92 research outputs found

    Mixed-initiative Multirobot Control in USAR

    Get PDF

    Mixed-initiative multirobot control in USAR

    Get PDF

    Virtual evacuation simulation with autonomous avatars

    Get PDF
    This paper describes the use of virtual reality technology for virtual simulation of crowded evacuation from sites. The approach adopted is the reuse of a game engine, thus taking advantage of all its features for virtual environment design. This work upgrades a previously developed one, in which users played simultaneously in a networked environment, each one controlling his or her own avatar. But for crowded evacuation situations, it would require many users playing simultaneously in networked computers. The more crowded the simulation, the more users needed, what could be difficult a task, depending upon the number of avatars needed. Autonomous avatars can surpass this difficulty, so few users can participate, together with as many autonomous avatars as needed, to simulate the desired crowded scenarios. First results show the viability of such an approach

    General Concepts for Human Supervision of Autonomous Robot Teams

    Get PDF
    For many dangerous, dirty or dull tasks like in search and rescue missions, deployment of autonomous teams of robots can be beneficial due to several reasons. First, robots can replace humans in the workspace. Second, autonomous robots reduce the workload of a human compared to teleoperated robots, and therefore multiple robots can in principle be supervised by a single human. Third, teams of robots allow distributed operation in time and space. This thesis investigates concepts of how to efficiently enable a human to supervise and support an autonomous robot team, as common concepts for teleoperation of robots do not apply because of the high mental workload. The goal is to find a way in between the two extremes of full autonomy and pure teleoperation, by allowing to adapt the robots’ level of autonomy to the current situation and the needs of the human supervisor. The methods presented in this thesis make use of the complementary strengths of humans and robots, by letting the robots do what they are good at, while the human should support the robots in situations that correspond to the human strengths. To enable this type of collaboration between a human and a robot team, the human needs to have an adequate knowledge about the current state of the robots, the environment, and the mission. For this purpose, the concept of situation overview (SO) has been developed in this thesis, which is composed of the two components robot SO and mission SO. Robot SO includes information about the state and activities of each single robot in the team, while mission SO deals with the progress of the mission and the cooperation between the robots. For obtaining SO a new event-based communication concept is presented in this thesis, that allows the robots to aggregate information into discrete events using methods from complex event processing. The quality and quantity of the events that are actually sent to the supervisor can be adapted during runtime by defining positive and negative policies for (not) sending events that fulfill specific criteria. This reduces the required communication bandwidth compared to sending all available data. Based on SO, the supervisor is enabled to efficiently interact with the robot team. Interactions can be initiated either by the human or by the robots. The developed concept for robot-initiated interactions is based on queries, that allow the robots to transfer decisions to another process or the supervisor. Various modes for answering the queries, ranging from fully autonomous to pure human decisions, allow to adapt the robots’ level of autonomy during runtime. Human-initiated interactions are limited to high-level commands, whereas interactions on the action level (e. g., teleoperation) are avoided, to account for the specific strengths of humans and robots. These commands can in principle be applied to quite general classes of task allocation methods for autonomous robot teams, e. g., in terms of specific restrictions, which are introduced into the system as constraints. In that way, the desired allocations emerge implicitly because of the introduced constraints, and the task allocation method does not need to be aware of the human supervisor in the loop. This method is applicable to different task allocation approaches, e. g., instantaneous or time-extended task assignments, and centralized or distributed algorithms. The presented methods are evaluated by a number of different experiments with physical and simulated scenarios from urban search and rescue as well as robot soccer, and during robot competitions. The results show that with these methods a human supervisor can significantly improve the robot team performance

    Nuclear Plants and Emergency Virtual Simulations based on a Low-cost Engine Reuse

    Get PDF
    Our industrialised society comprises many industrial processes that are very important for everyone, in a wide range of fields. Activities related to these industrial processes, though, involve, in higher or lower degrees, some risk for personnel,  besides risk for the general public in some cases. Therefore, efficient training programs and simulations are highly required, to improve the processes involved, increasing safety for people. To cite an example, nuclear plants pose high safety requirements in operational and maintenance routines, to keep plants in safe operation conditions and reduce personnel exposure to radiation dose. Besides operational and maintenance in nuclear plants, there are also other situations where efficient training is required, as in evacuation planning from buildings in emergency situations. Also, rescue tasks play similar role. These apply specially for nuclear sites. Another situation that requires efficient training is security, what has special meaning for plants that involve dangerous materials, such as nuclear plants. Nuclear materials must be kept under high security level, to avoid any misuse

    HUMAN CONTROL OF COOPERATING ROBOTS

    Get PDF
    Advances in robotic technologies and artificial intelligence are allowing robots to emerge fromresearch laboratories into our lives. Experiences with field applications show that we haveunderestimated the importance of human-robot interaction (HRI) and that new problems arise inHRI as robotic technologies expand. This thesis classifies HRI along four dimensions - human,robot, task, and world and illustrates that previous HRI classifications can be successfullyinterpreted as either about one of these elements or about the relationship between two or moreof these elements. Current HRI studies of single-operator single-robot (SOSR) control andsingle-operator multiple-robots (SOMR) control are reviewed using this approach.Human control of multiple robots has been suggested as a way to improve effectiveness inrobot control. Unlike previous studies that investigated human interaction either in low-fidelitysimulations or based on simple tasks, this thesis investigates human interaction with cooperatingrobot teams within a realistically complex environment. USARSim, a high-fidelity game-enginebasedrobot simulator, and MrCS, a distributed multirobot control system, were developed forthis purpose. In the pilot experiment, we studied the impact of autonomy level. Mixed initiativecontrol yielded performance superior to fully autonomous and manual control.To avoid limitation to particular application fields, the present thesis focuses on commonHRI evaluations that enable us to analyze HRI effectiveness and guide HRI design independentlyof the robotic system or application domain. We introduce the interaction episode (IEP), whichwas inspired by our pilot human-multirobot control experiment, to extend the Neglect ToleranceHUMAN CONTROL OF COOPERATING ROBOTSJijun Wang, Ph.D.University of Pittsburgh, 2007vmodel to support general multiple robots control for complex tasks. Cooperation Effort (CE),Cooperation Demand (CD), and Team Attention Demand (TAD) are defined to measure thecooperation in SOMR control. Two validation experiments were conducted to validate the CDmeasurement under tight and weak cooperation conditions in a high-fidelity virtual environment.The results show that CD, as a generic HRI metric, is able to account for the various factors thataffect HRI and can be used in HRI evaluation and analysis

    Coordination Demand in Human Control of Heterogeneous Robot

    Get PDF
    • …
    corecore