32 research outputs found

    Reducing Phase Cancellation Effect with ASK-PSK Modulated Stamp in Augmented UHF RFID Indoor Localization System

    Get PDF
    AbstractIn this paper, we propose exploiting ASK-PSK modulated stamp in receiving path selection technique to lessen the phase cancellation effect in augmented ultra-high-frequency (UHF) radio frequency identification (RFID) indoor localization system (AURIS). In AURIS, a tag-like semi-passive RFID component (referred as sensatag) can capture backscatter signal of other proximal tags with presence of RF source. According to the principle of backscatter radio link, the received signal at sensatag antenna is the superposition of backscatter signal of tags and continuous carrier wave (CW) from RF source. However, due to phase difference between tag's backscatter signal and RF CW, the modulated backscatter signal could be cancelled. We refer this effect as phase cancellation effect. Exploiting the spatial diversity of dual-antenna's two receiving paths, the likelihood of phase cancellation occurrence could be reduced. But the developed technique with two co-operating paths is not energy efficient. Therefore, this paper proposes to inject a ASK-PSK modulated stamp sequence in the pilot tone of backscatter signal as a signature of phase cancellation for ASK modulated data frame, which could be identified by the receiving sensatag. With the knowledge of occurrence of phase cancellation, sensatag could activate the alternative receiving path. This technique fully exploits the space diversity of dual-antenna, and also reduces the power consumption by reducing one receiving path in operation. We demonstrate the performance of stamp based receiving path selection technique with data obtained from computer simulation

    New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF)

    Get PDF
    This paper as an author contribution introduces the implementation of the new aspects in the modernization of the ships Radio Direction Finders (RDF) and their modern principles and applications for shipborne and coastal navigation surveillance systems. The origin RDF receivers with the antenna installed onboard ships or aircraft were designed to identify radio sources that provide bearing the Direction Finding (DF) signals. The radio DF system or sometimes simply known as the DF technique is de facto a basic principle of measuring the direction of signals for determination of the ship\u27s position. The position of a particular ship in coastal navigation can be obtained by two or more measurements of certain radio sources received from different unspecified locations of transmitters on the coast. In the past, the RDF devices were widely used as a radio navigation system for aircraft, vehicles, and ships in particular. However, the newly developed RDF devices can be used today as an alternative to the Radio ā€“ Automatic Identification System (R-AIS), Satellite ā€“ Automatic Identification System (S-AIS), Long Range Identification and Tracking (LRIT), radars, GNSS receivers, and another current tracking and positioning systems of ships. The development of a modern shipborne RDF for new positioning and surveillance applications, such as Search and Rescue (SAR), Man over board (MOB), ships navigation and collision avoidance, offshore applications, detection of research buoys and for costal vessels traffic control and management is described in this paper

    New Aspects of Progress in the Modernization of the Maritime Radio Direction Finders (RDF)

    Get PDF
    This paper as an author contribution introduces the implementation of the new aspects in the modernization of the ships Radio Direction Finders (RDF) and their modern principles and applications for shipborne and coastal navigation surveillance systems. The origin RDF receivers with the antenna installed onboard ships or aircraft were designed to identify radio sources that provide bearing the Direction Finding (DF) signals. The radio DF system or sometimes simply known as the DF technique is de facto a basic principle of measuring the direction of signals for determination of the ship\u27s position. The position of a particular ship in coastal navigation can be obtained by two or more measurements of certain radio sources received from different unspecified locations of transmitters on the coast. In the past, the RDF devices were widely used as a radio navigation system for aircraft, vehicles, and ships in particular. However, the newly developed RDF devices can be used today as an alternative to the Radio ā€“ Automatic Identification System (R-AIS), Satellite ā€“ Automatic Identification System (S-AIS), Long Range Identification and Tracking (LRIT), radars, GNSS receivers, and another current tracking and positioning systems of ships. The development of a modern shipborne RDF for new positioning and surveillance applications, such as Search and Rescue (SAR), Man over board (MOB), ships navigation and collision avoidance, offshore applications, detection of research buoys and for costal vessels traffic control and management is described in this paper

    Ensuring Application Specific Security, Privacy and Performance Goals in RFID Systems

    Get PDF
    Radio Frequency IDentification (RFID) is an automatic identification technology that uses radio frequency to identify objects. Securing RFID systems and providing privacy in RFID applications has been the focus of much academic work lately. To ensure universal acceptance of RFID technology, security and privacy issued must be addressed into the design of any RFID application. Due to the constraints on memory, power, storage capacity, and amount of logic on RFID devices, traditional public key based strong security mechanisms are unsuitable for them. Usually, low cost general authentication protocols are used to secure RFID systems. However, the generic authentication protocols provide relatively low performance for different types of RFID applications. We identified that each RFID application has unique research challenges and different performance bottlenecks based on the characteristics of the system. One strategy is to devise security protocols such that application specific goals are met and system specific performance requirements are maximized. This dissertation aims to address the problem of devising application specific security protocols for current and next generation RFID systems so that in each application area maximum performance can be achieved and system specific goals are met. In this dissertation, we propose four different authentication techniques for RFID technologies, providing solutions to the following research issues: 1) detecting counterfeit as well as ensuring low response time in large scale RFID systems, 2) preserving privacy and maintaining scalability in RFID based healthcare systems, 3) ensuring security and survivability of Computational RFID (CRFID) networks, and 4) detecting missing WISP tags efficiently to ensure reliability of CRFID based system\u27s decision. The techniques presented in this dissertation achieve good levels of privacy, provide security, scale to large systems, and can be implemented on resource-constrained RFID devices

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance

    Advanced Radio Frequency Identification Design and Applications

    Get PDF
    Radio Frequency Identification (RFID) is a modern wireless data transmission and reception technique for applications including automatic identification, asset tracking and security surveillance. This book focuses on the advances in RFID tag antenna and ASIC design, novel chipless RFID tag design, security protocol enhancements along with some novel applications of RFID

    Distributed Wireless Algorithms for RFID Systems: Grouping Proofs and Cardinality Estimation

    Get PDF
    The breadth and depth of the use of Radio Frequency Identification (RFID) are becoming more substantial. RFID is a technology useful for identifying unique items through radio waves. We design algorithms on RFID-based systems for the Grouping Proof and Cardinality Estimation problems. A grouping-proof protocol is evidence that a reader simultaneously scanned the RFID tags in a group. In many practical scenarios, grouping-proofs greatly expand the potential of RFID-based systems such as supply chain applications, simultaneous scanning of multiple forms of IDs in banks or airports, and government paperwork. The design of RFID grouping-proofs that provide optimal security, privacy, and efficiency is largely an open area, with challenging problems including robust privacy mechanisms, addressing completeness and incompleteness (missing tags), and allowing dynamic groups definitions. In this work we present three variations of grouping-proof protocols that implement our mechanisms to overcome these challenges. Cardinality estimation is for the reader to determine the number of tags in its communication range. Speed and accuracy are important goals. Many practical applications need an accurate and anonymous estimation of the number of tagged objects. Examples include intelligent transportation and stadium management. We provide an optimal estimation algorithm template for cardinality estimation that works for a {0,1,e} channel, which extends to most estimators and ,possibly, a high resolution {0,1,...,k-1,e} channel

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes

    Software Defined Radio Implementation Of Ds-Cdma In Inter-Satellite Communications For Small Satellites

    Get PDF
    The increased usage of CubeSats recently has changed the communication philosophy from long-range point-to-point propagations to a multi-hop network of small orbiting nodes. Separating system tasks into many dispersed satellites can increase system survivability, versatility, configurability, adaptability, and autonomy. Inter-satellite links (ISL) enable the satellites to exchange information and share resources while reducing the traffic load to the ground. Establishment and stability of the ISL are impacted by factors such as the satellite orbit and attitude, antenna configuration, constellation topology, mobility, and link range. Software Defined Radio (SDR) is beginning to be heavily used in small satellite communications for applications such as base stations. A software-defined radio is a software program that does the functionality of a hardware system. The digital signal processing blocks are incorporated into the software giving it more flexibility and modulation. With this, the idea of a remote upgrade from the ground as well as the potential to accommodate new applications and future services without hardware changes is very promising. Realizing this, my idea is to create an inter-satellite link using software defined radio. The advantages of this are higher data rates, modification of operating frequencies, possibility of reaching higher frequency bands for higher throughputs, flexible modulation, demodulation and encoding schemes, and ground modifications. However, there are several challenges in utilizing the software-defined radio to create an inter-satellite link communication for small satellites. In this paper, we designed and implemented a multi-user inter-satellite communication network using SDRs, where Code Division Multiple Access (CDMA) technique is utilized to manage the multiple accesses to shared communication channel among the satellites. This model can be easily reconfigured to support any encoding/decoding, modulation, and other signal processing schemes
    corecore