3 research outputs found

    Brain-Computer Interfacing for Wheelchair Control by Detecting Voluntary Eye Blinks

    Get PDF
    The human brain is considered as one of the most powerful quantum computers and combining the human brain with technology can even outperform artificial intelligence. Using a Brain-Computer Interface (BCI) system, the brain signals can be analyzed and programmed for specific tasks. This research work employs BCI technology for a medical application that gives the unfortunate paralyzed individuals the capability to interact with their surroundings solely using voluntary eye blinks. This research contributes to the existing technology to be more feasible by introducing a modular design with three physically separated components: a headwear, a computer, and a wheelchair. As the signal-to-noise ratio (SNR) of the existing systems is too high to separate the eye blink artifacts from the regular EEG signal, a precise ThinkGear module is used which acquired the raw EEG signal through a single dry electrode. This chip offers an advanced filtering technology that has a high noise immunity along with an embedded Bluetooth module using which the acquired signal is transferred wirelessly to a computer. A MATLAB program captures voluntary eye blink artifacts from the brain waves and commands the movement of a miniature wheelchair via Bluetooth. To distinguish voluntary eye blinks from involuntary eye blinks, blink strength thresholds are determined. A Graphical User Interface (GUI) designed in MATLAB displays the EEG waves in real-time and enables the user to determine the movements of the wheelchair which is specially designed to take commands from the GUI.聽 The findings from the testing phase unveil the advantages of a modular design and the efficacy of using eye blink artifacts as the control element for brain-controlled wheelchairs. The work presented here gives a basic understanding of the functionality of a BCI system, and provides eye blink-controlled navigation of a wheelchair for patients suffering from severe paralysis

    INTERFACCE NEURALI PER APPLICAZIONI BIOMEDICHE

    Get PDF
    Le interfacce neurali (BCI) si occupano di realizzare un canale di comunicazione artificiale diretto tra cervello e un dispositivo esterno attraverso l鈥檜so di appositi sensori e senza coinvolgere processi motori. Le BCI quindi registrano, amplificano ed interpretano gli impulsi nervosi della corteccia per poi fornire un output specifico. Tutto ci貌 猫 possibile grazie al fatto che in ogni istante il nostro cervello genera milioni di impulsi nervosi, cio猫 i segnali elettrici costituenti le onde cerebrali. Tali onde cerebrali possono essere rilevate da elettrodi metallici posizionati in prossimit脿 delle zone cerebrali di interesse, a diversi livelli di profondit脿. Da qui, una cruciale distinzione tra le BCI invasive, semi-invasive e non invasive; rispettivamente, le prime sono installate in una parte pi霉 profonda del cervello mentre le seconde sulla superficie di esso e, infine, le ultime non necessitanti un鈥檕perazione chirurgica. Nel contesto dell鈥檌ngegneria biomedica e della neuroingegneria, il ruolo svolto dalle BCI 猫 nella direzione di sistemi di supporto funzionale e ausilio per persone con disabilit脿, con l鈥檕biettivo di sviluppare interfacce neurali in grado di studiare con dettaglio i principi di funzionamento del cervello e delle malattie che lo colpiscono, per mettere a punto dispositivi per diagnosi e terapia di malattie come epilessia, Alzheimer e Parkinson

    Dise帽o, desarrollo y evaluaci贸n de un sistema Brain Computer Interface (BCI) basado en Steady-State Visual Evoked Potentials (SSVEPs))

    Get PDF
    En 1929, Hans Berger desarroll贸 el elenctroencefalograma (EEG). Desde entonces, el estudio de las se帽ales bi贸medicas, y en concreto del EEG, ha progresado notablemente. A partir de este descubrimiento, las ondas cerebrales, las cuales eran completamente desconocidas, comenzaron a incluirse para diagnosticar enfermedades como la epilepsia o trastornos del sue帽o, adem谩s de para la investigaci贸n y compresi贸n del cerebro. Posteriormente, se comenz贸 a especular con la utilizaci贸n de las se帽ales EEG para desarrollar un sistema de comunicaciones entre el cerebro y el medio sin la intervenci贸n de m煤sculos y nervios perif茅ricos. Este tipo de sistemas no aparecieron hasta el a帽o 1977, cuando el Dr. Jacques Vidal bautiz贸 el primero con el nombre de Brain-Computer Interface (BCI). Dichos sistemas permiten el control de dispositivos a partir de la monitorizaci贸n de la actividad cerebral y de la traducci贸n de las intenciones del usuario en comandos de dispositivo. Este trabajo tiene el objetivo de dise帽ar, desarrollar y evaluar un sistema BCI basado en Steady-State Visual Evoked Potentials (SSVEPs). La aplicaci贸n fue desarrollada mediante la plataforma MEDUSA, creada por el Grupo de Ingenier铆a Biom茅dica de la Universidad de Valladolid. Para ello se implementaron en Python tanto la interfaz gr谩fica de la aplicaci贸n como los m茅todos de procesado de se帽al. El sistema BCI bajo estudio se trata de un speller que permite seleccionar comandos, representados en celdas de una matriz, mediante la detecci贸n en el EEG de SSVEPs. Estos 煤ltimos son provocados por est铆mulos visuales a una cierta frecuencia de estimulaci贸n. Tras realizar una revisi贸n del estado del arte, se concluye que la mejor manera de conseguir dicho objetivo es mediante el paradigma Joint Frequency-Phase Coding y el m茅todo de procesado Canonical Correlation Analysis. Una vez desarrollada, la aplicaci贸n fue evaluada por cinco sujetos sanos que relizaron varias tareas en una 煤nica sesi贸n. Los resultados obtenidos para la mayor铆a de los sujetos fueron satisfactorios, con una precisi贸n media del 74,06% bajo condiciones controladas en un laboratorio. Tras la realizaci贸n de las tareas, los sujetos de estudio completaron un cuestionario de satisfacci贸n que permiti贸 conocer su opini贸n del sistema implementado y realimentar el proyecto con sus sugerencias. De entre las ideas extraidas, destacan las sugerencias de mejora de la interfaz gr谩fica y de los m茅todos de procesado de se帽al.In 1929, Hans Berger developed the elenctroencephalogram (EEG). Since then, the study of biomedical signals, and in particular of the EEG, has progressed significantly. From this discovery, brain waves, which were completely unknown, were increasingly used to diagnose diseases such as epilepsy or sleep disorders, as well as for the research and compression of the brain. After that, investigators began to suggest the use of EEG signals to develop a communication system between the brain and the environment without the intervention of muscles and peripheral nerves. This type of system did not appear until 1977, when Dr. Jacques Vidal baptized the first one with the name of Brain-Computer Interface (BCI). These systems allow the control of devices by monitoring the brain activity and translating the user's intentions into device commands. This work aims to design, develop and evaluate a BCI system based on Steady-State Visual Evoked Potentials (SSVEPs). The application was developed using the MEDUSA platform, created by the Biomedical Engineering Group of the University of Valladolid. For this purpose, both the application's graphic interface and the signal processing methods were implemented in Python. The BCI system under study is a speller that allows selecting commands, represented in cells of a matrix, through the detection in the EEG of SSVEPs. The latter are caused by visual stimuli at a certain stimulation frequency. After a review of the state of the art, it is concluded that the best way to achieve this goal is through the Joint Frequency-Phase Coding paradigm and the processing method Canonical Correlation Analysis. Once developed, the application was evaluated by five healthy subjects who performed several tasks in a single session. The results obtained for most of the subjects were satisfactory, with an average accuracy of 74.06% under controlled conditions in a laboratory. After the completion of the tasks, the study subjects completed a satisfaction questionnaire that allowed to know their opinion about the implemented system and to feedback the project with their suggestions. Among the ideas extracted, suggestions for improving the graphic interface and signal processing methods stand out.Grado en Ingenier铆a de Tecnolog铆as de Telecomunicaci贸
    corecore