15 research outputs found

    Extracting proofs from documents

    Get PDF
    Often, theorem checkers like PVS are used to check an existing proof, which is part of some document. Since there is a large difference between the notations used in the documents and the notations used in the theorem checkers, it is usually a laborious task to convert an existing proof into a format which can be checked by a machine. In the system that we propose, the author is assisted in the process of converting an existing proof into the PVS language and having it checked by PVS. 1 Introduction The now-classic ALGOL 60 report [5] recognized three different levels of language: a reference language, a publication language and several hardware representations, whereby the publication language was intended to admit variations on the reference language and was to be used for stating and communicating processes. The importance of publication language ---often referred to nowadays as "pseudo-code"--- is difficult to exaggerate since a publication language is the most effective way..

    Strategic Issues, Problems and Challenges in Inductive Theorem Proving

    Get PDF
    Abstract(Automated) Inductive Theorem Proving (ITP) is a challenging field in automated reasoning and theorem proving. Typically, (Automated) Theorem Proving (TP) refers to methods, techniques and tools for automatically proving general (most often first-order) theorems. Nowadays, the field of TP has reached a certain degree of maturity and powerful TP systems are widely available and used. The situation with ITP is strikingly different, in the sense that proving inductive theorems in an essentially automatic way still is a very challenging task, even for the most advanced existing ITP systems. Both in general TP and in ITP, strategies for guiding the proof search process are of fundamental importance, in automated as well as in interactive or mixed settings. In the paper we will analyze and discuss the most important strategic and proof search issues in ITP, compare ITP with TP, and argue why ITP is in a sense much more challenging. More generally, we will systematically isolate, investigate and classify the main problems and challenges in ITP w.r.t. automation, on different levels and from different points of views. Finally, based on this analysis we will present some theses about the state of the art in the field, possible criteria for what could be considered as substantial progress, and promising lines of research for the future, towards (more) automated ITP

    How to Put Usability into Focus: Using Focus Groups to Evaluate the Usability of Interactive Theorem Provers

    Get PDF
    In recent years the effectiveness of interactive theorem provers has increased to an extent that the bottleneck in the interactive process shifted to efficiency: while in principle large and complex theorems are provable (effectiveness), it takes a lot of effort for the user interacting with the system (lack of efficiency). We conducted focus groups to evaluate the usability of Isabelle/HOL and the KeY system with two goals: (a) detect usability issues in the interaction between interactive theorem provers and their user, and (b) analyze how evaluation and survey methods commonly used in the area of human-computer interaction, such as focus groups and co-operative evaluation, are applicable to the specific field of interactive theorem proving (ITP). In this paper, we report on our experience using the evaluation method focus groups and how we adapted this method to ITP. We describe our results and conclusions mainly on the ``meta-level,'' i.e., we focus on the impact that specific characteristics of ITPs have on the setup and the results of focus groups. On the concrete level, we briefly summarise insights into the usability of the ITPs used in our case study

    Dynamic Rippling, Middle-Out Reasoning and Lemma Discovery

    Get PDF
    We present a succinct account of dynamic rippling, a technique used to guide the automation of inductive proofs. This simplifies termination proofs for rippling and hence facilitates extending the technique in ways that preserve termination. We illustrate this by extending rippling with a terminating version of middle-out reasoning for lemma speculation. This supports automatic speculation of schematic lemmas which are incrementally instantiated by unification as the rippling proof progresses. Middle-out reasoning and lemma speculation have been implemented in higher-order logic and evaluated on typical libraries of formalised mathematics. This reveals that, when applied, the technique often finds the needed lemmas to complete the proof, but it is not as frequently applicable as initially expected. In comparison, we show that theory formation methods, combined with simpler proof methods, offer an effective alternative

    A proof-centric approach to mathematical assistants

    Get PDF
    We present an approach to mathematical assistants which uses readable, executable proof scripts as the central language for interaction. We examine an implementation that combines the Isar language, the Isabelle theorem prover and the IsaPlanner proof planner. We argue that this synergy provides a flexible environment for the exploration, certification, and presentation of mathematical proof

    Using features for automated problem solving

    Get PDF
    We motivate and present an architecture for problem solving where an abstraction layer of "features" plays the key role in determining methods to apply. The system is presented in the context of theorem proving with Isabelle, and we demonstrate how this approach to encoding control knowledge is expressively different to other common techniques. We look closely at two areas where the feature layer may offer benefits to theorem proving — semi-automation and learning — and find strong evidence that in these particular domains, the approach shows compelling promise. The system includes a graphical theorem-proving user interface for Eclipse ProofGeneral and is available from the project web page, http://feasch.heneveld.org

    Automated discovery of inductive lemmas

    Get PDF
    The discovery of unknown lemmas, case-splits and other so called eureka steps are challenging problems for automated theorem proving and have generally been assumed to require user intervention. This thesis is mainly concerned with the automated discovery of inductive lemmas. We have explored two approaches based on failure recovery and theory formation, with the aim of improving automation of firstand higher-order inductive proofs in the IsaPlanner system. We have implemented a lemma speculation critic which attempts to find a missing lemma using information from a failed proof-attempt. However, we found few proofs for which this critic was applicable and successful. We have also developed a program for inductive theory formation, which we call IsaCoSy. IsaCoSy was evaluated on different inductive theories about natural numbers, lists and binary trees, and found to successfully produce many relevant theorems and lemmas. Using a background theory produced by IsaCoSy, it was possible for IsaPlanner to automatically prove more new theorems than with lemma speculation. In addition to the lemma discovery techniques, we also implemented an automated technique for case-analysis. This allows IsaPlanner to deal with proofs involving conditionals, expressed as if- or case-statements. ii
    corecore