411 research outputs found

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Fluids real-time rendering

    Get PDF
    In this thesis the existing methods for realistic visualization of uids in real-time are reviewed. The correct handling of the interaction of light with a uid surface can highly increase the realism of the rendering, therefore method for physically accurate rendering of re ections and refractions will be used. The light- uid interaction does not stop at the surface, but continues inside the uid volume, causing caustics and beams of light. The simulation of uids require extremely time-consuming processes to achieve physical accuracy and will not be explored, although the main concepts will be given. Therefore, the main goals of this work are: Study and review the existing methods for rendering uids in realtime. Find a simpli ed physical model of light interaction, because a complete physically correct model would not achieve real-time. Develop an application that uses the found methods and the light interaction model

    Accurate computation of single scattering in participating media with refractive boundaries

    Get PDF
    International audienceVolume caustics are high-frequency effects appearing in participating media with low opacity, when refractive interfaces are focusing the light rays. Refractions make them hard to compute, since screen locality does not correlate with spatial locality in the medium. In this paper we give a new method for accurate computation of single scattering effects in a participating media enclosed by refractive interfaces. Our algorithm is based on the observation that although radiance along each camera ray is irregular, contributions from individual triangles are smooth. Our method gives more accurate results than existing methods, faster. It uses minimal information and requires no precomputation or additional data structures

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Shallow waters simulation

    Get PDF
    Dissertação de mestrado integrado em Informatics EngineeringRealistic simulation and rendering of water in real-time is a challenge within the field of computer graphics, as it is very computationally demanding. A common simulation approach is to reduce the problem from 3D to 2D by treating the water surface as a 2D heightfield. When simulating 2D fluids, the Shallow Water Equations (SWE) are often employed, which work under the assumption that the water’s horizontal scale is much greater than it’s vertical scale. There are several methods that have been developed or adapted to model the SWE, each with its own advantages and disadvantages. A common solution is to use grid-based methods where there is the classic approach of solving the equations in a grid, but also the Lattice-Boltzmann Method (LBM) which originated from the field of statistical physics. Particle based methods have also been used for modeling the SWE, namely as a variation of the popular Smoothed-Particle Hydrodynamics (SPH) method. This thesis presents an implementation for real-time simulation and rendering of a heightfield surface water volume. The water’s behavior is modeled by a grid-based SWE scheme with an efficient single kernel compute shader implementation. When it comes to visualizing the water volume created by the simulation, there are a variety of effects that can contribute to its realism and provide visual cues for its motion. In particular, When considering shallow water, there are certain features that can be highlighted, such as the refraction of the ground below and corresponding light attenuation, and the caustics patterns projected on it. Using the state produced by the simulation, a water surface mesh is rendered, where set of visual effects are explored. First, the water’s color is defined as a combination of reflected and transmitted light, while using a Cook- Torrance Bidirectional Reflectance Distribution Function (BRDF) to describe the Sun’s reflection. These results are then enhanced by data from a separate pass which provides caustics patterns and improved attenuation computations. Lastly, small-scale details are added to the surface by applying a normal map generated using noise. As part of the work, a thorough evaluation of the developed application is performed, providing a showcase of the results, insight into some of the parameters and options, and performance benchmarks.Simulação e renderização realista de água em tempo real é um desafio dentro do campo de computação gráfica, visto que é muito computacionalmente exigente. Uma abordagem comum de simulação é de reduzir o problema de 3D para 2D ao tratar a superfície da água como um campo de alturas 2D. Ao simular fluidos em 2D, é frequente usar as equações de águas rasas, que funcionam sobre o pressuposto de que a escala horizontal da água é muito maior que a sua escala vertical. Há vários métodos que foram desenvolvidos ou adaptados para modelar as equações de águas rasas, cada uma com as suas vantagens e desvantagens. Uma solução comum é utilizar métodos baseados em grelhas onde existe a abordagem clássica de resolver as equações numa grelha, mas também existe o método de Lattice Boltzmann que originou do campo de física estatística. Métodos baseados em partículas também já foram usados para modelar as equações de águas rasas, nomeadamente como uma variação do popular método de SPH. Esta tese apresenta uma implementação para simulação e renderização em tempo real de um volume de água com uma superfície de campo de alturas. O comportamento da água é modelado por um esquema de equações de águas rasas baseado na grelha com uma implementação eficiente de um único kernel de compute shader. No que toca a visualizar o volume de água criado pela simulação, existe uma variedade de efeitos que podem contribuir para o seu realismo e fornecer dicas visuais sobre o seu movimento. Ao considerar águas rasas, existem certas características que podem ser destacadas, como a refração do terreno por baixo e correspondente atenuação da luz, e padrões de cáusticas projetados nele. Usando o estado produzido pela simulação, uma malha da superfície da água é renderizada, onde um conjunto de efeitos visuais são explorados. Em primeiro lugar, a cor da água é definida como uma combinação de luz refletida e transmitida, sendo que uma BRDF de Cook-Torrance é usada para descrever a reflexão do Sol. Estes resultados são depois complementados com dados gerados num passo separado que fornece padrões de cáusticas e melhora as computações de atenuação. Por fim, detalhes de pequena escala são adicionados à superfície ao aplicar um mapa de normais gerado com ruído. Como parte do trabalho desenvolvido, é feita uma avaliação detalhada da aplicação desenvolvida, onde é apresentada uma demonstração dos resultados, comentários sobre alguns dos parâmetros e opções, e referências de desempenho

    Real-Time Volumetric Shadows using 1D Min-Max Mipmaps

    Get PDF
    Light scattering in a participating medium is responsible for several important effects we see in the natural world. In the presence of occluders, computing single scattering requires integrating the illumination scattered towards the eye along the camera ray, modulated by the visibility towards the light at each point. Unfortunately, incorporating volumetric shadows into this integral, while maintaining real-time performance, remains challenging. In this paper we present a new real-time algorithm for computing volumetric shadows in single-scattering media on the GPU. This computation requires evaluating the scattering integral over the intersections of camera rays with the shadow map, expressed as a 2D height field. We observe that by applying epipolar rectification to the shadow map, each camera ray only travels through a single row of the shadow map (an epipolar slice), which allows us to find the visible segments by considering only 1D height fields. At the core of our algorithm is the use of an acceleration structure (a 1D minmax mipmap) which allows us to quickly find the lit segments for all pixels in an epipolar slice in parallel. The simplicity of this data structure and its traversal allows for efficient implementation using only pixel shaders on the GPU

    Energy-Efficient Photon Mapping

    Get PDF
    Mobile devices such as cell phones, personal digital assistants (PDAs), and laptops continue to increase in memory and processor speed at a rapid pace. In recent years it has become common for users to check their email, browse the internet, or play music and movies while traveling. The performance gains are also making mobile graphics renderers more viable applications. However, the underlying battery technology that powers mobile devices has only tripled in capacity in the past 15 years whereas processor speeds have seen a 100-fold increase in the same period. Photon mapping, an extension of ray-tracing, is a robust global illumination algorithm used to produce photorealistic images. Photon mapping, like ray-tracing, can render high-quality specular highlights, transparent and reflective materials, and soft shadows. Complex effects such as caustics, participating media, and subsurface scattering can be rendered more efficiently using photon mapping. This work profiles the energy use of a photon-mapping based renderer to first establish what aspects require the most energy. Second, the effect several photon mapping settings have on image quality is measured. Reasonable tradeoffs between energy savings and moderately diminished image quality can then be recommended, making photon mapping more viable on mobile devices. Our results show that image quality is affected the least as settings corresponding to final gather computations are adjusted. This implies that a user can trade a modest decrease in image quality for significant gains in energy efficiency. Suggestions are made for using energy more efficiently when rendering caustics. Results also show that, although overall energy use is higher with larger image resolutions, per-pixel energy costs are cheaper

    Artistic Path Space Editing of Physically Based Light Transport

    Get PDF
    Die Erzeugung realistischer Bilder ist ein wichtiges Ziel der Computergrafik, mit Anwendungen u.a. in der Spielfilmindustrie, Architektur und Medizin. Die physikalisch basierte Bildsynthese, welche in letzter Zeit anwendungsübergreifend weiten Anklang findet, bedient sich der numerischen Simulation des Lichttransports entlang durch die geometrische Optik vorgegebener Ausbreitungspfade; ein Modell, welches für übliche Szenen ausreicht, Photorealismus zu erzielen. Insgesamt gesehen ist heute das computergestützte Verfassen von Bildern und Animationen mit wohlgestalteter und theoretisch fundierter Schattierung stark vereinfacht. Allerdings ist bei der praktischen Umsetzung auch die Rücksichtnahme auf Details wie die Struktur des Ausgabegeräts wichtig und z.B. das Teilproblem der effizienten physikalisch basierten Bildsynthese in partizipierenden Medien ist noch weit davon entfernt, als gelöst zu gelten. Weiterhin ist die Bildsynthese als Teil eines weiteren Kontextes zu sehen: der effektiven Kommunikation von Ideen und Informationen. Seien es nun Form und Funktion eines Gebäudes, die medizinische Visualisierung einer Computertomografie oder aber die Stimmung einer Filmsequenz -- Botschaften in Form digitaler Bilder sind heutzutage omnipräsent. Leider hat die Verbreitung der -- auf Simulation ausgelegten -- Methodik der physikalisch basierten Bildsynthese generell zu einem Verlust intuitiver, feingestalteter und lokaler künstlerischer Kontrolle des finalen Bildinhalts geführt, welche in vorherigen, weniger strikten Paradigmen vorhanden war. Die Beiträge dieser Dissertation decken unterschiedliche Aspekte der Bildsynthese ab. Dies sind zunächst einmal die grundlegende Subpixel-Bildsynthese sowie effiziente Bildsyntheseverfahren für partizipierende Medien. Im Mittelpunkt der Arbeit stehen jedoch Ansätze zum effektiven visuellen Verständnis der Lichtausbreitung, die eine lokale künstlerische Einflussnahme ermöglichen und gleichzeitig auf globaler Ebene konsistente und glaubwürdige Ergebnisse erzielen. Hierbei ist die Kernidee, Visualisierung und Bearbeitung des Lichts direkt im alle möglichen Lichtpfade einschließenden "Pfadraum" durchzuführen. Dies steht im Gegensatz zu Verfahren nach Stand der Forschung, die entweder im Bildraum arbeiten oder auf bestimmte, isolierte Beleuchtungseffekte wie perfekte Spiegelungen, Schatten oder Kaustiken zugeschnitten sind. Die Erprobung der vorgestellten Verfahren hat gezeigt, dass mit ihnen real existierende Probleme der Bilderzeugung für Filmproduktionen gelöst werden können
    corecore