6 research outputs found

    Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

    Get PDF
    Interactive realizability is a computational semantics of classical Arithmetic. It is based on interactive learning and was originally designed to interpret excluded middle and Skolem axioms for simple existential formulas. A realizer represents a proof/construction depending on some state, which is an approximation of some Skolem functions. The realizer interacts with the environment, which may provide a counter-proof, a counterexample invalidating the current construction of the realizer. But the realizer is always able to turn such a negative outcome into a positive information, which consists in some new piece of knowledge learned about the mentioned Skolem functions. The aim of this work is to extend Interactive realizability to a system which includes classical first-order Peano Arithmetic with Skolem axioms. For witness extraction, the learning capabilities of realizers will be exploited according to the paradigm of learning by levels. In particular, realizers of atomic formulas will be update procedures in the sense of Avigad and thus will be understood as stratified-learning algorithms

    Strong Normalization for HA + EM1 by Non-Deterministic Choice

    Full text link
    We study the strong normalization of a new Curry-Howard correspondence for HA + EM1, constructive Heyting Arithmetic with the excluded middle on Sigma01-formulas. The proof-term language of HA + EM1 consists in the lambda calculus plus an operator ||_a which represents, from the viewpoint of programming, an exception operator with a delimited scope, and from the viewpoint of logic, a restricted version of the excluded middle. We give a strong normalization proof for the system based on a technique of "non-deterministic immersion".Comment: In Proceedings COS 2013, arXiv:1309.092

    Interactive Realizability and the elimination of Skolem functions in Peano Arithmetic

    Get PDF
    We present a new syntactical proof that first-order Peano Arithmetic with Skolem axioms is conservative over Peano Arithmetic alone for arithmetical formulas. This result - which shows that the Excluded Middle principle can be used to eliminate Skolem functions - has been previously proved by other techniques, among them the epsilon substitution method and forcing. In our proof, we employ Interactive Realizability, a computational semantics for Peano Arithmetic which extends Kreisel's modified realizability to the classical case.Comment: In Proceedings CL&C 2012, arXiv:1210.289

    On Natural Deduction in Classical First-Order Logic: Curry-Howard Correspondence, Strong Normalization and Herbrand's Theorem

    Get PDF
    International audienceWe present a new Curry-Howard correspondence for classical first-order natural deduction. We add to the lambda calculus an operator which represents, from the viewpoint of programming, a mechanism for raising and catching multiple exceptions, and from the viewpoint of logic, the excluded middle over arbitrary prenex formulas. The machinery will allow to extend the idea of learning -- originally developed in Arithmetic -- to pure logic. We prove that our typed calculus is strongly normalizing and show that proof terms for simply existential statements reduce to a list of individual terms forming a Herbrand disjunction. A by-product of our approach is a natural-deduction proof and a computational interpretation of Herbrand's Theorem

    Interactive Realizability for Classical Peano Arithmetic with Skolem Axioms

    No full text
    Interactive realizability is a computational semantics of classical Arithmetic. It is based on interactive learning and was originally designed to interpret excluded middle and Skolem axioms for simple existential formulas. A realizer represents a proof/construction depending on some state, which is an approximation of some Skolem functions. The realizer interacts with the environment, which may provide a counter-proof, a counterexample invalidating the current construction of the realizer. But the realizer is always able to turn such a negative outcome into a positive information, which consists in some new piece of knowledge learned about the mentioned Skolem functions. The aim of this work is to extend Interactive realizability to a system which includes classical first-order Peano Arithmetic with Skolem axioms. For witness extraction, the learning capabilities of realizers will be exploited according to the paradigm of learning by levels. In particular, realizers of atomic formulas will be update procedures in the sense of Avigad and thus will be understood as stratified-learning algorithms
    corecore