
2011 International Nuclear Atlantic Conference - INAC 2011
Belo Horizonte,MG, Brazil, October 24-28, 2011
ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN
ISBN: 978-85-99141-04-5

VIRTUAL EVACUATION SIMULATION WITH AUTONOMOUS
AVATARS

Antônio Carlos A. Mól1a,2,3, Ana Paula Legey2b, Victor Gonçalves G. Freitas1,2,
Vitor Henrique M. G. Soutinho2, Carlos Eduardo F. Santos2,

Vinicius S. Ventura2, Luiz B. Montez2 and Carlos Alexandre F. Jorge1

1
 Instituto de Engenharia Nuclear (IEN / CNEN - RJ)

Rua Hélio de Almeida, 75

21941-906 – Rio de Janeiro, RJ
a
mol@ien.gov.br

2
 Universidade Gama Filho

R. Manuel Vitorino, 553

20740-900 – Rio de Janeiro, RJ
b
analegey@hotmail.com

3
 Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq, Brazil

ABSTRACT

This paper describes the use of virtual reality technology for virtual simulation of crowded evacuation from

sites. The approach adopted is the reuse of a game engine, thus taking advantage of all its features for virtual

environment design. This work upgrades a previously developed one, in which users played simultaneously in a

networked environment, each one controlling his or her own avatar. But for crowded evacuation situations, it

would require many users playing simultaneously in networked computers. The more crowded the simulation,

the more users needed, what could be difficult a task, depending upon the number of avatars needed.

Autonomous avatars can surpass this difficulty, so few users can participate, together with as many autonomous

avatars as needed, to simulate the desired crowded scenarios. First results show the viability of such an

approach.

1. INTRODUCTION

Emergencies can occur in many different environments. Typical ones are industries, which

may involve risks for workers or for the general public. Other ones are public environments

such as buildings and open public spaces, where a variety of emergencies may suddenly

happen, due to natural disasters or human caused threats. There are staffs who are responsible

to prepare for these type of situations, training themselves for rescuing people, − as

policemen or firefighters −, or for training other people to safely evacuate industries,

buildings or similar environments. These staffs usually perform periodic simulation in the

real places, to be people prepared for facing emergencies, and also to support evaluation and

possible improvements that can be made in emergency response procedures.

Performing training in the real places though, sometimes requires recruitment of a great

number of persons, as in the case of training industry personnel or people who occupy

buildings, for example. These trainings cause interruption of routine activities in those

INAC 2011, Belo Horizonte, MG, Brazil.

environments. Thus, it is interesting to make use of computer-based training practices before

training in the real places, for some important reasons:

(i) First, environments such as industrial ones may involve risk or are potentially hazardous

for people. Thus, with computer-based training, people can be trained first in a safe

environment before entering real ones; when they do it, they would probably have to perform

less training repetitions in the potentially hazardous environment, due to skills gained during

the computational simulations. It is important to notice though, computer-based training is

not intended for eliminating totally training practices in real environment.

(ii) By using first computer-based training, many different emergency scenarios can be

performed and analyzed with simple modifications in the computational simulation, what can

be easier to perform than in the real places.

(iii) There are high risky scenarios that could be difficult to be simulated in the real places,

such as those involving fire, contaminants or other hazardous agents; if not impracticable,

due to the danger they could offer people. These scenarios can be easily performed in

computational simulations.

Virtual reality (VR) -based simulation find very favorable use for emergency preparedness

and response, since people can virtually navigate and interact with both the environment and

other people, and virtual environments can be designed with very high similarity with the

corresponding real ones. VR comprises techniques for advanced interface development,

through which users can navigate and interact, online, in computer generated artificial

environments, − sometimes 3D [1]. A very important approach for this purpose is the reuse of

game engines, as explained in section 2.

This work continues a R&D for simulation of evacuation from buildings in emergency

situations [2]. Currently, a new functionality has been added, that of using autonomous

avatars. This later approach lessens the requirement for recruiting great number of persons to

perform the simulations. One fact has to be considered in this type of multi-user simulation,

when compared to simply playing games: gamers are usually young people highly adapted to

playing computer games, but people from a more general public such as workers in an

industry or any other company, do not usually have such skills well developed. This would

thus require their training for dealing well with the keyboard and mouse, or with joysticks,

for performing the virtual simulations. Crowded evacuation simulation would be even more

difficult a task, although it is very important for evaluating the environment relatively to

crowded exits. Autonomous avatars, guided by some rule, may solve this problem by

requiring few well-trained people for performing simulations.

Game engine reuse is described in section 2, along with the particularities of this R&D.

Section 3 describes the autonomous avatars’ strategy development, while section 5 concludes

this work giving also future perspectives.

The simulations take place at some buildings of Universidade Gama Filho (UGF), Piedade

campus, specifically the Arquitetura (AR) and Santos Dumont (SD) buildings.

INAC 2011, Belo Horizonte, MG, Brazil.

2. GAME ENGINES REUSE FOR SERIOUS APPLICATION

Among the available approaches for virtual simulation, some R&D groups have engaged in

the reuse of game engines, because they have already implemented very important features

that enable friendly implementation of virtual environments, and have usually low cost for

research [3]-[6]. These characteristics are explained in the following:

(i) Game engines perform real-time graphical rendering, in perspective or 3D views;

(ii) They have already implemented the physics needed for simulation, such as Gravity effect

and collision handling;

(iii) They are also designed for multi-user simulation, to enable a number of networked users

playing it simultaneously, through local networks or Internet connections.

Among the game engines which might be reused for virtual simulation, two of them have

been cited elsewhere as very well suited for this task: Unreal from Epic Games and Quake

from ID Software [3]. Our staff uses Unreal Engine, but Quake should also work.

Some examples of computer-based simulation related to emergencies and similar applications

can be found in [7]-[11]. Other examples of game engine reuse towards serious R&D also for

emergencies and similar applications can be found in [12]-[17].

2.1. Unreal Engine

Unreal Engine is free for academic and non-commercial applications, and can be downloaded

from the site: http://udn.epicgames.com/Two/UnrealEngine2Runtime.html. This is in fact the

Unreal Engine Runtime version 2 that has been used by our staff.

The following sections describe Unreal Engine usage towards the purpose of this R&D.

2.1.1. UnrealEd

Unreal Engine comes with a scenario editor, named UnrealEd, in which users can design new

virtual environments. Epic Games do this to enable gamers develop their own gaming

scenarios, but researchers can take advantage of this to design serious application

environments. It is possible to model environments with high degree of realism. Figure 1

shows UnrealEd interface with an example building model.

One can make designs directly in UnrealEd, by using some embedded tools in this scenario

editor. Solid objects can be created with the “Builder Brush” tool, by selecting one of the

many geometric models available. Then, using the “Add” tool, one can create the selected

object. It is also possible to cut grooves in these objects with the “Subtract” Tool. Figure 2

shows an example of this sequence.

Another alternative is to make designs in CAD software, and then import them into Unreal

through UnrealEd, with the “StaticMeshes” tool that consist of 3D meshes that can be

replicated as much as needed. This is the best way to represent an object aimed to be

replicated [18]. Thus, a designed object such a computer, for example, can be replicated to

INAC 2011, Belo Horizonte, MG, Brazil.

full an office with a number of computers. Figure 3a shows an example of this processing, for

filling a garden with a plant model. StaticMeshes can be made mobile, such as doors,

windows or elevators. This is done by defining them as “Movers”. Figure 3b shows an

example of a door creation.

Figure 1. UnrealEd interface with an example
building model.

a) b) c)

Figure 2. An example of using UnrealEd.

a) b)

Figure 3. a) An example of StaticMeshes
replication; b) an example of Movers’ type
StaticMeshes.

INAC 2011, Belo Horizonte, MG, Brazil.

2.1.2. UnrealScript

Unreal Engine is written in C/C++ programming language [19], but in this non-commercial

version, users have no access to C/C++ source code, but only to a scripting language similar

to Java, named UnrealScript. But this enables researchers to modify the Engine, what is

sufficient for the creation of serious simulation applications.

Unreal Engine is written following object oriented approach, so there are existing classes that

comprise characteristics of such an implementation, as classes’ hierarchy, inheritance, and so

on. By using UnrealScript, one cannot modify existing classes, but can instead replicate

existing ones, and modify these later for the tasks needed. Figure 4 shows a general view of

the classes used in our R&D, up to the present. This diagram comprises the classes for

different applications, thus the color legend help differentiate among those applications,

which classes are general application ones, and which ones are specific for evacuation

simulation and for autonomous avatars feature implementation.

Figure 4. Unreal classes diagram.

INAC 2011, Belo Horizonte, MG, Brazil.

UnrealScript programming can be done in the following steps:

1- Package creation: Creation of a directory (folder) and subdirectories’ structure of a

program that will be done;

2- Coding: Creation of programs that are part of the package, including *.uc source code (uc

is the extension of source codes made in Unreal Engine);

3- Editing file *.ini: Enables the interpreter to identify the created package;

4- Compiling: Program execution to generate an intermediary file representing the package;

5- Debugging: Verify possible errors and fix them.

3. IMPLEMENTATION

3.1. Scenario Development

This section shows the scenario development, using UnrealEd functionality. As already

mentioned in section 1, some buildings of UGF have been modeled: AR and SD buildings.

This has been done with the aid of buildings architectural plants, for their real dimensions’

collection. Then, these have been input into Unreal through a scale conversion scheme from

meters to Unreal points of 1:60.532, to keep proportion between buildings and person’s

dimensions and walking velocity, to achieve realistic simulations.

The modeling process has begun with a great groove cut with the “Subtract” tool, to define

the place where both buildings should be placed. Then, the buildings have been virtually

constructed, from their collected dimensions, considering multi-floor information. Photos

collected in the real places have been used as textures pasted to the virtual buildings’ walls, to

result in as much as possible realistic views, to achieve good immersion for users. Figure 5

shows a comparison between a real building’s photo, in Figure 5a, and its corresponding

virtual model in Figure 5b.

a) b)

Figure 5. a) A real building’s photo; b) its
corresponding virtual model.

INAC 2011, Belo Horizonte, MG, Brazil.

3.1. Autonomous Avatar Development

Autonomous avatars, also known as “Bots”, add good simulation capabilities to cases of

evacuation in emergency situations, as treated in this paper, as already explained in section 1.

Crowded scenarios can be modeled and simulated, with the need of few participants. Thus,

only few user-controlled avatars take part in the simulation, with as many other autonomous

avatars as needed. These later have their behavior defined by rules that guide them through

some paths along the virtual building.

In this work, the rules are comprised by node points within the building, named “PathNodes”,

and paths defined by a PathNodes’ sequence. Characteristics of these PathNodes are

described in the sequel. First, the Bots are not capable of interacting with PathNodes out of

their field of view. Thus, intermediary PathNodes must be defined in such a way paths may

be traced. This is illustrated in Figure 6: Figure 6a shows a PathNode out of the Bot’s field of

view that is not connected to form a path. Figure 6b shows, instead, the path formed when an

intermediary PathNode (represented as a green apple) is created.

a) b)

Figure 6. Illustration of paths formation;
a) PathNode out of Bot’s field of view: no path;
b) Intermediary PathNode added: path formed.

Second characteristic is the sequence of PathNodes through which Bots must walk. When

user creates paths, multiple paths may be created, due to the presence of multiple exits within

the buildings, or due to multiple PathNodes along one way. Experience showed some paths

are correct ones, while other may be wrong, such as paths guiding a Bot back to entering the

building, when it should in fact exit it. There are other cases when, among multiple paths

formed, some are shorter than others, the shorter ones preferred, for obvious reasons. Other

times, some formed paths are directed along a corridor, for example, while other paths may

involve entering an intermediary location, when this would be really not desired, because of

the resulting longer time to exit.

Therefore, some paths are defined as higher priority ones, over other lower priority paths.

Thus, Bots will try to follow high priority paths first. They will take lower priority paths if

the higher one is obstructed. Figure 7 illustrate this situation. The Bot of interest in this

example is the leftmost one in Figure 7a, and it should reach the point indicated by a red

INAC 2011, Belo Horizonte, MG, Brazil.

circle, during evacuation. It should thus follow one direct path, among the many possible

paths formed by the PathNodes. But if no priority is defined in the paths it should follow, it

could even turn left (considering its reference), taking the paths corresponding to the other

rightmost Bot in this figure. Figure 7b shows priority paths though color legend. The yellow

path is the higher priority one, as being a direct path from the Bot’s current position to the red

circle, while blue and red ones are lower priority paths.

a) b)

Figure 7. Multiple paths and paths’ priorities;
a) Multiple paths; b) Higher (in yellow) and lower
(in red and blue) priority paths.

4. RESULTS

Some exit routes have been defined for comparative analysis between real and simulated

evacuation procedures. Six locations have been strategically chosen, due to crowded people

flow, observed in the real buildings. From these locations, routes have been defined, all

converging to the AR building’s entrance. The SD building’s entrance was under repair at the

time the simulations were performed, and was thus blocked. Table 1 shows the defined

evacuation routes’ descriptions, while Table 2 shows a comparative analysis between elapsed

evacuation times in the real and simulated experiments, where times are expressed in the

format minutes : seconds : hundredths.

Table 2 shows a good concordance between real and simulated elapsed times during

evacuation experiments in all routes. This validates the virtual environment developed with

Unreal Engine for evacuation simulation in emergency situations.

INAC 2011, Belo Horizonte, MG, Brazil.

Table 1. The evacuation routes.

Route Description

Route 1 Undergraduate Scientific Research Lab

Route 2 Computer Science Coordination

Route 3 Faculties’ Room through AR building

Route 4 Faculties’ Room through SD building

Route 5 Fourth floor through AR building

Route 6 Fourth floor through SD building

Table 2. Comparative analysis between elapsed times.

Route
Elapsed times in

real experiments

Elapsed times in

simulated experiments

Route 1 01:15:04 01:14:19

Route 2 01:01:27 00:57:18

Route 3 01:33:48 01:32:35

Route 4 01:55:52 01:54:21

Route 5 01:38:90 01:42:32

Route 6 01:55:65 01:58:61

3. CONCLUSIONS

Unreal Engine is an important platform for developing virtual environments, due to its

friendly interface with users for both scenario modeling and functionality programming,

through its UnrealEd and UnrealScript language, respectively. Users can thus take advantage

of all Unreal’s simulation capabilities, as efficient dynamical rendering, physics

representations and multi-user simulation capabilities. Further, this work showed that

autonomous avatar usage improves simulation for crowded situations, with few participating

users. This lessen the need for user’s training for dealing with the gaming interaction, as well

as the need of recruiting a large number of users to participate in crowded simulations.

ACKNOWLEDGMENTS

This research was sponsored by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro

– FAPERJ and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq.

INAC 2011, Belo Horizonte, MG, Brazil.

REFERENCES

1. C. Kirner, M. S. Pinho, Introdução à Realidade Virtual, Short-course book, 1º Workshop

de Realidade Virtual, São Carlos, SP, Brazil, (1997).

2. A. C. A. Mól, C. A. F. Jorge, P. M. Couto, “Using a game engine for VR simulations in

evacuation planning”, IEEE Computer Graphics and Applications, Volume 28, N. 3,

pp.6-12 (2008).

3. M. Lewis, J. Jacobson, “Introduction,” Communications of the Association for Computing
Machinery (CACM), Special Issue on “Game Engines in Scientific Research”, Volume
45, pp.27-31 (2002).

4. A. Rosenbloom, “Introduction,” Communications of the Association for Computing
Machinery (CACM), Special Issue on “A Game Experience in Every Application”,

Volume 46, pp.28-31 (2003).

5. M. Zyda, “Introduction,” Communications of the Association for Computing Machinery
(CACM), Special Issue on “Creating a Science of Games”, Volume 50, pp.26-29 (2007).

6. D. Trenholme, S. P. Smith, “Computer game engines for developing first-person virtual

environments,” Virtual Reality, Volume 12, pp.181-187 (2008).

7. N. Pelechano, N. I. Badler, “Modeling crowd and trainer leader behavior during building

evacuation”, IEEE Computer Graphics and Applications, Volume 26, N. 6, pp.80-86

(2006).

8. D. Helbing, I. Farkas, T. Vicsek, “Simulating dynamical features of escape panic”,

Nature, Volume 407, pp.487-490 (2000).

9. N. Pelechano, K. O’Brien, B. Silvermann, N. Badler, “Crowd simulation incorporating

agent psychological models, roles and communication”, Proceeding of the 1st

International Workshop on Crowd Simulation (V-CROWDS’05), EPFL, pp.21-30 (2005).

10. S. R. Musse, D. Thalmann, “Hierarchical model for real time simulation of virtual human

crowds”, IEEE Transactions on Visualization and Computer Graphics, Volume 7,

pp.152-1694 (2001).

11. D. L. Tate, L. Sibert, T. King, “Using virtual environments to train firefighters”, IEEE
Computer Graphics and Applications, Volume 17, N. 6, pp.23-29 (1997).

12. J. Wang, M. Lewis, J. Gennari, “USAR: a game-based simulation for teleoperation”,

Proceedings of the 47th Annual Meeting of the Human Factors and Ergonomics Society,

Denver, CO, USA, pp.493-497 (2003).

13. J. Wang, M. Lewis, J. Gennari, “Interactive simulation of the NIST USAR arenas”,

Proceedings of the 2003 IEEE International Conference on Systems, Man, and
Cybernetics, Washington, DC, USA, pp.1350-1354 (2003).

14. J. Manojlovich, P. Prasithsangaree, S. Hughes, J. Chen, J., M. Lewis, “UTSAF: a multi-

agent-based framework for supporting military-based distributed interactive simulations

in 3D virtual environments”, Proceedings of the 2003 Winter Simulation Conference,

New Orleans, LA, USA (2003).

15. R. Adobbati, A. N. Marshall, A. Scholer, S. Tejada, G. A. Kaminka, et al., “Gamebots: a

3D virtual world test-bed for multi-agent research”, Proceedings of 2nd International
Workshop on Infrastructure, MAS and MAS Scalability, 2001.

16. G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto, R. Adobbati, et al., “Gamebots: a

flexible test bed for multiagent team research”, Communications of the ACM, Volume 45,

pp.43-45 (2002).

17. B. G. Silverman, G. K. Barathy, K. O’Brien, J. Cornwell, “Human behavior models for

agents in simulators and games: Part II gamebot engineering with PMFserv”, Presence:
Teleoperators and virtual environments, Volume 15, pp.163-185 (2006).

INAC 2011, Belo Horizonte, MG, Brazil.

18. J. Busby, Z. Parrish, J. V., Mastering Unreal Technology: The Art of Level Design, Sams

Publishing, 2005.

19. J. P. Flynt, B. Booth, UnrealScript Game Programming for Teens, Thomson Course

Technology, 2006.

