24 research outputs found

    Models of intermodal node representation

    Get PDF
    This paper analyses three different approaches of supply representation for intermodal nodes and proposes some functional and topological models for the representation of ports and Freight Villages. Besides in the paper functional and topological representation of container port and freight village are proposed. Further research is directed to the specification and calibration of cost functions, useful for cost estimation for different components of node network, with a view to facilitate the analyses of freight mobility on multimodal large networks

    Sea Container Terminals

    Get PDF
    Due to a rapid growth in world trade and a huge increase in containerized goods, sea container terminals play a vital role in globe-spanning supply chains. Container terminals should be able to handle large ships, with large call sizes within the shortest time possible, and at competitive rates. In response, terminal operators, shipping liners, and port authorities are investing in new technologies to improve container handling infrastructure and operational efficiency. Container terminals face challenging research problems which have received much attention from the academic community. The focus of this paper is to highlight the recent developments in the container terminals, which can be categorized into three areas: (1) innovative container terminal technologies, (2) new OR directions and models for existing research areas, and (3) emerging areas in container terminal research. By choosing this focus, we complement existing reviews on container terminal operations

    New Models for Truck Appointment Problem and Extensions

    Get PDF
    The problematic issues surrounding gate congestion at marine container terminals have been well documented. Random truck arrivals at maritime container terminals are one of the primary reasons for gate congestion. Gate congestion negatively affects the terminal’s and drayage firms’ productivity and the surrounding communities in terms of air pollution and noise. To alleviate gate congestion, more and more terminals in the U.S. are utilizing a truck appointment system (TAS). The first study proposes a novel approach for designing a Truck Appointment System (TAS) intended to serve both the marine container terminal operator and drayage operators. The aim of the proposed TAS is to minimize the impact to both terminal and drayage operations. In regard to terminal operations, the TAS seeks to distribute the truck arrivals evenly throughout the day to avoid gate and yard congestion. In regard to drayage operations, the TAS explicitly considers the drayage truck tours and seeks to provide appointment times such that trucks do not have to deviate greatly from their original schedule. The proposed TAS is formulated as a mixed integer nonlinear program (MINLP) and the model is solved using the Lingo commercial software. Experimental results indicate that the proposed TAS reduces the drayage operation cost by 11.5% compared to a TAS where its aim is only to minimize gate queuing time by making truck arrivals uniform throughout the day. The second study proposes a novel approach to modeling the TAS to better capture the multi-player game (i.e., interplay) between the terminal and drayage firms regarding appointments. A multi-player bi-level programming model is proposed with the terminal functions as the leader at the upper-level and the drayage firms function as followers at the lower-level. The objective of the leader (the terminal) is to minimize the gate waiting cost of trucks by spreading out the truck arrivals, and the objective of the followers (drayage firms) is to minimize their own drayage cost. To make the model tractable, the bi-level model is transformed to a single-level problem by replacing the lower-level problem with its equivalent Karush–Kuhn–Tucker (KKT) conditions. For comparison purposes, a single-player version of the TAS model is also developed. Experimental results indicate that the proposed multi-player model yields a lower gate waiting cost compared to the single-player model and that it yields higher cost savings for the drayage firms as the number of appointments per truck increases. Moreover, the solution of the of multi-player model is less sensitive to objective function coefficients across problem sizes compared to the single-player model. Lastly, the third study develops a truck appointment system (TAS) considering variability in turn time at the container terminals. The consideration of this operational characteristic is crucial for optimal drayage scheduling. The TAS is formulated as a stochastic model and solved using the Sample Average Approximation (SAA) algorithm. Using turn time distributions obtained from actual data from a U.S. port, a series of experiments is designed to evaluate the effectiveness of the proposed stochastic TAS model compared to the deterministic version where an average turn time is used instead of a distribution. Numerical experiment results demonstrate the benefit of the stochastic TAS model given its lower drayage cost error by 3.9% compared to the deterministic TAS model. This result implies that the schedules produced by the stochastic TAS model are more robust and are able to accommodate a wider range of turn time scenarios. Another key takeaway from the experiment results is that the stochastic TAS model is more beneficial to utilize when the ratio of quotas to requested appointments is lower. Thus, in practice, when this ratio is more likely to be on the lower end, drayage companies would benefit more if the appointment schedule adopts the stochastic approach described in this paper

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    Hierarchical modeling and analysis of container terminal operations

    Get PDF
    After the breakdown of trade barriers among countries, the volume of international trade has grown significantly in the last decade. This explosive growth in international trade has increased the importance of marine transportation which constitutes the major part of the global logistics network. The utilization of containers and container ships in marine transportation has also increased after the eighties due to various advantages such as packaging, flexibility, and reliability. Parallel to the container throughput, the capacities of ships and sizes of fleets as well as the number of terminals have been increased considerably. Substantial pressure of competition on ship operators and terminal managers has forced them to consider the issues regarding operational efficiency more deeply. Thus, the operational efficiency at port container terminals has become the major concern of terminal managers to satisfy the rapid transshipment of goods. In this thesis, we focus on a set of decision problems regarding container terminal operations. Since these problems are interrelated hierarchically, we attempt to model and analyze them consecutively. First, we consider the storage space allocation problem over a rolling horizon as an aggregate planning model. Since the model has the minimum cost flow network structure there exist polynomial time solution procedures via linear programming models. Although ship turnaround time is the principal performance criteria for whole container terminal operations, the total distances traveled by containers in the terminal throughout the planning horizon is determined as the surrogate objective function for the allocation model. The output of the storage space allocation problem is used as the input for the next step of our methodology, namely the location matching model. With the location matching model, the routes of vehicles for each time period have been identified while minimizing the total distance traveled by the vehicles, which reveals the ship turnaround times. The routes that are found subject to the output of storage space allocation models are better than those of random allocation in terms of total distances traveled. Next, the vehicle scheduling problem is discussed for different levels of complexity. The solution procedures proposed for similar problems in the machine scheduling literature are provided. Finally, we discuss the problem of simultaneous vehicle dispatching with precedence constraints. We have modeled the problem as a nonlinear mixed integer programming model and proposed an iterative solution procedure to obtain reasonable solutions in considerable times. Moreover, we have presented the worst-case performance analysis for this heuristic

    Interblock crane deployment in container terminals

    No full text
    We consider the problem of scheduling the movements of cranes in a container storage yard so as to minimize the total unfinished workload at the end of each time period. The problem is formulated as a mixed-integer linear program, and the computational complexity of the problem is analyzed. A Lagrangian decomposition solution procedure is described. A new solution approach, called the successive piecewise-linear approximation method, is also developed. Through computational experiments, we show that our proposed solution methods are both efficient and effective for large-sized problems
    corecore