  Discussion 
 
Perhaps the most surprising result of this study is that a filled-aperture antenna of only 
1.2-meter diameter on a geostationary satellite can produce revealing images of most 
significant precipitation with ~20-km resolution at 425 GHz every ~15 minutes.  The 
decision of how much image sharpening to employ, if any, can be made in real time, 
depending on the type of weather system being imaged.  The small size, weight, 
complexity, momentum impact, and nominal cost of such a system make it much more 
practical for use in geostationary orbit than were earlier proposed systems using longer 
wavelengths and larger antennas.  The simulated precipitation retrieval performances of 
the more expensive 2-meter filled-aperture antenna system and the 1200-receiver aperture 
synthesis system were slightly better than the 1.2-meter system, but probably not enough 
to warrant their use in an economically constrained global system.  The better 5.6-m 
aperture synthesis systems suffer from large size and complexity, and from higher noise 
levels when revisiting storms frequently, while the more practical 50-km resolution 
systems suffer from excessive blur. 
  

Although the tested systems span a wide range of practical possibilities, many others 
also exist and should be evaluated before any final design is selected.  For example, at the 
economically important mid-latitudes cross-polarization can be used to help reduce the 
unknown effects of surface emissivity and temperature at window channels such as 50, 
90, and 150 GHz.  Also, only four channels were used in each band, and not all 
combinations of bands were explored.  Finally and most important, these simulated 
retrievals were based on data from single pixels and no use was made of storm 
morphology or prior information to improve results.  The opportunity here involves 
replacement of single-pixel retrievals with assimilation methods at cloud convective 
scales.  For example, such retrievals could better use the knowledge within convective-
scale numerical weather prediction models to account for precipitation that evaporates 
before reaching the ground (virga) and overspreading of cirrus anvils beyond their 
convective cores. 
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Although possibilities exist for further improvement in expected system 
performance, the abilities of a 1.2-meter geosynchronous sounder to map precipitation at 
~15-minute intervals would represent a major improvement over current capabilities to 
monitor economically and socially important global precipitation events on the time and 
spatial scales at which they evolve. 
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Chapter 7 
 
AMSU Precipitation Retrieval Algorithm 
Trained with a NWP Model 
 
All results in this chapter are from [4]. 
 

7.1  Abstract 
 
This chapter develops a global precipitation rate retrieval algorithm for the Advanced 
Microwave Sounding Unit (AMSU).  The algorithm was trained using a numerical 
weather prediction model (MM5) for 106 globally distributed storms that predicted 
brightness temperatures consistent with those observed simultaneously by AMSU.  
Neural networks were trained to retrieve hydrometeor water-paths and 15-minute average 
surface precipitation rates for rain and snow at 15-km resolution for land and sea at all 
viewing angles.  Different estimators were trained for land and sea, where surfaces 
classed as snow or ice were generally excluded from this study.  Surface-sensitive 
channels were incorporated by using linear combinations (principal components) of their 
brightness temperatures that were observed to be relatively insensitive to the surface, as 
determined by visual examination of global images of each brightness-temperature-
spectrum principal component.  
 
 Predicted rms errors for retrieved precipitation rates segmented by octaves from 0.5 
to 64 mm/h, were 1.29-23 and 0.96-26 mm/h over land and sea, respectively, as evaluated 
using independent samples of MM5 truth.  When MM5 indicated rain-free snowfall and 
no significant accumulated precipitation on the ground, the rms precipitation rate 
accuracy per AMSU octave ranged from 0.21 to 2.3 mm/h for octaves covering 0.25-8 
mm/h.  The range of rms retrieval accuracies by octaves for hydrometeor water paths 
between 0.125 and 4 mm for rainwater, snow, graupel, cloud liquid water, cloud ice, and 
the sum of rainwater, snow, and graupel were 0.19-1.64, 0.10-0.57, 0.22-1.69, 0.11-1.48, 
0.11-0.47, and 0.10-0.94 mm, respectively.  The range of rms retrieval accuracies by 
octaves for the peak vertical wind 0.125-8 m/s was 0.08-2.54 m/s.  These results are 
averages for all viewing angles and precipitation types, although precipitation retrievals 
for convective precipitation are generally less accurate than for stratiform precipitation, 
snow, and warm rain.  Biases are small for cumulative precipitation estimates, and a 
small correction is derived for estimated convective surface precipitation rate probability 
distributions.  The chapter also demonstrates that multiple scattering in high microwave 
albedo clouds may help explain the observed consistency between AMSU-observed 50-
191 GHz brightness temperature distributions for a global set of 122 storms and 
corresponding distributions predicted using a cloud-resolving mesoscale numerical 
weather prediction (NWP) model (MM5) and a two-stream radiative transfer model that 
models icy hydrometeors as low-density spheres.   
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7.2  Introduction 
 
Development of accurate methods for global observation of precipitation using satellites 
has been impeded by lack of reliable global ground truth.   For example, rain gauges, 
ground-based and satellite-borne radars, visible and infrared sensors, and various passive 
microwave sensors all have deficiencies as sources of that ground truth.  For example, 
rain inhomogeneity, wind, and the lack of good global coverage significantly degrade 
rain gauge measurements.  Infrared satellite observations only see the tops of most 
clouds, and almost all remote sensors respond to precipitation aloft, not that reaching the 
ground.  Radar is expensive and global coverage is sparse, particularly for the better 
multi-frequency doppler systems. 
 
 In recent decades the best global coverage of precipitation has been provided by 
passive-microwave spectrometers such as the Special Sensor Microwave/Imager (SSM/I) 
[73] aboard the Defense Meteorological Satellite Program (DMSP) satellites and the 
passive Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) [74] 
aboard the TRMM satellite.   They and similar instruments use the cross-polarized 
conical scanning configuration first demonstrated by the Scanning Multichannel 
Microwave Radiometer (SSMR) [75].  Since 1998 these conically scanned sensors have 
been supplemented by the cross-track scanning Advanced Microwave Sounding Unit 
(AMSU-A and AMSU-B) [23]-[24] aboard the United States National Ocean and 
Atmospheric Administration NOAA-15, -16, -17, and -18 satellites, which fly in 
additional orbits and view the earth with swaths ~2200 km wide (NOAA-18 replaced 
AMSU-B with the similar microwave humidity sounder MHS).   
 
 An early AMSU-based surface precipitation rate retrieval algorithm used neural 
networks trained with the National Weather Service’s Next Generation Weather Radar 
(NEXRAD) for 38 coincident rainy orbits of NOAA-15 obtained over the eastern United 
States and coastal waters during a full year [34]; this was an improved version of a still 
earlier AMSU algorithm [72].  The algorithm first detected precipitation based on ice-
scattering signatures at 183±3 and 183±7 GHz, and then retrieved surface precipitation 
rates only where those brightness temperatures were colder than some threshold.  
Precipitation was not detected when there was not enough ice aloft to be flagged, thereby 
excluding warm rain.  This initial algorithm also was less accurate in regions more polar 
than ~±50o latitude because of the limited NEXRAD training regime.  An alternate 
physics-based approach relying primarily on window channels has also been developed 
for AMSU [52]. 
 
 To overcome the geographic limitations imposed by training with NEXRAD, 
subsequent retrieval algorithms were trained and tested instead using physical models 
based on MM5, but only for a constant viewing angle in order to evaluate the sensitivity 
of predicted retrieval accuracies to assumptions in the radiative transfer model and MM5 
[2], and to predict precipitation retrieval accuracies for Geo-Microwave sounders [3].  
These earlier algorithms are extended here to all AMSU incidence angles and to realistic 
surface emissivities and temperatures.  The surface effects are accommodated in three 
ways, by: relying primarily on the more nearly opaque frequencies, using MM5 in 
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combination with land and sea surface models, and empirically attenuating surface effects 
before the final retrieval step.  Even with these precautions, retrievals over snow and ice 
surfaces remain problematic.  Retrieval performance for convective and stratiform rain, 
warm rain, and snow is evaluated separately.    
 
 The validity of these retrievals depends on the fidelity with which the brightness 
temperatures predicted by MM5 and the radiative transfer model match the full range of 
behavior observed by AMSU around the globe.  Fortunately previous studies [1]-[2] have 
shown that a physics-based combination of a cloud-resolving version of MM5 followed 
by a two-stream radiative transfer model (TBSCAT) [7] using ice-scattering models 
(F(λ)) for ice habits yields NCEP-initialized simulated brightness temperature histograms 
and morphologies that generally agree with those coincidentally observed by AMSU over 
122 global storms, even when the precipitating pixels are segregated by precipitation type 
or latitude.  An example of such a comparison, discussed later, appears in Fig. 7.2. 
 
 Section 7.3 of this chapter reviews: 1) the physical basis for the link between 
millimeter-wave spectra and surface precipitation rates, 2) the MM5 configuration, 3) the 
characteristics of the storms studied, 4) the radiative transfer model and degree of 
scattering, and 5) the effects of changing the ratio of MM5-produced snow to graupel to 
compensate an alternative scattering paradigm.  Section 7.4 describes the AMSU/MM5 
algorithms for retrieving surface precipitation rate, hydrometeor water-paths, and the 
peak vertical wind, while Section 7.5 analyzes the predicted retrieval performance and 
presents comparisons with real AMSU data for selected storms coincident with MM5 
predictions.  Section 7.6 compares simultaneous AMSU and AMSR-E retrievals, and 
Section 7.7 concludes the chapter and discusses possible future retrieval improvements.  
MATLAB codes for these new AMSU precipitation rate and hydrometeor water-path 
retrievals are available from the authors upon request. 
 

7.3  Approach to Deriving the Precipitation Retrieval Method 
 

7.3.1  Physical Basis for Millimeter-Wave Precipitation Retrievals 
 
Both scattering and absorption signatures of precipitation can be observed at millimeter 
wavelengths.  Absorption in the more transparent window channels is generally evident 
as a warm signature over ocean, and as a cold signature over warm land.  The absorption 
spectrum of water droplets smaller than a millimeter is generally in the Rayleigh regime 
and roughly proportional to the square of frequency for AMSU.  For larger droplets the 
absorption spectrum flattens as their diameters approach a half a wavelength.  Absorption 
by ice is generally negligible in comparison.  These absorption signatures are usually less 
than a few tens of degrees and are generally unambiguous over ocean; over land they are 
confounded with frequency-dependent variations in surface emissivity.  Over ocean 
absorption by water vapor can be distinguished from precipitation by use of AMSU 
channels near the 22.2 and 183-GHz water vapor resonances and adjacent spectral 
windows. 
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 In contrast to absorption, the scattering signatures of larger icy hydrometeors (snow 
and graupel) can approach 200K.  Scattering by water droplets has much less effect on 
brightness temperatures because water has a higher loss tangent.  The primary advantage 
of AMSU relative to sensors at longer wavelengths is that scattering in the 50-200 GHz 
band is highly dependent on ice particle size distribution and abundance.  Only larger 
hydrometeors characteristic of strong vertical wind and heavy precipitation scatter 
strongly in the 54-GHz band, while smaller hydrometeors characteristic of light 
precipitation still have strong signatures near 150-200 GHz; ordinary cloud ice is too 
small to have much effect.  Most snow and ice aloft is in the Rayleigh scattering regime 
where their scattering cross-sections are proportional to d6/λ4, where d is ice diameter and 
λ is wavelength.  Since AMSU also senses humidity, precipitation rates can be surmised 
by combining estimates of humidity and vertical wind within neural network estimators. 
 

AMSU-A channels sense the temperature profile by measuring thermal emission 
from oxygen at frequency-dependent altitudes.  For example, the more opaque 
frequencies sense temperatures near the top of the atmosphere while the more transparent 
frequencies sound atmospheric temperatures closer to the surface.  The altitudes where 
scattering occurs can also be estimated by observing the strength of the scattering 
signature as a function of frequency and atmospheric transparency--microwave cell tops 
deep in the atmosphere can be observed only with the most transparent channels.  Cell 
top altitude is also correlated with precipitation intensity. 

 
In combination with AMSU-A temperature profile information, the AMSU-B 

channels are sensitive to the middle and lower tropospheric humidity profile. AMSU-B 
channels are also sensitive to strong scattering signals from hydrometeors aloft larger 
than ~1 mm in diameter [62], and to their relative altitudes.  Thus most particles affecting 
AMSU channels are large enough to fall.  AMSU-A channels 1-5 (below 54 GHz) and 
AMSU-B channels 1-2 (89 and 150 GHz) are affected by the surface and are called 
window channels. 

 
Despite the utility of AMSU-sensed information about atmospheric absorption and 

the altitude and size distributions of hydrometeors, retrieval of surface precipitation rates 
remains difficult because precipitation rates are inferred primarily from the radiometric 
signatures of hydrometeors aloft that may evaporate or significantly shift location before 
reaching the surface, perhaps 5-20 minutes later.  These problems are more severe for 
convective precipitation than for stratiform, which is more stable. 
 

7.3.2  Mesoscale Model 
 
The mesoscale model MM5 and domain configurations are described in Section 3.1.  To 
minimize computer time the brightness temperatures analyzed in Section 7.3 were based 
on the 15-km resolution MM5 domain2 output, whereas the brightness temperatures and 
MM5 predictions used in the retrieval studies discussed in Sections 7.4-7.6 were based on 
the 5-km resolution domain3 MM5/RTM output.  Surface precipitation rates and 



 131

hydrometeor water-paths at resolutions other than 5 km were similarly generated by 
convolving the 5-km retrievals with Gaussian functions having the desired full width at 
half maximum (FWHM).  Surface precipitation rates (mm/h) were defined as four times 
the difference between total accumulated surface precipitation (mm) at the time of 
interest and that at 15 minutes earlier.  Hydrometeor water-paths were defined as the total 
instantaneous water-equivalent mass in a column at an instant of time, in units of 
millimeters.  Both retrieval errors and precipitation type were determined in this chapter 
using MM5 truth.      
 

7.3.3  Globally representative storms 
 
The 106 global storms analyzed for this chapter are a random subset of the 122 MM5 
storms that were earlier shown to have simulated brightness temperatures statistically 
consistent with coincident observations by AMSU instruments aboard NOAA-15, -16, 
and -17 satellites [1]; the reduction from 122 to 106 was necessary due to lack of data 
storage capacity.  Fig. 7.1 shows the locations and month/season for these 106 storms.  
Each has 190×190 picture elements (pixels) spaced on a rectangular 5-km grid.  The total 
number of 5-km pixels is 106×190×190 > 3.8M, of which over 1.75M pixels were found 
to be precipitating; a pixel was designated as precipitating if either the MM5 rain water or 
snow at 1000 mbar were non-zero.   
 
 

 
Fig. 7.1. 106 global representative storms; the numbers 1-12 stand for January-December, 
and 14 indicates largely unglaciated cases. 
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 Table 7.1 presents the numbers of precipitating 5-km MM5 pixels in various 
categories for the 106 storms.  Pure snow is the only category with marginal 
representation (34,000 pixels).  Based on empirical examination of representative MM5 
storms, a pixel was defined as convective if the 15-km MM5 vertical wind peak exceeded 
0.45 m/s; otherwise, the pixel was defined as stratiform.  MM5 5-km pixels having only 
rain and no snow at 1000 mbar were defined as rain-only pixels.  Similarly, pixels having 
only snow and no rain at 1000 mbar were defined as snow-only pixels.  Pixels having 
both MM5 rain and snow at 1000 mbar were called mixed rain and snow.  For 15-km 
pixels the same definitions were used, where all nine 5-km pixels were considered.  A 15-
km pixel was classified as non-glaciated rain if its MM5 integrated rain water were over 
0.1 mm and TB(183±7 GHz) ≥ 250 K, which was found to indicate that very little ice was 
aloft.  These criteria used to classify precipitation types were described more thoroughly 
earlier and differ from those used when comparing brightness temperature histograms, as 
required when AMSU data is analyzed [1].  

 
 

TABLE 7.1 
NUMBERS OF 5-KM MM5 PRECIPITATING PIXELS (IN THOUSANDS) BY CATEGORY 

Category Pixels 
(000) Category Pixels 

(000) 
|lat|≤25 241 Winter 516 

25 < |lat| ≤ 55 1112 Spring 506 
55 < |lat| ≤ 90 398 Summer 347 
Convective 198 Autumn 382 
Stratiform 1552 Rain only 1664 

Non-glaciated 
(Land) 231 Mixed rain 

and snow 52 

Non-glaciated 
(Ocean) 337 Snow only 34 

 
 

7.3.4  Radiative Transfer and Simulation of Brightness Temperatures 
 
A two-stream Mie-scattering variant of P. W. Rosenkranz’s efficient radiative transfer 
algorithm TBSCAT [7] was used to compute AMSU brightness temperatures based on 
MM5 profiles.  The radiative transfer model TBSCAT and the F(λ) model for icy 
hydrometeors are described in details in Sections 4.3 and 4.4.  
 
 The assumption of two-stream Mie scattering deserves discussion.  First, the MM5 
and AMSU radiance histograms match well when two-stream Mie scattering [1]-[2] is 
assumed, as shown by Figs 7.2(a) and 7.2(b), which present for 122 global storms MM5 
vs. AMSU brightness temperature histograms for incidence angles less than 40 degrees, 
and for 40-59.2 degrees, respectively. The discrepancies between the AMSU and MM5 
histograms are small compared to those caused by small changes in assumptions in MM5 
or radiative transfer model [2], and can be reduced further by assuming that the NCEP 



 133

initializations overestimated humidity below 260K, as shown later in Fig. 7.3.  One 
possible partial explanation for reasonable agreement at all viewing angles despite the 
two-stream approximation is that even at extreme satellite scan angles those convective 
cells that scatter most strongly are viewed roughly normal to their tall puffy cloud 
surface, which is consistent with the agreement in Fig. 7.2(b) for opaque channels.  
Another partial explanation for good agreement using the two-stream approximation, 
defended later in this chapter, is that strongly scattering clouds scatter each microwave 
photon several times in random directions, reducing the importance of direction for the 
scattering component.  High-order scattering also makes the angular distribution (phase 
function) of Mie scattering less important than the total scattering cross-section, which 
was matched here to DDSCAT calculations for each frequency and hydrometeor shape 
by defining F(λ) appropriately. 
 
 

 
Fig. 7.2.  Brightness temperature histograms (pixels per degree K) for channels near 50.3, 
89, 150, 183±7, 183±3, and 183±1 GHz, in order of increasing opacity from left to right, 
for 122 storms using F(λ) from [1] when (a) incidence angles less than 40 degrees, and 
(b) incidence angles greater than or equal to 40 degrees, are plotted.  Only TB’s below 
250 K are plotted. For clarity, the absolute TB’s were shifted to the right by 0, 140, 260, 
330, 390, and 450 K, respectively, and the vertical lines indicate 230K. 
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 The small gaps in Fig. 7.2(a) near 210K in these histograms are most likely due to 
excessive upper tropospheric humidity in the NCEP initializations.  Fig. 7.3 shows that 
decreasing MM5 water vapor by 40 percent when the local temperature is less than 260K 
helps close these gaps.  The small gaps near 150K for 89 and 150 GHz at angles beyond 
40 degrees could be due in part to the two-stream approximation, for no other obvious 
explanation has yet been found. 
 
 

 
Fig. 7.3.  Brightness temperature histograms (pixels per degree K) after reducing MM5 
water vapor by 40 percent when temperatures are below 260K for channels near 50.3, 89, 
150, 183±7, 183±3, and 183±1 GHz, in order of increasing opacity from left to right, for 
122 storms using F(λ) from [1] when (a) incidence angles less than 40 degrees, and (b) 
incidence angles greater than or equal to 40 degrees, are plotted.  Only TB’s below 250 K 
are plotted. For clarity, the absolute TB’s were shifted to the right by 0, 140, 260, 330, 
390, and 450 K, respectively, and the vertical lines indicate 230K. 
 
 
 The simulated radiance data used to develop these precipitation retrievals were based 
on MM5 domain-3 data on a square 5-km grid.  These brightness temperatures computed 
at appropriate zenith angles were convolved with Gaussian functions having full width at 
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half maximum (FWHM) of 15 and 50 km for AMSU-B and AMSU-A observations, 
respectively.  This yields simulated brightness temperatures for AMSU-A and AMSU-B 
at appropriate resolutions on the 5-km grid.  Blurring to 15-km resolution was postponed 
until the final radiances were computed because brightness temperatures computed for 
nadir using a 15-km blurred version of the MM5 fields were found to differ from these 
results up to 10 K at 89.9 GHz for one representative storm.   
 
 Gaussian random noise of 0.4 and 1.0 K rms was added to simulated brightness 
temperatures for all AMSU-A and AMSU-B channels, respectively, to simulate AMSU 
instrument noise in a simple manner generally consistent with the radiometric sensitivity 
values presented in Tables 2.1 and 2.2.  Small biases of 0.71, 0.63, -3.25, and -0.65 K 
were found on average over 122 representative storms described in Section 3.2 between 
coincident simulated and observed brightness temperatures for AMSU-A channels 5-8, 
respectively, on NOAA-15, -16, and -17 satellites.    These biases could be partly due to 
AMSU calibration errors, MM5 initialization errors, or MM5 prediction errors; for 
example, AMSU channel 7 is known to suffer radio frequency interference.  Biases for 
other channels are minimal.  AMSU-A channels 9-14 have little information about 
precipitation and were not used.  At 89-GHz only the 15-km resolution AMSU-B channel 
1 was used.  More accurate biases, which vary among instruments on different satellites 
and depend on time of operation, could be found by comparing simulated and observed 
brightness temperatures.  However, these more detailed bias corrections are negligible 
compared to signals from precipitation. 
 

7.3.5  MM5 snow/graupel adjustment  
 
It was found in [1] that the DDSCAT and AMSU brightness-temperature histograms 
match well for 122 global storms, even though we assumed Mie scattering from spheres 
having the same total scattering cross-sections as those computed by DDSCAT for 
rosette-shaped graupel and planar hexagonal snow.  However, the back-scattering 
fractions of the resulting Mie spheres are typically half those of graupel having a rosette 
shape, as computed using DDSCAT6.1 and shown in Fig. 7.4 as a function of rosette 
length.  The back-scattering fraction is defined as that fraction of single-scattered energy 
that is scattered rearward into 2π steradians.  This difference in backscattering raises the 
question of whether the density of icy Mie spheres, i.e., F(λ), should be adjusted so that 
their total scattering cross-sections (left scale and dashed lines in Fig. 7.4) or their back-
scattering fractions match those determined using DDSCAT (right scale and solid lines in 
Fig. 7.4). 
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Fig. 7.4. Comparison of scattering cross-sections (left scale) and back-scattering fractions 
(right scale) for rosettes and equal-mass spheres at 183±7 GHz, where solid lines are 
back-scattering fractions. 
 
 
 If the backscattering fractions rather than the total scattering cross-sections of Mie 
spheres must match DDSCAT computations, then MM5 might be generating too much 
graupel instead of snow, which back-scatters less per gram.  This hypothesis is tested in 
the brightness temperature histograms of Fig. 7.5, for which the densities of icy Mie 
spheres, i.e. F(λ), were increased to 0.125, 0.4, 1, 1, 1, and 1 at 50.3, 89, 150, 183±7, 
183±3, and 183±1 GHz, respectively so that their back-scattering fractions match those 
for rosettes determined using DDSCAT.  Snow of equivalent mass was substituted for 
half the MM5 graupel to reduce some of the resulting increase in backscattering.  That is, 
with these increased values of F(λ) the total scattering cross-sections of Mie spheres are 
roughly double those of rosettes, as shown in Fig. 7.4, and so graupel must be reduced by 
at least half.  Snow can be substituted for graupel to maintain constant surface 
precipitation rates because the back-scattering ratio of snow approximates that for Mie 
spheres [1].  The agreement in Fig. 7.5 for 122 global storms is so degraded by the 
increased backscattering by graupel, despite the substitution of snow for half of it, that 
clearly the total scattering cross-section is most relevant here, and the present MM5 
production ratios of snow to graupel are probably correct.  If corrections were made for 
the fact that snow usually falls more slowly than graupel, backscattering and the Fig. 7.5 
histogram discrepancies would only increase further. 
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Fig. 7.5.  Brightness temperature histograms (pixels per degree K) if F(λ) is increased for 
graupel so that it matches DDSCAT back-scattering fractions, and if half of all graupel is 
replaced by snow to partly compensate.  Brightness temperatures below 250K are plotted 
for 50.3, 89, 150, 183±7, 183±3, and 183±1 GHz in order of increasing opacity from left 
to right, and are shifted to the right by 0, 140, 260, 330, 390, and 450 K, respectively; the 
vertical lines indicate 230K. 
 
 
 An alternative explanation for why the total scattering cross-section controls 
brightness more than the back-scattering ratio is that millimeter-wave photons scatter 
many times in many directions before exiting those low-brightness regions where 
scattering is important, and therefore the "backwards" direction becomes increasingly 
isotropic.  This hypothesis can be tested in part by computing the degree of multiple 
scattering in each pixel using the successive-order radiative transfer method [20], which 
explicitly accounts for each scattering event.  Fig. 7.6 plots for each pixel as a function of 
its 183±7 GHz brightness temperature the fraction of the scattered radiation (B/(A+B)) 
emerging from the top of the atmosphere that was scattered more than once, where A is 
the single-scattered energy and B is the higher-order scattered energy, for a summer 
frontal system over France at 1003 UTC 2 January 2003, which is shown later in Figs. 
7.15 and 7.16.  At brightness temperatures below ~240K over half of all scattered energy 
was scattered more than once, and below ~220K most photons scatter several times.  It is 
these pixels below 220K that dominate the brightness histogram matches.  Only pixels for 
which more than one percent of the radiation was scattered are plotted.  The peak 
discrepancy in brightness temperature between this two-stream successive-order 
scattering algorithm and TBSCAT is 1.3K at 183±7 GHz over the summer frontal 
system.  The successive-order method involves much more computation than TBSCAT, 
however. 
 



 138

 
Fig. 7.6. B/(A+B) (percent) as a function of simulated brightness temperatures, where A 
is the fraction of scattered photons that scatter only once and B is the fraction that scatters 
more than once. Data at 183±3 and 183±7 GHz were shifted right by 20 and 60 K, 
respectively, where vertical lines indicate 240 K.   Only pixels for which more than one 
percent of the radiation was scattered are plotted. 
 
 

7.4  Retrieval Algorithms 
 

7.4.1  General approach 
 
Since the relationship between precipitation and satellite brightness temperatures is 
nonlinear and imperfectly known, the retrievals here employ neural networks trained with 
tested physical models.  The estimates for surface precipitation rates and hydrometeor 
water-paths were trained using NCEP-initialized MM5 simulations of 106 representative 
storms and their corresponding brightness temperatures simulated using TBSCAT and the 
F(λ) approximation at AMSU frequencies.  Only storms with simulated morphologies 
that match simultaneous AMSU observations near 183±7 GHz were used.  The global 
nature of these storms used for training addresses the principal weakness in statistical 
methods trained with radar or other non-global data.  The validity of these simulated 
storms is supported by their general agreement with histograms of concurrent AMSU 
observations [1]. 
 
 Precipitation retrievals over sea ice or snow-covered land are difficult because those 
channels penetrating to the surface have difficulty distinguishing snow or ice on the 
ground from icy hydrometeors aloft.  Even the normally opaque channel near 183±1 GHz 
can sense the surface when the air is sufficiently dry.  Furthermore, the microwave 
emissivity of snow and ice on the ground exhibits many degrees of freedom that overlap 
those degrees exhibited by precipitation.  To explore this issue, brightness temperatures 
were simulated using emissivity spectra retrieved from AMSU/HSB aboard the Aqua 
satellite for 7 full days between Aug 30, 2002 and February 4, 2003, one day per month 
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[76].  Principal component analysis of the brightness temperature perturbations induced 
by precipitation over these surfaces revealed that the scores of most perturbation principal 
components (PC's) were contaminated by contributions from snow or ice on the ground 
that could sometimes create false detections.  The score of a PC is the vector dot product 
of that PC and the data for a particular pixel.  Because of such difficulties with surface 
complexity and the possibility of undetected atmospheric transparency that could produce 
false snowfall detections, this chapter focuses only on precipitation retrievals over snow-
free land and ice-free sea, although precipitation retrievals over land with snow and sea 
ice can reveal snowstorms, as shown later in Fig. 7.15. 
 
 The AMSU/MM5 retrieval algorithm first checks whether the data is valid.  An 
AMSU footprint will be flagged as invalid if 1) any brightness temperature for that pixel 
is less than 50K or greater than 400K, 2) AMSU-A channel 5 (53.6 GHz) senses less than 
242 K, implying that the atmosphere is so dry that precipitation is unlikely (even 183±1 
GHz can then sometimes sense the surface and yield false detections of precipitation), 3) 
the surface altitude is above 2 km for latθ <60 degree or above 1.5 km for 60≤ latθ <70 
degree, or above 0.5 km otherwise [34]; these high altitude surfaces can be snow covered 
and are sensed more strongly.  These three cases (bad data, too dry, and too high) are 
identified with flag values of 1, 2, and 4, respectively, where each case has its own flag, 
which is zero otherwise.  If any of these flags is nonzero, retrievals were not performed 
for that AMSU footprint. 
 
 The surface classification algorithm [77], a modified version of [78], was used to 
separate AMSU-observed pixels into four surface classes: snow-free land, land with 
snow, seawater, and sea ice.  A fourth flag assumes a value of 8 for land with snow or sea 
ice, and is zero otherwise.  The sum of these four flag values is designated the “return 
code”.  Fig. 7.7(a) shows a map of surface class for five ascending orbits of AMSU 
aboard NOAA-16 on July 26, 2002.  White areas signify gaps between satellite orbits or 
locations where retrievals were not performed.  Fig. 7.7(b) shows a corresponding map of 
the algorithm’s return code, which is the sum of all four flags described.  
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Fig. 7.7.  Global maps of 5 ascending orbits of AMSU aboard NOAA-16 on July 26, 
2002 for: (a) surface class; blue is snow-free land, cyan is land with snow, yellow is 
seawater, orange is sea ice, and white indicates no retrieval; and (b) return code; pink 
signifies a good retrieval, blue is a dry atmosphere, cyan mean high altitude, green is 
snow or ice, yellow is dry air over snow or ice surfaces, orange is snow at high altitude, 
red is dry air over high altitude snow, and white is a gap between satellite orbits.   
 
 
 The first retrieval step, illustrated in Fig. 7.8(a), is to correct small biases, typically 
less than 1K, in a few temperature channels, and then to correct the brightness 
temperatures to values that would have been seen at nadir.  Next principal components of 
the window channel brightness temperatures that were found to be insensitive to surface 
and view-angle effects are computed, as are brightness perturbations due to icy 
hydrometeors.  Finally, these values are input to neural networks that estimate a single 
output parameter such as surface precipitation rate for either land or sea.  This 
architecture is diagrammed in Fig. 7.8 and elaborated in the following sections. 
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Fig. 7.8.  (a) Architecture for surface classification and for estimation of brightness 
temperatures that would have been seen at nadir.  Block diagrams for retrieval algorithms 
for (b) ocean and (c) land.  A1 and B1 signify channel 1 for AMSU A and AMSU B, 
respectively.  ΔT4 is the spatially local perturbation in AMSU-A channel 4 brightness 
due to precipitation.  PC's are principal components, θzenith is the zenith angle, and Tsurface 
is the climatology surface temperature [79]. 
 
 
 Separate neural networks are used over land and over sea because the window-
channel brightness temperatures observed over land and sea respond very differently to 
atmospheric absorbers like water vapor and hydrometeors.  It is difficult for a single 
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estimator to do well in both cases because land surface brightness temperatures are 
generally warm, so absorbers aloft typically appear colder, whereas over ocean the same 
absorbers typically appear warmer.  The observation-based surface classification [77] 
determined which estimator to use.  The algorithm also executes over snow or sea ice, but 
with a strong risk of false alarms.  The same neural network architecture was used for 
surface precipitation rate and hydrometeor water-path retrievals. 
 

All neural networks have three layers with 10, 5, and 1 neuron, respectively, where 
the first two layers employ tangent sigmoid operators, and the final layer is linear.  
Limited experimentation with network architectures did not reveal significant 
opportunities for improvement, probably because the 10-5-1 networks were slightly more 
complex than needed, but simple relative to the information available in the extensive 
training data.  The Levenberg-Marquardt [49] training algorithm was used and the net 
weights were initialized using the Nguyen-Widrow method [50].  For each network and 
task, the best of 10 networks was used. 

 
Each neural network was trained using 244,224 5-km MM5 pixels (half for training, 

and one quarter for each of testing and validation), and separately evaluated using 
234,154 other pixels, where the closest distance between any training and final evaluating 
pixel was ~14 km.  These were subsamples taken from the set of 106 MM5 storms, each 
of which has 190×190 5-km pixels.  Of the total set of 3.8M 5-km pixels, ~1.75M were 
precipitating. 
  

7.4.2  Corrections of angle-dependent brightness temperatures to nadir  
 
Brightness temperatures over ocean at large zenith angles are typically warmer for 
window channels and cooler for opaque channels.  Such differences in angular 
dependence can confuse simple estimators.  To permit simpler estimators to be used, the 
first step in the AMSU retrieval algorithm employs neural-network estimators that correct 
these angle-dependent brightness temperatures to nadir using one estimator per channel.  
The training data included brightness temperatures simulated for 106 MM5 storms at 
nadir and at all satellite zenith angles.  To estimate brightness temperatures at nadir for 
AMSU-A, the inputs to the neural networks were the secant of the satellite zenith angle 
and the MM5-simulated brightness temperatures for AMSU-A channels 1-8 (50.2 - 55.5 
GHz).  To estimate brightness temperatures at nadir for AMSU-B, the inputs to the neural 
networks were MM5-simulated brightness temperatures for AMSU-B channels 1-5, and 
the secant of the satellite zenith angle.  In both cases, the target was the MM5-simulated 
brightness temperature at nadir for the same pixel.  The same diverse surface models 
were used as described in Section 4.4.   
 
 The MM5-simulated performance shown in Table 7.2 validates this approach, for the 
rms discrepancy for the worst channel other than 89 GHz is only 1 K for zenith angles 
less than 50°, and 1.57 K for zenith angles greater than or equal to 50°, probably because 
the large number of neural network inputs captures atmospheric profiles quite well, 
simplifying angle correction.  Also, the relationship between brightness temperature and 
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the secant of zenith angle is approximately linear.  Because most precipitation signatures 
exceed ten degrees and are large compared to these residual nadir correction errors, the 
retrieval performance evaluated using those pixels having zenith angles greater than 50° 
was found to be comparable to that averaged over all angles.  
 
 

TABLE 7.2 
RMS ERRORS IN NADIR-CORRECTED BRIGHTNESS TEMPERATURES EVALUATED USING MM5 

SIMULATED BRIGHTNESS TEMPERATURES FOR ZENITH ANGLES  < 50° AND  ≥ 50° 

AMSU-A 
Channel 

RMS Error 
for angles    
< 50° (K) 

RMS Error 
for angles    
≥ 50° (K) 

AMSU-B 
Channel 

RMS Error 
for angles    
< 50° (K) 

RMS Error 
for angles    
≥ 50° (K) 

1 0.84 1.46 1 1.59 3.56 
2 0.83 1.57 2 1.00 1.43 
3 0.43 0.56 3 0.71 0.69 
4 0.33 0.42 4 0.67 0.68 
5 0.31 0.37 5 0.84 1.02 
6 0.33 0.38 - - - 
7 0.31 0.36 - - - 
8 0.34 0.33 - - - 

 
 

7.4.3  Precipitation retrieval algorithm for ocean 
 
Fig. 7.8(b) diagrams the precipitation retrieval algorithm used over ocean.  To reduce any 
residual dependence of brightness temperatures upon viewing angle, and dependence 
upon surface properties, only those principal components of the brightness temperature 
spectrum that exhibited the least dependence were preserved.  The principal components 
were computed for the estimated nadir brightness temperature spectra of all AMSU-B 
channels and AMSU-A channels 1-8 that were classified as ice-free ocean and have no 
low-quality flags (out-of-range, too dry, too high, or snow/ice surface, as described in 
Section 7.4.1) for 122 satellite orbits spanning a year.  The resulting first principal 
component was strongly affected by surface roughness, the second to the fifth principal 
components exhibited little surface sensitivity, and the rest exhibited either residual 
angle-dependent brightness temperatures or were noisy, as illustrated in Fig. 7.9 where 
only footprints classified as ice-free ocean and having no low-quality flags are plotted.  
The second to the fifth principal components, designated SEA PC# 2-5, and their 
eigenvectors are listed in Table 7.3; an interpretation follows the table. 
 
 The inputs to the precipitation-retrieval neural networks included: SEA PC# 2-5, five 
estimated brightness perturbations due to icy hydrometeors for AMSU-A channels 4-8 
computed from estimated nadir brightness temperatures, and the secant of the zenith 
angle.  The perturbations were estimated using the spatial filtering method described by 
[34]; they are the difference between simulated AMSU-A icy signatures at locations 
detected using 183±7 GHz data, and brightness temperatures determined by Laplacian 
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interpolation of AMSU-A brightness temperatures surrounding the icy patch.  183±3 
GHz data are used in place of 183±7 GHz data when the atmosphere is very cold and dry, 
as inferred when AMSU-A channel 5 (53.6 GHz) registers less than 248 K.  These 
perturbations could be sharpened to 15-km resolution using the technique described by 
[34], but the original 50-km perturbations were found in this chapter to be slightly better 
correlated with 15-km surface precipitation rates than were the 15-km sharpened 
perturbations, presumably due to mismatches between locations of icy hydrometeors aloft 
and precipitation near the surface.  This result contrasts with that of [34] because their 
estimator was trained with NEXRAD, which responds to hydrometeors more nearly co-
located with those sensed radiometrically.  The neural network estimates of AMSU-A 
nadir brightness temperatures at 50-km resolution were interpolated to AMSU-B 
footprints. 
 

7.4.4  Precipitation retrieval algorithm for land 
 
Fig. 7.8(c) diagrams the precipitation retrieval algorithm used over land.  Since window 
channels, including AMSU-A channels 1-5 and AMSU-B channels 1, 2, and 5, are 
strongly affected by land surfaces in complex ways, it is beneficial to attenuate these 
effects before providing the data to the neural network.  Principal components for 
AMSU-A channels 1-5 and AMSU-B channels 1, 2, and 5 were computed for estimated 
nadir brightness temperature spectra classified as snow-free land and that had no low-
quality flags (described in Section 7.4.1), the test ensemble was 122 satellite orbits 
spanning a year.  Only the second principal component was reasonably insensitive to the 
surface whereas the others exhibited residual angle-dependent brightness temperatures or 
were surface sensitive or noisy, as illustrated in Fig. 7.10 which plots only footprints 
classified as snow-free land without low-quality flags are plotted.  The second principal 
component is designated LAND PC# 2.  The eigenvector for this surface-insensitive 
principal component is also listed in Table 7.3 and interpreted in the text following the 
table.  The inputs used to train the neural networks include: LAND PC# 2, estimated 
nadir brightness temperatures for AMSU-B channels 3 and 4, and five estimated 
brightness perturbations due to icy hydrometeors for AMSU-A channels 4-8 computed 
from estimated nadir brightness temperatures.   
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Fig. 7.9.  Ocean principal components for ascending orbits of AMSU aboard NOAA-16 
on July 26, 2002.  Top to bottom are SEA PC# 1, SEA PC# 2, SEA PC# 6, respectively.  
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Fig. 7.10.  Land principal components for ascending orbits of AMSU aboard NOAA-16 
on July 26, 2002.  (a) LAND PC# 1, (b) LAND PC# 2, (c) LAND PC# 3, and (d) LAND 
PC# 5. 
 
 

TABLE 7.3 
NORMALIZED SURFACE-INSENSITIVE EIGENVECTORS REPRESENTING AMSU-A CHANNELS 
1-8 AND AMSU-B CHANNELS 1-5 OVER SEAWATER, AND AMSU-A CHANNELS 1-5 AND 
AMSU-B CHANNELS 1, 2, AND 5 OVER LAND WITHOUT SNOW (XI SIGNIFIES AMSU-X 

CHANNEL I) 
Input SEA PC#2 SEA PC#3 SEA PC#4 SEA PC#5 LAND PC#2 
A1 -16.58 19.44 -47.09 -18.13 33.69 
A2 -38.83 49.16 18.68 45.26 42.19 
A3 -14.00 15.55 11.29 7.47 4.15 
A4 14.15 5.09 -25.02 -28.29 -12.60 
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A5 14.97 2.47 -26.72 -29.90 -12.11 
A6 6.59 1.14 -13.28 -17.44 - 
A7 1.78 0.21 -5.41 -10.28 - 
A8 -7.60 -1.37 11.69 9.07 - 
B1 -0.95 -37.68 64.73 -29.96 -31.29 
B2 48.78 -37.72 -10.66 47.38 -55.38 
B3 32.90 45.51 31.95 -30.85 - 
B4 42.66 40.67 16.99 -8.29 - 
B5 47.02 18.99 -3.21 34.89 -52.11 

 
 

The physical significance of the principal components can be partly surmised from 
their dominant entries, listed in bold font.  The first principal component SEA PC#2 
primarily cancels the surface effects observed by AMSU-A, channels 1 and 2 (23.8 and 
31.4 GHz), against those evident in AMSU-B, channels 2 and 5, while responding 
strongly to water vapor; water vapor warms A1 and A2 while cooling B2-B5, consistent 
with their opposite signs.  SEA PC#3 also cancels AMSU-A and AMSU-B window 
channels while responding to a different combination of water vapor and rainwater.  SEA 
PC#4 cancels the water vapor and surface effects in AMSU-A and AMSU-B channel 1, 
and SEA PC#5 responds strongly to liquid water while canceling surface effects in 
channel 1 against channel 2 for both AMSU-A and B.  LAND PC#2 also cancels the 
surface effects seen by AMSU-A against those seen in AMSU-B while reinforcing 
sensitivity to both rainwater and humidity.  Although it is difficult to surmise exactly 
what information survives the cancellations, these independent sources of nearly-surface-
blind information clearly facilitate precipitation estimates. 

 
The nature of the neural network estimator can also be determined by correlating 

each network input channel with the output.  This revealed that all input channels 
sounding below 15-km altitude were utilized in estimating surface precipitation rates, but 
that AMSU-A channels 4-8 (52.8-55.5 GHz) were generally the most important below 60 
GHz, and AMSU-B channel 5 (183±7 GHz) was generally the most important above 60 
GHz.  Moreover, the relative importance and use of the channels by the network shifts 
from one precipitation type to another.  The apparent complexity of these minimum-rms 
neural network estimators suggests that alternative estimators based on physical models 
requiring specific knowledge of atmospheric profiles may be challenged unless those 
profiles are known reasonably well.  Future study of such issues may be rewarding.   

 
It is interesting to see how each input to the precipitation neural networks shown in 

Fig. 7.8 is correlated with the estimated precipitation parameters, and how well these 
precipitation parameters are correlated with themselves.  Tables 7.4, 7.5, and 7.6 show 
for the 106 storms described in Section 7.3.3 these correlation coefficients between: 1)  
simulated land and sea brightness temperatures at 50-km resolution for AMSU-A and 15-
km resolution for AMSU-B, and 2) MM5 truth at 15-km resolution.  Note that a 
correlation coefficient only tells statistical relationship between a pair of parameters in 
the linear sense whereas the algorithms used in this chapter employ a nonlinear neural 
network method, which captures both linear and nonlinear statistics.  Since the 
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parameters for which correlation coefficients are computed span up to three orders of 
magnitude, two types of correlation coefficient are given; the first correlates the two 
parameters of interest and the second correlates their logarithms, log10[X + 0.01].  
Whereas the former better indicates the correlation for large parameter values, the later 
better indicates the overall correlation, including small values.  Boldface indicates 
correlation coefficients greater than or equal to 0.5. 

 
Table 7.4 shows that SEA PC# 2, LAND PC# 2, and AMSU-B channel 4 are 

strongly correlated with all MM5 precipitation parameters except for cloud water.  
Correlation coefficients between other SEA PC’s and MM5 parameters are generally 
smaller.  Brightness perturbations, ΔT, for AMSU-A channels 4-7 are strongly correlated 
with all MM5 precipitation parameters, except for cloud water over both land and sea, 
and cloud ice over sea.  AMSU-B channel 3 (183±1 GHz) is strongly correlated with 
graupel, the sum R+S+G, cloud ice, and peak vertical updraft wind because it sounds 
humidity and ice at high altitudes.  Zenith angle has no significant linear relationship with 
any MM5 precipitation parameter, and therefore these entries suggest the precision of 
such correlations. 

 
 

TABLE 7.4 
CORRELATION COEFFICIENTS, CORRCOEF(X,Y), BETWEEN INPUTS TO PRECIPITATION 

NEURAL NETWORKS AND MM5 PRECIPITATION PARAMETERS 
X/Y RR R S G RSG C I Wp 

Sea 
SEA PC#2 0.61 0.65 0.79 0.55 0.77 0.48 0.68 0.65 
SEA PC#3 0.44 0.47 0.49 0.24 0.45 0.48 0.29 0.40 
SEA PC#4 0.21 0.25 0.20 0.37 0.34 0.44 0.12 0.30 
SEA PC#5 0.22 0.24 0.60 0.33 0.45 0.23 0.49 0.32 

ΔT4 0.58 0.66 0.65 0.69 0.79 0.20 0.43 0.67 
ΔT5 0.60 0.69 0.64 0.71 0.81 0.23 0.44 0.68 
ΔT6 0.58 0.66 0.59 0.71 0.78 0.23 0.43 0.68 
ΔT7 0.53 0.62 0.53 0.68 0.73 0.22 0.42 0.65 
ΔT8 0.31 0.36 0.42 0.35 0.44 0.17 0.41 0.38 
θzenith 0.02 0.02 0.01 0.01 0.02 0.03 0.01 0.01 

Land 
LAND PC#2 0.58 0.64 0.89 0.55 0.78 0.31 0.71 0.61 

B3 0.43 0.47 0.49 0.58 0.61 0.19 0.64 0.50 
B4 0.59 0.64 0.75 0.71 0.82 0.28 0.74 0.66 
ΔT4 0.65 0.71 0.74 0.67 0.82 0.29 0.54 0.63 
ΔT5 0.65 0.72 0.70 0.71 0.83 0.29 0.53 0.65 
ΔT6 0.61 0.68 0.59 0.75 0.80 0.28 0.50 0.65 
ΔT7 0.55 0.61 0.50 0.72 0.74 0.26 0.48 0.62 
ΔT8 0.28 0.31 0.38 0.32 0.39 0.16 0.41 0.32 
θzenith 0.02 0.02 0.03 0.01 0.01 0.04 0.04 0.02 

A1 and B1 signify channel 1 for AMSU A and AMSU B, respectively.  ΔT4 is the 
spatially local perturbation in AMSU-A channel 4 brightness due to precipitation.  SEA 
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PC's and LAND PC’s are principal components for sea and land, respectively.  θzenith is 
the zenith angle.  Boldface: correlation coefficient is greater than or equal to 0.5.  RR, R, 
S, G, RSG, C, I, and Wp signify surface precipitation rate, rainwater, snow, graupel, sum 
of rain, snow, and graupel, cloud liquid water, cloud ice, and peak vertical wind, 
respectively. 
 
 

Table 7.5 shows that SEA PC# 2 is better correlated with MM5 rain rate, rainwater, 
and graupel than it was in Table 7.4, presumably due to the somewhat greater accuracies 
for stratiform precipitation at lower rates.  SEA PC# 3 is strongly correlated with surface 
precipitation rate, rainwater, graupel, and the sum of rainwater, snow, and graupel.  
LAND PC# 2 is strongly correlated with all MM5 precipitation parameters except for 
cloud water and peak vertical wind.  In contrast to the results in Table 7.4, Table 7.5 
shows much lower correlations between MM5 and the AMSU-A brightness 
perturbations, ΔT, except for graupel, which is expected since stratiform precipitation is 
prominent in Table 7.5 and often produces little or no ΔT response. 
 
 

TABLE 7.5 
CORRELATION COEFFICIENTS, CORRCOEF(LOG10(X+0.01),LOG10(Y+0.01)), BETWEEN 

LOGARITHMS OF INPUTS TO PRECIPITATION NEURAL NETWORKS AND LOGARITHMS OF MM5 
PRECIPITATION PARAMETERS  

X/Y RR R S G RSG C I Wp 
Sea 

SEA PC#2 0.66 0.73 0.65 0.83 0.71 0.41 0.47 0.62 
SEA PC#3 0.60 0.63 0.41 0.57 0.50 0.44 0.13 0.45 
SEA PC#4 0.32 0.24 0.03 0.16 0.08 0.59 0.09 0.11 
SEA PC#5 0.15 0.21 0.46 0.45 0.41 0.18 0.34 0.29 

ΔT4 0.28 0.35 0.29 0.54 0.33 0.11 0.20 0.38 
ΔT5 0.29 0.37 0.28 0.55 0.33 0.13 0.19 0.38 
ΔT6 0.28 0.36 0.28 0.54 0.33 0.13 0.20 0.38 
ΔT7 0.27 0.35 0.29 0.52 0.33 0.13 0.21 0.37 
ΔT8 0.29 0.35 0.36 0.42 0.37 0.15 0.27 0.32 
θzenith 0.02 0.03 0.03 0.01 0.03 0 0.04 0.03 

Land 
LAND PC#2 0.65 0.73 0.76 0.76 0.78 0.32 0.54 0.49 

B3 0.32 0.36 0.47 0.47 0.48 0.14 0.57 0.32 
B4 0.45 0.51 0.56 0.66 0.59 0.22 0.50 0.44 
ΔT4 0.43 0.50 0.39 0.64 0.44 0.22 0.27 0.40 
ΔT5 0.37 0.44 0.34 0.58 0.39 0.19 0.24 0.37 
ΔT6 0.31 0.37 0.30 0.51 0.34 0.16 0.22 0.33 
ΔT7 0.28 0.34 0.29 0.46 0.33 0.15 0.22 0.31 
ΔT8 0.27 0.32 0.36 0.36 0.37 0.14 0.28 0.25 
θzenith 0.08 0.08 0.08 0.05 0.09 0.05 0.06 0.06 

A1 and B1 signify channel 1 for AMSU A and AMSU B, respectively.  ΔT4 is the 
spatially local perturbation in AMSU-A channel 4 brightness due to precipitation.  SEA 
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PC's and LAND PC’s are principal components for sea and land, respectively.  θzenith is 
the zenith angle.  Boldface: correlation coefficient is greater than or equal to 0.5.  RR, R, 
S, G, RSG, C, I, and Wp signify surface precipitation rate, rainwater, snow, graupel, sum 
of rain, snow, and graupel, cloud liquid water, cloud ice, and peak vertical wind, 
respectively. 
 

The correlations shown in Tables 7.4 and 7.5 arise partly from direct physical 
relationships between hydrometeors and brightness temperatures, and partly from 
correlations between types of hydrometeors, some of which cannot be sensed well 
directly and therefore must be inferred from estimates of observable types.  Table 7.6 
shows the correlations between various hydrometeor types and other parameters for this 
same MM5 data set.  AMSU retrievals of surface precipitation rate rely on correlations 
between that rate and three hydrometeor species more directly sensed by AMSU: graupel, 
snow, and rainwater.  Table 7.6 shows that these linear correlations with surface 
precipitation rate (upper triangle of the table) are greatest for rainwater and graupel, 
whereas snow, graupel, and rainwater contribute importantly to the logarithmic 
correlations (lower triangle) that are more indicative of lower rain rates.  Estimates of 
cloud ice, for example, rely on its correlation with observable hydrometeor species since 
cloud ice has little effect on millimeter-wave emissions. 
 
 

TABLE 7.6 
LINEAR AND LOGARITHMIC CORRELATION COEFFICIENTS BETWEEN PAIRS OF MM5 

PRECIPITATION PARAMETERS; THE UPPER AND LOWER TRIANGLES PRESENT THE 
COEFFICIENTS FOR (X,Y) AND (LOG10(X+0.01),LOG10(Y+0.01)), RESPECTIVELY 

X/Y RR R S G RSG C I Wp 
RR - 0.93 0.46 0.72 0.84 0.53 0.37 0.75 
R 0.90 - 0.49 0.78 0.90 0.56 0.40 0.82 
S 0.68 0.72 - 0.41 0.70 0.18 0.67 0.50 
G 0.71 0.81 0.67 - 0.91 0.29 0.35 0.75 

RSG 0.78 0.83 0.97 0.74 - 0.40 0.53 0.83 
C 0.64 0.63 0.31 0.41 0.44 - 0.19 0.46 
I 0.40 0.43 0.77 0.41 0.72 0.16 - 0.44 

Wp 0.46 0.53 0.49 0.63 0.56 0.27 0.41 - 
Boldface: correlation coefficient is greater than or equal to 0.5.  RR, R, S, G, RSG, C, I, 

and Wp signify surface precipitation rate; water paths for rainwater, snow, graupel, 
R+S+G, cloud liquid water, and cloud ice; and peak vertical wind, respectively. 

 
 

7.5  Results 
 
The simulated retrieval performances of estimators for surface precipitation rate, 
hydrometeor water-paths, and peak vertical wind were evaluated against MM5 ground-
truth using pixels that were not used for neural network training, as described in Section 
7.4.1.  The neural network inputs were MM5-simulated AMSU TB’s.  The inferred 
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retrieval accuracies were largely independent of zenith angle and are presented here as 
averages over all possible angles.  Surface precipitation includes both water and the water 
equivalent for any icy components.  Tables 7.7 and 7.8 show good 15-km resolution 
surface precipitation rate retrieval performance per octave of rain rate (RR, mm/h), where 
the octaves are determined using MM5 and AMSU, respectively.  Estimates over land are 
usually slightly less accurate than those over sea, as expected, particularly at the lower 
rain rates where the surface remains visible.  A rough measure of retrieval utility is the 
ratio of the rms error relative to the rates defining each octave; in the tables, italics 
highlights cases where the rms errors exceed the upper bound for the octave, indicating 
low utility, and boldface highlights cases where the rms errors are less than the lower 
bound, which suggests good performance.  Based on rms errors in Table 7.7, AMSU 
surface precipitation rate retrievals appear to be generally useful above ~1 mm/h over 
ocean and above ~2 mm/h over land.  Fig. 7.11 shows scatter plots between MM5 truth 
and AMSU/MM5 surface precipitation rate estimate over land and sea for 106 storms, 
where the test pixels are uniformly subsampled.  The correlation coefficient ρ is 
computed using log10(X + 0.01), where X is any variable of interest.   
 
 

TABLE 7.7 
RMS, MEAN, AND STANDARD ERRORS FOR (MM5 – ESTIMATE) FOR 15-KM RESOLUTION 
MM5-SIMULATED SURFACE PRECIPITATION RATE RETRIEVALS (MM/H, RMS), WHERE THE 

RR RANGE IS DEFINED BY MM5 
RMS Error Mean Error Standard Error RR 

Range 
(mm/h) Land Sea All Land Sea All Land Sea All 

0-0.125 0.45 0.42 0.43 -0.15 -0.14 -0.15 0.43 0.39 0.40 
0.125-
0.25 0.94 0.78 0.86 -0.33 -0.30 -0.31 0.89 0.72 0.81 

0.25-0.5 1.13 0.83 0.98 -0.29 -0.25 -0.28 1.09 0.79 0.94 
0.5-1 1.29 0.96 1.18 -0.29 -0.23 -0.26 1.26 0.93 1.15 
1-2 1.62 1.30 1.47 -0.28 -0.13 -0.19 1.60 1.30 1.46 
2-4 2.35 2.02 2.20 0.23 -0.09 0.05 2.34 2.02 2.20 
4-8 3.98 3.94 3.96 1.58 0.01 0.81 3.65 3.94 3.87 
8-16 7.59 7.30 7.55 4.09 2.00 3.22 6.40 7.03 6.83 
16-32 13.81 13.48 13.55 9.95 8.88 9.52 9.58 10.16 9.64 
32-64 23.04 26.19 25.01 18.62 21.93 20.68 13.60 14.34 14.07 
>64 49.19 50.68 49.43 43.38 47.31 45.21 23.65 18.34 20.00 
Italics: rms errors that exceed the maximum value bounding the octave.  Boldface: rms 

errors less than the minimum for the octave 
 
 

TABLE 7.8 
RMS, MEAN, AND STANDARD ERRORS (MM5 – ESTIMATE) FOR 15-KM RESOLUTION MM5-

SIMULATED SURFACE PRECIPITATION RATE RETRIEVALS (MM/H, RMS), WHERE THE RR 
RANGE IS DEFINED BY THE ESTIMATE 

RR Range RMS Error Mean Error Standard Error 
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(mm/h) Land Sea All Land Sea All Land Sea All 
0-0.125 0.28 0.14 0.30 -0.00 -0.02 0.00 0.28 0.14 0.30 

0.125-0.25 0.42 0.37 0.48 -0.07 -0.03 -0.04 0.41 0.36 0.47 
0.25-0.5 0.81 0.72 0.78 -0.04 0.02 -0.02 0.81 0.72 0.78 

0.5-1 1.46 1.15 1.15 0.03 0.08 -0.01 1.46 1.14 1.15 
1-2 2.11 1.34 1.77 -0.04 0.01 0.03 2.11 1.34 1.77 
2-4 3.59 2.97 3.26 -0.01 0.03 0.05 3.59 2.97 3.26 
4-8 6.45 5.72 6.23 -0.09 0.16 0.24 6.45 5.71 6.22 
8-16 9.30 12.31 10.61 -0.05 1.11 0.37 9.30 12.27 10.60 
16-32 16.90 18.81 16.05 -0.50 0.89 0.88 16.91 18.80 16.02 
32-64 25.30 24.32 23.23 4.77 2.90 -0.99 25.03 24.27 23.22 

64 - - - - - - - - - 
Italics: rms errors that exceed the maximum value bounding the octave.  Boldface: rms 

errors less than the minimum for the octave. 
 

 

 
Fig. 7.11. Scatter plots between MM5 truth and AMSU/MM5 estimates for surface 
precipitation rate (RR); water-paths for rain water (R), snow (S), graupel (G), the sum 
R+S+G (RSG), cloud liquid water (C), and cloud ice (I); and peak vertical wind (Wp). 
 
 

The mean errors shown in Table 7.8 are approximately zero except for sampling 
noise due to the limited number of pixels observed at the very highest rain rates.  As a 
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result of these small mean errors, AMSU surface precipitation rate estimates can be 
summed to yield nearly unbiased estimates of the total precipitation that fell within any 
AMSU-defined time-space box.  However, estimates of the distribution of precipitation 
rates within any space-time box would be biased as indicated in Table 7.7, and this bias 
can be corrected as discussed later.  The underestimates at higher rain rates occur partly 
because strong convection is often topped with icy shields overhanging narrower 
columns of intense precipitation.  In this case zero mean error per octave requires peak 
rates to be underestimated to compensate for anvil spreading so that when the estimates 
are averaged over both central and neighboring areas the typical mean error per storm is 
zero.  In Table 7.7, for rates above 4 mm/h the fractional mean error is approximately 
one-third of the mean rate, suggesting typical overhang areas are ~25 percent of the 
indicated precipitation zone.  This small enlargement should not be confused with the 
larger overhang ratio for visible cirrus or for the raw microwave response; it corresponds 
instead to the residual overhang ratio after the neural network has extracted all available 
information about precipitation extent from the microwave spectrum. 

 
Of particular interest is the sensitivity of retrieval algorithms at the lowest 

precipitation rates.  To help address this question Fig. 7.12 shows for land and sea the 
derived probability density functions (PDF) of the "true" MM5 surface precipitation rate 
for pixels for which the simulated AMSU estimate was below 0.1, 0.3, and 1 mm/h, 
where the total number of pixels per PDF has been normalized to unity.  The figure 
suggests that, averaged over all precipitation types, the rms sensitivity over land is 
roughly 1 mm/h, and over sea it is roughly 0.5 mm/h.  These sensitivities are shown later 
to be even better for stratiform and snow, and worse for convective precipitation. 
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Fig. 7.12. Probability density function of MM5 surface precipitation rate for pixels with 
estimates below 0.1, 0.3, and 1 mm/h, for (a) sea and (b) land. 

 
 
        Fig. 7.13 presents histograms of estimation errors (MM5 truth – estimate) for 
different ranges of estimated surface precipitation rate for land and sea, where the 
histograms were normalized so they peak at unity.  For clarity the histograms for 
estimates 8-16 mm/h were shifted to the right by 4 mm/h for both land and sea.  The 
results in Fig. 7.13 are consistent with the rms and mean errors listed in Table 7.8.  The 
figure shows that the errors are roughly symmetric and Gaussian, and are biased relative 
to the estimate, as expected, but are nearly unbiased relative to the MM5 truth for which 
the estimates were trained (with independent samples).   
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Fig. 7.13. Normalized error (MM5 truth – estimate) histograms for different surface 
precipitation rate ranges defined by the estimate for (a) sea and (b) land.  Histograms for 
estimates 8-16 mm/h were shifted to the right by 4 mm/h for both land and sea 
 
 
 For different MM5 precipitation-rate thresholds over land and sea, Table 7.9 shows 
the percentages of AMSU precipitating pixels due to false detection, the percentages of 
total AMSU precipitating surface precipitation rate due to false detection, the percentages 
of MM5 precipitating pixels that were missed, and the percentages of to MM5 
precipitating surface precipitation rate that was missed.  For a given MM5 threshold, x 
[mm/h], and a given AMSU threshold, y [mm/h], a false detection occurs when the MM5 
truth is less than the threshold x and the AMSU estimate equals or exceeds the threshold 
y.  AMSU precipitating pixels are those pixels with surface precipitation rate equals or 
exceeds the threshold y.  A missed detection occurs when the MM5 truth equals or 
exceeds x, and the AMSU estimate is less than y.  MM5 precipitating pixels are those 
pixels with surface precipitation rate equals or exceeds the threshold x.  The level of false 
detection over land is reasonable if AMSU retrievals below 1 mm/h are treated as zero.  
The false detection is less over sea.  The percentages of missed detection are small for 
both land and sea. 
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TABLE 7.9 
FREQUENCY AND AMOUNT OF FALSE DETECTION AND MISSED DETECTION FOR DIFFERENT 

MM5 AND AMSU THRESHOLDS 
 

Percentage of 
AMSU 

precipitating 
pixels due to 

false detection 

Percentage of 
AMSU 

precipitating 
RR due to 

false detection 

MM5 
threshold 
(mm/h) 

AMSU 
threshold 
(mm/h) 

Land Sea Land Sea 
0.01 0.1 36.75 26.45 9.18 5.10 
0.01 0.3 16.33 9.21 6.13 2.98 
0.01 1 7.05 2.51 3.99 1.44 
0.1 0.1 47.80 37.64 13.37 8.81 
0.3 0.3 33.21 28.25 14.06 10.24 
1 1 34.35 24.61 20.35 12.90 

Percentage of 
MM5 

precipitating 
pixels that 

were missed 

Percentage of 
MM5 

precipitating 
RR that was 

missed 

MM5 
threshold 
(mm/h) 

AMSU 
threshold 
(mm/h) 

Land Sea Land Sea 
0.1 0.1 11.38 5.56 2.81 0.80 
0.3 0.1 7.52 2.04 2.44 0.50 
1 0.1 3.75 0.57 1.64 0.22 

0.3 0.3 21.46 9.83 6.88 2.32 
1 1 25.46 16.89 12.16 6.73 

 
 
 When AMSU observations are used to estimate precipitation-rate distributions the 
biases evident in Table 7.9 and Fig. 7.13(b) should be corrected.  Because these biases 
are different for convective and stratiform precipitation, pixels were defined as stratiform 
if their maximum updraft MM5 layer vertical velocity (wp) was less than 0.45 m/s; this 
threshold was chosen empirically using representative global classification images.  The 
stratiform and convective precipitation-rate distributions are plotted in Fig. 7.14(a) for the 
set of 106 storms using MM5 data, and for the corresponding AMSU retrievals.  Note 
that there is no evident bias for the pixels classed as stratiform (wp ≤ 0.45 m/s), although 
there is a tendancy for the AMSU retrieval algorithm to favor precipitation rates near 2 
mm/h.  Fig. 7.14(a) also compares the MM5 and AMSU precipitation-rate distributions 
for the pixels classed as convective (wp > 0.45 m/s); AMSU is biased toward lower 
values as expected.  Empirical matching of these two histograms suggests that AMSU 
convection rates should be biased toward higher rates by ~37 percent to yield nominal 
agreement with true distribution functions.  Such corrections produce a bias in total 
rainfall, however, so they should only be applied to distribution functions. 
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 In real applications where truth is unavailable the estimated peak vertical updraft 
wind can be used to classify precipitation.  Fig. 7.14(b) shows the same plots as Fig. 
7.14(a) except that the estimated AMSU/MM5 peak vertical updraft wind was used 
instead to classify footprints as convective or stratiform, which slightly blurs the 
distributions in the transition zone 4-20 mm/h and effectively biases the detected 
convective pixels slightly toward higher rates.  In this case AMSU is biased a bit lower 
than MM5 for stratiform pixels because some convective pixels have been added at the 
higher rates.  Bias correction improves the agreement between AMSU and MM5 for 
detected convective pixels, but AMSU is still biased lower due to errors in the 
AMSU/MM5 peak vertical wind estimates and misclassification (to the stratiform set) of 
convective pixels at lower rates. 
 
 

 
Fig. 7.14. MM5-simulated convective and stratiform rainfall per unit of 
log10(precipitation rate); pixel counts are weighted by the surface precipitation rate per 
pixel.  The solid line is the distribution function for convective precipitation after a 
multiplicative bias correction of 1.37.  Pixels are classified as convective or stratiform 
using (a) MM5 peak vertical wind, (b) AMSU/MM5 estimate of peak vertical wind. 
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 Further understanding of the origins of retrieval errors was sought by computing the 
correlation coefficient between “fractional surface-precipitation-rate error” Δ and a “virga 
parameter” V for different types of precipitation.  For each 15-km resolution pixel Δ is 
defined as ˆ( ) /( 1)R R RΔ = − + , where R̂  and R  are the estimated and true surface 
precipitation rates, respectively [2].  The additive constant 1 mm/h in the denominator of 
the Δ definition was empirically selected to yield reasonable results; values much less 
than ~1 unduly exaggerated the error contributions of low rain rates, while much larger 
values excessively muted them.  V for each 15-km pixel is defined as 

max groundV ( 0.2) /( 0.2)= ρ + ρ + , where maxρ is the maximum sum of rain, snow, and 
graupel densities (g/m3) for any MM5 level, and groundρ  is the corresponding summed 
density at 1000 mb [2].  Virga is precipitation that evaporates before reaching the ground.  
The additive constant 0.2 avoids excessive emphasis of low surface densities, while not 
being so large as to under-represent low precipitation rates.  The correlation coefficients 
between Δ and V for convective, stratiform, snow only, rain only, warm rain, and all 
precipitation were found to be 0.64, 0.38, 0.28, 0.49, 0.44, and 0.51, respectively.  This 
virga parameter is most highly correlated with Δ for convective rain.  These results 
suggest that virga contributes additional errors beyond the overhang bias noted above.  
The errors introduced by overhang and virga could probably be reduced further if NWP 
data were used in the retrieval or, equivalently, if such microwave precipitation data were 
successfully assimilated into cloud-resolving numerical weather models.    
 
 Comparisons of retrieved precipitation rate images with truth can also be revealing, 
as shown for 6 storm systems in Fig. 7.15.  From top to bottom the illustrated storms 
include an intense frontal system over France at 1003 UTC 2 January 2003 for which 
some footprints are classified as land with snow cover (light blue), a Typhoon over Guam 
at 1625 UTC 8 December 2002, an system over Florida at 2344 UTC 31 December 2002, 
an ITCZ system over Indonesia at 1210 UTC 15 February 2003, a system having some 
precipitating footprints north of Siberia classified as sea ice (red) at 1731 UTC 9 July 
2002, and a non-glaciated system over the North Atlantic Ocean at 0503 UTC 16 
November 2002.  Fig. 7.15 first compares AMSU-B 183±7 GHz channel-5 observations 
(first column) with coincident MM5-simulated brightness temperatures (second column), 
showing that the storm morphologies and brightness distributions are generally similar 
although the details differ.  Initializing MM5 typhoon predictions is difficult because the 
initialization data is not sufficiently fine-grained and accurate; thus the MM5 typhoon 
does not have the long spiral arms of the real typhoon and is more intense. 
 
 The next three columns compare AMSU retrievals (third column) with MM5 
ground-truth (fourth column) and simulated MM5-based surface precipitation rate 
retrievals (fifth column).  The last column characterizes the surface based on the actual 
AMSU observations (land, sea, snow over land, or sea ice).  Surface precipitation rate 
retrievals using MM5/TBSCAT-simulated TB’s agree reasonably well with MM5 ground-
truth for all types of precipitation, although in each storm the retrieved AMSU/MM5 
precipitation zone typically extends slightly beyond that of the MM5 truth, but with 
generally lower peak values, which illustrates the "overhang" retrieval phenomenon noted 
earlier that results in lower estimated peak values, thereby minimizing rms errors.  The 
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extended area of retrieved precipitation is primarily due to the overspreading of snow and 
graupel aloft, beyond the borders of the updrafts that created them and slightly beyond 
the true surface precipitation.  The retrieved non-glaciated precipitation over the North 
Atlantic, which has no significant ice-scattering signature and therefore could not be 
retrieved using 183±7 GHz as a flag [34], agrees reasonably well with the associated 
MM5 ground-truth.  Fig. 7.15 also shows that AMSU/MM5 retrievals over footprints 
classified as land with snow and sea ice match MM5 truth if retrieved rates below ~0.3 
mm/h are presumed to be zero.  Unfortunately, the universal ability to retrieve 
precipitation over snow and sea ice is compromised by occasional false alarms in dry air.   
 

AMSU can also retrieve hydrometeor water paths and peak vertical wind, as 
suggested in Fig. 7.16 for the strong French frontal system.  The figure compares MM5 
truth (mm, 15-km resolution) with retrieved images of the water paths for rainwater, 
snow, graupel, rainwater + snow + graupel, and cloud water, and also peak vertical wind.  
MM5 truth is presented in the middle row, while the top row presents retrievals using the 
corresponding AMSU data, and the bottom row present retrievals based on MM5 
simulated brightness temperatures.  The MM5 simulated retrievals show the greatest 
fidelity for snow, graupel, and rainwater, and their sum, while the cloud water retrieval is 
underestimated because cloud water has a weak signature below 200 GHz.  The 
AMSU/MM5 retrievals are roughly consistent in probability distribution and morphology 
with the MM5 simulation, but suggest a less severe storm.  For both AMSU/MM5 and 
MM5 truth, snow is most pervasive, rainwater less so, and significant graupel is restricted 
primarily to the strongest convective cells.  The vertical wind retrievals tend to be 
concentrated closer to the convective cores than in MM5, and the retrievals largely miss 
the orographically induced wind.  This suggests that inclusion of model winds and 
surface elevations could improve precipitation retrievals. 

 
Fig. 7.17 is the same as Fig. 7.16 except that the comparison is for a system over 

Florida on December 31.  Again all simulated retrievals reasonably agree with MM5 truth 
except for cloud water.  Although estimates for cloud water appears to be underestimated 
compared to the truth, rms accuracies appear to be quite good, as Table 7.13 later shows. 
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Fig. 7.15.  Columns, from left to right: 1) brightness temperatures (TB) at 183±7 GHz, 2) 
the corresponding MM5-simulated TB, 3) AMSU surface precipitation rate (RR) 
retrievals (mm/h for 15-minute integration; 15-km resolution), 4) MM5 RR truth, 5) 
retrieved MM5-simulated  RR, and 6) AMSU surface classification.  From top to bottom: 
frontal system over France at 1003 UTC 2 January 2003 (some footprints are snow 
covered (light blue); a Typhoon over Guam at 1625 UTC 8 December 2002; a system 
over Florida at 2344 UTC 31 December 2002; an ITCZ system over Indonesia at 1210 
UTC 15 February 2003; and a system north of Siberia over sea ice at 1731 UTC 9 July 
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2002; and a non-glaciated system over ocean at 0503 UTC 16 November 2002.  For 
surface class, blue: snow-free land, cyan: land with snow, yellow: seawater, orange: sea 
ice. 

 
 

 
Fig. 7.16.  Columns, left to right: water path retrievals (mm) for rainwater (R), snow (S), 
graupel (G), rainwater + snow + graupel (R+S+G), and cloud liquid water (C); peak 
vertical wind (Wp, m/s) for a strong frontal system over France at 1003 UTC 2 January 
2003.  Rows, top to bottom: AMSU/MM5 retrievals, MM5 ground truth, and MM5 
simulated retrievals. 
 
 

 
Fig. 7.17.  Columns, left to right: water path retrievals (mm) for rainwater (R), snow (S), 
graupel (G), rainwater + snow + graupel (R+S+G), and cloud liquid water (C); peak 
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vertical wind (Wp, m/s) for a system over Florida at 2344 UTC 31 December 2002.  
Rows, top to bottom: AMSU retrievals, MM5 ground truth, and MM5-simulated 
retrievals.    
 
 
 The simulated retrieval errors can also be characterized in terms of precipitation 
type, where precipitation type can readily be determined from MM5, as discussed in 
Section 7.3.3.  The rms and mean retrieval errors for 15-km surface precipitation rates are 
presented in Tables 7.10 and 7.11 for each octave of rate (RR), where only precipitating 
pixels, defined in Section 7.3.3, are evaluated and the octaves are defined using MM5 and 
AMSU, respectively, for convective, stratiform, snow only, rain only, and non-glaciated 
(warm) rain.  A pixel was designated as precipitating if either the MM5 rainwater or 
snow at 1000 mbar were non-zero.  When the range boundaries are defined by MM5 truth 
(Table 7.10) the rms retrieval errors are less than the upper bound for each octave of 
precipitation rate above ~0.25, ~0.5, 1, and 2 mm/h for pure snow, stratiform and non-
glaciated precipitation (warm rain), pure rain, and convective precipitation, respectively; 
these are the nominal detection thresholds for these four precipitation categories.  Similar 
results are obtained in Table 7.11 where the rms retrieval errors are less than the upper 
bound for each octave of precipitation rate above ~0.125, ~0.5, ~1, and ~8 mm/h for pure 
snow, stratiform, rain and warm rain, and convective precipitation, respectively, when the 
range boundaries are defined by the AMSU estimates. 
 
 

TABLE 7.10 
RMS AND MEAN ERRORS (TRUTH – ESTIMATE) FOR 15-KM RESOLUTION SURFACE 

PRECIPITATION RATE RETRIEVALS (RR, MM/H) USING MM5-SIMULATED TB’S FOR AMSU, 
AND MM5 FOR GROUND-TRUTH AND FOR DEFINING THE RR RANGE BOUNDARIES 

Convective Stratiform Snow Only Rain Only Warm rain RR 
Range 
(mm/h) 

RMS 
Error 

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error 

Mean 
Error 

RMS 
Error 

Mean 
Error 

0-
0.125 1.87 -0.99 0.51 -0.22 0.28 -0.21 0.59 -0.24 1.30 -0.92 

0.125-
0.25 2.57 -1.36 0.69 -0.28 0.33 -0.17 0.87 -0.33 1.07 -0.68 

0.25-
0.5 2.76 -1.35 0.75 -0.22 0.35 -0.09 0.97 -0.29 0.91 -0.47 

0.5-1 3.04 -1.66 0.88 -0.20 0.42 -0.04 1.13 -0.29 0.83 -0.23 
1-2 3.54 -1.77 1.07 -0.09 0.57 0.15 1.45 -0.25 0.92 0.04 
2-4 3.96 -1.26 1.47 0.29 1.23 0.69 2.16 -0.02 1.45 0.63 
4-8 4.93 -0.03 2.75 1.36 3.31 3.18 3.93 0.68 3.39 2.44 
8-16 7.59 2.89 5.74 4.61 - - 7.40 3.08 8.18 7.57 
16-32 13.63 9.41 - - - - 13.63 9.43 17.21 16.68
32-64 24.90 20.55 - - - - 24.90 20.55 38.28 37.31

64 - - - - - - - - - - 
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Italics: rms or mean errors that exceed the maximum value bounding the octave.  
Boldface: rms or mean errors less than the minimum bounding the octave.  *Retrievals 
were convolved with 30-km Gaussian functions before the differences were computed. 
 
 

TABLE 7.11 
RMS AND MEAN ERRORS (TRUTH – ESTIMATE) FOR 15-KM RESOLUTION SURFACE 

PRECIPITATION RATE RETRIEVALS (MM/H) USING MM5-SIMULATED TB’S FOR AMSU, MM5 
FOR GROUND-TRUTH, AND THE ESTIMATE ITSELF FOR DEFINING THE RR RANGE 

BOUNDARIES 
Convective Stratiform Snow Only Rain Only Warm rain RR 

Range 
(mm/h) 

RMS 
Error 

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error 

Mean 
Error 

RMS 
Error 

Mean 
Error 

0-
0.125 2.51 0.91 0.37 0.08 0.33 0.10 0.53 0.10 1.95 1.18 

0.125-
0.25 2.98 1.10 0.52 0.09 0.21 -0.07 0.75 0.13 1.95 0.89 

0.25-
0.5 3.34 1.48 0.56 0.06 0.32 -0.12 0.88 0.11 1.48 0.57 

0.5-1 3.74 1.76 0.73 -0.02 0.54 -0.02 1.09 0.06 1.32 0.32 
1-2 5.28 2.42 1.03 -0.05 1.00 0.23 1.80 0.14 1.74 0.23 
2-4 6.37 2.45 1.69 -0.47 1.58 0.17 3.35 0.16 2.88 0.13 
4-8 8.46 2.67 2.81 -1.67 2.34 -2.19 6.26 0.46 5.16 0.15 
8-16 11.10 1.44 5.52 -4.63 - - 10.49 0.57 8.76 -1.98 
16-32 16.74 1.26 - - - - 16.73 1.20 - - 
32-64 23.17 -0.01 - - - - 23.17 -0.01 - - 

64 - - - - - - - - - - 
Italics: rms and mean errors that exceed the maximum value bounding the octave.  
Boldface: rms and mean errors less than the minimum for the octave.  *Retrievals were 
convolved with 30-km Gaussian functions before the differences were computed. 
 
 
 In both tables the retrievals of convective precipitation were noticeably less accurate, 
perhaps because the precipitation reaches the surface at locations displaced from the 
hydrometeors observed aloft.  To partially test this hypothesis, the rms errors for 
convective precipitation after Gaussian smoothing to 30-km resolution were evaluated.  It 
was found that the improvement was modest (~0-30 percent) suggesting that simple 
spatial displacements alone are not the main reason convective retrievals are less 
accurate.  Alternate explanations include evaporation of hydrometeors, high time 
variability coupled with delays in reaching the ground, and the shielding effects of heavy 
cirrus spreading outward from strong convective cores.  Since the snowfall retrievals 
evaluated in Table 7.10 and 7.11 assumed snow-free land surfaces, they would be 
achievable only if the surface effects are minimal due to atmospheric water vapor or 
opaque precipitation.  
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 Table 7.12 is the same as Table 7.11, except that the classification of precipitation 
type is based on both the AMSU and MM5 data, as discussed in [1].  That is, pixels were 
classified as: 1) convective when the estimated 15-km resolution peak vertical wind 
exceeds 0.45 m/s and 2) stratiform when the wind is less than 0.45 m/s, 3) snow when the 
MM5 surface temperatures were below 266 K, 4) rain, when the MM5 surface 
temperature was above 294 K, or 5) warm rain when (a) TB (183±7 GHz) ≥ 250 K, and 
(b) over 0.1-mm integrated rainwater was retrieved.  Since convection is defined to have 
a strong vertical wind that is generally associated with large ice aloft and hence high 
surface precipitation rates, few convective pixels have estimated surface precipitation 
rates below 0.5 mm/h. 
 
 

TABLE 7.12 
RMS AND MEAN ERRORS (TRUTH – ESTIMATE) FOR 15-KM RESOLUTION SURFACE 

PRECIPITATION RATE RETRIEVALS (MM/H) USING MM5-SIMULATED TB’S FOR AMSU, MM5 
FOR GROUND-TRUTH, AND THE ESTIMATE ITSELF FOR DETERMINING THE RR RANGE, WHERE 

PRECIPITATION TYPE IS CLASSIFIED USING BOTH THE AMSU AND MM5 DATA AS IN [1], 
AND ONLY PRECIPITATING PIXELS ARE EVALUATED 

Convective Stratiform Snow Only Rain Only Warm rain RR 
Range 
(mm/h) 

RMS 
Error 

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error

Mean 
Error 

RMS 
Error 

Mean 
Error 

RMS 
Error 

Mean 
Error 

0-
0.125 - - 0.52 0.10 - - 0.79 0.11 1.56 0.80 

0.125-
0.25 - - 0.73 0.12 0.22 -0.08 1.60 0.27 1.93 0.51 

0.25-
0.5 - - 0.85 0.11 0.30 -0.27 1.51 0.17 1.18 0.32 

0.5-1 2.33 0.67 1.06 0.06 0.41 -0.36 2.13 0.21 1.19 0.16 
1-2 4.56 0.97 1.65 0.12 - - 3.85 0.55 1.68 0.11 
2-4 5.37 0.87 2.81 0.04 - - 5.90 0.39 2.87 0.07 
4-8 7.24 0.81 4.43 -0.06 - - 8.39 0.97 5.16 0.09 
8-16 10.67 0.77 6.24 -3.22 - - 12.17 1.40 8.77 -2.05 
16-32 16.73 1.22 - - - - 17.63 1.49 - - 
32-64 23.17 -0.01 - - - - 23.66 -0.19 - - 

64 - - - - - - - - - - 
Italics: rms and mean errors that exceed the maximum value bounding the octave.  
Boldface: rms and mean errors less than the minimum for the octave. 
 
 
 Simulated 15-km resolution retrievals of hydrometeor water paths (mm) and peak 
vertical wind (m/s) are evaluated in Table 7.13 and illustrated in Figs. 7.11, 7.16, and 
7.17.  These multi-angle simulations generally exhibit accuracy comparable to earlier 
predictions for observations at nadir [2].  The indicated threshold of detectability is ~0.1 
mm for all types of hydrometeors, and ~0.1 m/s for peak vertical wind.  The slightly 
lower water path accuracies in any octave for rainwater (R) and cloud water (C) estimates 
are probably due to the generally lower altitudes and scattering signatures of liquid water.  
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Vertical wind retrievals have simulated rms accuracies σ as low as ~0.1 m/s for peak 
winds Wp less than ~0.25 m/s, and this sensitivity ratio σ/W ≅ 0.4 is approximately 
preserved at all higher peak vertical wind speeds.  This sensitivity is probably due to the 
responsiveness of AMSU to the size distributions of icy hydrometeors. 
 
 

TABLE 7.13 
RMS ERRORS FOR 15-KM RESOLUTION MM5-SIMULATED AMSU HYDROMETEOR WATER-
PATH RETRIEVALS (MM) AND PEAK VERTICAL WIND (M/S) FOR BOTH LAND AND SEA; THE 

OCTAVE RANGES ARE BASED ON MM5 
Range (mm) R S G RSG C I Wp 

0-0.125 0.07 0.05 0.05 0.09 0.07 0.09 0.07 
0.125-0.25 0.19 0.10 0.22 0.10 0.11 0.11 0.08 
0.25-0.5 0.29 0.14 0.33 0.15 0.17 0.14 0.17 

0.5-1 0.44 0.20 0.59 0.26 0.34 0.14 0.39 
1-2 0.85 0.32 1.01 0.48 0.85 0.27 0.75 
2-4 1.64 0.57 1.69 0.94 1.48 0.47 1.2 
4-8 2.84 0.79 2.49 1.99 - - 2.54 
8-16 5.04 - 3.61 3.71 - - 6.40 
16-32 10.22 - 3.39 6.33 - -  
32-64 - - 5.68 7.61 - -  

64 - - - - - -  
R, S, G, RSG, C, I, and Wp signify rainwater, snow, graupel, sum of rain, snow, and 
graupel, cloud liquid water, cloud ice, and peak vertical wind, respectively.  Italics: rms 
errors exceed the maximum value bounding the octave.  Boldface: rms errors less than 
the minimum for the octave 
 
 

7.6  Comparison of precipitation rate retrievals from AMSU 
and AMSR-E 
 
These retrieval algorithms were further tested by comparing their results for AMSU on 
NOAA-16 with retrievals obtained using the Advanced Microwave Scanning Radiometer 
for the Earth Observing System (AMSR-E) aboard the Aqua satellite.  Two separate 
AMSR-E precipitation rate products were compared.  One retrieval product is available 
over both land and sea and is based on the GSFC profiling algorithm [9]; it has 5.4-km 
spatial resolution and is designated AMSR-E#1.  The other is available only over ocean 
[8], has 0.25-degree spatial resolution, and is designated AMSR-E#2.  Neither product 
includes retrievals over snow or ice.  The comparison was performed over all satellite 
orbits occurring on 36 different days from July 2002 to June 2003.  These days include 
the 5th, 15th, and 25th of most months, where August 9th, September 21st, and November 
14th replaced August 5th, September 5th, and November 15th, respectively, due to lack of 
AMSR-E data. 
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 Fig. 7.18 exhibits good agreement between surface precipitation rate images 
retrieved from AMSU and AMSR-E for both land and sea, where AMSU observed the 
scene almost simultaneously with AMSR-E for Figs. 7.18(a) and 7.18(b), and roughly 
one hour after AMSR-E for Figs. 7.18(c)- 7.18(g).  Fig. 7.18(a) and 7.18(b) were over 
Africa, 7.18(c) and 7.18(d) were over North America, and 7.18(e)-7.18(g) portray a 
typhoon over the western Pacific Ocean.  In general AMSU/MM5 agrees better with 
AMSR-E#2 than with AMSR-E#1 because AMSR-E#1 tends to restrict the geographic 
extent of the precipitation to smaller cells.   
 
 

 
Fig. 7.18. Surface precipitation rates retrieved using: (a) AMSR-E#1 on September 22, 
2002, (b) AMSU/MM5 on September 22, 2002, (c) AMSR-E#1 on September 21, 2002, 
(d) AMSU/MM5 on September 21, 2002, (e) AMSR-E#1 on July 5, 2002, (f) AMSR-E#2 
on July 5, 2002, and (g) AMSU/MM5 on July 5, 2002.  (a)-(d) are mostly over land and 
(e)-(g) are mostly over ocean. 
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 Another comparison is illustrated in Fig. 7.19, which shows the cumulative 
distributions of surface precipitation rates estimated by AMSU/MM5 and AMSR-E over 
land and sea for the 36 days previously described.  Since surface precipitation rates below 
1 mm/h contribute very little to total surface AMSR-E#1 precipitation, the illustrated 
cumulative distributions for AMSU/MM5 and AMSR-E over land shown in Fig. 7.19(b) 
were computed using only pixels having estimated surface precipitation rates above 1 
mm/h.  For the comparison over ocean shown in Fig. 7.19(a), estimated surface 
precipitation rates lower than 0.3 were set to zero for AMSU/MM5, AMSR-E#1, and 
AMSR-E#2.  The agreement between AMSU and AMSR-E is reasonably good over land, 
while the differences over ocean are more substantial.  AMSU suggests perhaps ten 
percent of the total oceanic precipitation falls at rates above ~15 mm/h, while AMSR-E 
suggests almost none falls above that threshold despite its higher spatial resolution.  
Although AMSU further suggests that a much larger fraction of the precipitation falls at 
rates below 1 or 2 mm/h than does AMSR-E, this ratio could readily be altered by 
assuming all AMSU detections below some threshold, like 0.4 mm/h, are probably false 
detections that should be set to zero.  An additional curve designated AMSU/MM5* is 
plotted under this assumption which results in better agreement for the 0.4-5 mm/h range. 
 
 
 

 
Fig. 7.19. Cumulative distributions of estimated surface precipitation rate as a function of 
surface precipitation rate: (a) over ocean, and (b) over land.  Rates below 0.3 were set to 
zero for AMSU/MM5, AMSR-E#1, and AMSR-E#2 over ocean.  Rates below 0.4 mm/h 
were set to zero for AMSU/MM5* over ocean.  Rates below 1 mm/h were set to zero for 
AMSU/MM5 and AMSR-E#1 over land. 
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7.7  Summary and Conclusions 
 
The MM5-based AMSU algorithms, AMSU/MM5, generally retrieved surface 
precipitation rates and hydrometeor water paths over both land and sea for most types of 
precipitation encountered globally.  Both the AMSU land and sea algorithms first 
corrected the angle-dependent brightness temperatures to nadir.  Then the less surface-
dependent information in window channels was extracted using principal component 
analysis, and was found to be well correlated with surface precipitation rates.  The final 
retrieval step used a neural network trained using 106 MM5 global storms distributed 
over a year, where each storm was consistent with simultaneously observed AMSU data.  
The same architecture was also used to retrieve peak vertical updraft wind and 
hydrometeor water paths for snow, graupel, rain water, cloud ice, and cloud water. 
 
 The AMSU-retrieved surface precipitation generally extends over a slightly larger 
area than does the MM5 ground-truth.  This is consistent with heavy overhanging cirrus 
that extends beyond its convective core, and with hydrometeor evaporation that often 
appears to reduce surface precipitation rates by 30 percent or more.  The AMSU 
estimates of precipitation-rate weighted distribution functions appear to be largely 
unbiased for stratiform precipitation, but to be biased about 20 percent low for convective 
systems.  AMSU/MM5 and AMSR-E surface precipitation rate estimates were found to 
agree reasonably both over land and sea. 
 
 These AMSU-based algorithms could be extended to surfaces covered with snow or 
sea ice, and to high mountains.  These cases are problematic, however, because the 
atmosphere is sometimes so dry that all or almost all microwave water vapor channels see 
the icy surface, which can scatter strongly and mimic the microwave spectrum of 
precipitation sufficiently that the retrieval algorithm can be confused.  Snowfall rates 
over snow and ice are retrieved, however, if the atmosphere is sufficiently humid (see 
Fig. 7.15 AMSU retrievals over the Alps (top row) and over sea ice (fifth row).  Another 
retrieval challenge involves better prediction of hydrometeor evaporation, which could be 
improved by assimilation schemes that utilize model data to predict such effects.  Cloud 
resolving assimilation models might also predict to some degree the presence of cirrus 
overspreading, and thus reduce that significant source of error. 
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Chapter 8 
 
Comparison of AMSU Surface 
Precipitation Rate Retrieval with Others 
over Land 
 
All results in this chapter are from [5]. 
 

8.1  Abstract 
 
This chapter compares surface precipitation rates retrieved using the Advanced 
Microwave Sounding Unit (AMSU) aboard the United States National Ocean and 
Atmospheric Administration NOAA-15 and -16 satellites with four similar products 
derived from other systems that also observed the United States Great Plains (USGP) 
during the summer of 2004.  These systems include the Advanced Microwave Scanning 
Radiometer for the Earth Observing System (AMSR-E) aboard the Aqua satellite, the 
Special Sensor Microwave/Imager (SSM/I) aboard the Defense Meteorological Satellite 
Program (DMSP) F-13, -14, and -15 satellites, the passive Tropical Rainfall Measuring 
Mission (TRMM) Microwave Imager (TMI) aboard the TRMM satellite, and a surface 
precipitation rate product (NOWRAD), produced and marketed by Weather Services 
International Corporation (WSI) using observations from the Weather Surveillance 
Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather Radar 
(NEXRAD) program. 
 
 AMSU surface precipitation rates were retrieved using the same neural network 
algorithm that was developed in Chapter 7 and was trained in two different ways, by 
using the MM5 physical model or NEXRAD radar data.  Specifically, one set of neural 
networks, designated AMSU/MM5, was trained using precipitation predicted by a cloud-
resolving version of the numerical weather prediction model MM5 for a global set of 106 
storms, and the corresponding simulated AMSU radiances.  The other set of neural 
networks, designated AMSU/NR, was trained using NOWRAD surface precipitation rate 
estimates and radiances observed within the same 15-minute period by AMSU for storms 
over the United States Great Plains during the summer of 2004.  The least represented 
sensor, TMI, observed 1.6 million precipitating 5-km grid points, while the two AMSU 
sensors yielded over 15 million points.  Observed correlation coefficients between 
log10(X + 0.01) for NOWRAD surface precipitation rates X (mm/h) at 0.25-degree 
resolution and those for other sensors were, in declining order, 0.82, 0.79, 0.78, 0.71, and 
0.68 for TMI, SSM/I, AMSU/NR, AMSR-E, and AMSU/MM5, respectively.  Higher 
correlation coefficients were obtained when TMI was regarded as truth.  In declining 
order they were 0.86, 0.83, 0.82, 0.80, and 0.78 for SSM/I, AMSU/NR, NOWRAD, 
AMSU/MM5, and AMSR-E, respectively.  Other comparisons include false detection 
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statistics, rms and mean differences with respect to NOWRAD, precipitation rate 
distributions, and AMSU precipitation, snow, graupel, and water path retrievals relative 
to NOWRAD. 
 

8.2  Introduction 
 
Many polar orbiting passive microwave sensors observe global precipitation.  One group 
is conically scanned with dual polarization and concentrates on "window" channels 6 - 90 
GHz where the atmosphere is approximately transparent except for precipitation.  Among 
these sensors are the Defense Meteorological System Program (DMSP) Special Sensor 
Microwave/Imager (SSM/I) [73], the National Aeronautics and Space Administration 
(NASA) Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) [74], 
the NASA Advanced Microwave Scanning Radiometer-EOS (AMSR-E) [80], and the 
DMSP imaging sounder (SSM/IS).  The principal parameter physically sensed at the 
longer wavelengths is the water path (mm) from which precipitation rates (mm/h) can be 
inferred; icy hydrometeors become more evident at frequencies above ~70 GHz and have 
a different precipitation signature.   
 
 A second group of microwave instruments also senses precipitation, although they 
were designed primarily for sounding atmospheric temperature and humidity profiles.  
These "sounding" sensors include, for example, the Advanced Microwave Sounding Unit 
(AMSU) flying on the National Ocean and Atmospheric Administration (NOAA) polar 
orbiting satellites NOAA-15, -16, -17, and -18 [23]-[24], and the planned successor to 
AMSU, the Advanced Technology Microwave Sounder (ATMS) [26].  Microwave 
sounders have also been proposed for use in geosynchronous orbit, permitting 
precipitation to be monitored at intervals as short as ~5-15 minutes [3].   
 
 This chapter compares surface precipitation rates retrieved from various microwave 
sensors, including AMSU [4], TMI [11], SSM/I [11], and AMSR-E [9], with a surface 
precipitation rate product, called NOWRAD [10], that is produced and marketed by 
Weather Services International Corporation (WSI) using observations from the Weather 
Surveillance Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather 
Radar (NEXRAD) program.  The comparison is performed in summer for land surfaces 
within the United States Great Plains (USGP) between 0000 UTC June 1 2004 and 2300 
UTC August 31 2004, and within each distinct 15-minute period. 
 
 AMSU surface precipitation rates were retrieved using a neural network algorithm 
that was developed in Chapter 7 and was trained using either the MM5 physical model or 
NEXRAD radar data.  As discussed later, the first set of neural networks, designated 
AMSU/MM5, was trained using precipitation predicted by a cloud-resolving version of 
the numerical weather prediction model MM5 for a global set of 106 storms, and the 
corresponding AMSU radiances computed using a variation of the radiative transfer 
model TBSCAT and a wavelength-dependent model for scattering by icy hydrometeors 
characterized by F(λ).  The second set of neural networks, designated AMSU/NR, was 
trained using NOWRAD surface precipitation rate estimates and radiances observed 
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within the same 15-minute period by AMSU for storms over the United States Great 
Plains during the summer of 2004.   
 
 Section 8.3 describes the data sets used in the chapter, including: NOWRAD, 
AMSU/MM5, AMSU/NR, TMI, SSM/I, and AMSR-E.  Section 8.4 defines the 
experiments, and Section 8.5 presents the comparisons, analyzes and discusses the 
results, and Section 8.6 summarizes and concludes the chapter. 
 

8.3  Data Sets Used for Comparison 
 
The microwave surface precipitation rate products compared in this chapter are based on 
two sets of algorithms.  The TMI, SSM/I, AMSR-E surface precipitation rate products 
compared in this chapter utilize nearly the same algorithm, where the relations between 
surface precipitation rate and brightness temperatures at various window frequencies 
below 90 GHz were calibrated using co-located TRMM precipitation radar and TMI 
observations.  The AMSU/MM5 and AMSU/NR products are based on a neural network 
method utilizing both window and opaque frequencies between 23 and 190 GHz.  Both 
the opaque 54-GHz oxygen band and 183-GHz water vapor band frequencies were 
included. 
 

8.3.1  NOWRAD 
 
NOWRAD is a radar image product generated by Weather Services International (WSI) 
Corporation, Andover, Massachusetts, using observations from the United States Weather 
Surveillance Radar-1988 Doppler (WSR-88D) systems of the Next-Generation Weather 
Radar (NEXRAD) program [10].  This continuously available data set provides 15-
minute cumulative rainfall estimates over the continental United States on a 2-km grid 
with a precision of 0.254 mm; the maximum allowed 15-minute cumulative rainfall is 
~20 mm.  The NOWRAD algorithm removes ground clutter, anomalous propagation, and 
other radar-induced artifacts to estimate the radar reflectivity (Z), which is then converted 
to instantaneous rain rate estimates and 15-minute precipitation accumulation estimates 
using proprietary Z-R relationships that depend on the season and NEXRAD site.  The 
NOWRAD data used in this chapter was obtained from Atmospheric and Environmental 
Research (AER), Inc., of Lexington, Massachusetts. 
 
 For all analyses in this chapter the NOWRAD data was convolved with a Gaussian 
having full width at half maximum of 0.25 degrees in order to maximize the correlation 
between NOWRAD and all other sensors.  Although a wide variety of other resolution 
assumptions could have been used, to provide consistency between all results presented 
here only one was employed, as discussed further in Section 8.4.  
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8.3.2  AMSU/MM5 
 
AMSU is described in Section 2.8.  The data used in this chapter were from NOAA-15 
and -16.  The AMSU/MM5 retrievals used the AMSU/MM5 algorithm developed in 
Chapter 7.  Since the relationship between precipitation and observations is complex and 
nonlinear, this algorithm employs neural networks that were trained using a statistical 
ensemble of global precipitation and simulated observations for 106 global storms 
predicted by the MM5/TBSCAT/F(λ) model.   

 

8.3.3  AMSU/NR 
 
The AMSU/NR data set was retrieved from AMSU observations using the same 
AMSU/MM5 algorithm, except that the neural network shown in Fig. 7.8(b) was trained 
instead with AMSU observations and coincident NOWRAD surface precipitation rates 
observed over USGP from 0000 UTC June 1 2004 to 2300 UTC August 31 2004, as 
described in Section 8.3.1.  The radar estimates were first convolved with a Gaussian 
having a FWHP width of 0.15 degrees, as discussed in Section 8.4.  The training was 
based on a subsampled grid representing 17 percent of all USGP summer AMSU data. 
The AMSU brightness temperatures were generally matched to the nearest NOWRAD 
data field within ~±7 minutes.  Since the training data was limited to the Midwestern 
United States, the conclusions could be regionally limited.   

 

8.3.4  SSM/I 
 
SSM/I is a conically scanning passive microwave radiometer aboard United States DMSP 
satellites.  Table 8.1 lists the frequencies, polarizations, intermediate frequency (IF) 
passbands, and effective fields of view (EFOV) for SSM/I [73].  The retrieved data set 
used in this study is the Goddard Profiling Algorithm (GPROF) 6.0 Quarter-Degree 
Gridded Orbit-by-Orbit Precipitation Data Set.  It currently contains most of the SSM/I 
data from November 1, 2001 through the present for SSM/I instruments aboard the 
DMSP F-13, -14, and -15 satellites.  It presents the real-time orbit-by-orbit instantaneous 
rain rate on a 0.25×0.25 degree latitude/longitude grid and is available from NASA 
GSFC DAAC at: http://disc.gsfc.nasa.gov/data/datapool/TRMM_DP/01_Data_Products/ 
06_Ancillary/02_GPROF6/index.html.  The land portion of the algorithm was upgraded 
in February 2004 to SSM/I version 7.  This algorithm is equivalent to the TMI profiling 
algorithm version 6 [11] with some modification to account for the lack of the lowest 
TMI frequency and the substantially reduced spatial resolution.  As in the case of TMI, 
the algorithm estimates only liquid precipitation over unfrozen surfaces. 
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TABLE 8.1 
CHARACTERISTICS OF SSM/I 

Center 
Frequency 

(GHz) 

Polarization IF Passband 
(MHz) 

EFOV (km × km) 
Cross-track × 
along-track 

19.35 Dual 10-250 43×69 
22.235 Vertical 10-250 40×60 
37.0 Dual 100-1000 37×29 
85.5 Dual 100-1500 15×13 

 
 

8.3.5  TMI 
 
TMI is aboard the TRMM satellite, and differs from SSM/I in four main ways: 1) a pair 
of 10.7-GHz channels with horizontal and vertical polarization was added to TMI, 2) the 
water vapor channel was moved from 22.235 to 21.3 GHz in order to reduce saturation in 
the tropics and provide more uniform sensitivity to water vapor with respect to altitude, 
3) a larger antenna and the lower orbit of the TRMM satellite provides more than twice 
the spatial resolution of SSM/I, and 4) the concurrent flight of the TRMM Precipitation 
Radar (PR) permits direct calibration of TMI.  The TRMM satellite observes latitudes 
between 38°S and 38°N.  Table 8.2 lists the frequencies, polarizations, bandwidths, and 
effective fields of view (EFOV) for TMI [74].  The data set used in this study is the TMI 
Level-2 Hydrometeor Profile Product (2A12 product in TRMM nomenclature), which 
provides rainfall rates, the vertical structure of hydrometeors, and the latent heating based 
upon the nine channels of TMI.  It has a grid spacing of 5.1 km with a precision of 0.1 
mm/hr, and is available from NASA GSFC DAAC at: http://disc.sci.gsfc.nasa.gov/data/ 
datapool/TRMM/01_Data_Products/01_Orbital/05_Tmi_Prof_2A_12/.  The land portion 
of this data set is produced using the version-6 TMI profiling algorithm [11], which 
supersedes version 5 [81].  The algorithm was calibrated using co-located TMI and 
TRMM PR observations over Africa and South America during October and November, 
2000.  The algorithm estimates only liquid precipitation over unfrozen surfaces.   
 
 

TABLE 8.2 
CHARACTERISTICS OF TMI 

Center 
Frequency 

(GHz) 

Polarization Bandwidth 
(MHz) 

EFOV (km × km) 
Cross-track ×  
along-track 

10.65 Dual 100 63×37 
19.35 Dual 500 30×18 
21.3 Vertical 200 23×18 
37.0 Dual 2000 16×9 
85.5 Dual 3000 7×5 
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8.3.6  AMSR-E 
 
AMSR-E is a conically scanning passive microwave radiometer aboard the NASA Aqua 
satellite.  Table 8.3 lists its frequencies, bandwidths, and instantaneous fields of view 
(IFOV) [80].  The AMSR-E surface precipitation rate product used in this chapter is the 
AMSR-E/Aqua L2B Global Swath RainRate/Type Goddard Space Flight Center (GSFC) 
Profiling Algorithm V001 [9].  This data set covers all ice-free and snow-free land and 
ocean between 70°N and 70°S at 5.4-km gridded resolution.  The data set is available at: 
http://nsidc.org/data/amsre/order.html.  The architecture of the land portion of the 
algorithm is nearly identical to that of the TMI profiling algorithm, version 6 [9].  As in 
the cases of TMI and SSM/I, the algorithm estimates only liquid precipitation over 
unfrozen surfaces. 
 
 

TABLE 8.3 
CHARACTERISTICS OF AMSR-E 

Center 
Frequency 

(GHz) 

Polarization Bandwidth 
(MHz) 

IFOV (km × km) 
Cross-track ×  
along-track 

6.925 Dual 350 43×75 
10.65 Dual 100 29×51 
18.7 Dual 200 16×27 
23.8 Dual 400 18×32 
36.5 Dual 1000 8.2×14 

89.0(A) Dual 3000 3.7×6.5 
89.0(B) Dual 3000 3.5×5.9 

 
 

8.4  Experiment Definition 
 
The surface precipitation rate estimates of NOWRAD, AMSU/MM5, AMSU/NOWRAD, 
AMSR-E, SSM/I, and TMI were made over the United States Great Plains (USGP), 
which follows United States Geological Survey hydrological unit boundaries and is the 
region in Fig. 8.1 bounded by the solid line.  This region is located between 25.85°N-
49.01°N and 114.07°W-90.12°W.  The comparison was performed only over land.  Since 
none of the precipitation rate retrieval algorithms compared here work over snow or ice 
covered surfaces, the time interval used for comparison was from 0000 UTC June 1, 2004 
to 2300 UTC August 31, 2004, which typically has no snow on the ground.  All data were 
interpolated to the same 0.05° latitude/longitude grid and binned into 15-minute intervals 
bounded by 00, 15, 30, and 45 minutes.  For example, all data observed between 08:15 
and 08:30 were binned to 08:30.  Although NOWRAD data is continuous, its overlap 
with microwave satellites is intermittent and depends on their orbits.  Table 8.4 lists the 
numbers of 15-minute periods and precipitating 0.05° pixels for which NOWRAD 
overlaps the various types of microwave data, where a pixel is defined as precipitating if 
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any instrument estimates a surface precipitation rate greater than 0.01 mm/h.  Note that 
the overlap is extensive except for SSM/I vs. AMSR-E, which were never simultaneous. 
 
 

 
Fig. 8.1. The United States Great Plains (USGP), which is the region inside the solid line. 
 
 

TABLE 8.4 
NUMBERS OF OVERLAPPING VIEWS AND PRECIPITATING 0.05° PIXELS 

Data set Number of 
overlapping 15-
minute periods  

Number of 
precipitating 5-km 
pixels (millions) 

AMSU/MM5 & NOWRAD 672 22.9 
AMSU/NOWRAD & NOWRAD 668 15.3 

AMSR-E & NOWRAD 384 2.3 
SSM/I & NOWRAD 900 5.1 
TMI & NOWRAD 425 1.6 

AMSU & AMSR-E & NOWRAD 35 0.64 
AMSU & SSM/I & NOWRAD 86 1.7 
AMSU & TMI & NOWRAD 22 0.24 

AMSR-E & SSM/I & NOWRAD 0 0 
AMSR-E & TMI & NOWRAD 10 0.017 

SSM/I & TMI & NOWRAD 23 0.041 
 
 

 Since different channels and instruments have different antenna beamwidths, the 
effective spatial resolution of the instruments varies.  It was found that blurring the 0.05° 
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NOWRAD retrievals with Gaussian filters improves its correlation with the various 
precipitation rate retrievals.  The optimum filter Full Width at Half Maximum (FWHM) 
depends on the retrieval algorithm and whether the correlation coefficient is computed 
directly between the surface precipitation rates, which emphasizes the higher rates and 
convective events, or between the logarithms of those rates so that accuracies at all rates 
are treated more equally.  Overemphasis of low rates is limited by adding 0.01 mm/h 
before computing the logarithm.  Both types of correlation coefficients are listed in Table 
8.5 as a function of NOWRAD spatial resolution.  For all algorithms the precipitation rate 
correlation coefficient exhibits a broad maximum for Gaussian FWHM blurring between 
0.15 and 0.4 degrees, with a maximum near 0.35 degrees, whereas using the logarithm 
yields an even higher correlation coefficient that generally peaks near 0.3 degrees for 
SSM/I and 0.15 degrees for the other algorithms.  To simplify all further comparisons in 
this chapter only one NOWRAD resolution is employed, 0.25 degrees, which is a 
compromise across all cases evaluated in Table 8.5.  Similar tables could be constructed 
using blurred data from other instruments as the baseline.  Comparisons of retrievals 
using other possible combinations of blurring are left to future papers. 
 
 

TABLE 8.5 
CORRELATION COEFFICIENTS BETWEEN SATELLITE AND NOWRAD PRECIPITATION RATE 

ESTIMATES AS A FUNCTION OF NOWRAD SPATIAL RESOLUTION, WHERE THE SECOND 
ENTRY IS THE CORRELATION COEFFICIENT FOR LOG10(Y+0.01) 

NOWRAD 
Resolution 

TMI SSM/I AMSR-E AMSU/NR AMSU/MM5 

0.05° 0.64; 0.78 0.56; 0.66 0.51; 0.67 0.60; 0.67 0.51; 0.64 
0.1° 0.69; 0.83 0.62; 0.74 0.58; 0.72 0.66; 0.75 0.57; 0.68 
0.15° 0.76; 0.84 0.68; 0.77 0.62; 0.72 0.72; 0.78 0.63; 0.69 
0.20° 0.75; 0.82 0.70; 0.77 0.64; 0.71 0.74; 0.78 0.64; 0.68 
0.25° 0.79; 0.82 0.74; 0.79 0.66; 0.71 0.78; 0.78 0.68; 0.68 
0.3° 0.77; 0.80 0.75; 0.78 0.67; 0.69 0.78; 0.77 0.68; 0.67 
0.35° 0.79; 0.79 0.78; 0.79 0.67; 0.68 0.81; 0.77 0.70; 0.67 
0.4° 0.76; 0.77 0.77; 0.78 0.66; 0.67 0.81; 0.76 0.70; 0.65 

 
 

8.5  Results 
 
Fig. 8.2 illustrates the generally good agreement between NOWRAD, AMSR-E, and TMI 
precipitation imagery on two occasions, each of 15-minute duration.  The few 
discrepancies result from the 0.25-degree blurring of the NOWRAD data and the 
tendency of the AMSR-E and TMI retrievals to miss some smaller cells in the second 
storm.  There is also a factor-of-two discrepancy in the northern half of the northern event 
in the first storm, and similar factor-of-two discrepancies can be found elsewhere in small 
features that may be due to time-offset or resolution differences. 
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Fig. 8.2.  Comparison of retrieved surface precipitation rates: (a) 1930 UTC 9 July 2004, 
(b) 0030 UTC 26 June 2004.  White areas are either outside the USGP or indicate 
unavailable retrievals.  Latitude and longitude are plotted every two degrees. 
 
 
 Fig. 8.3 illustrates similar comparisons between NOWRAD and AMSU for three 
other storms for which AMSR-E, SSM/I, or TMI data were also available.  The 
agreement within all sets of four retrievals is again quite good, with the main 
discrepancies being due to the reduced spatial resolution of AMSU, and the occasional 
tendency of the conical scanners to miss some of the smallest precipitation events.  There 
is also the tendency of AMSR-E and TMI to exhibit slightly smaller areas of precipitation 
relative to NOWRAD, even after allowance for differences in spatial resolution.  A 
possible explanation for this is offered later in the context of Table XII.  The reduced 
resolution of AMSU in Fig. 8.3(a) and (b) is partly due to the location of the storms near 
the edge of the swath.  Better resolution is exhibited in Fig. 8.3(c), which lies closer to 
nadir.  AMSU resolution can be significantly improved by sharpening to ~15-km 
resolution the graupel-sensitive 50-km resolution 50-GHz band data using methods 
demonstrated successfully earlier in other comparisons of AMSU precipitation retrievals 
with NEXRAD data [34].  This step was not employed in this chapter because slightly 
larger correlation coefficients between MM5 truth and simulated retrievals were obtained 
by not sharpening the brightness temperature images; numerical metrics are the main 
focus of this chapter.   
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Fig. 8.3. Comparison of retrieved surface precipitation rates over USGP: (a) 2015 UTC 
18 August 2004; (b) 1400 UTC 2 July 2004; and (c) 1300 UTC 9 June 2004.  White areas 
are either outside the USGP or indicate unavailable retrievals.  Latitude and longitude are 
plotted every two degrees. 
 
 
 Table 8.6 presents the surface-precipitation-rate-retrieval correlation coefficients for 
all pairs of retrieval algorithms.  In order to avoid overemphasis of the highest 
precipitation rates, the correlation coefficients are computed for the logarithms of the 
precipitation rates (base 10); 0.01 mm/h is added before computing the logarithm to avoid 
overemphasis of the smallest rates.  All AMSU/MM5 retrievals below 0.5 mm/h, and all 
AMSU/NR retrievals below 0.3 mm/h were set to zero in order to maximize these 
correlation coefficients.  The upper and lower triangles in Table 8.6 present the 
correlation coefficients for log10(0.01 + X) and X, respectively, where the latter 
corresponds more to the heavier rain. 
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 In the upper triangle, representing all precipitation rates, the three strongest 
correlation coefficients involve TMI versus SSM/I, AMSU/NR, and NOWRAD, in that 
declining order.  At the higher precipitation rates (lower triangle) the three highest 
correlation coefficients link AMSU and SSM/I.  The lowest correlation coefficients link 
AMSR-E and AMSU for all precipitation rates.  Since correlation coefficients do not 
unambiguously reveal absolute or relative performance of sensors in the absence of a 
calibration standard, the coefficients in Table 8.6 merely indicate in a more quantitative 
way that the precipitation retrievals for all algorithms are in reasonable agreement, as was 
evident in Figs. 8.2 and 8.3.  If one regards TMI as an approximate calibration standard, 
then the log metrics for all other instruments are correlated with it at levels above 0.78 in 
the declining sequence: SSM/I, AMSU/NR, NOWRAD, AMSU/MM5, and AMSR-E.  
No other algorithm used as a calibration standard yields such a high minimum correlation 
coefficient.  Since the algorithms for all instruments continue to evolve and improve, 
these results should be encouraging. 
 

 
TABLE 8.6 

CORRELATION COEFFICIENTS BETWEEN ALTERNATIVE PRECIPITATION RATE RETRIEVALS 
Instrument TMI SSM/I NOWRAD AMSR-E AMSU/NR AMSU/MM5

TMI - 0.86 0.82 0.78 0.83 0.80 
SSM/I 0.82 - 0.79 - 0.83 0.76 

NOWRAD 0.79 0.74 - 0.71 0.78 0.68 
AMSR-E 0.64 - 0.66 - 0.68 0.67 

AMSU/NR 0.78 0.88 0.78 0.62 - 0.73 
AMSU/MM5 0.77 0.83 0.68 0.60 0.85 - 
The upper triangle is the correlation coefficient for the metric log10(x+0.01) and the lower 
triangle is the correlation coefficient for x (mm/h). 
 
 
 Another metric of interest is the frequency of false precipitation detection for all 
pairs of retrieval algorithms, which is presented in Table 8.7.  False detection is defined 
here as occurring when the reference estimate (indicated by row headings) is less than 0.3 
mm/h while the other estimate (indicated by column headings) is more.  Thus for each 
pair of instruments there are two false detection rates, depending on which instrument is 
the reference.  For this metric, no lower thresholds were used for AMSU retrievals.  The 
inter-comparisons of the algorithms for the conically scanning TMI, SSM/I, and AMSR-
E generally exhibit false detection percentages below one percent, except for AMSR-E, 
which exhibits 1.59 percent relative to TMI truth.  When TMI is the reference, the false 
detection rates are 2.63, 3.33, and 3.73 percent for AMSU/NR, NOWRAD, and 
AMSU/MM5, respectively.  The images in Figs. 8.2 and 8.3, and other images, suggest 
that the great majority of these "false detections" are contiguous with legitimate 
precipitation and presumably correspond either to drizzle that the reference missed, or to 
evaporating precipitation or heavy cirrus aloft that resembles surface precipitation.  If we 
weight these false detections by their associated precipitation rates, they contribute even 
less to the total precipitation budget.  No study has yet been made of false detections that 
are not contiguous with legitimate precipitation or in its immediate vicinity.  
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TABLE 8.7 
PERCENTAGES OF FALSE DETECTIONS BETWEEN PAIRS OF PRECIPITATION RATE RETRIEVAL 

ALGORITHMS 
Instrument TMI SSM/I NOWRAD AMSR-E AMSU/NR AMSU/MM5

TMI - 0.81 3.33 0.63 2.63 3.73 
SSM/I 0.56 - 2.43 - 3.54 7.70 

NOWRAD 0.44 1.53 - 0.77 3.29 6.11 
AMSR-E 1.59 - 3.70 - 6.30 7.16 

AMSU/NR 0.53 0.56 1.77 0.37 - 4.06 
AMSU/MM5 0.63 0.60 2.04 0.61 1.56 - 
The percentages of false detections over 0.3 mm/h are for the algorithms heading the 
columns when the algorithms heading the rows are regarded as truth and yield less than 
0.3 mm/h. 
 
 
 Another common performance metric for algorithms involves comparison with 
doppler radar data.  Table 8.8 presents the rms deviation, mean, and standard deviation 
between the 0.25-degree NOWRAD data (mm/h) and each algorithm output Y as a 
function of NOWRAD precipitation rate, divided into octaves, and Table 8.9 presents the 
same statistical parameters for octaves of the precipitation rate Y.     
 
 

TABLE 8.8 
RMS, MEAN, AND STANDARD DIFFERENCES BETWEEN 0.25-DEGREE BLURRED NOWRAD 

PRECIPITATION RATE RETRIEVALS AND ALGORITHM X, FOR OCTAVES OF NOWRAD 
PRECIPITATION RATES  

Range (mm/h) 0.125-
0.25 

0.25-
0.5 

0.5-1 1-2 2-4 4-8 8-
16 

16-
32 

32-
64 

 A/M 1.19 1.46 1.83 2.50 3.51 4.96 7.12 10.9 17.3 
 A/N 0.68 0.85 1.12 1.54 2.14 3.19 5.80 12.0 21.4 

RMS A-E 0.69 1.03 1.53 2.27 3.37 5.01 8.11 13.9 26.8 
 SMMI 0.75 0.97 1.32 1.92 2.71 3.70 5.74 11.2 24.9 
 TMI 0.44 0.68 1.07 1.76 2.79 4.23 6.83 10.3 18.6 
 A/M -0.10 -0.07 -0.04 0.01 0.32 1.17 3.13 6.29 13.8 
 A/N -0.16 -0.17 -0.17 -0.10 0.32 1.43 4.38 10.8 20.7 

Mean A-E -0.01 0.01 0.04 0.12 0.41 1.26 2.96 6.56 20.3 
 SSMI -0.10 -0.07 -0.01 0.06 0.34 1.36 3.91 9.67 24.0 
 TMI 0.07 0.14 0.23 0.31 0.48 0.98 1.82 2.69 13.2 
 A/M 1.19 1.46 1.83 2.50 3.50 4.82 6.40 8.90 10.6 
 A/N 0.66 0.83 1.11 1.53 2.12 2.85 3.80 5.27 5.50 

SDev A-E 0.69 1.03 1.53 2.27 3.35 4.84 7.54 12.3 17.6 
 SMMI 0.74 0.96 1.32 1.92 2.68 3.45 4.21 5.67 6.74 
 TMI 0.44 0.66 1.05 1.73 2.74 4.11 6.59 9.94 13.0 

Abbreviations: Mean is E[X - NOWRAD], SDev is the standard deviation of [X - 
NOWRAD], A/M is AMSU/MM5, A/N is AMSU/NR, and A-E is AMSR-E 
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 TABLE 8.9 
RMS, MEAN, AND STANDARD DIFFERENCES BETWEEN 0.25-DEGREE BLURRED NOWRAD 
PRECIPITATION RATE RETRIEVALS AND ALGORITHM X, FOR OCTAVES OF X PRECIPITATION 

RATES  
Range (mm) 0.125-

0.25 
0.25-
0.5 

0.5-
1 

1-2 2-4 4-8 8-16 16-
32 

32-
64 

 A/M - - 1.32 2.19 3.28 4.47 7.16 12.4 28.7 
 A/N - 0.78 1.15 1.78 2.81 4.31 6.22 9.40 - 

RMS A-E 1.23 1.50 1.79 2.08 2.94 4.22 6.84 13.5 26.7 
 SMMI 0.77 1.07 1.46 2.10 3.15 4.34 6.59 9.65 13.2 
 TMI 1.19 1.53 1.84 2.19 2.95 3.83 5.64 11.0 20.9 
 A/M - - 0.03 0.34 0.63 -0.49 -3.51 -9.11 -26.1
 A/N - -0.02 0.02 0.02 0.07 0.29 -0.02 -1.29 - 

Mean A-E 0.47 0.55 0.51 0.32 0.13 -0.24 -3.32 -10.6 -24.8
 SMMI 0.18 0.25 0.33 0.48 0.48 -0.38 -2.07 -5.79 -11.9
 TMI 0.62 0.79 0.87 0.88 1.05 0.60 -1.81 -8.09 -19.2
 A/M - - 1.32 2.16 3.21 4.45 6.24 8.34 12.0 
 A/N - 0.78 1.15 1.78 2.81 4.30 6.22 9.31 - 

SDev A-E 1.13 1.40 1.71 2.05 2.94 4.21 5.99 8.36 9.93 
 SMMI 0.75 1.04 1.42 2.05 3.11 4.33 6.25 7.72 5.72 
 TMI 1.01 1.31 1.62 2.01 2.76 3.78 5.34 7.46 8.17 

Abbreviations: Mean is E[X - NOWRAD], SDev is the standard deviation of [X - 
NOWRAD], A/M is AMSU/MM5, A/N is AMSU/NR, and A-E is AMSR-E 

 
 

 The sensitivities of these methods to low precipitation rates can be very roughly 
estimated using the smallest standard deviation, which is 0.44 mm/h for TMI vs. 
NOWRAD in Table 8.8.  These standard deviations would equal the geometric sum of 
the standard deviations associated with each instrument separately if those deviations 
were uncorrelated.  High correlation is not expected since the TMI retrievals are sensitive 
primarily to absorption by hydrometeors, and NOWRAD is sensitive instead to 
scattering.  It is therefore reasonable to suppose that random surface and humidity effects 
probably contribute less than ~0.4 mm/h rms to TMI retrievals.  The corresponding upper 
bounds deduced from the table for other retrieval methods are larger but potentially too 
pessimistic if those other methods are merely more sensitive to light precipitation than is 
NOWRAD, which is entirely possible for AMSU retrievals utilizing frequencies above 
140 GHz. 
 
 Table 8.8 also suggests that, relative to NOWRAD, TMI offers the most accurate 
retrieval algorithm for NOWRAD rates below 1 mm/h and 16-32 mm/h, and that 
AMSU/NR is slightly superior between 1 and 16 mm/h.  The mean errors in the table are 
less than 10-15 percent of the rms errors for rates below ~4 mm/h, but rise to 
approximate the standard deviation for rates of 8-12 mm/h.  The standard deviation is 
least for AMSU/NR for all rates above 1 mm/h.  The results in Table 8.9 are somewhat 
different, for AMSU/NR provides the lowest rms errors below 4 mm/h and at 16-32 
mm/h, whereas TMI is superior 3-16 mm/h, approximately the reverse of the ranking 
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obtained from Table 8.8.  Also, when the octaves are defined by the sensor of interest 
rather than by NOWRAD, the mean errors remain less than ~ten percent for rates below 
~8 mm/h.  As expected, AMSU/NR offers the smallest mean errors in Table 8.9 because 
its neural networks were trained against a portion of the same USGP data set.  These 
mean errors at the higher precipitation rates are all highly negative because the strong 
convective cores of storms can yield surface precipitation at times and places removed 
from the peaks in graupel and snow aloft that mark the tops of strong cells.  To minimize 
rms error the estimators therefore tend to bias their estimates low in regions where such 
strong cores could be easily missed due to time and/or spatial offsets. 
 
 Yet another way to characterize retrieval algorithms is by their precipitation-rate 
distribution functions for a standard set of storms.  Although not all instruments in this 
experiment viewed the same pixels simultaneously, all observed many summer storms 
(see Table 8.4) under sufficiently similar geographic and meteorological conditions that 
the comparison should be informative.  Fig. 8.4 presents as a function of the surface 
precipitation rate estimate (RR) the weighted histograms of RR for the various retrieval 
algorithms.  The histogram employs rain rate bins of equal size in the logarithm of RR, 
and therefore even though the logarithmic scale shrinks the width of the bin, its height is 
correspondingly increased, so equal areas of the histogram correspond to equal numbers 
of events.  This histogram is then weighted by the corresponding RR, yielding a 
precipitation rate distribution function where equal areas correspond to equal 
precipitation, as shown in Fig. 8.4.  Thus Fig. 8.4 suggests that for all algorithms about 
half of all precipitation falls at rates below ~8 mm/h, and half above.  The final step is to 
normalize the areas of all weighted histograms so they are equal; this helps compensate 
for the different numbers of pixels viewed by each sensor. 
 
 

 
Fig. 8.4.  Surface precipitation rate (RR) distributions for six retrieval algorithms.  The 
RR histograms were weighted by RR so that total precipitation falling at various rates is 
proportional to the associated area under the curve. 
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 It is not surprising that the two high-spatial-resolution instruments, TMI and AMSR-
E, are the only ones in Fig. 8.4 with more than one percent of the precipitation falling at 
rates above ~40 mm/h, and that SSM/I with its poorer spatial resolution reports little 
precipitation above 20 mm/h.  It is currently unclear, however, why the two AMSU 
algorithms respond differently to precipitation above 20 mm/h, and why NOWRAD with 
0.25-degree blurring responds more strongly to high rates than does AMSU/NR, which 
was trained using NOWRAD data.  One contributing possibility is that since the highest 
NOWRAD precipitation rates are not perfectly concurrent with peaks sensed by AMSU, 
AMSU retrievals should be biased lower.  Also, the two AMSU algorithms report the 
most precipitation at rates below 1 mm/h, presumably because they utilize frequencies 
above 140 GHz that are sensitive to the smallest icy hydrometeors.  Whether this 
difference below one mm/h corresponds to actual precipitation reaching the ground or 
merely to hydrometeors aloft cannot be determined here. 
 
 The steep character of the SSM/I distribution near 15 mm/h, of the AMSU/NR 
distribution near 12 mm/h, and the AMSU/MM5 distribution near 30 mm/h are 
apparently due largely to the loss of sensitivity at higher precipitation rates because of 
limited spatial resolution.  This steepness is enhanced when these potentially higher 
estimates are shifted to lower estimates by being blurred across a larger set of adjacent 
pixels, thus also producing the observed excesses relative to NOWRAD, TMI, and 
AMSR-E in the 5-30 mm/h range.  Similarly, the increased sensitivity of AMSU/MM5 to 
rates below 3 mm/h is balanced by decreased rates 3-10 mm/h.  The somewhat reduced 
sensitivity of AMSU to high precipitation rates can be largely remedied by sharpening 
the 50-GHz band AMSU data, as demonstrated relative to NEXRAD in [34]. 
 
 Tests were performed to determine the origins of the fluctuations in the 
AMSU/MM5 distribution.  By using not just the best set of neural networks relative to 
the training data, but the best three sets in parallel and averaging the resulting estimates, 
the distribution curve was smoothed somewhat, suggesting that these neural networks are 
operating near their stability limit.  Each set of neural networks yielded slightly different 
small uncorrelated fluctuations in the distribution curve, and therefore such distribution 
functions provide sensitive detectors for neural network anomalies. 
 
 Finally, it is interesting to see the relationship between retrieved hydrometeor water-
paths and surface precipitation rates.  Fig. 8.5 for two storms shows images of water 
paths for snow (S), graupel (G), rainwater (R), and the sum (S + G + R) retrieved using 
the same AMSU/MM5 algorithm used here, but trained using MM5 to estimate water 
paths instead [4].  The distinction between the spatial distributions of graupel and other 
hydrometeors is evident in both storms.  Rainwater distributions generally resemble the 
surface precipitation rate, while graupel covers the smallest areas at locations of higher 
rain rate, and snow generally extends beyond the rainwater zone.  Although the 
distinction between snow and rainwater morphology is not strong for these cases, it is 
sometimes more so in other images [4]. 
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Fig. 8.5. Retrieved AMSU/MM5 water-paths for rain water (R), snow (S), graupel (G), 
and the sum of rain water, snow, and graupel (R+S+G) over USGP: (a) 1400 UTC 2 July 
2004; and (b) 1300 UTC 9 June 2004, corresponding to Figs. 8.3(b) and 8.3(c), 
respectively.  Latitude and longitude are plotted every two degrees. 
 
 
 A more quantitative analysis of water path retrievals and their relation to NOWRAD 
USGP precipitation estimates is presented in Table 8.10 where the first column lists the 
MM5-simulated correlation coefficients between surface precipitation rate and the water 
paths for rainwater R, snow S, graupel G, and the sum R + S + G.  These simulations 
were computed for the same set of 122 storms cited earlier.  Two types of correlation 
coefficient are given; the first listed in each box correlates the two parameters of interest 
and the second correlates their logarithms, log10[X(mm) + 0.01], which better indicates 
the correlation for smaller water paths.  These correlation coefficients are greatest for 
rainwater and graupel, and least for snow.  The correlation coefficient for snow is only 
0.46 for stronger precipitation, but 0.68 when the logarithm increases the role of lighter 
precipitation.  The AMSU/MM5 surface precipitation rate estimates respond most 
strongly to the AMSU/MM5 estimates of rainwater and graupel, as shown by the high 
correlation coefficients in the second column, but also fairly strongly to snow.  The third 
column of the table shows that NOWRAD surface precipitation estimates rely even more 
heavily upon snow than does AMSU/MM5, and in fact the observed NOWRAD 
logarithmic correlation coefficients over USGP are higher for AMSU/MM5 snow than 
for either graupel or rainwater.  The wider separation of NEXRAD stations over the 
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USGP than in the eastern United States encourages increased reliance upon hydrometeors 
at higher altitudes, and therefore upon snow, as suggested by Table 8.10. 
 
 

TABLE 8.10 
CORRELATION COEFFICIENTS BETWEEN AMSU/MM5 OR MM5 HYDROMETEOR WATER-

PATH FOR X AND NOWRAD OR AMSU/MM5 SURFACE PRECIPITATION RATE RETRIEVALS 
OR MM5 SURFACE PRECIPITATION RATES, WHERE THE 1ST NUMBER IS CORRCOEF(X,Y) AND 

THE 2ND NUMBER IS CORRCOEF(LOG10(X+0.01), LOG10(Y+0.01)) 
X MM5 X and 

MM5 RR 
AMSU/MM5 

X and 
AMSU/MM5 

RR 

AMSU/MM5 
X and 

NOWRAD 

R 0.93; 0.90 0.91; 0.84 0.72; 0.67 
S 0.46; 0.68 0.72; 0.75 0.71; 0.72 
G 0.72; 0.71 0.88; 0.78 0.60; 0.61 

R+S+G 0.84; 0.78 0.92; 0.85 0.69; 0.74 
R: rain water, S: snow, and G: graupel water paths, respectively. 

  
 

8.6  Summary and Conclusions 
 
The USGP is an important well monitored hydrological area, and studies of its 
hydrological behavior are useful for agriculture and as a testbed for hydrological models.  
This chapter compares several microwave systems for remotely sensing precipitation and 
finds sufficient agreement in Figs. 8.2 and 8.3 and Tables 8.5 – 8.9 that their precipitation 
data can be combined over the summertime USGP with modest adjustments, particularly 
if ~25-km spatial resolution suffices. 
 

Improving the spatial resolution to ~15 km (e.g., TMI and AMSR-E) was found in 
Fig. 8.4 to be very helpful in detecting precipitation rates 20-60 mm/h.  It was also found 
in Table 8.5 that precipitation-rate correlation coefficients between NOWRAD and other 
sensors were improved by blurring NOWRAD data to at least 10-15 km, and that further 
blurring to 25-40 km increased the correlation coefficients for the higher more convective 
rain rates.  The reason correlations are increased by blurring small intense precipitation 
peaks is unclear, although such an effect is reasonable to the extent NEXRAD and the 
other sensors sound different altitudes or forms of precipitation at different times.  The 
correlation coefficients for the logarithms of precipitation retrievals are more sensitive to 
NOWRAD spatial resolution, however, and Table 8.5 shows correlation maxima near 15, 
30, 15, 20, and 15 km for TMI, SSM/I, AMSR-E, AMSU/NR, and AMSU/MM5, 
respectively.  Thus spatial structure can be significant at those light rain rates probed by 
the logarithmic metric. 

 
Besides spatial resolution, the main difference between the various sensors is that 

AMSU seems to respond more strongly than the others to rates below 1 mm, presumably 
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because of the increased sensitivity to hydrometeors near 1-mm diameter provided by the 
four AMSU-B channels in the 150-190 GHz band.  Since most such detections lie 
adjacent to pixels found by other sensors to be precipitating, the net effect on imagery is 
modest.  It is unknown what fraction of the time AMSU detections below 1 mm/h are 
false and due merely to evaporating precipitation or heavy, non-precipitating cirrus.  The 
statistics in Table 8.7 suggest an upper bound to false detections by AMSU of ~4 percent 
of all detections, if we regard TMI as truth. 

 
Tables 8.8 and 8.9 show that the various precipitation rate estimates agree with 

NOWRAD principally above 1 mm/h, and that the agreement improves further above ~8 
mm/h.  TMI and AMSU/NR agree with NOWRAD the best, depending on precipitation 
rate and whether NOWRAD or the other instrument defines the octaves for which 
comparisons are made.  To the extent that NOWRAD is deficient below 1 mm/h, 
particularly in drizzle, these discrepancies leave open the possibility that TMI and AMSU 
could provide useful retrievals in the 0.3-1 mm/h range, as hinted by the standard 
deviations in Table 8.8 which, at the lowest rain rates, reach 0.44 mm/h for TMI and 0.66 
mm/h for AMSU/NR. 
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Chapter 9 
 
Preliminary Study of Assimilating 
Millimeter-Wave Radiances into MM5 
 

9.1  Introduction 
 
Assimilation of real-time precipitation data from radar networks or satellites into cloud-
resolving NWP models is a "grand challenge" motivated by the tremendous significance 
of being able to model and predict the course of severe storms such as Katrina on the 
scale of individual convective elements.  Kalnay [82] has reviewed conventional 3DVAR 
and related techniques for assimilating data into models, but these currently have 
difficulties at cloud-resolving scales.  For example, MM5 mesoscale simulations of 
marine cyclones consistently exhibit position errors [83] of the sort that significantly 
degrade forecasts [84].  Also, the "bogusing" of assumed cyclones into models, and the 
removal of incorrectly located cyclones, must be very precise to avoid shocks and 
"ghosts" that can severely degrade forecasts [85]; such precision is not assured.  Manual 
"warping" of microwave humidity fields to match locations of detected features [83] may 
prove useful, but has not been automated.  Use of a displacement-based cost function has 
been tested with thunderstorms [86], and a variational minimization of 
forecast/observation discrepancies in displacement space has been proposed as an 
alignment preprocessor for 3DVAR and other assimilation approaches [87]. 
 
 Since microwave spectrometers viewing precipitation primarily sense hydrometeor 
distributions, a method for relating those hydrometeor distributions to cloud-resolved 
wind and humidity distributions is required.  Fortunately geostationary microwave 
satellites can extract approximately 3 degrees of freedom (DoF) from the hydrometeor 
signature, and additional DoF from the temperature and humidity profiles.  This set of 
several independent parameters offers geostationary microwave spectrometers a 
significant potential assimilation advantage over ground-based radar networks limited by 
hilly terrain and yielding only a single output backscattering parameter, Z. 
 

9.2  Preliminary Results 
 
Due to time limits, assimilation work presented in this thesis is preliminary.  This section 
reports the proposed idea, important issues, difficulty, and preliminary results.  Fig. 9.1 
illustrates the idea of using a feedback system for assimilating precipitation information 
from observed radiances into MM5 model to improve MM5 predictions.  The goal is to 
observe brightness temperatures at time t, compare with those predicted by MM5, derive 
appropriate adjustment for MM5 parameters at time t - τ, make the adjustment in MM5 at 
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time t - τ, and run MM5 forward to get better agreement with satellite observation at time 
t.  This closed-loop process might have to be repeated until achieving good results. 
 
 The feedback system has three aspects: displacement estimation, dimensionality 
reduction, and amplitude adjustment.  First, it is essential to ensure that observations 
made at time t influence the model at the correct location at time t - τ, allowing for storm 
translation during the time offset τ.  The MM5 winds at appropriate altitudes were used to 
make a first-order correction for translational movements; perfection is not necessary and 
this step may not be required.  Fig. 9.2 shows the differences in 183±7 GHz radiances 
over a 15-minute period before (left side) and after (right side) positional corrections are 
made using smoothed 500-mbar winds for the intense French front illustrated here in 
Figs. 3.3, 5.11, and 6.1, for example.  Note that the velocities associated with advance of 
the main front toward the northeast and those associated with the more stationary 
orographic precipitation pinned to the Alps are different, and therefore motion correction 
of orographic precipitation is to be avoided.  Although the displacement estimation is not 
perfect, it clearly helps reduce errors in displacement.  It is important to note that 
assimilating microwave spectral observations at the 15-60 minute intervals appropriate to 
geostationary satellites and cloud-resolving models is easier than doing so at the longer 
intervals typically addressed by most prior research.  The reason is that it is more difficult 
to make good displacement estimates for longer time interval. 
 
 

 
Fig. 9.1. A feedback system to assimilate radiances into MM5, where Est. PPCΔ  is the 
estimated change in projected principal component and NN is a neural network. 
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Fig. 9.2. Brightness temperature difference, TB(t = 0) -  TB(t = -15 min), at 183±7 GHz, 
before (left image) and after (right image) preliminary wind correction for radiance 
position.  The brightness temperature scale extends from +20K (white) to -20K (black).  
The image is ~900 km wide. 
 
 
 The second assimilation issue is that cloud-resolving NWP models have too many 
important degrees of freedom (DoF) relative to the number found in the microwave data, 
and therefore realistic cloud-resolved wind and humidity fields in storms cannot be 
retrieved directly from satellites; the DoF of the model itself must be utilized in the 
retrieval process too.  This part of the effort involves identifying those DoF in the model 
that most influence those future wind and humidity fields that in turn generate the 
observed hydrometeor distributions.  It is these most critical DoF that should be 
iteratively perturbed at times t - τi with the position-corrected transformed differential 
radiance data (observation minus model).  Projected Principal Component (PPC) 
technique discussed in Section 2.6.2 is suitable for identification of such key DoF.  PPC's 
are those functions of an input space that most efficiently characterize any associated 
output space after linear transformation.   
 
 The third assimilation issue involves optimization of the amplitude adjustment step 
at times t - τi.  Since the model must be allowed to evolve so the wind, temperature, 
humidity, and hydrometeor fields become consistent with the observed radiances, and the 
required evolution time depends the features that are evolving, both the perturbation 
estimator and the time intervals τi (typically more than one would be used) must be 
chosen.  The estimator could be neural network trained on large ensembles of storms.  An 
alternative approach to be explored or merged is the combined field and amplitude 
adjustment method of Ravela et al. [87]. 
 
 It is difficult to be more precise about methods at this point because several 
important experiments with MM5 must be performed sequentially in order to identify the 
most efficient and effective research path.  It is left here as suggested future study. 
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Chapter 10 
 
Conclusions 
 

10.1  Summary of the Thesis 
 
The thesis starts with validation of a model composed of a numerical weather prediction 
model MM5, a radiative transfer model TBSCAT, and electromagnetic models for icy 
hydrometeors aloft (F(λ)) to be used as global statistical ground-truth for microwave 
precipitation retrieval development.  The model was validated by comparing its predicted 
millimeter-wave radiances with those coincidentally observed by the Advanced 
Microwave Sounding Unit (AMSU) aboard the operational satellites NOAA-15, -16, and 
-17.  Predicted and observed brightness temperatures reasonably agree over 122 global 
storms spanning a year and including different types of precipitation.  Sensitivity of 
predicted radiances to assumptions in MM5 and the radiative transfer model, and the 
robustness of predicted retrieval accuracies of millimeter-wave instruments were 
studied.  It was found that whereas predicted radiances are fairly sensitive to assumptions 
in MM5 and the radiative transfer model, predicted retrieval accuracies of millimeter-
wave instruments are robust to these assumptions.  Once validated, MM5/TBSCAT/ F(λ) 
model was then used for real applications.  Appropriate specifications for geostationary 
microwave sounders and their retrieval accuracies were studied and it was found that a 
1.2-m micro-scanned filled-aperture antenna operating at 118/166/183/380/425 GHz, 
which is relatively inexpensive, technologically mature, simple to build, and readily 
installed on a geostationary satellite, provides useful observations of important global 
precipitation with 20-km resolution every 15 minutes.  A new global precipitation 
retrieval algorithm over non-icy surfaces was developed for AMSU by using information 
from the MM5/TBSCAT/ F(λ) model.  This algorithm was shown to have good retrieval 
accuracies for different types of precipitation.  AMSU surface precipitation rates 
retrieved using this algorithm reasonably agree with those retrieved for AMSR-E over 
both land and sea, and with those retrieved for SSM/I, TMI, and NEXRAD over land, 
where comparison over sea with SSM/I, TMI, and NEXRAD retrievals was not 
performed.  The proposed idea, important issues, difficulty, and preliminary results for 
assimilation of satellite precipitation data into MM5 with the objective of improving the 
model forecasts so that they are as close to satellite observations as possible were also 
presented.   
 

10.2 Contributions 
 
Contributions of this thesis are listed here for each chapter.   
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10.2.1   Contributions from Chapter 4 
 

• This chapter is the first to develop electromagnetic models, Mie spheres with ice 
densities F(λ) found using DDSCAT, for icy hydrometeors and to show that such 
models in combination with a numerical weather prediction model, MM5, and a 
two-stream radiative transfer model, TBSCAT, provide reasonable agreement 
between predicted brightness temperatures and AMSU observations over 122 
global representative storm systems for all precipitation types evaluated, including 
convective, stratiform, snow, and unglaciated precipitation. 

 

10.2.2   Contributions from Chapter 5 
 

• This chapter shows that assumptions in MM5 and the radiative transfer model 
have to be very close to reality to get reasonable agreement between predicted 
brightness temperatures and AMSU observations over 122 global representative 
storm systems. 

• This chapter shows that predicted precipitation retrieval accuracies are not very 
sensitive to assumptions in MM5 and the radiative transfer model. 

• This chapter shows that the MM5/TBSCAT/F(λ) model could be used to develop 
microwave precipitation retrieval algorithms and to predict precipitation retrieval 
accuracy of microwave instruments before launch. 

 

10.2.3   Contributions from Chapter 6 
 

• This chapter suggests appropriate configurations for geostationary microwave 
sounders for precipitation observation. 

• This chapter is the first to evaluate and compare precipitation retrieval accuracies 
for different configurations of geostationary microwave sounders including 
aperture synthesis systems. 

• This chapter shows that the image sharpening technique could be used to increase 
resolution for filled-aperture antenna and can help capture small and isolated 
precipitation. 

• This chapter shows that a 1.2-m micro-scanned filled-aperture antenna operating 
at 118/166/183/380/425 GHz, which is relatively inexpensive, technologically 
mature, simple to build, and readily installed on a geostationary satellite, could 
provide useful observation of global precipitation with 20-km resolution and 
every 15 minutes. 

10.2.4   Contributions from Chapter 7 
 

• This chapter develops a new global precipitation retrieval algorithm, called 
AMSU/MM5, that works over non-icy surface for AMSU by using the 
MM5/TBSCAT/F(λ) ground-truth and shows that AMSU/MM5 has good retrieval 
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accuracy for all types of precipitation evaluated, including convective, stratiform, 
snow, and unglaciated precipitation. 

• This chapter shows that AMSU/MM5 reasonably agrees with AMSR-E over both 
land and sea. 

 

10.2.5   Contributions from Chapter 8 
 

• This chapter compares precipitation rate retrievals from NOWRAD, AMSU, 
AMSR-E, SSMI, and TMI over land and shows that all reasonably agree. 

• This chapter reemphasizes that AMSU/MM5 algorithm could be used 
operationally with reasonable accuracy. 

 

10.2.6   Contributions from Chapter 9 
 

• This chapter presents the idea of how to assimilate satellite brightness 
temperatures into a numerical weather prediction model to improve forecasts. 

• This chapter points out important issues and difficulty to assimilate radiance 
information successfully. 

• This chapter shows a technique to estimate storm translation in time. 
 

10.3  Suggestions for Future Work 
 

10.3.1 Radiative transfer Model  
 
The radiative transfer model TBSCAT in its two-stream variant and the Mie sphere 
model with density F(λ) for icy hydrometeors were validated in this thesis against 
observations at 50-200 GHz.  Interesting future work would be validation using a multi-
stream radiative transfer against observations at 50-200 GHz and/or the extension to 
frequencies above 200 GHz once observations at this frequency range become available.  
Since surface has a strong impact to window channels and even opaque channels if the 
atmosphere is dry, realistic models for different types of surface, i.e., sea ice, snow on the 
ground, wet soil, etc., could help improve precipitation retrieval algorithms. 
 

10.3.2  Improvements for Microwave Precipitation Retrieval Algorithm 
 
It is very difficult to distinguish signals from ice or snow on the surface from those from 
icy hydrometeors.  This leads to false alarms when precipitation estimation is performed 
over such surfaces.  Observations in infrared frequency and information from numerical 
weather prediction model could help detect such false alarms.   
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10.3.3  Data Assimilation 
 
The proposed “precipitation locking” idea in Chapter 9 could be carried further.  If 
successful, this will improve both precipitation retrieval accuracies and weather forecasts.   

 
One might also be interested in assimilating the different surface precipitation rate 

products presented in Chapter 8 to have better estimates of surface precipitation rate for a 
given area in a time period for hydrological or climatological studies.  This thesis has 
shown that MM5 could serve as ground-truth.  Biases and error variances for these 
surface precipitation rate products could be found using MM5 simulations as 
demonstrated in Section 7.5, and could also be compared to those computed from 
retrievals themselves, as demonstrated in Section 8.5.  Hence, these surface precipitation 
rate products can then be combined according to their MM5-derived error statistics to 
minimize a defined error function.  Chapter 8 also suggests that blurring can help reduce 
the effect of positional errors among these products. 
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Appendix A  
 
Assumptions and Details for Experiments 
 

A.1  List of 270 Globally Representative Storms 
 
Table A.1 lists 255 globally representative storms July 2002 – June 2003 selected by 
examining AMSU data and described in Chapter 3.  These storms included 20 for each 
month plus 15 that were not glaciated (~warm rain).  In addition, Table A.1 also shows 
15 candidate storms over the North Pole that were simulated but not used in this thesis 
because it is very difficult to model icy surface correctly to be able to validate against 
AMSU observations.  The satellite passes typically overlap with MM5 storm systems 
over an area ~ 2200 km × 2200 km.  Obvious morphological discrepancies between 
AMSU observations and MM5 predictions, as well as storms embracing either pole or 
very high mountains, led to deletion of approximately half the initial set of 255 storms, 
leaving 122 storms for studies in Chapters 4-9 and are marked with stars next to case 
numbers in Table A.1.  In Table A.1, # is the case number, date is the calendar date, date# 
is the date number for that year, orbit# is the NOAA satellite orbit number, scan# is the 
AMSU scan number, lat and lon are latitude and longitude of the center of the storm, time 
is the observation time in UTC at latitude/longitude, sat. tells the storm was observed by 
which NOAA satellite, where NK, NL, and NM are NOAA-15, -16, and -17, 
respectively.  Storm type in Table A.1 tells roughly how the storm looks like.  S or C is 
used when surface precipitation rate estimate for that storm is only < or ≥ 10 mm/h, 
respectively.  SC is used when surface precipitation rate estimate for that storm are both < 
and ≥ 10 mm/h.  TP, H, and WR are typhoon, hurricane, and warm rain, respectively. 
 

These storms were simulated for 6 hours after MM5 initialization.  MM5 outputs 
were saved every 15 minutes between the 3rd and the 6th hours for all 3 MM5 domains.  
These 270 storms are in /net/ds-0a/raid1/STORM270/ on the ACESGRID cluster at MIT.  
A simple naming system was used.  For example, all MM5 outputs for case# 3 of July 
2002 are in /net/ds-0a/raid1/STORM270/July/July_3/.  Each storm directory has the size 
of 7.7 GB. 
 
 

TABLE A.1 
LIST OF 270 GLOBAL REPRESENTATIVE STORMS 

 
July 2002 

# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 183 2 2100 04:38:46 19.86 129.31 TP NL 
2 2 183 6 650 10:28:12 9.81 -131.48 SC NL 
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3* 6 187 2 2250 03:59:02 40.04 138.56 SC NL 
4* 9 190 10 2320 17:40:22 69.97 -62.14 SC NL 
5* 9 190 10 2110 17:31:02 69.77 60.67 C NL 
6* 11 192 3 620 05:11:45 60.02 77.24 S NM 
7* 11 192 4 190 05:55:05 48.22 -172.85 SC NK 
8* 15 196 6 600 09:56:38 -35.5 -119.95 S NL 
9 15 196 4 250 06:10:25 38.42 -60.04 SC NL 

10* 17 198 14 1100 23:44:49 -51.06 133.00 SC NM 
11 17 198 6 2450 11:05:37 57.27 156.23 S NM 
12 17 198 9 1450 15:43:50 -29.91 108.25 SC NM 
13* 19 200 14 1600 23:21:42 -41.29 -0.59 S NM 
14 19 200 7 1300 11:15:18 -65.65 -57.93 S NM 
15* 22 203 10 1700 17:39:23 -35.5 -49.85 SC NL 
16* 22 203 13 610 21:47:29 50.09 85.13 SC NL 
17* 29 210 11 200 17:02:41 47.54 -84.61 SC NM 
18 29 210 2 1000 03:39:56 15.91 100.29 SC NM 
19 29 210 3 100 04:48:06 34.40 -101.46 SC NM 
20 31 212 3 1180 04:43:21 0.00 80.00 SC NM 
 

August 2002 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1* 2 214 7 2300 11:48:01 52.00 130.00 SC NM 
2* 6 218 6 300 10:32:22 52.66 -105.76 C NL 
3* 12 224 6 500 10:04:33 50.89 17.91 SC NM 
4 12 224 9 1800 16:19:08 20.00 85.31 SC NM 
5 12 224 6 2000 11:11:13 10.51 159.98 SC NM 
6* 12 224 7 600 11:57:48 6.78 -24.75 SC NM 
7 12 224 10 380 16:56:49 26.67 -92.51 SC NM 
8 14 226 3 2010 05:12:38 36.79 129.49 SC NL 
9 16 228 11 100 17:03:34 40.00 -90.00 SC NM 

10* 16 228 14 300 22:08:28 38.42 -167.23 SC NM 
11* 16 228 4 850 05:18:46 68.74 109.65 SC NM 
12 16 228 10 900 17:50:22 -34.58 -166.06 SC NK 
13 18 230 3 1820 06:07:07 19.96 109.83 SC NL 
14* 21 233 3 210 04:15:02 67.28 2.28 S NL 
15* 21 233 7 330 11:07:50 57.42 -134.81 SC NL 
16* 23 235 7 1700 11:53:21 -40.00 167.23 SC NM 
17 23 235 3 2400 05:23:40 10.91 -109.65 SC NM 
18 26 238 13 820 22:14:57 20.55 64.19 SC NL 
19* 26 238 9 2080 16:41:05 54.17 -41.25 SC NL 
20* 29 241 3 2190 05:56:22 58.43 119.66 SC NL 

 
September 2002 

# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1* 1 244 3 300 03:57:10 59.89 -20.48 S NL 
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2* 1 244 11 810 17:36:38 49.06 140.96 SC NL 
3* 4 247 4 300 06:11:40 69.15 -154.59 S NM 
4* 7 250 3 200 04:59:29 49.65 -102.46 SC NM 
5 9 252 7 1840 12:06:24 5.57 26.51 SC NL 
6* 9 252 6 2300 11:10:11 57.16 119.48 SC NK 
7* 9 252 6 1850 10:50:11 13.45 120.83 SC NK 
8* 11 254 6 1600 11:34:24 -36.97 35.22 S NL 
9* 11 254 14 220 23:54:40 59.88 -169.86 SC NL 
10* 15 258 6 1880 11:14:19 50.06 39.96 SC NL 
11 18 261 4 550 06:11:28 -6.17 -72.26 SC NL 
12* 18 261 7 350 11:01:15 55.22 -130.66 SC NL 
13* 20 263 14 350 23:32:51 46.00 -85.08 SC NK 
14* 22 265 10 400 16:42:14 20.55 -89.46 IH NM 
15 22 265 14 150 23:06:52 73.43 -90.46 S NM 
16 23 266 3 1350 05:45:42 -67.77 170.04 SC NL 
17* 26 269 6 1980 10:59:41 36.79 111.06 SC NK 
18* 26 269 10 300 16:49:00 36.61 -83.91 SC NM 
19 30 273 10 1400 17:45:22 17.10 9.95 SC NK 
20 30 273 4 650 05:05:05 57.89 81.92 S NM 

 
October 2002 

# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1* 2 275 14 650 23:42:51 52.87 55.88 S NL 
2* 5 278 7 180 11:16:13 54.55 -61.15 SC NK 
3 7 280 11 1000 17:49:20 29.91 130.07 SC NL 
4* 7 280 2 2300 03:41:31 43.31 149.03 SC NL 
5 7 280 3 1100 04:20:33 9.30 89.94 SC NM 
6 7 280 11 2050 21:48:08 21.04 -54.89 SC NK 
7* 10 283 10 1580 17:20:18 40.22 14.86 SC NK 
8* 10 283 4 800 06:01:22 34.31 11.29 SC NK 
9 14 287 9 1640 17:16:27 -41.91 -45.00 S NL 
10 16 289 7 250 12:02:31 37.34 -70.10 SC NK 
11 17 290 3 650 05:56:11 -16.80 -53.31 SC NL 
12* 17 290 10 250 17:06:24 44.71 -55.00 SC NL 
13* 17 290 6 1900 11:07:51 32.73 119.95 SC NK 
14 24 297 3 1400 05:01:37 -56.48 43.42 S NM 
15 24 297 3 2220 05:38:04 13.92 -108.19 SC NM 
16* 24 297 7 1450 12:04:06 -57.79 161.85 S NM 
17 24 297 10 850 16:55:18 -72.83 -161.85 S NM 
18 25 298 11 100 17:11:28 9.71 -49.97 SC NL 
19* 25 298 7 2180 12:15:39 48.55 5.09 S NL 
20* 31 304 6 1700 11:00:59 29.91 45.11 SC NL 

 
November 2002 

# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
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1* 1 305 13 1580 21:52:50 -20.00 -40.00 SC NK 
2* 1 305 1 100 00:04:56 10.81 -87.83 SC NK 
3* 6 310 3 400 05:20:00 35.13 -41.25 SC NL 
4 6 310 6 1700 11:21:47 -20.25 35.34 SC NL 
5 7 311 10 1250 17:52:02 -9.50 21.06 SC NK 
6 8 312 3 2200 05:44:40 3.14 -161.85 SC NK 
7* 10 314 3 100 04:23:03 38.81 -103.51 SC NM 
8 11 315 3 850 04:26:31 50.00 100.00 S NM 
9 12 316 3 1580 05:03:07 -40.22 142.89 SC NL 
10 12 316 3 1200 04:18:36 0.00 86.95 SC NM 
11 12 316 3 1020 04:10:36 24.55 91.05 SC NM 
12* 13 317 13 700 22:41:36 41.64 62.61 S NL 
13* 15 319 6 900 10:48:08 -42.35 -149.91 S NL 
14 19 323 2 2050 03:57:04 8.60 156.29 SC NL 
15 19 323 10 900 16:47:17 -29.62 136.98 SC NL 
16 19 323 9 1700 16:01:21 0.00 94.44 SC NM 
17* 25 329 3 870 05:29:41 -31.79 -59.74 SC NL 
18 25 329 14 120 23:22:29 39.95 -148.27 S NL 
19 29 333 6 1750 10:41:52 29.91 36.86 SC NL 
20 29 333 10 1440 16:59:01 -68.60 3.39 S NL 
 

December 2002 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 336 3 2100 06:19:41 -1.22 -178.47 SC NK 
2 2 336 6 1200 11:07:41 -65.22 118.08 S NK 
3* 2 336 10 1650 18:02:21 -28.58 23.41 SC NK 
4* 5 339 3 220 04:50:40 61.62 -39.96 S NL 
5 5 339 13 820 22:00:32 30.85 60.79 S NL 
6* 5 339 14 1900 23:27:35 14.52 -14.86 S NM 
7* 8 342 10 480 16:25:25 15.11 145.05 TP NL 
8* 8 342 14 1800 23:59:49 -30.94 -135.34 SC NL 
9 12 346 4 650 06:12:17 49.23 75.48 SC NM 

10* 12 346 6 1850 10:27:45 -40.93 173.55 SC NM 
11* 14 348 6 380 10:15:39 8.39 -128.09 SC NL 
12* 14 348 7 400 11:45:04 41.64 -126.97 S NL 
13 14 348 3 1850 04:29:21 -62.29 -51.84 SC NM 
14* 17 351 10 300 16:18:29 44.97 162.84 S NL 
15 17 351 11 380 17:38:50 55.93 -74.48 S NL 
16 21 355 14 1020 00:14:45 -6.48 19.95 SC NL 
17 25 359 3 2200 05:54:40 56.72 96.37 S NL 
18 25 359 14 250 22:45:11 36.24 -62.08 SC NK 
19 26 360 3 900 04:18:36 47.54 100.00 SC NM 
20* 31 365 14 1700 23:44:18 31.23 -82.97 SC NK 
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January 2003 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 002 13 900 22:23:56 -60.04 166.76 S NM 
2* 2 002 6 600 10:03:40 49.90 6.44 SC NM 
3* 5 005 10 850 16:22:39 -12.21 136.33 SC NL 
4* 7 007 6 1550 11:30:34 -37.97 36.92 SC NL 
5 10 010 9 2420 17:06:25 53.78 -105.44 SC NM 
6 10 010 9 2420 17:06:25 49.84 -81.22 S NM 
7* 10 010 10 1100 17:58:09 -50.84 78.29 S NM 
8* 10 010 6 1580 11:12:49 -60.04 -170.74 S NM 
9 10 010 7 200 11:59:45 67.82 1.52 S NM 

10* 13 013 10 600 16:28:12 -42.88 -93.97 SC NM 
11 13 013 7 500 11:04:49 21.04 -3.04 S NM 
12 13 013 7 620 11:10:09 2.43 -7.72 SC NM 
13* 16 016 6 1000 11:05:36 -50.06 -140.08 SC NL 
14* 16 016 3 600 05:47:33 -12.62 -55.94 SC NL 
15 19 019 14 350 23:22:34 68.60 -140.02 SC NL 
16 22 022 13 1950 22:13:00 19.67 1.29 S NM 
17 22 022 7 700 11:04:06 18.29 -3.16 S NM 
18 11 011 6 300 10:01:57 12.62 -111.29 SC NL 
19* 23 023 10 600 16:11:33 29.9 147.39 S NL 
20* 25 025 10 750 17:46:13 -26.57 127.55 SC NL 
 

February 2003 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 033 10 2200 17:12:31 45.23 -65.00 S NL 
2 5 036 3 1750 06:11:27 -7.89 109.77 SC NL 
3 5 036 6 500 10:22:02 24.84 -114.98 S NL 
4* 7 038 10 400 16:47:34 27.24 -100.06 S NM 
5* 9 040 3 400 04:23:27 43.57 -35.40 S NL 
6* 9 040 4 580 06:20:48 -10.01 -61.97 SC NL 
7 11 042 13 2000 23:04:49 20.65 -11.23 S NM 
8 11 042 3 1100 05:21:53 -15.21 67.70 SC NM 
9 11 042 9 2000 16:28:33 53.51 70.10 C NM 
10 12 043 10 2000 17:48:33 51.55 44.35 C NM 
11 13 044 2 1000 04:04:16 -40.13 -40.00 SC NL 
12* 13 044 6 450 10:29:57 33.84 -112.93 S NL 
13* 15 046 7 1650 12:10:20 0.00 104.27 SC NK 
14 16 047 3 1400 05:21:53 -60.00 40.00 S NM 
15 18 049 2 2000 03:45:14 0.00 150.00 SC NL 
16 22 053 10 780 17:14:29 47.71 130.07 S NL 
17 25 056 3 180 04:23:56 45.49 -104.74 SC NM 
18 25 056 4 200 06:07:13 59.79 -124.75 SC NM 
19 25 056 10 1600 17:47:50 26.48 53.95 SC NM 
20* 27 058 11 1250 18:16:58 -18.28 122.11 SC NL 
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March 2003 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 061 3 400 04:13:58 56.06 -112.70 S NM 
2 2 061 7 1500 12:03:40 -66.64 -169.10 S NM 
3* 2 061 7 1600 12:08:06 -49.90 166.53 SC NM 
4 2 061 9 1950 15:59:08 44.22 92.80 S NM 
5 4 063 7 1550 11:19:29 -70.02 170.04 SC NM 
6 4 063 10 300 17:21:32 40.04 -102.46 S NM 
7 4 063 14 400 00:01:10 61.55 150.38 S NM 
8 7 066 3 700 04:13:58 74.60 150.50 S NM 
9 8 067 6 1300 10:22:55 -38.51 55.06 SC NL 

10* 8 067 14 1130 23:23:06 -14.51 29.90 SC NL 
11* 15 074 3 1850 05:56:17 -50.00 -160.00 SC NK 
12* 17 076 10 300 15:48:12 30.00 -81.33 SC NM 
13* 17 076 10 1400 16:37:05 -49.56 83.67 SC NM 
14* 17 076 7 600 10:44:44 37.15 -7.02 S NM 
15 20 079 4 700 06:11:18 46.09 60.50 S NM 
16 20 079 6 900 09:46:36 -2.84 8.54 SC NM 
17* 20 079 9 1600 16:04:54 20.55 46.40 SC NK 
18* 23 082 6 1850 11:22:34 56.68 39.87 S NL 
19* 25 084 3 800 04:51:54 -11.31 -54.71 SC NL 
20 29 088 6 350 10:35:06 54.89 -128.46 S NL 
 

April 2003 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 2 092 3 1780 05:46:39 -11.91 119.46 SC NL 
2 4 094 8 350 12:13:21 65.65 -28.91 SC NM 
3* 6 096 6 2400 11:06:36 44.45 166.06 SC NM 
4 6 096 10 1000 17:09:26 -69.02 -101.70 SC NM 
5* 7 097 12 2450 22:04:10 44.97 -131.42 S NL 
6* 9 099 3 1000 05:32:23 1.22 18.61 SC NK 
7* 13 103 4 350 06:05:46 40.00 -50.00 S NL 
8 13 103 3 2100 05:34:13 27.82 120.00 SC NL 
9* 15 105 3 220 04:16:06 30.00 -107.26 S NM 
10 15 105 10 2150 18:08:01 69.98 -114.10 SC NM 
11* 15 105 4 600 05:53:25 0.00 -60.03 SC NL 
12 15 105 9 1550 15:51:29 10.00 43.07 SC NK 
13* 15 105 9 1650 15:55:56 35.51 40.14 S NK 
14 16 106 13 850 22:36:31 23.09 52.25 SC NL 
15 16 106 13 780 22:33:25 37.97 53.45 S NL 
16 18 108 14 200 23:10:41 23.19 -61.91 SC NK 
17* 18 108 3 800 05:12:49 36.61 28.44 S NK 
18 20 110 14 1050 23:40:52 25.32 48.77 SC NL 
19 23 113 10 1900 17:08:15 0.00 -43.71 SC NL 
20 25 115 10 1400 17:08:33 -1.62 73.61 SC NM 
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May 2003 
# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1* 1 121 2 1100 03:52:49 20.00 93.50 SC NM 
2 3 123 3 920 04:18:50 -26.00 -36.60 SC NL 
3* 5 125 11 300 18:27:00 40.00 -80.00 SC NL 
4 9 129 11 710 18:01:29 71.12 127.50 S NL 
5 11 131 14 800 23:49:37 -21.44 157.64 SC NM 
6* 11 131 14 350 22:38:11 49.06 -76.89 SC NK 
7 12 132 9 1650 15:49:32 4.86 97.48 SC NM 
8 15 135 2 2200 04:37:51 34.58 141.19 SC NL 
9* 15 135 3 2000 06:18:17 29.90 115.03 SC NL 
10* 16 136 14 1100 22:54:59 6.68 120.01 SC NK 
11 16 136 3 550 04:02:48 68.33 91.63 S NK 
12* 16 136 4 600 05:48:30 60.04 28.67 SC NK 
13 18 138 10 800 16:39:38 1.82 146.69 SC NL 
14* 20 140 10 1600 17:21:28 47.29 16.21 SC NK 
15* 22 142 5 2100 09:50:06 52.04 131.66 SC NK 
16 27 147 2 2450 04:31:15 48.81 -168.64 SC NK 
17 27 147 3 2000 05:58:27 -1.01 -170.04 SC NK 
18* 27 147 6 2050 11:13:12 47.15 112.46 SC NK 
19* 30 150 3 2190 05:12:04 34.21 130.42 SC NL 
20 30 150 7 1900 11:51:59 8.69 22.38 SC NL 

 
June 2003 

# Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 1 152 7 800 10:40:49 7.39 1.58 SC NM 
2 1 152 10 1750 16:40:54 43.23 65.54 SC NM 
3 1 152 13 1900 21:43:34 9.50 0.82 SC NM 
4* 1 152 7 500 11:32:19 0.20 -70.00 SC NK 
5 1 152 14 850 00:03:59 18.78 30.08 SC NL 
6* 2 153 10 2000 17:10:59 28.20 11.23 SC NK 
7* 2 153 3 850 04:17:44 26.67 38.56 SC NK 
8* 2 153 3 100 04:37:26 40.00 -98.13 SC NM 
9 4 155 2 2210 04:13:13 33.00 139.90 SC NL 
10 4 155 10 1610 17:34:49 -18.98 -59.74 SC NL 
11 6 157 11 1000 18:01:35 25.61 121.83 SC NL 
12 9 160 14 980 00:20:58 4.66 25.16 SC NL 
13 9 160 14 605 00:04:17 62.59 35.22 SC NL 
14* 9 160 13 2150 22:16:01 53.35 -5.27 SC NM 
15 12 163 3 300 04:11:08 40.93 -95.85 SC NM 
16 12 163 10 500 16:36:33 7.69 -92.51 SC NM 
17 17 168 14 700 00:18:39 51.06 48.80 SC NL 
18* 22 173 3 2050 05:54:55 36.24 117.78 SC NL 
19* 25 176 14 500 22:46:02 59.28 52.08 SC NL 
20* 30 181 11 380 18:06:34 55.43 -70.00 SC NL 
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Polar Storm 
# Month Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1 7 20 201 3 200 04:12:35 86.00 -131.03 S NK 
2 8 9 221 14 550 23:30:25 85.25 34.60 S NL 
3 8 14 226 3 2350 05:27:45 86.00 113.73 S NL 
4 8 23 235 3 600 04:03:40 86.00 90.00 S NM 
5 9 1 244 3 2400 05:30:30 86.00 -64.54 S NL 
6 9 4 247 14 500 23:42:35 85.27 28.44 S NL 
7 9 7 250 3 2400 06:05:42 86.00 -68.70 SC NL 
8 10 24 297 3 400 04:17:11 86.00 -89.15 S NM 
9 4 16 106 14 400 23:57:19 86.00 -144.06 S NL 
10 4 20 110 3 2400 06:13:41 86.00 -46.32 S NL 
11 4 25 115 14 150 22:39:40 86.00 -11.68 S NM 
12 4 29 119 11 550 18:07:11 86.00 -54.92 SC NL 
13 5 12 132 10 2250 17:55:24 86.00 -83.00 S NM 
14 5 18 138 7 200 11:11:06 86.00 -126.95 S NL 
15 6 17 168 13 300 22:25:24 86.00 -128.92 SC NL 

 
Warm rain 

# Month Date Date# Orbit# Scan# Time Lat Lon Type Sat. 
1* 9 6 249 13 100 23:10:40 67.77 -167.00 WR NL 
2* 9 6 249 6 240 10:21:36 -49.73 -139.38 WR NL 
3 9 6 249 7 510 12:25:36 -49.06 30.31 WR NL 
4* 9 6 249 2 800 04:28:00 65.22 130.02 WR NL 
5* 9 6 249 2 540 03:53:20 -54.74 166.53 WR NL 
6 9 6 249 2 850 04:34:40 75.11 64.48 WR NL 
7 9 6 249 3 100 04:44:00 49.76 -27.09 WR NL 
8 9 6 249 4 50 06:26:40 60.04 -58.86 WR NL 
9* 11 16 320 2 540 04:12:32 -57.27 161.26 WR NL 
10 11 16 320 2 400 03:53:52 -52.97 -38.97 WR NL 
11 11 16 320 10 340 17:29:52 -56.64 114.10 WR NL 
12* 11 16 320 3 100 05:03:44 51.17 -36.04 WR NL 
13 11 16 320 3 650 06:17:04 21.04 114.39 WR NL 
14* 11 16 320 5 680 09:49:44 53.99 49.03 WR NL 
15* 11 16 320 6 640 11:33:36 58.36 7.72 WR NL 
 
 

A.2  Assumptions used in MM5 
 
This appendix provides more details for assumptions used in MM5, which are more 
complete than those given in Chapter 3.  To get MM5 predictions of atmospheric profiles 
for pressure levels, five main MM5 submodels are required (see [6]).  These include 
TERRAIN, REGRID, INTERPF, MM5, and INTERPB and are used in order.  First, 
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TERRAIN horizontally interpolates the regular latitude-longitude terrain elevation and 
vegetation (land use) onto the chosen mesoscale domains.  Its options were shown in 
Table A.2.  Second, REGRID reads archived gridded meteorological analyses and 
forecasts on pressure levels and interpolates those analyses from some native grid and 
map projection to the horizontal grid and map projection as defined by TERRAIN.  One 
of parameters needed to be specified is a set of new pressure levels in units of Pascal and 
were chosen in this thesis to be from 1000 to 97500 Pascal with 2500 Pascal spacing.  
Third, INTERPF transforms data from the analysis programs to the mesoscale model.  It 
takes output from REGRID or other programs as input to generate a model initial, lateral 
boundary condition and a lower boundary condition.  One of parameters needed to be 
specified is a set of sigma levels between 0 and 1, and were chosen in this thesis to have 
35 sigma levels including 1.00, 0.99, 0.98, 0.97, 0.96, 0.95, 0.94, 0.93, 0.92, 0.91, 0.90, 
0.89, 0.88, 0.87, 0.85, 0.83, 0.80, 0.77, 0.74, 0.71, 0.67, 0.63, 0.59, 0.55, 0.50, 0.45, 0.40, 
0.35, 0.30, 0.25, 0.20, 0.15, 0.10, 0.05, 0.00.  Fourth, MM5 is the numerical weather 
prediction part of the modeling system.  Its options were shown in Table A.2.  Fifth, 
INTERPB transforms data required to go from the mesoscale model on sigma coordinates 
back to pressure levels.  INTERPB interpolates MM5 predictions to pressure levels 
specified by the user.  In this thesis, pressure levels were chosen to be from 1000 to 
100000 Pascal with 2500 Pascal spacing. 

 
 

TABLE A.2 
OPTIONS USED IN TERRAIN AND MM5 

Option Domain 1 Domain 2 Domain 3 
TERRAIN options 

Number of cells 100*100 190*190 190*190 
Cell size (km) 45 15 5 

Resolution of terrain 
height and landuse 

(km) 

19 9 4 

Landuse/vegetation/soil 
category 

25-category USGS 25-category USGS 25-category USGS 

Nest type one way two way two way 
Map projection Polar stereographic 

if °≥ 60centerlat , 
Lambert conformal 
if °<≤° 6030 centerlat , 

and Mercator if 
°< 30centerlat  

Polar stereographic 
if °≥ 60centerlat , 

Lambert conformal 
if °<≤° 6030 centerlat , 

and Mercator if 
°< 30centerlat  

Polar stereographic 
if °≥ 60centerlat , 

Lambert conformal 
if °<≤° 6030 centerlat , 

and Mercator if 
°< 30centerlat  

 
MM5 options 

Implicit scheme Kain-Fritsch 2 [29] Kain-Fritsch 2 [29] None 
Explicit scheme Goddard [30] Goddard [30] Goddard [30] 
Time step (sec) 40 13.33 4.44 
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Planetary boundary 
layer scheme 

MRF [27] MRF [27] MRF [27] 

Atmospheric radiation 
scheme 

RRTM [88] RRTM [88] RRTM [88] 

Surface scheme Five-layer soil 
model [89] 

Five-layer soil 
model [89] 

Five-layer soil 
model [89] 

Shallow convection No No No 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 205

Appendix B  
 
Computer Codes 
 
All computer codes in this thesis are on the computer network of Remote Sensing and 
Estimation Group (RSEG) at MIT.  Descriptions for important codes are given below. 
 

B.1  Validation 
 

B.1.1 Data Sets 
 
Two important data sets used for validation study in this thesis include 1) MM5 domain-2 
outputs with AMSU zenith angles, and 2) AMSU data that coincidently overlapped with 
MM5.   MATLAB .mat files for MM5 domain-2 outputs with AMSU zenith angles are in 
/usr/amsu1/Validation/WORKSPACE/mm5pop/, where the naming system is such that 
mm5a_July_3.mat and mm5b_July_3.mat are MM5 outputs for case# 3 of July 2002 with 
AMSU-A and AMSU-B zenith angles, respectively.  Each file has a size of 84 MB.  
AMSU data that coincidently overlapped with MM5 are in 
/usr/amsu1/Validation/WORKSPACE/precip_data/, where the naming system is such that 
precip_data_July.mat contains all AMSU data for all 20 cases in July 2002.  Each file has 
a size of ~450MB. 
 

B.1.2  Computer Scripts  
 
There are 3 main scripts for simulating brightness temperatures from MM5 outputs, 
including tb_sim_11152006.m, superpop_scat_11152006.m, and tbscat.mexglx, which is 
a MATLAB compiled tbscat.f.  All scripts are in /usr/barrett1/surusc/TBSCAT/.  
tb_sim_11152006.m reads in MM5 inputs described in Section B.1.1, computes F(λ), 
calls superpop_scat_11152006.m, then saves outputs.  superpop_scat_11152006.m 
prepares all necessary inputs to tbscat.mexglx, i.e., surface emissivity (computed using 
FASTEM), size and density distributions, etc., and it then calls tbscat.mexglx.  dilec5.for 
and dilec9.for are called by tbscat.mexglx to compute complex dielectric constants for 
fresh water and fresh-water ice, respectively.  sedist.f is called by tbscat.mexglx to 
compute scattering and extinction from a distribution of spherical drops.  These scripts 
are shown below. 
 

B.1.2.1  tb_sim_11152006.m 
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% coded by Chinnawat Surussavadee on 11/15/2006  
% this is to compute Tb's for AMSU using icefactors from DDSCAT 
 
diary on; 
 
addpath /net/ds-0a/raid1/Validation/SCRIPT9/ 
 
month{1} = 'July'; month{2} = 'August'; month{3} = 'September'; month{4} = 'October'; 
month{5} = 'November'; month{6} = 'December';  
month{7} = 'January'; month{8} = 'February'; month{9} = 'March'; month{10} = 'April'; 
month{11} = 'May'; month{12} = 'June';  
month{13} = 'Polar'; month{14} = 'Warmrain'; 
 
maindir_mm5pop = '/net/ds-01/scratch-0/surusc/Validation/WORKSPACE/mm5pop/'; 
maindir_tbsim = '/net/ds-01/scratch-0/surusc/Validation/WORKSPACE/tbsim9/'; 
 
freq_a=(1/1000)*[23800+72.5 31400+50 50300+50 52800+105 53596+115 54400+105 
54940-105 ... 
        55500-87.5 89000+1000]'; 
freq_b=[89.9 150.9 183.31+1 183.31+3 183.31+7]'; 
 
m = 1  
i = 1 
 
% AMSU-A 
ices_amsua = 0.863*freq_a*1e-3 + 0.115;  
iceg_amsua = 0.815*freq_a*1e-3 + 0.0112; 
 
for ifreq = 1:9 
    freq = freq_a(ifreq); 
    icefacts = ices_amsua(ifreq); 
    icefactg = iceg_amsua(ifreq); 
    icefacti=.917; 
    load([maindir_mm5pop 'mm5a_' month{m} '_' int2str(i) '.mat']); 
    [tb(:,ifreq),status_o(:,ifreq)] = 
superpop_scat_11152006(mm5pop,icefacts,icefactg,icefacti,freq); 
end   
save([maindir_tbsim 'tba_' month{m} '_' int2str(i) '.mat'],... 
    'icefacts','icefactg','icefacti','tb','status_o'); 
clear mm5pop tb status_o  
 
% AMSU-B 
ices_amsub = 0.863*freq_b*1e-3 + 0.115; 
iceg_amsub = 0.815*freq_b*1e-3 + 0.0112; 
 
for ifreq = 1:5 



 207

    freq = freq_b(ifreq); 
    icefacts = ices_amsub(ifreq); 
    icefactg = iceg_amsub(ifreq); 
    icefacti=.917; 
    load([maindir_mm5pop 'mm5b_' month{m} '_' int2str(i) '.mat']); 
    [tb(:,ifreq),status_o(:,ifreq)] = 
superpop_scat_11152006(mm5pop,icefacts,icefactg,icefacti,freq); 
end   
save([maindir_tbsim 'tbb_' month{m} '_' int2str(i) '.mat'],... 
    'icefacts','icefactg','icefacti','tb','status_o'); 
clear mm5pop tb status_o  
 
quit 
     

B.1.2.2  superpop_scat_11152006.m 
 
% This script is to calculate Tb by using outputs from MM5 model     
% as inputs to TBSCAT. 
% Scripted by Chinnawat Surussavadee :- 05/24/2004 
% Last modified by Chinnawat Surussavadee :- 08/05/2005 
% grid points are in a column vector. 
function [tb,status_o] = 
superpop_scat_11152006(mm5pop,icefacts,icefactg,icefacti,freq); 
 
temp=mm5pop.temp; 
qvp=mm5pop.qvp; 
clw=mm5pop.clw; 
rnw=mm5pop.rnw; 
ice=mm5pop.ice; 
snow=mm5pop.snow; 
graupel=mm5pop.graupel; 
ground_t=mm5pop.ground_t; 
tseasfc=mm5pop.tseasfc; 
u10=mm5pop.u10; 
v10=mm5pop.v10; 
landuse=mm5pop.landuse; 
pressure=mm5pop.pressure; 
 
n_level = 42;  
n_radii = 40; 
n_point = size(rnw,1); 
 
n_freq = length(freq); 
 
propagate_zenith = mm5pop.zenith_angle; 
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ze_ang = mm5pop.zenith_angle; 
n_angle = size(ze_ang,2); 
[ze_ang,int] = sort(ze_ang,2); 
zea = (pi/180)*ze_ang; 
sec_ang = sec(zea); 
 
% h=Planck's constant=6.626*10^-34 ; k=Boltzmann's constant=1.38*10^-23 
% just use approximate values 
tbc=2.736*ones(n_angle,n_freq);  
rad=zeros(n_radii,1); 
 
tb_1 = zeros(n_point,n_freq); 
tb_2 = zeros(n_point,n_freq); 
status_o = zeros(n_point,n_freq); 
 
for yy = 1:n_point 
    b = rnw(yy,:)+snow(yy,:)+graupel(yy,:); 
    c = find(b~=0); 
    i_bottom(yy) = 1; 
    if sum(c)~=0 
        i_top(yy) = max(c);   
    else 
        i_top(yy) = 1; 
    end 
end 
 
% from p = RrT_v  
% where T_v = T(1+0.61q_v), p = pressure(Pascal), R = constant = 286.9 (J/kg*K,  
% r = density, and T = temperature(K), J = N*m 
R = 286.9; % constant value for each gas, p = zeros(n_lat,n_lon); 
pp = zeros(n_point,n_level); % initialize p 
for i = 1:n_level 
    pp(:,i) = 100*pressure(i); 
end 
T_v = temp.*(1+0.61*qvp/1000); % qvp is g/kg. 
den_a = pp./(R*T_v); % air density (kg/m^3) 
den_v = qvp.*den_a; % H2O vapor density (g/m^3) => from (g/kg)*(kg/m^3) 
den_c = clw.*den_a; % H2O liquid density (g/m^3) 
den_r = rnw.*den_a; % rain density (g/m^3) 
den_s = snow.*den_a; % snow density (g/m^3) 
den_g = graupel.*den_a; % graupel density (g/m^3) 
den_i = ice.*den_a; % ice density (g/m^3) 
 
% Use FASTEM to compute surface reflectivities. 
bragg=1; % 1 = Calculate Bragg scattering 
geom=1;  % 1 = Calculate geometric optics 
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foam=1;  % 1 = Calculate foam coverage 
ev = zeros(n_point,n_angle,n_freq); 
eh = zeros(n_point,n_angle,n_freq); 
w10 = sqrt(u10.^2+v10.^2); 
r1=zeros(n_point,n_angle,n_freq); 
r2=zeros(n_point,n_angle,n_freq); 
 
mask_land = find(landuse~=16)'; 
emiss_temp1 = rand(size(mask_land)); 
emiss_temp2 = 0.91+abs(emiss_temp1-.6)/10; 
for ml = 1:length(mask_land) 
    ev(mask_land(ml),:,:) = emiss_temp2(ml)*ones(1,n_angle,n_freq); 
    eh(mask_land(ml),:,:) = emiss_temp2(ml)*ones(1,n_angle,n_freq); 
end 
 
mask_ocean = find(landuse==16)'; 
for i_emiss = 1:length(mask_ocean) 
    pt = mask_ocean(i_emiss); 
    ang = ze_ang(pt,:); 
    Ts = tseasfc(pt); 
    wind = w10(pt);        
    for i_ang = 1:n_angle 
        ang1 = ang(i_ang); 
        for i_freq = 1:n_freq 
            fq = freq(i_freq); 
            [evv,ehh] = fastem(fq,ang1,Ts,wind,bragg,geom,foam); 
            if evv<=1  
                ev(pt,i_ang,i_freq) = evv; 
            else 
                ev(pt,i_ang,i_freq) = 1; 
            end 
            if ehh<=1  
                eh(pt,i_ang,i_freq) = ehh; 
            else 
                eh(pt,i_ang,i_freq) = 1; 
            end 
        end 
    end  
end 
rv = 1-ev; 
rh = 1-eh; 
% End FASTEM. 
 
% tic 
 
% Start the big loop for TBSCAT. 
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for y = 1:n_point 
    sc = sec_ang(y,:)'; 
    p = pressure; 
    ibot = i_bottom(y); 
    itop = i_top(y); 
    t=temp(y,:)'; 
    if landuse(y)==16  
        ts = tseasfc(y); 
    else 
        ts = ground_t(y); 
    end 
    tss(y) = ts; 
    v=den_v(y,:)'; 
    cld = den_c(y,:)'; 
 
% From Tao et. al. 1993, drop size distributions for GCE is 
% N(D) = No * exp(-lamda*D) 
% N(D):m^-4 ; No:m^-4 ; lamda:m^-1 ; D:m 
% r_r(density):g*m^-3 ; q_r(mixing ratio):g/g 
% qvp:g/kg, r_a = air density (kg/m^3) 
%     Nr = 0.08*(10^8); Ns = 0.04*(10^8); Ng = 0.04*(10^8); Ni = 0.0004*(10^8); 
    Nr = 0.08*(10^8); Ns = 0.04*(10^8); Ng = 0.04*(10^8); Ni = 0.0004*(10^8); 
    r_r = 1*(10^6); r_s = icefacts*(10^6); r_g = icefactg*(10^6); r_i = 0.917*(10^6); 
        
% TBSCAT requires drop dist. specified as mass densities vs. radius 
% of the equivalent melted drop. 
% from Density_r*Volume_r = Density_s*Volume_s =>  r_eq_s = (0.1^(1/3))*r_s 
    rad = zeros(n_radii,1); 
    dr = (log10(5*10^-3)-log10(10^-5))/39; % equivalent rain radius 
    drr = [log10(10^-5):dr:log10(5*10^-3)]'; % radius is ranged from 10 micrometers to 5 
mm. 
    rad = (10.^drr)*1000; % radius is in the unit of mm. 
    rad_s = rad/(icefacts^(1/3)); 
    rad_g = rad/(icefactg^(1/3)); 
    rad_ice = 0.02*ones(size(rad)); % cloud ice has a single size (mono- disperse) 
    rad_i = (icefacti^(1/3))*rad_ice; 
 
    n_level1 = itop-ibot+1; 
    denr = zeros(n_radii,n_level1); 
    dens = zeros(n_radii,n_level1); 
    deng = zeros(n_radii,n_level1); 
    deni = zeros(n_radii,n_level1); 
    d_rnw = den_r(y,:); 
    d_snow = den_s(y,:); 
    d_graupel = den_g(y,:); 
    d_ice = den_i(y,:); 
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    i_temp = find(d_rnw~=0.); 
        lambda = 0; 
        lambda = ((pi*r_r*Nr)./(d_rnw(i_temp))).^(0.25); 
        N = Nr*exp(-lambda'*0.002*rad');     
        den_pop = N.*(((0.001*rad).^4)*ones(size(i_temp)))'; 
        denr(:,i_temp) = (den_pop.*((d_rnw(i_temp)'./max(sum(den_pop,2),1e-
30))*ones(1,n_radii)))'; 
    i_temp = find(d_snow~=0.); 
        lambda = 0; 
        lambda = ((pi*r_s*Ns)./(d_snow(i_temp))).^(0.25); 
        N = Ns*exp(-lambda'*0.002*rad_s');     
        den_pop = N.*(((0.001*rad_s).^4)*ones(size(i_temp)))'; 
        dens(:,i_temp) = (den_pop.*((d_snow(i_temp)'./max(sum(den_pop,2),1e-
30))*ones(1,n_radii)))'; 
    i_temp = find(d_graupel~=0.); 
        lambda = 0; 
        lambda = ((pi*r_g*Ng)./(d_graupel(i_temp))).^(0.25); 
        N = Ng*exp(-lambda'*0.002*rad_g');     
        den_pop = N.*(((0.001*rad_g).^4)*ones(size(i_temp)))'; 
        deng(:,i_temp) = (den_pop.*((d_graupel(i_temp)'./max(sum(den_pop,2),1e-
30))*ones(1,n_radii)))'; 
    i_temp = find(d_ice~=0.); 
        lambda = 0; 
        lambda = ((pi*r_i*Ni)./(d_ice(i_temp))).^(0.25); 
        N = Ni*exp(-lambda'*0.002*rad_i');     
        den_pop = N.*(((0.001*rad_i).^4)*ones(size(i_temp)))'; 
        deni(:,i_temp) = (den_pop.*((d_ice(i_temp)'./max(sum(den_pop,2),1e-
30))*ones(1,n_radii)))'; 
     
    denr = denr(:,2:n_level1); 
    dens = dens(:,2:n_level1); 
    deng = deng(:,2:n_level1); 
    deni = deni(:,2:n_level1); 
    r1 = squeeze(rv(y,:,:))'; 
    r2 = squeeze(rh(y,:,:))'; 
    [tb1,tb2,stat]=tbscat(t,p,v,cld,ibot,itop,rad,denr,rad,dens,rad,deng, ... 
                    rad_i,deni,ts,tbc,freq,sc,r1,r2,icefactg,icefacts,icefacti); 
    tb_1(y,:) = tb1; 
    tb_2(y,:) = tb2; 
    status_o(y,:) = stat'; 
end 
% toc 
 
tv = tb_1; 
th = tb_2; 
zea_mat = propagate_zenith*(pi/180)*ones(1,n_freq); 
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tb = ((cos(zea_mat)).^2).*tv+((sin(zea_mat)).^2).*th; 
 

B.1.2.3  tbscat.f 
 
This is the FORTRAN code of TBSCAT. 
 
      SUBROUTINE TBSCAT(NLEV, TEMP, PRES, H2OVAPOR, CLOUDLIQUID, 
     & IBOTTOM, IRAINTOP, NRAIN, NRAIN2, RAINRADIUS_R, 
RAINDENSITY_R,  
     & RAINRADIUS_S, RAINDENSITY_S, RAINRADIUS_G, RAINDENSITY_G, 
     & RAINRADIUS_I, RAINDENSITY_I, TSURF, TBC, FREQ, NANG, SECANT,  
     & RV, RH, ICEFACTORG, ICEFACTORS, ICEFACTORI, TBV, TBH, IERR) 
C  Copyright (c) 2001 Massachusetts Institute of Technology 
C 
C  COMPUTES UPWARD-PROPAGATING MICROWAVE BRIGHTNESS  
C  TEMPERATURES AT MULTIPLE VIEW ANGLES IN A PLANAR STRATIFIED 
C  ATMOSPHERE INCLUDING SPHERICAL DROPS THAT SCATTER. 
c 
C   P.Rosenkranz - May 22, 2001 
C                  Aug. 28, 2001 add ice mixture code 
c                  Aug. 27, 2002 rain density distribution can be matrix 
c   CPS          - June 21, 2004 allow different types of precipitation 
c                  at each level 
c   P.Rosenkranz - June 24, 2006 test flags after each call to sedist 
c 
c   Precipitation occurs in each layer between PRES(IBOTTOM) and 
c   PRES(IRAINTOP), with distribution function specified by RAINRADIUS 
c   and RAINDENSITY.  
c   If TEMP>273.15, precip is assumed to be liquid only;  
c   if TEMP<273.15, precip can be supercooled liquid, snow, graupel, or ice 
c   and for frozen hydrometeors, the distribution function is adjusted  
c   for the ice density given by ICEFACTOR. 
C   Supercooled cloud liquid (small non-precip droplets) may occur  
c   with temperature below the normal freezing point.  
c   Normally IBOTTOM will be at the surface, (i.e.,  
c   IBOTTOM=NLEV) but it could be set to other levels for test purposes. 
c   CLOUDLIQUID can be set to zeros if not needed. 
c   NRAIN2 should either be 1, in which case the same distribution 
c   function will be used in all precip layers;  
C   or NRAIN2=IBOTTOM-IRAINTOP, to specify separate distributions in 
c   each precip layer. 
c 
      IMPLICIT NONE 
C  ARGUMENT SPECIFICATIONS 
C   INPUTS 
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      INTEGER NLEV        !no. of atmospheric levels 
      INTEGER NANG        !no. of angles ( <=MAXANG ) 
      REAL TEMP(NLEV)     !temperature (K) at each level. 
      REAL PRES(NLEV)     !pressure levels (hPa); must be monotonically 
c                           increasing. 
      REAL H2OVAPOR(NLEV) !H2O vapor density (g/m**3) 
      REAL CLOUDLIQUID(NLEV) !H2O liquid density (g/m**3) in small  
c           (non-precip) droplets; these are considered non-scattering. 
      INTEGER IBOTTOM     !bottom of precip is at PRES(IBOTTOM) 
      INTEGER IRAINTOP    !top of precip is at PRES(IRAINTOP) 
      INTEGER NRAIN       !no. of elements in RAINRADIUS 
      INTEGER NRAIN2      !second dimension of RAINDENSITY 
      REAL RAINRADIUS_R(NRAIN)   !values of drop radii (mm); must be >0. 
      REAL RAINDENSITY_R(NRAIN,NRAIN2)  !mass density (g/m**3) for raindrops 
c                          of radius(i) in layers between PRES(IRAINTOP) 
C                          and PRES(IBOTTOM) 
      REAL RAINRADIUS_S(NRAIN)  ! melted radii for snow 
      REAL RAINDENSITY_S(NRAIN,NRAIN2) ! mass density for snow 
      REAL RAINRADIUS_G(NRAIN)  ! melted radii for graupel 
      REAL RAINDENSITY_G(NRAIN,NRAIN2) ! mass density for graupel 
      REAL RAINRADIUS_I(NRAIN)  ! melted radii for ice 
      REAL RAINDENSITY_I(NRAIN,NRAIN2) ! mass density for ice 
      REAL ICEFACTORG,ICEFACTORI,ICEFACTORS ! volume filling factors 
c           of frozen particles; e.g. 1. for pure ice, 0.4 for graupel 
      REAL TSURF          !surface temperature (K) 
      REAL TBC(NANG)      !downwelling brightness temperature (K) from  
c                         cosmic background or from atmosphere above 
c                         highest level in PRES 
      REAL FREQ           !frequency (GHz) 
      REAL SECANT(NANG)   !secant of propagation angle  
c                          (>0 and monotonically increasing) 
      REAL RV(NANG)      !surface reflection coefficient at each angle (V-pol) 
      REAL RH(NANG)      !surface reflection coefficient at each angle (H-pol) 
C   OUTPUTS 
      REAL TBV(NANG)       !V-pol brightness temperature (K),  
      REAL TBH(NANG)       !H-pol brightness temperature (K) emerging from 
c         the atmosphere at the smallest pressure level, at each angle. 
      INTEGER IERR        !return code: 0=OK; 1=error in arguments, e.g. 
c                  NANG>MAXANG or NRAIN>MAXICE or PRES not increasing, 
C                  or RAINDENSITY dimensioned incorrectly; 
c                  2=Mie series inaccuracy; 4=Mie series instability; 
c                  8=instability in radiative transfer solution 
C 
C   LIMITATIONS 
C   1) POLARIZATION MIXING DUE TO SCATTERING IS NOT CONSIDERED. 
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C   2) SPECULAR SURFACE REFLECTION IS ASSUMED. NOTE THAT TB IS NOT 
A 
C      LINEAR FUNCTION OF SURFACE REFLECTIVITY, DUE TO MULTIPLE 
SCATTERING 
C      IN THE ATMOSPHERE. 
C   3) COMPUTATION INCREASES WITH THE MAXIMUM SECANT VALUE, 
AND WITH 
C      NANG**3. 
C 
C   SUBROUTINES CALLED: 
C   DILEC5, DILEC9, SEDIST, O2ABS, ABH2O, ABSN2, ABLIQ, TBPS1, 
C   DGECO, DGESL 
c 
c   REFERENCE FOR EQUATIONS: P. W. Rosenkranz, IEEE Trans. Geosci.  
C    Rem. Sens.,v.40, pp.1889-1892 (2002) 
C 
c--------------------------------------------------------------------- 
c   LOCAL VARIABLES 
      INTEGER MAXICE 
      PARAMETER (MAXICE=40) 
      INTEGER ERR_AC,ERR_ST,ERR_RT,I,LEVEL,INFO,J 
      REAL TAV,PAV,WVAV,WLAV,ABSCOEF 
      REAL O2ABS,ABH2O,ABLIQ,ABSN2,RG,AB1 
      REAL SCATCOEF,EXTCOEF,GDIST,ABPRECIP,DH,SC1 
      REAL SUMS_R,SUME_R,SUMG_R 
      REAL SUMS_S,SUME_S,SUMG_S 
      REAL SUMS_G,SUME_G,SUMG_G 
      REAL SUMS_I,SUME_I,SUMG_I 
      REAL T_SUMS,T_SUME,T_SUMG 
      LOGICAL UNSTABLE,INACC,LAST 
      COMPLEX EPS,M 
      REAL FAC3 
      REAL VOLRADIUS(MAXICE),VOLFRACTION(MAXICE) 
c 
      IERR = 1 
      IF(NRAIN.GT.MAXICE .OR. PRES(NLEV).LE.PRES(1))  RETURN 
      IF(NRAIN2.NE.1 .AND. NRAIN2.NE.(IBOTTOM-IRAINTOP)) RETURN 
      ERR_AC = 0 
      ERR_ST = 0 
      ERR_RT = 0 
C 
C 
C  APPLY RT THROUGH LAYERS TO SURFACE 
      J = 1 
      DO 20 LEVEL=2,NLEV 
C  calc. absorption and scattering of layers between levels 
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C  (no extinction above the highest level) 
C  using average temperature and pressure to compute vertical optical 
c  depth of each slab 
        TAV = (TEMP(LEVEL) + TEMP(LEVEL-1))/2. 
        PAV = SQRT(PRES(LEVEL)*PRES(LEVEL-1)) 
        WVAV = (H2OVAPOR(LEVEL) + H2OVAPOR(LEVEL-1))/2. 
        WLAV = (CLOUDLIQUID(LEVEL) + CLOUDLIQUID(LEVEL-1))/2. 
        IF(PAV.LT.PRES(IRAINTOP) .OR. PAV.GT.PRES(IBOTTOM)) THEN 
          ABPRECIP = 0. 
          SCATCOEF = 0. 
          GDIST = 0. 
        ELSE 
          IF(NRAIN2.GT.1) J = LEVEL - IRAINTOP 
          IF(TAV.GT.273.15) THEN 
C RAIN ONLY 
            CALL DILEC5(EPS,FREQ,TAV) 
            M = CSQRT(EPS) 
            CALL SEDIST(M,FREQ,NRAIN,RAINRADIUS_R,RAINDENSITY_R(1,J), 
     &      T_SUMS,T_SUME,T_SUMG,UNSTABLE,INACC) 
            IF(INACC) ERR_AC = 2 
            IF(UNSTABLE) ERR_ST = 4 
            GDIST = T_SUMG/AMAX1(T_SUMS,1.E-30) !(avoid divide-by-zero) 
            SCATCOEF = .75*T_SUMS 
            EXTCOEF = .75*T_SUME 
          ELSE 
C changes made start here   
C RAIN           
            CALL DILEC5(EPS,FREQ,TAV) 
            M = CSQRT(EPS) 
            CALL SEDIST(M,FREQ,NRAIN,RAINRADIUS_R,RAINDENSITY_R(1,J), 
     &      SUMS_R,SUME_R,SUMG_R,UNSTABLE,INACC) 
            IF(INACC) ERR_AC = 2 
            IF(UNSTABLE) ERR_ST = 4 
C SNOW 
            CALL DILEC9(EPS,FREQ,TAV,ICEFACTORS) 
            M = CSQRT(EPS) 
C          ADJUST ICE DISTRIBUTION TO ACTUAL 
            FAC3 = ICEFACTORS**.333333 
            DO I=1,NRAIN 
             VOLFRACTION(I) = RAINDENSITY_S(I,J)/ICEFACTORS 
             VOLRADIUS(I) = RAINRADIUS_S(I)/FAC3 
            END DO 
            CALL SEDIST(M,FREQ,NRAIN,VOLRADIUS,VOLFRACTION,SUMS_S, 
     &      SUME_S,SUMG_S,UNSTABLE,INACC) 
            IF(INACC) ERR_AC = 2 
            IF(UNSTABLE) ERR_ST = 4 
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C GRAUPEL 
            CALL DILEC9(EPS,FREQ,TAV,ICEFACTORG) 
            M = CSQRT(EPS) 
C          ADJUST ICE DISTRIBUTION TO ACTUAL 
            FAC3 = ICEFACTORG**.333333 
            DO I=1,NRAIN 
             VOLFRACTION(I) = RAINDENSITY_G(I,J)/ICEFACTORG 
             VOLRADIUS(I) = RAINRADIUS_G(I)/FAC3 
            END DO 
            CALL SEDIST(M,FREQ,NRAIN,VOLRADIUS,VOLFRACTION,SUMS_G, 
     &      SUME_G,SUMG_G,UNSTABLE,INACC) 
            IF(INACC) ERR_AC = 2 
            IF(UNSTABLE) ERR_ST = 4 
C CLOUD ICE 
            CALL DILEC9(EPS,FREQ,TAV,ICEFACTORI) 
            M = CSQRT(EPS) 
C          ADJUST ICE DISTRIBUTION TO ACTUAL 
            FAC3 = ICEFACTORI**.333333 
            DO I=1,NRAIN 
             VOLFRACTION(I) = RAINDENSITY_I(I,J)/ICEFACTORI 
             VOLRADIUS(I) = RAINRADIUS_I(I)/FAC3 
            END DO 
            CALL SEDIST(M,FREQ,NRAIN,VOLRADIUS,VOLFRACTION,SUMS_I, 
     &      SUME_I,SUMG_I,UNSTABLE,INACC) 
            IF(INACC) ERR_AC = 2 
            IF(UNSTABLE) ERR_ST = 4 
C 
            T_SUMS = SUMS_R+SUMS_S+SUMS_G+SUMS_I 
            T_SUME = SUME_R+SUME_S+SUME_G+SUME_I 
            T_SUMG = SUMG_R+SUMG_S+SUMG_G+SUMG_I 
            SCATCOEF = .75*T_SUMS 
            EXTCOEF = .75*T_SUME 
            GDIST = T_SUMG/AMAX1(T_SUMS,1.E-30) 
C 
C end changes made 
          ENDIF 
          ABPRECIP = AMAX1((EXTCOEF-SCATCOEF) ,0.) 
        ENDIF 
        ABSCOEF = ABPRECIP + O2ABS(TAV,PAV,WVAV,FREQ) +  
     &   ABH2O(TAV,PAV,WVAV,FREQ) + ABSN2(TAV,PAV,FREQ) +  
     &   ABLIQ(WLAV,FREQ,TEMP) 
        RG = .0293*(1. + .00174*WVAV*TAV/PAV) 
        DH = RG*TAV*ABS(ALOG(Pres(LEVEL)/Pres(LEVEL-1))) 
        AB1 = ABSCOEF*DH 
        SC1 = SCATCOEF*DH 
        LAST = LEVEL.EQ.NLEV 
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        CALL TBPS1(LAST,NANG,RV,RH,TSURF,TBC,TEMP(LEVEL-1), 
     &  TEMP(LEVEL),AB1,SC1,GDIST,SECANT,TBV,TBH,INFO) 
        IF(INFO.LT.2) GOTO 30 
20    CONTINUE 
30    CONTINUE 
      IF(INFO.EQ.-1) RETURN 
      IF(INFO.EQ.1) ERR_RT = 8 
      IERR = ERR_AC + ERR_ST + ERR_RT 
      RETURN 
      END 
 

B.1.2.4  dilec5.for 
 
      SUBROUTINE DILEC5 (EPS,FREQ,TEMP) 
C   COMPUTES THE COMPLEX DIELECTRIC CONSTANT FOR FRESH WATER 
      IMPLICIT NONE 
c     ARGUMENTS (OUTPUT): 
      COMPLEX EPS ! DIELECTRIC CONSTANT  
c     ARGUMENTS (INPUT): 
      REAL  FREQ ! (GHZ)  (VALID FROM 0 TO 1000 GHZ) 
      REAL  TEMP ! WATER TEMPERATURE  (KELVIN) 
C 
C     REFERENCES: 
C     LIEBE, HUFFORD AND MANABE, INT. J. IR & MM WAVES V.12, pp.659-675 
C      (1991);  Liebe et al, AGARD Conf. Proc. 542, May 1993. 
c 
C     REVISION HISTORY: 
C        PWR 8/3/92   original version 
c        PWR 12/14/98 temp. dependence of EPS2 eliminated to agree  
c                     with MPM93  
C        PWR 10/4/99  pulled out dielectric section from abliq 
c        pwr 8/22/02  use exponential dep. on T, eq. 2b instead of eq. 4a  
C 
      REAL THETA1,EPS0,EPS1,EPS2,FP,FS 
      THETA1 = 1.-300./TEMP 
      EPS0 = 77.66 - 103.3*THETA1 
      EPS1 = .0671*EPS0 
      EPS2 = 3.52                 ! from MPM93 
cc      FP = (316.*THETA1 + 146.4)*THETA1 +20.20  ! eq.4a 
      FP = 20.1*EXP(7.88*THETA1)  ! from eq. 2b 
      FS = 39.8*FP 
      EPS = (EPS0-EPS1)/CMPLX(1.,FREQ/FP) + 
     & (EPS1-EPS2)/CMPLX(1.,FREQ/FS) +EPS2 
      RETURN 
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      END 
 

B.1.2.5  dilec9.for 
 
      SUBROUTINE DILEC9 (EPS,FREQ,TEMP,ICEFACTOR) 
C     COMPUTES THE COMPLEX DIELECTRIC CONSTANT FOR FRESH-WATER 
ICE 
C     IN AN AIR MATRIX 
C     P.ROSENKRANZ, 6/1/04 
C 
      IMPLICIT NONE 
C 
c     ARGUMENTS  
c     INPUTS: 
      REAL  FREQ ! (GHZ)  (VALID FOR .001 TO 1000 GHZ) 
      REAL  TEMP ! TEMPERATURE  (KELVIN) (VALID RANGE 233-273) 
      REAL ICEFACTOR ! volume filling factor of ice material; 
c                      e.g. 1. for pure ice, 0.4 for graupel 
C     OUTPUT: 
      COMPLEX EPS ! DIELECTRIC CONSTANT (DEFINED WITH NEGATIVE 
C                   IMAGINARY PART) 
C 
C     REFERENCE FOR ICE DIELECTRIC CONSTANT: 
C     G. HUFFORD, INT. J. IR & MM WAVES V.12, pp.677-682 (1991). 
C     REFERENCES FOR MIXING THEORY: 
c     A. SHIVOLA, IEEE TRANS. GEOSCI. REM. SENS. V.27, PP.403-415 (1989), 
C     K. KARKKAINEN, A. SHIVOLA, K. NIKOSKINEN, IEEE TRANS. GEOSCI. 
REM.  
C      SENS. V.39, PP.1013-1018 (2001). 
c 
C     LOCAL VARIABLES 
      REAL THETA,ALPHA,BETA,EPSI 
      REAL NU,B,C,EPSREAL,EPSIMAG 
C 
      THETA = 300./TEMP - 1. 
      ALPHA = (50.4E-4 + 62.E-4*THETA)*EXP(-22.1*THETA) 
      BETA = (.502E-4 - .131E-4*THETA)/(1.+THETA) +  
     & .542E-6*((1.+THETA)/(THETA+.0073))**2 
      EPSI = ALPHA/FREQ + BETA*FREQ 
C 
C     Shivola's raisin-pudding model for ice (epsilon 3.15) in air matrix 
      NU = ICEFACTOR*(2.5*ICEFACTOR -3.55) + 2.35 
      B = 5.15 - 2.*NU - 2.15*ICEFACTOR*(1.+NU) 
      C = 5.15 - NU + 2.15*ICEFACTOR*(2.-NU) 
      EPSREAL = .5*(SQRT(B*B + 4.*NU*C) -B)/NU 
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      EPSIMAG = EPSI*((1.-EPSREAL) + 
     & ICEFACTOR*(EPSREAL + 2. + NU*(EPSREAL-1.))) /  
     & (5.15 + 2.*NU*(EPSREAL-1.) - ICEFACTOR*(1.+NU)*2.15) 
      EPS = CMPLX(EPSREAL,-EPSIMAG) 
      RETURN 
      END 
 

B.1.2.6  sedist.f 
 
      SUBROUTINE SEDIST(M,FREQ,NRAD,RADIUS,DENSITY,SUMS,SUME, 
     & SUMG,UNSTABLE,INACC) 
C 
C     SCATTERING AND EXTINCTION FROM A DISTRIBUTION OF SPHERICAL 
DROPS 
C     SPECIFIED AS A DIFFERENTIAL VOLUME-FRACTION FUNCTION OF 
RADIUS 
C     11/3/00 P.ROSENKRANZ 
c     8/28/01 pwr - revised comments 
c     June 21,2004  CPS - allow different types of precip at a given level 
c     June 26,2006  PWR - revised comments 
C 
      IMPLICIT NONE 
c 
C   ARGUMENT SPECIFICATIONS 
C    INPUTS 
      COMPLEX M ! index of refraction for drop material 
      REAL FREQ ! GHz 
      INTEGER NRAD ! number of elements in radius and density vectors 
      REAL RADIUS(NRAD) ! values of radii (mm) (> 0) 
      REAL DENSITY(NRAD) ! volumetric density (cm**3/m**3) occupied by   
c               drops of radius(i) (= fractional volume *10**6) 
C    OUTPUTS 
C      
      REAL SUMS 
      REAL SUME 
      REAL SUMG 
! SCATTERING COEFFICIENT (NEPERS/KM) = .75*SUMS 
! EXTINCTION COEFFICIENT (NEPERS/KM) = .75*SUME 
! SCATTERING ASYMMETRY FACTOR FOR THE DISTRIBUTION = 
SUMG/SUMS 
c     Range -1 (backward scattering) to +1 (forward scattering); 
c      0 is isotropic scattering 
      LOGICAL UNSTABLE ! sum of L1 flags from KSPH 
      LOGICAL INACC    ! sum of L2 flags from KSPH 
C------------------------------------------------------------------ 
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c subroutine called: KSPH 
C 
C     LOCAL VARIABLES 
      REAL X,KSC,KEX,G,SC,EX 
      LOGICAL L1,L2 
      INTEGER I 
C 
      SUMS = 0. 
      SUME = 0. 
      SUMG = 0. 
      UNSTABLE = .FALSE. 
      INACC = .FALSE. 
C 
      DO 10 I=1,NRAD 
       IF(DENSITY(I).LE.0.) GOTO 10 
C      COMPUTE INTEGRANDS 
       X = 6.283185*RADIUS(I)*FREQ/300. 
       CALL KSPH(X,M,KSC,KEX,G,L1,L2) 
       UNSTABLE = UNSTABLE .OR. L1 
       INACC = INACC .OR. L2 
       SC = KSC*DENSITY(I)/RADIUS(I) 
       EX = KEX*DENSITY(I)/RADIUS(I) 
       SUMS = SC +SUMS 
       SUME = EX +SUME 
       SUMG = SC*G + SUMG 
10    CONTINUE 
      RETURN 
      END 
 

B.2  Program AP (AMSU Precipitation Retrieval) 
 
This program retrieves surface precipitation rates [mm/h], water-paths [mm] for rain 
water, snow, graupel, and the sum of water, snow, and graupel, cloud liquid water, and 
peak vertical wind [m/s] from AMSU observations.  This version of AP works with 
AMSU aboard NOAA-15, -16, and -17.   
 
 The program was written in MATLAB and it performs retrievals orbit by orbit.  The 
retrieval is 15-km resolution, which is the resolution of AMSU-B FWHM at nadir.  It 
took ~24 sec to retrieve all parameters described above for an AMSU orbit using a 
conventional 2.8-GHz PC.  The program does not require much memory.  Inputs required 
by the program are AMSU-A and AMSU-B orbit data that could be found from 
http://www.class.noaa.gov/.  The main program to run and plot out surface precipitation 
rate estimates is AP_plot.m, which will call AP.m to perform retrievals.  All necessary 
files, i.e., neural networks, scripts for surface classification and brightness perturbation, 
etc., are in /usr/barrett1/surusc/AP/.  AP_plot.m and AP.m are shown below. 
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B.2.1  AP_plot.m 
 
% Chinnawat Surussavadee coded on 08/08/2006 
% last modified 11/04/2006 
% This script is to read in AMSU data, call AP.m for retrievals, and plot outputs 
 
addpath /usr/barrett1/surusc/AP 
amsudir = '/usr/barrett1/surusc/AMSU/2002/207/'; 
amsudir = '/usr/barrett1/surusc/AMSU/2003/051/'; 
 
sat_id_amsufile = {'NK', 'NL', 'NM'}; 
sat_dir = {'N15', 'N16', 'N17'}; 
 
% Satellite number: 1 for NOAA-15, 2 for NOAA-16, 3 for NOAA-17 
sat_num = 1; 
 
%% Select files for processing 
[status files] = unix(['find ' amsudir ... 
  ' -name "NSS.AMAX.' sat_id_amsufile{sat_num} '*" -print']); 
 
idx = regexp(files, [amsudir]); 
 
amsuafiles = cell(length(idx),1); 
 
for i=1:(length(idx)-1) 
  amsuafiles{i} = files(idx(i):(idx(i+1)-2)); 
end 
amsuafiles{end} = files(idx(end):(end-1)); 
 
amsuafiles = sort(amsuafiles); 
 
tmp_a = {}; 
tmp_b = {}; 
j=1; 
for i=1:length(amsuafiles) 
    [status_xxx files_xxx] = unix(['find ' amsudir ' -name "' amsuafiles{i}(36:41) 'B' 
amsuafiles{i}(43:77) '*" -print']); 
    idx_xxx = regexp(files_xxx,amsudir); 
    tmp_xxx = files_xxx(idx_xxx(end):(end-1)); 
    if ~isempty(tmp_xxx) 
        tmp_a{j} = amsuafiles{i}; 
        tmp_b{j} = tmp_xxx; 
        j=j+1; 
    end 
end 
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amsuafiles = tmp_a; 
amsubfiles = tmp_b; 
 
% retrieval 
for i = 1:length(amsuafiles) 
    i 
    try 
        [orbit,process] = read_amsu(amsuafiles{i},amsubfiles{i});  
        if process 
                out{i} = AP(orbit);  
        end 
    end 
end 
 
% plot o/p 
varlist = {'RR','int_rnw','int_snow','int_graupel','int_precip','int_clw','int_ice','wp'};  
for i_var = 1:length(varlist)  
    figure;orient landscape;wysiwyg;colormap(zebra); 
    axesm('mapprojection', 'bsam', 'maplatlimit', [-90 90], 'maplonlimit', [-180 180], ... 
          'grid', 'on', 'plinelocation', 30, 'mlinelocation', 30, ... 
          'parallellabel', 'on', 'meridianlabel', 'on', ... 
          'plabellocation', 30, 'mlabellocation', 30); 
    coast = load('coast'); 
    plotm(coast.lat,coast.long,'k') 
    for i=1:length(out) 
        if ~isempty(out{i}) 
            lat = out{i}.lat;lon = out{i}.lon; 
            lat(find(out{i}.status_flag~=0)) = nan;lon(find(out{i}.status_flag~=0)) = nan; 
            eval(['tmp = out{i}.' varlist{i_var} '_est;']); 
            surfm(lat,lon,tmp); 
            set(gca,'CLim',[0.2 10]);colorbar('horiz'); 
            
set(gca,'fontsize',17,'fontweight','bold');setm(gca,'fontsize',17,'fontweight','bold');axis off; 
            hold on; 
        end 
    end 
end 

 

B.2.2  AP.m 
 
% Chinnawat Surussavadee coded on 08/08/2006 
% last modified 11/04/2006 
% This is the main function for AP precipitation retrieval 
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function out = AP(orbit) 
 
addpath /usr/barrett1/surusc/AP 
nntwarn off; 
 
[surf_class,t_surf] = surface_class_pop9(orbit); % Grody's classification 
 
[num_spots_a num_scans_a] = size(orbit.amsua.lat); 
[num_spots_b num_scans_b] = size(orbit.amsub.lat); 
num_pixel_a = num_spots_a*num_scans_a; 
num_pixel_b = num_spots_b*num_scans_b; 
 
% land/sea flag 
load landsea990729 
land = double(land); 
land_flag = ltln2val(land,topolegend,orbit.amsub.lat,orbit.amsub.lon); 
 
% terrain height 
load topo 
topo_out = ltln2val(topo,topolegend,orbit.amsub.lat,orbit.amsub.lon); 
 
% ------------------------------------------------------------------------ 
% AMSU TB's 
a = orbit.amsua; 
b = orbit.amsub; 
 
tbamsua_50km_angle = []; 
bias = [0 0 0 0 0.71 0.63 -3.25 -0.65]; 
for ch = 1:8 
    tbamsua_50km_angle = [tbamsua_50km_angle reshape(a.tb{ch}-
bias(ch),num_pixel_a,1)]; 
end 
 
tbamsub_15km_angle = []; 
for ch = 1:5 
    tbamsub_15km_angle = [tbamsub_15km_angle reshape(b.tb{ch},num_pixel_b,1)]; 
end 
zenith_angle_a = reshape(a.satz,num_pixel_a,1); 
zenith_angle_b = reshape(b.satz,num_pixel_b,1); 
 
% ------------------------------------------------------------------------ 
% estimate amsua and amsub tb's at nadir  
pa = [tbamsua_50km_angle sec(zenith_angle_a*pi/180)]'; 
for ch = 1:8 
    load(['net_amsua_nadir_ch_' int2str(ch)]);      
    pnewn = trastd(pa,meanp,stdp); 
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    anewn = sim(net,pnewn); 
    est = poststd(anewn,meant,stdt); 
    est(find(est<0)) = 0; 
    tbamsua_50km_nadir(:,ch) = est; 
    clear *newn net meanp stdp meant stdt est 
end 
 
pb = [tbamsub_15km_angle sec(zenith_angle_b*pi/180)]'; 
for ch = 1:5 
    load(['net_amsub_nadir_ch_' int2str(ch)]);      
    pnewn = trastd(pb,meanp,stdp); 
    anewn = sim(net,pnewn); 
    est = poststd(anewn,meant,stdt); 
    est(find(est<0)) = 0; 
    tbamsub_15km_nadir(:,ch) = est; 
    clear *newn net meanp stdp meant stdt est 
end 
 
for ch = 1:8 
    tmp1 = amsua2b(reshape(tbamsua_50km_nadir(:,ch),num_spots_a,num_scans_a)); 
    tbamsua_15km_nadir(:,ch) = reshape(tmp1,num_pixel_b,1); 
end 
 
% ------------------------------------------------------------------------ 
% find pertamsua 
pertamsua_15km_all = 
perturb_02052006(tbamsua_15km_nadir,tbamsub_15km_nadir,num_spots_b,num_scans
_b); 
 
% ------------------------------------------------------------------------ 
% sea pc's 
x = [tbamsua_15km_nadir tbamsub_15km_nadir]; 
load('pc_sea'); 
mean_x = repmat(pc.mean_x,size(x,1),1); 
x_wo_mean = x-mean_x; % remove mean 
pc_sea = (x_wo_mean*pc.coeff); 
clear pc x 
 
% land pc's 
x = [tbamsua_15km_nadir(:,1:5) tbamsub_15km_nadir(:,[1 2 5])]; 
load('pc_land'); 
mean_x = repmat(pc.mean_x,size(x,1),1); 
x_wo_mean = x-mean_x; % remove mean 
pc_land = (x_wo_mean*pc.coeff); 
clear pc x 
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% ------------------------------------------------------------------------ 
% flag 
 
% 1. check for any errors in TB's   
tmp = [tbamsua_15km_nadir tbamsub_15km_nadir]; 
xxx1 = zeros(size(tmp)); 
xxx1(find(tmp<50 | tmp>400)) = 9999;  
xxx2 = sum(xxx1,2); 
 
% 2. check for any errors in TB's 
xxx3 = zeros(size(surf_class)); 
xxx3(find(surf_class==5)) = 9999;  
xxx3 = reshape(xxx3,num_pixel_b,1); 
 
% 3. don't use if tbamsua ch. 5 < 242K  
t53 = tbamsua_15km_nadir(:,5); 
xxx4 = zeros(size(t53)); 
xxx4(find(t53<242)) = 9999; 
 
% 4. consider only for terrain height satisfying criteria 
xxx5 = zeros(size(topo_out)); 
xxx5(find(topo_out>2000 & abs(orbit.amsub.lat)<60)) = 9999;  
xxx5(find(topo_out>1500 & abs(orbit.amsub.lat)>=60 & abs(orbit.amsub.lat)<70)) = 
9999;  
xxx5(find(topo_out>500 & abs(orbit.amsub.lat)>=70)) = 9999;  
xxx5 = reshape(xxx5,num_pixel_b,1); 
 
xxx7 = xxx2+xxx3+xxx4+xxx5; 
inx_not_ok = find(xxx7~=0); 
 
% ------------------------------------------------------------------------ 
% estimate precip separtely land and sea 
 
% land i/p 
p_land = [pc_land(:,2) tbamsub_15km_nadir(:,3:4) pertamsua_15km_all 
sec(zenith_angle_b*pi/180)]'; 
 
% sea i/p 
p_sea = [pc_sea(:,[2:5]) pertamsua_15km_all sec(zenith_angle_b*pi/180)]'; 
 
inx_land = find(land_flag==1); 
inx_sea = find(land_flag==0); 
 
varlist = {'RR','int_rnw','int_snow','int_graupel','int_precip','int_clw','int_ice','wp'};  
 
for i = 1:length(varlist)     
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    % land net 
    load(['amsu_mm5_' varlist{i} '_land_net']);  
    pnewn = trastd(p_land(:,inx_land),meanp,stdp); 
    anewn = sim(net,pnewn); 
    est_land = poststd(anewn,meant,stdt); 
    est_land(find(est_land<0)) = 0; 
    clear *newn net meanp stdp meant stdt 
 
    % sea net 
    load(['amsu_mm5_' varlist{i} '_sea_net']);  
    pnewn = trastd(p_sea(:,inx_sea),meanp,stdp); 
    anewn = sim(net,pnewn); 
    est_sea = poststd(anewn,meant,stdt); 
    est_sea(find(est_sea<0)) = 0; 
    clear *newn net meanp stdp meant stdt 
 
    est = zeros(size(land_flag)); 
    est(inx_land) = est_land;est(inx_sea) = est_sea; 
    est(inx_not_ok) = 0; 
    eval(['out.' varlist{i} '_est = est;']); 
    clear est; 
end 
 
% return code 
status_flag = zeros(size(out.int_rnw_est)); 
inx_1 = find(xxx2+xxx3~=0); 
status_flag(inx_1) = status_flag(inx_1)+1; 
inx_2 = find(xxx4~=0); 
status_flag(inx_2) = status_flag(inx_2)+2; 
inx_3 = find(xxx5~=0); 
status_flag(inx_3) = status_flag(inx_3)+4; 
inx_4 = find(surf_class==2 | surf_class==4); 
status_flag(inx_4) = status_flag(inx_4)+8; 
 
out.lat = orbit.amsub.lat; 
out.lon = orbit.amsub.lon; 
out.status_flag = status_flag; 
out.tbamsua_15km_nadir = tbamsua_15km_nadir; 
out.tbamsub_15km_nadir = tbamsub_15km_nadir; 
out.topo = topo_out; 
out.land_flag = land_flag; 
out.surf_class = surf_class; 
out.p_sea = p_sea; 
out.p_land = p_land; 
out.t_surf = t_surf; 
out.inx_not_ok = inx_not_ok; 
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out.time = orbit.amsub.time; 
out.sdate = orbit.amsub.sdate; 
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