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Foreword 

Thirty years ago, at the time that N.G. de Bruijn began the Automath project here at 
Eindhoven University of Technology, computer technology was far less advanced than it is 
now. It was still not unknown, for example, for computer programs to be prepared on paper 
tape, punch cards being the preserve of the more affluent establishments. It is not surprising, 
therefore, that the early computer systems were for experts only, and systems offering support 
for De Bruijn's dream of automating mathematics paid no attention to the interface with the 
hunlan user. 

The technological advances that have been made since then are mind-boggling. Most 
recently, the technology of human-computer interaction (HCI, for short) has progressed in 
leaps and bounds, bringing everyday computer usage at long last to the man on the street. 
Systems for automating mathematics have also made substantial progress, but the interfaces 
with the user have not kept pace and are most often still based on teletype technology. Thanks 
to the Internet, the world may be at your feet, but ergonomic interaction with automated 
mathematics is still way up in the clouds! 

The workshop on User Interfaces and Theorem Provers was begun in 1995 in recognition 
of the fact that the difficulty in using powerful theorem proving software frequently lies with 
a poor user interface. There are gaps between the knowledge required by designers of such 
interfaces and present state of the art in general interface design technology. Effective solutions 
require the collaboration of HCI practitioners and the authors and users of existing theorem 
proving software. The increased level of interest, judged by the number of submissions, in this, 
the fourth in the series, is evidence that more and more implementors of theorem provers are 
becoming aware of the importance of good interface design, and the possibilities that modern 
technology offers. 

In keeping with the nature of a workshop, this volume contains a number of working 
papers describing ongoing research at various stages of completion. The immediate goal of 
the workshop is to stimulate discussion based on actual experimentation with real-life systems 
and to feed that discnssion back into further development. The long-term goal is to make the 
workshop defunct as a result of the improvements that have been effected. I look forward to 
a lively, enjoyable and memorable workshop. 

Roland Backhouse 
2nd June, 1998. 
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Overview and Rationale of an Industrial Prover 

J.-R. Abrial 

Consultant* 
26, rue des Plantes 75014 Paris 

abrialOsteria.fr 

In this document, we briefly present a program called the Predicate Prover (for short PP). 
This program essentially offers four functionalities, which are the following: 

A decision procedure for Propositional Calculus. 
A partial semi-decision procedure for First-Order Predicate Calculus. 
A systematic translation of Set-Theoretic Predicates. 
A coherent treatment of Linear Arithmetic statements. 

In what follows, we shall quickly present these features in turn. We then show how PP 
is integrated within the B-Technology' [1] [2], as implemented by Atelier B' [3]. In the last 
section, we comment on a number of rationales and concepts that have been used in the 
design of PP. Finally, an appendix contains some problems solved by PP and shown in a 
demo. 

A Propositional Calculus Decision Procedure. 

PP essentially first contains an implementation of the decision procedure of Propositional 
Calculus, which is presented in the B-Book [1]. This procedure is very close to what is 
elsewhere proposed under the technical name of Semantic Tableaux [4]. It is a Sequent 
Calculus. Next is a sample of a classical proposition proved by PP: 

I- ((a <0> b) <0> c) <0> (a <0> (b <0> c)) 

The proof procedure gradually transforms an original sequent with no hypotheses into some 
sequents with atomic hypotheses only (either positive or negative). Such a sequent is dis
charged as soon as its collection of hypotheses contain a certain atomic formula together 
with its negation. 

A demo is available showing the step by step behaviour of PP. The following items are 
presented at each step: (1) the sequent at hand, (2) the inference rule that is applied to 
it, (3) the newly generated sequent (if any), and (4) the tree structure of the proof (this 
is done by means of proper indentations). A less verbose trace only presents the successive 
sequents (still with the indentation but without the rules). A completely silent execution is 
also proposed that makes the prover a genuine little "pocket prover". 

* Supported by STERIA, SNCF, RATP and INRETS. 
1 B is a model oriented method used in industry to develop safety critical (and other) software 

systems. 
2 Atelier B is the set of industrial tools associated with the B Method. 



A Partial Semi-Decision Procedure for First-Order Predicate Calculus. 

The just presented simplified form of PP has then been extended to handle First-Order 
Predicate Calculus statements. Within this new framework, the collection of hypotheses as
sociated with a sequent contains not only, as usual, some atomic propositions, but also some 
universally quantified predicates that are "normalized" in a certain systematic fashion. The 
prover transforms the original sequent (as above in the Propositional Calculus case) until 
the right-hand part of the remaining sequent is reduced to 1.. (unless, of course, it has been 
discharged in the meantime). 

At this point, it then remains for us to prove that the hypotheses of the sequent are 
contradictory. This is attempted by means of some instantiations of the universally quan
tified hypotheses. Some "interesting" instantiations are discovered in a systematic fashion 
by means of the atomic hypotheses. This technique is a special case of the, so-called, "set 
of support" technique, where the set in question is represented by the atomic hypotheses. 
The conjunct of the retained instantiations is then down loaded into the right-hand part of 
the sequent, where it implies 1.., thus forming a new sequent. After the usual (Propositional 
Calculus) treatment, either this new sequent is discharged (showing that our instantiations 
were well chosen), or alternatively, the right-hand part of the remaining sequent is reduced 
to 1.. again. Some new instantiations are then exhibited as above, and so on. 

This straightforward "ping-pong" technique proves to be extremely efficient, and, above 
all, it is entirely automatic. It has no pretension to be complete, of course. Here is a sample 
of what can be proved very easily using this technique: 

\;I (x,y) . (P(x,y) ~ P(y,x)) II 
\;I (x, y, z) . (P(x, y) II pry, z) =;. P(x, z)) II 
\;Ix . 3y . P(x, y) 
~ 

\;Ix. P(x,x) 

A demo is available presenting some "macro-steps" of the proof only. The "micro-steps" 
(not shown in this demo) are those already presented in the Propositional Calculus demo. 
Such macro-steps occur when the right-hand side of the sequent at hand reduces to 1... The 
hypotheses (whose contradiction is then to be proved) are listed. They are followed by the 
instantiations that are automatically proposed by the program, together with the contra
diction that is possibly emerging. In case the contradiction does not appear, the execution 
resumes, new hypotheses are then listed at the next macro-step, and finally some new in
stantiations are exhibited, and so on. A completely silent version of the execution is also 
available. 

The Translation of Set- Theoretic Statements. 

The next part of PP is the Set Translator. It is built very much in accordance with the spirit 
of the set-theoretic construction presented in the B-Book, where Set Theory just appears as 
a mere extension of First-Order Logic. The goal of this extension is essentially to formalize 
the abstract concept of set membership. 

Statements involving the membership operator are reduced as much as possible by the 
translator by means of a number of rewriting rules. It results in predicate calculus state-



ments, where complex set memberships have disappeared, the remaining set membership 
operators being left uninterpreted. For instance, a set-theoretic predicate such as s E IP'(t) 
is transformed into \lx.(x E s => x E t). The translator then just performs the translation 
of the various instances of set membership. They correspond to the classical set operators 
(U, n, etc), to the generalization of such operators, to the binary relation operators, to the 
functional operators (including functional abstraction and functional application), and so on. 

A demo is available that presents set-theoretic lemmas together with the corresponding 
translations. It then shows the corresponding proofs using the above macro-step traces. Next 
is such a lemma with its translation (where r[aJ and r[bJ respectively denote the images of 
the sets a and b under the relation r): 

LEMMA 
r<;sxt 1\ 

a<;bl\ 
b <; s 

=> 
r[aJ <; r[bJ 

TRANSLATION 
\I(x,y).((x,Y)Er => xEs) 1\ 

\I(x,y) .((x,Y)Er => yEt) 1\ 

\Ix . (x E a => x E b) 1\ 

\Ix . (x E b => xES) 
=> 
\ly. (3x. (x E al\ (x,y) E r) => 3x. (x E bl\ (x,y) E r)) 

The Treatment of Linear Arithmetic. 

The Predicate Prover is then once again extended in order to handle Linear Arithmetic. For 
this, we introduce new predicates involving the classical order operators between integers 
«, :S, etc). Such predicates are treated when it is time to discover of a contradiction in 
the collection of hypotheses (see above). Such arithmetic hypotheses are first normalized, 
then a straightforward linear technique is used in order to search for a possible contradiction 
between them. As a very simple example, the prover is able to prove statements like this: 

a :s b 1\ c:s d => a+c :s b+d 

The Set Translator is also extended accordingly so as to treat sets that are related to 
arithmetic as well, namely intervals and sequences. It also translates predicates involving 
the minima and maxima of non-empty finite sets of integers. Next is an example of a simple 
lemma that is proven very easily after such a translation: 

cE(a .. b) 1\ bE(c .. d) => (c .. b)=(a .. b)n(c .. d) 



The Integration of the Predicate Prover within the B- Technology. 

In this section, we present the genesis of PP, we show how it has become one of the pieces 
of the B-Technology, and we explain how it is integrated within Atelier B. The Prover of 
Atelier B (for short PB), which constitutes a distinct project from that of PP presented 
above, works according to two modes: automatic and interactive (the interactive mode be
ing just, in first approximation, a way of manually pulling the various strings offered by PB). 

We remind the reader that a typical B development resulting in n lines of code, demands 
the proof of approximatively n/2 lemmas. At the moment, the behavior of PB corresponds 
to the following typical figure, which is valid for an entirely proved industrial project (say, 
50,000 lines of ADA code): 80% of the proofs is discharged automatically by PB, versus 20% 
interactively. In this case then, approximately 5,000 lemmas have been proved interactively 
(less, in fact, because the user of PB can take advantage of the systematic discovery of cer
tain proof sequences, which can then be incorporated into some tactics able to be called 
automatically). This figure has oriented the way PB has been designed. Automatization is 
indeed indispensable but, as the interactive part of the proof effort is also not negligible, 
both aspects of the proof technology must be implemented with great care. 

The main part of PB is based on a number of rules (more than 2,000) that have been 
introduced gradually during the multi-year construction of this prover. It also contains cer
tain proof mechanisms that may be handled by the user in an automatic or interactive way. 
Finally, the user might himself introduce some new rules and new tactics that may also be 
handled automatically or interactively. As can be seen, the process by which PB has been 
constructed is essentially a pragmatic one. 

As time passes, we were confronted (under the pressure of some industrial users) with 
the problem of the correctness of the rules of PB. This is indeed a very serious problem 
that cannot be treated by means of some reassuring (hand-waving kind of) discourses. This 
is how PP has started, essentially as an extraneous project to be used in order to validate 
PB. The result has been more or less what we feared: a number of rules of PB were slightly 
erroneous (less than 5% however, but still not 0%). 

In order to keep the construction of PP under control, we choose an incremental design 
that followed the incremental construction of Mathematics that is presented in the B-Book. 
This allowed us to use PP to validate PB in an incremental fashion. In other words, as soon 
as some stage of PP were finished, we used it to validate the corresponding rules of PP. The 
incremental design of PP resulted in an incremental validation of PB. 

More serious even than the possibility of erroneous rules in PB is the possibility of the 
user introducing some erroneous rules during the proof of a B design. In order to cope with 
this problem we had no choice but to integrate PP within PB. Thanks to this integration, a 
user-defined rule can thus be validated (proved) before being used. 

The practice of proving user-defined rules within PB pretty soon induced the idea of 
sometimes using PP directly on the problem at hand rather than first proving a necessarily 
ad-hoc rule and then instructing PB to use it. This results in a deeper integration of PP 
within PB. This process is still under way. 

o. 



Of course, this direct usage of PP has its limitations. It is essentially due to the fact that 
a typical B lemma may have many hypotheses (more than one hundred is a not an excep
tion). Clearly, among these hypotheses, a few of them only are relevant to prove the lemma 
at hand. As PP is very sensitive to noisy (useless) hypotheses, it may sometimes fail (or run 
for too long a period of time) on problems on which it is normally due to succeed very easily. 

In order to cope with this problem, we introduced the possibility to choose the hypothe
ses to be kept before launching PP on a certain lemma. As this choice, however, differs 
from one lemma to the other, it is not easily generalizable. In order to circumvent this diffi
culty, we introduced some heuristics, whose intended effect is to automatically remove some 
apparently useless hypotheses. This has given some interesting results. Consequently, the 
possibility was given to incorporate these heuristics in some automatic tactics expanding 
the standard one. Note that the problem is complicated by the fact that, sometimes, the 
validity of the lemma is simply due to the presence of some contradictory hypotheses that 
have thus nothing to do with the main part of the problem. In such circumstances, as one 
can imagine, the hypotheses removing heuristics might fail. 

This integration of PP within PB has significantly modified the user practice. At present, 
a typical interactive proof session with Atelier B first starts by invoking some classical fea
tures of PB: adding an hypothesis, transforming the goal by means of some assumed equality, 
proposing some existential witness, and so on. \Vhen the goal and the hypotheses seem to 
be ripe enough, a simple invocation of PP (with an automatically reduced set of hypotheses) 
then quite often discharges the goal without any further intervention. In case such a protocol 
seems to repeat itself on other proofs, it can then be proposed as a new automatic tactics. 

Some Rationale Behind the Construction of PP. 

In this section, we present some ideas and concepts that have driven us in the construc
tion of PP. We have already explained above how PP has been developed incrementally on 
the basis of a hierarchy of provers. Although important, this strategy is, after all, nothing 
else but a good design practice. 

The most important idea, we think, behind the construction of PP, lies in the fact that 
it has been designed around a fixed wired-in logic, which is the most classical of all, namely 
First-Order Predicate Calculus with Equality (used as the internal engine), and Set Theory 
(used as the external vehicle). 

In no way is PP constructed from a meta-prover able to be parameterized by a variety 
of distinct logics. This contrasts with what can be seen in academic circles where extremely 
powerful general purpose Proof Systems are usually offered. Our approach is quite different, 
it is rather similar to that used in the development of some "industrial" programs handling 
symbolic data. For instance, a good C compiler is not a meta-compiler specialized to C; 
likewise, a good chess-playing program is not a general purpose game-playing program spe
cialized by the rules and strategies of the chess game. 

In our case, we have internalized classical logic because it is clearly that very logic that 
is to be used in order to handle the usually (mathematically) simple lemmas that are to be 
proved in order to validate software developments. This is not to say, however, that classical 



logic is the logic of software development. Clearly, it is not. Our view is that the logic of soft
ware development is whatever logic one wants (Hoare-logic, wp-Iogic, temporal logic, etc). 
Such logics, we think, are not the ones concerned by the "how-to-prove", they are the ones 
used to generate the "what-to-prove". We think that it is important to completely separate 
these two functions in two distinct tools: this is what is done in Atelier B where you have the, 
so-called, Proof Obligation Generator based on a weakest pre-condition analysis of formal 
texts (specifications, refinements, or programs), and, as a distinct tool, the Prover alluded 
above (PB extended with PP). Our view is that, whatever the logic of program development 
you decide to use, it will generate some "final" lemmas that are, inevitably, to be proved 
within classical logic. 

Another important concept that we gradually re-discovered while developing PP is the 
concept of normalization. For instance, our decision procedure for Propositional Calculus 
is nothing else but a systematic transformation of the proposition to be proved into an 
equivalent normalized proposition of the following shape: 

p ~ (Q ~ ... (R ~ A 1\ B 1\ ... ) ... ) 

The interesting aspect of this transformation is that the proposition at hand can be dis
charged while its normalization is not completed. In other words, the normalization process 
is fully intermixed with the proof process. 

A second normalization takes place in the Predicate Calculus part of PP. In fact, the 
universally quantified hypotheses are systematically transformed into equivalent predicates 
of the following shape: 

V(x,y, ... ) .~(P 1\ Q 1\ ... ) 

where P and Q are either atomic formulae or other universally quantified formulae that are 
themselves normalized. This shape greatly facilitates the discovery of instantiations. 

Clearly, the systematic translation of Set-Theoretic statements into Predicate Calculus 
statements constitutes a third normalization process. The advantage of this approach is the 
drastic simplification of the prover. The set-theoretic axioms and numerous set-theoretic 
definitions are all concentrated in the translator, not in the logic of the prover that remains 
unchanged. 

Finally, our fourth normalization is the one undertaken in the arithmetic sub-prover 
of PP, where the relevant predicates are systematically transformed as follows (this form 
facilitates the discovery of contradictions between various arithmetic predicates): 

Another concept, which we begin to integrate within PP, is that of indexing. This idea, pre
sented in the referenced work [5], might have, when implemented, some spectacular effects 
on the behaviour of a prover, very much in the same way as a good hash-coding scheme 
has some spectacular effects on a compiler. A prover is full of "searching" structures (pat
tern matching, unification, sub-formulae searching, etc), whose influence on the speed of 
the prover is certain. The systematic replacement of searches performed in a (more or less) 
linear way by some more direct indexing schemes is, without any doubt, highly beneficial. 

g. 



A concept that is clearly missing in the ones listed above is that of induction/recursion. 
Such a negative aspect is, in general, not very interesting to mention. But, in this case, 
because of its massive presence in other similar work and, more generally, in computing 
science, its absence, as a founding concept, obviously deserves some explanations. This is 
not to say, of course, that proofs by induction should be excluded from PP: although it is not 
implemented at the moment, it shortly will, since we clearly deal with inductive structures, 
namely numbers and sequences. 

Our view is that inductive structures have been overemphasized in computing, perhaps 
because such structures are immediately computable. One should look a little more at com
puting from a non-computable world. Mathematics is full of examples where a point of view 
taken from the "complement" of a certain field helps studying it: infinity is used to study 
finiteness, the complex numbers to study the reals, more recently non-standard analysis 
provides a very interesting view point on classical analysis, etc. We think that the art of 
program development is precisely that of extracting the computable from richer not (nec
essarily) computable worlds. To do this, one should build abstract mathematical models of 
such worlds, models that are thus certainly not computable (at least in their more abstract 
versions). In order to validate our reasoning on such models, we might need some mechanical 
aids which are thus perhaps not necessarily tailored to work on computable models. 

Some Concluding Remarks. 

A prover technology, like the compiler technology more than three decades ago, is starting to 
emerge. The question of the automation and power of such provers becomes central. Hence 
old techniques should be applied and new techniques discovered in order to optimize them. 

Such provers will certainly be integrated into some tools associated with certain methods 
of software development. But they should also constitute, in my opinion, some independant 
tools at the disposal of the designers, not only the software designers, but also, perhaps, the 
system designers. 

At the moment, the initial analysis and architectural design of complex systems is done 
in a rather manual way. People perform some simulations to convince themselves that a 
certain architecture that they have in mind is viable. With a powerful prover it is, I think, 
possible to transform such simulations into genuine proofs. In very much the same way as 
the civil engineer is using its pocket calculator to quickly compute some order of magnitude, 
we could think of a future where the system designer will use also very often its "pocket 
prover" to validate some sketchy architecture he has in mind. 
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APPENDIX, Sample Problems Solved by PP. 

The formulae presented below are written with a certain classical mathematical set
ting through LATEX. Of course, they are not entered as such in PP. However, the general 
structure of the formulae given to PP is almost exactly the same, the operators being con
ventionally represented in ASCII by means of one or more symbols. 

Propositional Calculus. 

(P V Q V R) {o? (P V (Q V R)) 

(P II (Q V R)) {o? ((P II Q) V (P II R)) 

((P {o? Q) {o? R) {o? (P {o? (Q {o? R)) 

First-Order Predicate Calculus. 

V(x,y)· (P(x) II Q(y) =} R(x)) II 
:3z.(.R(z) II P(z)) II 

=} 

Vt· ',Q(t) 

:3x.A(x) 
:3y . B(y) 
Vz· (A(z) 

=} 

II 
II 

=} Vt· (B(t) =} C(z,t))) 

:3 (u, v). C(u, v) 

V(x,y,z). (R(x,y) II R(y,z) =} R(x,z)) II 

V(u,v). (R(u,v) =} R(v,u)) II 
Va·:3b· R(a,b) 

=} 

Vt . R(t, t) 

Vx.(P(x) =} x=a V x=b) II 
Vx· (R(x) =} P(x)) II 
.R(a) II 

=} 

Vx·(R(x) =} x=b) 

It"> 



3x ·A(x) II 
It(y,z)·(A(y) II A(z) =} y=z) 

¢> 

3u.(A(u) II ltv· (A(v) =} u=v)) 

T(a) II 
It(x,y)·(T(x) II R(y) II xfa =} F(a,x,y)) II 
3(u,v)· (T(u) II R(v) II W(u,v)) II 

It (b, c, d) . (R(d) II F(b, c, d) =} ,W(c, d)) 
=} 

3t· (R(t) II W(a,t)) 

Elementary Set Theory. 

a ~ b =} lP'(a) ~ lP'(b) 

axb~cxd II af0 II bf0 =} aCe II b~d 

Generalized Set Operations. 

S E 1P'(IP'(S)) litE 1P'(IP'(T)) =} U:c x U x = U x x y 
(x,Y)E$xt 

S E 1P'(IP'(S)) litE 1P'(IP'(T)) =} U:c nUx = U x n y 
x E t (x,Y)Esxt 

S E 1P'(IP'(S)) II sf 0 =} U x = n x 
xE" xEs 

Operations on Relations. 

rEs B t II a ~ s II b ~ s =} r[a U bJ = r[aJ U r[bJ 

II. 



pEs H t 1\ q E t H U 1\ r E u H v => ((p; q) ; r) = (p; (q ; r)) 

Operations on Functions. 

fEs-<+t 1\ aCt 1\ br:;;t => f-l[anb] 

Injections and Surjections. 

f E s >H t 1\ gEt >H U => (f; g) E S >-H U 

f E a ;-, b 1\ rEa H b 1\ sEa H b 1\ (r; f) = (s ; f) => r = 8 

f E a --+ b 1\ ran (f) = b 1\ rEb H C 1\ s E b H C 1\ (f; r) = (f ; 8) => r = S 

Equivalence relations. 

rEsBs 1\ 

id (8) r:;; r 1\ 
r = r- 1 1\ 

(r;r)r:;;r 1\ 

xEs 1\ 

yE8 

=> 
(x,y) E r ¢} r[{x}] r[{y}] 

fE8--+t 1\ 
r=(f;f-l) 

=> 
id (8) r:;; r 1\ 
r=,-l 1\ 

(r;r)r:;;r 
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Arithmetic. 

a<b 1\ b<c => a<c 

a50b 1\ c<d => a+c<b+d 

Intervals. 

eE(a .. b) 1\ bE(c .. d) => (c .. b) = (a .. b)n(c .. d) 

a<b 1\ cE(a .. b) => (a .. b)-(e .. b) = (a .. e-l) 

rE(a .. b) 1\ 

kE(a .. b) 1\ 

IE(r .. k) 1\ 

mE(r+l..k) 
=> 

m501 => mE(a .. b) 1\ IE(m .. k) 1\ k-m<k-r 1\ 

l<m => m-1E(a .. b) 1\ IE(r .. m-l) 1\ m-l-r<k-r 

MinimUlll and Maximum. 

a50b => min({a,b})=a 

s ~ t => min (t) 50 min (8) 

s oF 0 => max(s ut) = max ({max (8)} Ut) 
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Operations on Sequences. 

s E seq (S) II xES =;. s +-- x E seq (S) 

sEseq(S) II tE(l .. size(s))-+tS II xES =;. (s<+t)+--x (s+--x)<+t 

s E seq (S) II t E seq (S) II size (t) > 0 =;. (s +-- first (i)) ~ tail (i) s ~ i 
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The detection and elimination of spurious complexity 
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Abstract 
Computer science develops complex systems that demand all our attention to just begin to 
understand. Critical thinking is overwhelmed, that might otherwise have been directed at 
rhetoric blocking and hubris detection. This paper shows that there is much unchecked 
hyperbole in computing, which affects our own standards and ability to design well. The paper 
explains why such bullshit comes about, how people collude in its propagation, and proposes 
ways of reducing the problem. Furthermore, we show that detecting and ellminating it is a high 
calling, and must be seen as engaging in justice and fighting hypocrisy (even in ourselves), and 
is an extremely worthwhile, if daunting, task. 

"Learning how to not fool ourselves is, I'm sorry to say, something that we 
haven't specifically included in any particular course that I know of. We just 
hope you've caught it by osmosis." Richard Feynman 

Introduction 
When computers work well, they work very well. Handheld calculators would have been 
miracles a few years ago; fly by wire aircraft are very impressive ". there are many other 
examples. But when things go wrong, as they do from time to time, they can go brain dead in 
ways we would rather quickly forget than think about. 

I was told recently of a frustrated user who jumped up and down on his electronic personal 
organiser, until there was broken plastic and glass around on the floor. I am sure it was a 
satisfying experience! But can you imagine someone jumping up and down on their paper 
diary? You'd have to be mad to get much satisfaction from destroying one. 

There is something special about computer systems, which personal organisers in the story 
. represent. They are complex, unreliable - and yet we depend on them, and buy upgrades to go 
even faster. 

So what uniquely identifies computing? We could start with an approach like Turing's, but 
this defines an object of study, not what characterises it. What is unique is the impact of 
spurious, man-made complexity. Most computing is not based on elegant programs, or even 
ones that work, but consists of hugely complex systems like Windows 98, the World Wide Web 
(and all its browser software), aerospace systems, financial systems, nuclear control systems, 
video recorders, and a host of consumer gadgets, from toasters to tamagotchis. Indeed, 
tamagotchis represent computing rather well: 

• 

• 

• 

• 

• 

• 
• 
• 
• 

They are promoted as fashion accessories. Tamagotchis are available in a wide variety 
of distinctive packaging. 

They appear to be very simple (so simple that they are children's toys, and children 
can do better with them than adults). 

They have a life of their own. (famagotchis run animal simulations, such as dogs, and 
they require virtual feeding, training, virtual cleaning, exercise, and so on.) 

Their purpose in life is to be difficult to use. They have to be cared for. Cults of experts 
gain esteem from becoming knowledgeable about them. 

They are badly engineered. They have reset buttons, which indicates that their 
designers antiCipated that the internal firmware could fail. 

Despite these problems, people consume them eagerly. 

Even though they fail, this does not put off hope in a new one working even better. 

They are mass produced, and have very little intrinsic value. 

They are not difficult to design. 



I know a 12 year old who has written a Visual Basic program to behave like her (now defunct) 
tamagotchi. The complexity of tamagotchis is reasonable for a 12 year old to construct, yet what 
they are is complex enough to challenge the skills of someone like myself, with postgraduate 
qualifications in computing! 

We could make many more observations - e.g., computing systems can fail but not stop 
working (a broken bridge doesn't bridge a river, but a financial program that fails is still a 
financial program). Without over-philosophising, computing concerns objects that 

• have enormous potential for autonomy, creativity, control, and performing chores. 

• are easy to construct, and to replicate once constructed. 

• but whose behaviour is hard to identify or comprehend. 

and, in consequence, they: 

• are unlikely to achieve all intended goals (but they achieve 'enough' intended goals 
most of the time). 

• support and are promoted by a social structure that rationalises their continued 
production and consumption. 

The conspicuous feature is the difference of construction complexity versus comprehension 
complexity. We can view this difference from 'inside,' examining the programming process, or 
from' outside' examining the assessment process. 

From inside, the programming effort is effectively linear. If a program is a string of bits, 
programs grow sub-linearly with the typing the programmer does (some typing may be 
deletions). The number of things a program can do, however, grows exponentially with the 
number of interactions it performs while executing - the programmer does not know what the 
outcome of interactions will be, so each interaction bit doubles the space. So, a program has a 
complexity of behaviour that grows faster than its complexity of construction. If humans have a 
bounded rationality, it follows that there are programs people can write whose model they 
cannot understand. Indeed, routinely people who are sufficiently skilled to build objects achieve 
behaviour that is incomprehensible to them - though they may have techniques to deny it. (As 
an aside, this is why formal methods are necessary: to compress the behaviour into something 
manageable.) 

From outside, interesting things happen. A person watches the execution of a program 
mediated through its peripherals, such as a window on a screen. Any observation records a 
trace, which the person generalises into a model of what the program should be able to do in 
principle. Unfortunately, there are no guarantees to this generalisation, yet evolution has 
endowed us with over-powerful mechanisms to generalise. The so-called "media equation" 
(Reeves & Nass, 1996) says we take media as reality - evolutionarily speaking, media are so 
recent that we tend to treat everything our senses perceive as real. A real program behaving like 
one demonstrated would work everywhere else in its domain; yet the demonstration has only 
shown us a single trace, and in a demonstration one cannot distinguish between a simulation 
(which need be no more than a "film") and the real thing. 

We regularly exploit the media equation for enjoyment - for the willing suspension of our 
critical faculties. Theatre is the projection of a story through the window of a stage, and typically 
the audience gets immersed in the story as if it was real. This is deliberate. We willingly suspend 
asking questions about the story that is not projected, such as we don't worry about 
unrepresented details of King Lear's life. However, if the theatre represented a real model, such 
questions would have answers. In computing, the power and technique of the theatre is 
recruited to demonstrations - there is a literature urging the exploitation of dramatic technique 
to enhance interactive systems (Laurel, 1991). It is very hard to watch a demonstration and to 
enquire about the off-stage issues: it is as if one is breaking the cultural taboos of interacting 
with actors. It is therefore tempting to come away from a demonstration believing (or not 
knowing otherwise) that the trace was typical of the general behaviour of the program.' 

There would be no problem except we require systems to meet certain prior requirements, 
and for most systems (apart from games) these requirements are hard to meet. The people who 
design and build computing systems need certain skills . 

• Theory and theatre have similar Greek roots, derived from SEa: theory is about objects of study, 
and theatre presents objects to view or study (Knuth, 1996). 
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The issue is how to eliminate spurious complexity (that is the consequence of inadequate 
skill applied to the task of constructing objects of particular behaviour) when we are not 
disposed to see it, whether we are users or designers. 

Brief examples of problems 
Casio calculators 
Calculators are an example of a mature technology. Basic calculators have well-defined 
requirements, of accuracy and performance and so on. There have been many generations of 
calculator designs, and the manufacturers have had many opportunities to 'step' their 
production to fix known problems. The only limitations on calculators are the manufacturers' 
imagination and skill. I want to devote some space to this example because so few people see 
any problem at all. 

Casio is the leading manufacturer of handheld calculators. Two of their basic models are the 
SL-300LC and the MC-IOO. 

• Pressing the buttons AC 1 + 5 % leaves the MC-IOO displaying 1.0526315 and the SL-
300LC displaying 1.05. Yet these calculators look very similar. 

• Both calculators have memories, which (so far as I can tell) are identical. The button 
MRC recalls the stored number and displays it, but pressed twice in succession sets it 
to zero. The button M+ adds the displayed number to memory, and M- subtracts from 
the memory. Given that the calculators have a memory, how can a number displayed 
be stored in memory? (Pressing M+ presupposes the memory contains zero. And to 
make the memory zero, you have to press MRC twice, but doing that sets the display 
to the memory -losing the number we wanted to store!) 

Thus a market leader, Casio, makes two similar calculators that work in subtly different ways, 
and both proclaim features that are ironic. Memory should save paper and help the users do 
sums more reliably. Yet most users (especially those that need calculators) would need a scrap of 
paper to work out how to avoid using paper to write down the number! 

Casio has been making calculators for a long time, and the two calculators are not "new" in 
any way. It is not obvious how Casio can justify either the differences or the curious features 
shared by both calculators. Neither comes with user manuals or other information that reveal 
any problems. 

Any calculator, and the Casio ones in particular, can be demonstrated. They are impressive, 
especially if a salesman shows you them going through some typical (but unsophisticated) 
calculations. It is possible to demonstrate the memory in action, and only some critical thought 
would determine that it is a very weak feature. 

Canon cameras 
The Canon EOS500 is one of the most popular automatic SLR (single lens reflex) cameras, and is 
a more complex device, with more complex requirements, than a calculator. 

In the Casio calculator examples, despite Casio's undisputed ability to make calculators, we 
might query their ability to design them. In the Canon camera example, we have more evidence. 
The EOSSOO camera manual warns users that leaving the camera switched on is a problem. 
Canon evidently know that the lack of an automatic switch-off is a problem! There is an explicit 
warning in the manual on page 10: 

"When the camera is not in use, please set the command dial to [L J • When the 
camera is placed in a bag, this prevents the possibility of objects hitting the 
shutter button, continually activating the shutter and draining the battery." 

So Canon knows about the problem, and they ask the user to set the camera off - rather than 
designing it so that it switches itself off. A cynic might suppose that Canon make money selling 
batteries or film; the next example is another case of Canon apparently trying to sell more film: 

"If you remove a film part-way, the next film loaded will continue to rewind. To 
prevent this press the shutter button before loading a new film." 

There are many other admissions of flaws. Thus Canon is aware of design problems, but 
somehow fail to improve (the EOSSOON is a new version of the EOSSOO, with similar problems). 

Java 
Java is promoted as a programming language with a buzzword list of virtues. We will look at 
one problem: it's very easy to confuse the different behaviour of fields and methods. This is a 
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point made in the book The Java Programming Language (Arnold & Gosling, 1998), written by 
some of Java's designers: 

"You've already seen that method overriding enables you to extend existing code 
by reusing it with objects of expanded, specialized functionality not forseen by 
the inventor of the original code. But where fields are concerned, one is hard 
pressed to think of cases where hiding them is a useful feature." 

"Hiding fields is allowed in Java because implementors of existing super-classes 
must be free to add new public or protected fields without breaking 
subclasses." 

"Purists might well argue that classes should only have pri vate data, but Java 
lets you decide on your style." 

Purists may define all fields to be pr iva te, and will provide accessor functions if the field 
values are needed outside a class body. Unfortunately, this safer programming has efficiency 
implications, which is probably the reason Java is designed the way it is. 

Like the Canon camera, we see the English description of a system admitting avoidable 
problems with the system. 

Collusion 
We've shown that commonplace systems are badly designed, and we argued that bad design is 
a consequence of unmanageable complexity. Ideally, systems should be better engineered, but 
they aren't. 

There are many reasons why we collude with bad system design, whether as consumers of 
attractive gadgets that promise to do wonderful things; whether as programmers who make a 
living from developing systems; or as academics who can make a living solving the problems. 
The reasons are deep and varied psycho-social mechanisms (e.g., Baudrillard, 1998; Postman, 
1992). 

Lottery effect: computers seem to be more successful than they are 
Lottery winners are reported in the media, and we become familiar with success. But success is 
infrequent - just sampled with bias by the media! In technologies that depend on media (e.g., 
the Web) it isn't possible to sample failures anyway. Companies that experience computer 
failures and hence go out of business don't exist. 

Realism-reality gap: designers are under pressure to deliver because it is "so easy" 
Realism is easy: a look at any arcade game will show the sophisticated realism that is possible. 
The media equation implies we tend to treat realism as reality - good design is easy to fake, 
especially when you can't assess the mechanism. 

Most people therefore think programming is trivia!. (Even if it is hard, the scale of 
production means the marginal cost of design is trivia!.) So, designers are put under pressure 
from marketing, management, and everyone else, to deliver complex products faster than is 
possible consistent with doing a good design. 

Oracle effect: experts under-estimate complexity 
Experts (particularly programmers) know how complex systems should be used ("press the 
twiddle key when you do that!"), and often the reason why a user cannot operate a system is 
because they do not know some apparently trivial fact. The expert tells the user, and the user is 
impressed with the skill. The expert thinks the user is stupid, because the fact is trivia!. 

One way to use computers 
Because oracles are so successful, there "must be" a right way to use computers. It is useful to 
have a word for deliberately avoiding their narrow-mindedness. A system is permissive if it 
permits itself to be successfully used in more than one way. One that is not permissive is 
restrictive. For example, my to get my VCR from record-pause mode to record mode, I must 
press Play: yet both Pause and Record do nothing - this is both odd and restrictive. (It 
probably comes about because programmers write straight-line imperative programs, rather 
than declarative programs.) 

Even human factors experts may assume there is one right design, and that users must know 
it. Nielsen (1993) describes a permissive system, yet users were classified as "erroneous" if they 
knew only one of the alternatives! 
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Confusing automation for computation: mindless efficiency 
Computers can automate bureaucracy, and they can do it faster than by hand. This results in a 
mindless application of computers to 'solve' problems by making inefficient activities faster, 
rather than more efficient. A specific example is the way calculators merely do what mechanical 
calculators do, rather than something new (Thimbleby, 1996); and, worse, on-screen calculators 
mimic handheld ones! 

Inertia 
Lawyers have ensured that there is no liability attached to shoddy design. Consider the 
warranty that comes with any piece of software: 

"Disclaimer of Warranty .... makes no warranties express or implied, including 
without limitation the implied warranties of merchantability and fitness for a 
particular purpose, regarding the software or its use and operation alone ... In 
no event shall ... [there be] ... product liability or otherwise. " 

There is no reason to improve (this is the tragedy of the commons: because we all benefit by not 
improving), which leads to the 'state of the art' defence in law. 

Superficial usability 
Because there is one way to use computers, and because programmers "don't need" to improve, 
and because of the media equation ... , a huge emphasis has come to be placed on appearances 
and post-design methods. New computers look attractive, but they still run the same old 
software. The disciplines involved in assessing usability of systems have developed various 
non-technical approaches, and because of their effectiveness (in the face of apathy) they have 
gained ascendancy (cf. Landauer, 1995). User interface designers have seen their job as 
understanding the psychologically-interesting human responses to bad technology, rather than 
avoiding the problems in the first place. See Rettig's (1992) paper "Interface Design When You 
Don't Know How," summarising the wisdom of conventional HCr. 

If we want to improve computing beyond placebos and palliatives, we cannot look to 
usability experts for serious help - see (Thimbleby, 1998) for a constructive diatribe arguing we 
need ways to help designers. 

Usability is the user's problem 
Ralph Nader's classic book Unsafe at Any Speed (1965) shocked the 1960s car industry. He 
strongly criticised the industry for making intrinsically unsafe cars and for blaming drivers for 
accidents. "The driver has the accident and the driver is responsible," the manufacturers 
argued. Pedestrians "gently knocked" were killed, cut open by sharp body styling. Car 
manufacturers responded that in any collection of accident statistics one would be bound to get 
some gruesome cases: they denied that the inherent dangers of sharp fins were their fault, and 
anyway drivers wanted such grotesque styling! 

In the sixties people were told to drive more safely (to be 'car literate' just as today users 
read X for Dummies to be computer literate), but the manufacturers said this to deny their 
responSibility for designing safer cars. Today people have problems with computers. Today 
people are told to read the computer manual and make themselves computer literate. If a user 
does that, the problem for the manufacturer goes away. This approach feeds an industry in 
training and consultancy. 

Nader showed that many designs were intrinsically unsound and could not be driven well 
even by highly skilled drivers. The onus - not admitted in the 60s - was on the designers to 
make cars that were easy and safe to drive. It required force to make this change in perception, 
led by consumer pressure, as well as legislative and professional standards. 

Good design as engaged explanation 
Somehow, there is a gap, and it needs bridging. Good user manuals seem to be conscious of 
usability problems, but the manuals are somehow not engaged in the design process - rather, 
they are commentaries on it, written by powerless authors too late in the product design cycle. 
How can effective consciousness be brought about? One way would be to make a method of 
taking warnings in manuals as indicators of improvements. 

User manuals are often scapegoats for bad things. They are indeed often unintelligible, and 
thereby contribute to the confusion and difficulties users have. But it isn't possible to write good 
manuals for bad systems. However, manual writers do iJstand back" from mere manual-writing 
and provide users with useful advice about how to cope with problems with a thing's design. A 
user manual is a partial program for the user to 'execute' to run their side of the user interface; 
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we ought to use all the tools of computing to make user manuals better (e.g., declarative, if we 
think declarative programming is good). 

It is self-evident, and borne out by experiment (Carroll, 1990), that short manuals are better 
than long manuals. Combining this idea with the previous gives a design approach to make 
better things: 

QJI Construct the initial user manual. This step should be automated. 

, Find problems. Clearly, good technical authors are able to do this. It is likely that the 
act of explaining clearly how to use a system helps uncover problems with it. Some 
aspect of a design that cannot be explained briefly and clearly is likely to be hard to 
understand. 

(j;) Fix the design: the user manual, along with its warnings, lengthy explanations and 
invocations of oracles, is a direct indicator of the design areas that need attention. 

@ Fix the manual, having fixed the specification. (This step should be automatic if step 1 
is automatic.) 

And repeat, while each step improves the design and the product. Many 
manufacturers have the luxury of producing a range of products, and of updating 
them regularly. In such cases, one might manufacture a design before the 
improvement cycle is complete, leaving further improvements for future products. 
Thus, the method not only improves design, but gives marketing a method for 
continually enticing consumers. It ought to be easy to justify! 

To the extent that this is a good method, then systems should be designed so that user manuals 
can more easily be generated from them or their specifications (ct. literate programming: 
Thirnbleby, 1990). While at it, we can also generate other sorts of "manual" (paper, interactive, 
diagnostic, and so on) with little additional effort. 

If the user manual is written (or partly written: see Thirnbleby & Ladkin, 1995) by automatic 
tools, there is little delay in this cycle; it could be fully concurrent. If manuals have to be written 
by people without help from the formal specifications (help!), then at least in manufacturing, 
last year's manuals can be fed into this year's products. 

It is easy to write manuals that are vague, inexact and misleading. To be effective, manuals 
need to be complete and sound. Perhaps there could be internal documents that are used in the 
design process, and actual user manuals that are derived from the internal manuals, made more 
readable for users. 

More generally, for "manual" substitute any view. The formal specification of a design 
(whether as a logical formula or a circuit diagram or computer program) is "just" another way 
of explaining the design - but to a different sort of user (a mathematician, an electronic 
engineer, a programmer). These "manuals" can give the "technical author" opportunities to 
explain and help the "user." Different sorts of design problems will be brought to 
consciousness, and fixes will be suggested. Thimbleby and Ladkin (1997) use a logic 
specification of an Airbus subsystem to show that quite complex system manuals can be 
improved (and that minimisation algorithms can be used to reduce their size). 

Justice 
What do we mean by designing better things? What is good anyway, what is this goal of getting 
better? These are questions of ethics (or moral philosophy), the study of what is right. Ethics has 
a long history, going back to Aristotle (384-322BC) and earlier. 

Aristotle defines justice as the act of giving a person good. This is what designers who strive 
to design better things do. They design "good" which is embedded in the things they design. 
This good is then passed on to the users of the things. To do good design, then, is to be engaged 
in acts of justice. 

There are different sorts of justice. A user of a gadget is typically unable to negotiate over 
details of the design: in a sense, the designer has authority over the user, at least in so far as the 
product constrains the user. Justice as an act of authority is the maintenance of rights: the user 
of gadgets have rights, and just design is to maintain those rights. And there is contributive 
justice, which is the obligation to enable individuals to achieve good. In contributive justice, the 
designer contributes to the users' ability to make good use of the gadgets. Clearly, good manual 
writers contribute to a just world. 
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If design is justice, can we make use of this fact? A few thousand years of philosophising on 
justice has had little effect on the world. John Rawls wrote the classic book (1971) A Theory of 
Justice, where he promoted the idea of justice as fairness. Rawls defined justice as a system of 
rules that would be designed by people under a "veil of ignorance" of whether and to what 
extent those rules apply to themselves. By this he meant the designers do not know how they 
might be affected, so they will build a world that treats them fairly. For example, one might 
imagine that the planners of a just system are as-yet unborn. They might be brought into the 
world at any age; they do not know whether they will be rich or poor, black or white, 
handicapped or athletic, male or female, blue-eyed or green. Under this veil of ignorance they 
would be foolish to behave other than as fairly as they possibly could. They might be brought 
into the world too old to operate a video recorder" The scope of the fairness applies to the 
designers themselves as well as to the users. 

Do designers of things act justly by Rawls' definition? Mostly not. They design things they 
know they will not use, and even if they did use, they would have oracular knowledge. 
Designers are never in a veil of ignorance. Many programmers build systems that they have no 
intention of using. If, instead, they worked under the Rawls veil of ignorance, they might try 
harder - in case they ended up being a user of their system. If they were programming a tax 
program, they might end up "born as" accountants, tax-payers, civil servants designing tax law, 
tax evaders, auditors, managers, as their own colleagues having to maintain their system at a 
later date, or even as the manual writers ... they would have to design their tax program 
carefully and well from all points of view, including making manual writing easy (which gains 
the advantages described above). They might prefer to contain complexity rather than risk it 
being unmanageable. 

This idea is anyway enshrined in conventional good practice: "know the user" (d. 
Thimbleby, 1990; Landauer, 1995). Rather than merely "know" one's way into all the other 
possible roles, one might more easily, and more reliably, do some experiments and surveys with 
other people (though to do this requires the product, or perhaps an earlier version of it, to exist). 
It is pleasing that accepted design practice is also just (who wants to be called unjust?) 

To summarise: good design is engagement with justice, and we have seen two ways to do 
this. First, to stand back and be conscious of the ways in which others (users) will operate the 
product - use concurrent engineering with user manuals; secondly, to put oneseIf into the 
many different roles of usage. A consequence is that designing systems to support easier 
manual generation becomes a higher priority, and this in turn helps improve the systems 
themselves. 

Design by accident? 
Aristotle claims justice is the only virtue that can be achieved by accident. You can't have 
integrity (another virtue) by accident: integrity has to be intentional. Someone who claims to 
have integrity but does not is faking, and has no integrity. But acts of justice do not depend on 
the judge, they are outcomes and are just or unjust to the extent that they fairly affect others. 
The point for designing better things is that some designs will be good by accident. 

The market helps ensure (but unfortunately does not guarantee) that good design thrives, 
and conversely, poor design gets less market share in the face of better competition. The market 
is a force of "natural selection." Designers are the evolutionary equivalent of mutagens - they 
create mutations: they produce new designs and new variations. By Aristotle's argument, in 
design we can have a successful blind watch maker. That some blind watch makers may be 
successful by chance is no reason to copy them. If we want to design deliberately, we need a 
commitment to justice in design. This cannot be done by accident. 

Conclusions 
The argument of this paper is that computing systems are so complex and unreliable that they 
are really a different kind of thing that requires a different kind of thinking. In particular, they 
are so complex that we are no longer able to assess them for quality, and so we take them as 
objects for uncritical consumption. Our entire culture is taken up in this game: it suits almost 

, There are difficulties with taking Rawls too seriously. There are duties of just action to non
contracting parties, such as to the environment. How we design things to take their 'responsible' 
place in a larger ecosystem beyond other users, say to be recyclable, is beyond the scope of this 
paper - but that is not to imply such issues are optional; see Borenstein (1998). 
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everyone in different ways - manufacturers make lots of money (selling systems to fix 
problems that should not have been there), book publishers sell "dummies" books, marketing 
people have lots to advertise, and we all seem to swallow it whole. Indeed, it is fun to have a 
fancy device! 

If we are designing systems, we are caught up in the culture, and design over-complex 
systems that we are over-proud of. This paper suggested an approach to help design better; 
moreover, a method that can be used to help direct the design so that automatic user manual 
generation is easier. To try to escape from the cultural forces is not easy, but it may help to see 
that the effort is engagement in justice, and therefore a noble cause. 
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Fromdy/dxto [JP a matter of notation 

Stuart F. Allen 
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Abstract 

An analysis is given of the conventional ~; notation for derivatives that explains it 
as a notational abbreviation for expressions using the simpler binding structure standard 
in modern formalizations. The N uprl display system was used to implement examples of 
such notation. 

It turns out that the same methods can be used to explain conventional modal logic 
notations. We construe necessity as a first-order quantifier, in a well known way, then 
explain standard modal notation as a way simply to display these formulas of a non-modal 
logic. 

We contrast the method with the interpretation of necessity as a sentential operator, 
and also with higher-order interpretations that have been used to interpret temporal logic 
in HOL. The methods are then applied to a simple first~order temporal logic. The intention 
is that the user can work in this notation interactively, not just produce it for printing. 

The methods to be discussed here for formalizing a few mathematical and logical concepts are 
already well known, or are small variations on well known methods, and are not the true subject 
of this paper. This paper is about notational enhancements for exploiting those methods, and 
may also serve as an explanation for some notations that are conventional, but do not obviously 
conform to the simpler syntax and semantics of current~day computerized formal mathematics. 

We apply a particular combination of notational devices to a few examples, revealing their 
notational similarity. We start with Leibniz's notation for derivatives, *, and end with first~ 
order temporal logic for programs. These notational methods have been made precise, and 
implemented in the Nuprl proof development system,! where they are meant for use as working 
notation. These examples were developed within it, although almost none of the mathematics 
for which these notations were implemented has been carried out in Nuprl. 

The basic idea: How ~; works. 

Suppose Deriv(x. e(x) ; a) is a binding operator used to stand for the derivative, at a, of 
the function denoted by e(x) in variable x.2 So, for example, 

1 The author was the principal designer of the current (since 1991) Nuprl display system and editing primitives; 
Richard Eaton implemented them and provided supplementary design. The Nuprl project[6, 8] is based at 
Cornell, and is directed by Robert Constable. See www.cs.comell.edu/Info/Projects/NuPrl . 

2Dummett presents such a notation as the fonn adhering to Frege's notational demand that the sign for a 
function occur only in application to its arguments.[5] 
Of course, another useful way of denoting the derivative is with a non-binding one-place operator 

Deriv(f) == Aa.Deriv(x. f(x) ; a) 

or if we take Deriv(f) as more basic we may define 

Deriv(x. e(x) j a) == Deriv(Ax.e(x»(a) 

Each is a composition of the other with function application and lambda. These are perfectly compatible ways 
of denoting the derivative, each circumstance detennining which is silllpler to use. See the section below (p6) 
on "lifting" . 



'tb:ffil. Deriv(x. x·x+b·x 3) 6+b 

or more generally, 

'v'b,a:Im.. Deriv(x. x·x+b·x j a) = 2·a+b 

or equivalently, and this is the key move J by changing bound variable "a" to "x" J 

Vb,x:~. Deriv(x. x·x+b·x j x) ;:: 2·x+b 

At this point, we notice that the standard Leibniz style notation for derivatives acts a lot like 
the last notation; familiarly, 

'tb,x:ffil. d(x·x+b·x)!dx = 2·x+b 

Construing d(e(x))!dx as a mere notational abbreviation for Deriv(x. e(x) ; x) makes 
plain both the dependency of the whole expression on "x", and the use of ('x" simultaneously 
to indicate the argument place in the expression for the function being differentiated. 

Although there are other more complicated usages of the "dJdx'1 notation, nevertheless, 
this one is fairly common, and explanation along these lines may alleviate confusion about how 
the notation works semantically. We take the key characteristic of this usage to be simply that 
the binding variable is also used as the other (non-function) argument. 

Another familiar kind of construction from mathematical vernacular) which one might ex
plain similarly, is exemplified by: 

x is the unique integer such that P(x) 

which we could take as simply a way of displaying a term: 

u is the unique integer x such that P(x) 

in the special case that u is X, i.e., the binding variable is also the free variable. 
The Nuprl display system allows such display methods to be stipulated for terms of a general 

purpose syntax of (possibly binding) operators. Below we shall apply this notational method 
more elaborately to modal and first-order temporal logic, but first let's digress a bit and give 
some background on the system in which the notation is implemented. 

Nuprl Term Structure 

All the expressions in this paper using tt font were produced by Nuprl's display system. This 
is the notation that the Nuprl user sees while editing the underlying terms with a structure 
editor which does essentially no parsing; the forms of display are not inherent in these terms 
and the display forms may be changed at any time. 

The terms of Nuprl are iterated operators of various arities; one specifies for each subterm 
which variables become bound. The concepts of free and bound variable, and capture-avoiding 
substitution are then the usual ones. A Term is essentially a 5-tuple < op, n, t, k! X > where, 
treating the class Op of "operator names" and the class Var of variables abstractly, 

• op E Op 

• n EN, indicating the number of places for immediate subterms 

• t E {1..n} ---+ Term, indicating the immediate subterms 

• k E {1..n} ---+ N, with k, indicating the number of binding variables that may become 
bound in the i-th subterm. 

• x E IIi : {1..n}. {l..k;} ---+ Var, with X;,j indicating the j-th binding variable for the i-th 
subterm. 



For our purposes, we can assume that Op is a sequence of one or more strings, numbers, etc. 
Usually the Op of a term is just a single identifier. 

There are no further restrictions on term structure. How terms are displayed in Nuprl is not 
inherent in either the structure of terms or the definitions of constants and operators; display is 
specified separately. Operations for term editing act directly on these structures3 ) modulated 
by the display forms in force at the time. 

When we can't think of a better way to display a term, we usually just write the Op followed 
by the subterms, if any, and prefix each sub term by the binding variables for that place, if any. 
So, Op(tl; u.t2) would be the Term < op, 2, t, k, x >, where kl = 0, k2 = I, and X2,1 = u. 

For example, all(A; x. B (x» is used in the standard Nuprllibraries to represent instances 
of the universal quantifier, where A is the domain of quantification, and B(x) is the formula 
being quantified; the standard display is Vx:A. B(x) . 

Sometimes other values are included in the operator as a way of getting those values into 
the term structure as literals. When we don't have a better way of displaying them, these extra 
values are usually just written directly after the first identifier, in braces. For example, the 
basic numeric literals used in Nuprl are exen1plified by "natural..number{2} ", which has no 
immediate subterms, and is normally displayed simply as 2. 

Normally, such a discussion of term structure would lead to a description of operator defini
tions, and indeed we'll see some examples below, but our concern here is really with how such 
terms are displayed. 

Displaying Terms 

At any point during a Nuprl session, there is a set of named objects of various kinds, mostly 
loaded from library files. In addition to proofs, operator definitions, inference rules, program 
code, and documentation objects, Nuprllibraries contain objects that specify how to display 
terms. 

A specification includes a term such as derive <x>. <e>; <a» , called the "display model," 
which may contain schematic variables such as <e>, in place of various parts. The display 
spec is applied by matching for these schematic variables, then instantiating into a "formatting 
command" that is also part of the specification; formatting commands specify what characters 
to display, as well as break/margin control similar to Oppen's pretty printer methods[14]. 

Here are the display specifications used above to display the derivative. The main things to 
observe are the display models; the reader need not really understand the rest of the specifica
tion, but we show it simply to demonstrate that it is a fairly simple schematic method. Here 
is the display specification that generates the non-d/dx display form used above: 

Model: deriv«x>.<e>; <a» 
Deriv«x:var>. <e:real> 

<--MARGIN ; [ J 
<a:real» 
<--MARGIN<--SOFT 

Given a particular term, there may be several ways to display it - there may be several 
specifications having display models which match the term. In addition to this display spec, 
we have added another one for our special case: 

3Structure editing of terms, via. granunars for those terms, wa.s pioneered by Teitelbaum[16, 15] 



Model: deriv«x>.<e> ; <x» 
Attrs: *Open form*; ;apply.standard 

d<e:real:«self), AddIparms«x»> 
+-MARGIN[] 

/d<x:var> 
+-MARGIN+-SOFT 

Notice how the display model indicates t.he special circumstance of applicability, namely, 
that the same variable name must be used both as the binding variable, and as the second argu
ment to the operator. (During substitution, Nuprl usually attempts to retain variable names, 
as well as identity and difference between variables bound by the same operator occurrence.) 
The "AddIparms" element will become significant for our discussion, and will be addressed 
below. 

When a term is displayed, it runs through the display forms in a specific order trying to 
find one that may be applied to the term in question. As a result, the term d(x·x+b·x)/dx 
is normally displayed as such rather than as Deriv(x. x·x+b·x ; x) , although the user 
may temporarily disqualify the djdx form for whatever motive, such as finding the notation 
mysterious or ambiguous. The term Deriv(x. x'x+b'x ; a) , however, is simply ineligible 
for the d/dx form, and so the long form is used. Indeed, if "a" is substituted for free "x" 
in d(x·x+b·x)/dx , say in the course of a proof, then the djdx form will be automatically 
abandoned in favor of Deriv(x. x·x+b'x ; a) . Or, utilizing a simple substitution operator 
defined by e(x) ix;a ;; e(a) , 

d(x·x+b·x)/dxix;a rewrites by definition to Deriv(x. x·x+b·x ; a) . 

Let us return to the "Ad dIp arm" element in the display spec above, which has been attached 
to the formatting command for a subterm. It is rather common in informal practice to elide 
certain variables from expressions which nevertheless depend upon them, such as when the 
same variable is used repeatedly throughout a long argument or other discourse. Nuprl terms 
must include any variables they depend on, so these implicit parameters must be elided merely 
as as matter of display. 

The recursive descent display algorithm has as one argument a set of variables considered 
to be implicit parameters. The display form in question stipulates that whatever variable of 
the instance matches the schematic variable <x> will be added to the implicit parameter set 
when the sub term is displayed. 

It is possible to stipulate that a given display form is usable only if certain variables are 
in the implicit parameter set. To continue with our d/dx example, suppose we wish to work 
with functions that will normally depend on the variable x. We may define a special function
application form that is intended for use mainly with x as its argument, and whose display 
elides x when it's an implicit parameter, but shows it otherwise. Here's an example of using 
this apply form with function y. 

Vb:lP!,y:lP!-->IPL (Vx:lP!. y(x) ; x·x+b·x) =:> Vx:lP!. dy/dx ; 2'x+b 

(Note the abbreviation of the iterated quantifier. The display system has several iteration
related capabilities.) If we alpha-convert Vx:lP!. dy/dx ; 2'x+b ,changing all binding x's to 
v, say, we get 'v'v:IPL dy(v)/dv = 2'v+b , in which the argument to y now stands revealed 
because it is not x. There is further discussion of calculus notation in [13]. 

To summarize, N uprl has been used to explain certain d/ dx notations, not by extending the 
basic term structure and altering concepts of binding, but rather by construing them simply as 
notational abbreviations for certain forms of notation having the more 'commonly understood 
binding conventions) and explicitly containing the variables upon which they depend. In search 
of other applications for this device, let us turn our attention to the notations of Modal Logic. 

'LB. 



Modal Logic: first-order necessity 

Rather than proceeding directly to first-order temporal logic for programs, we begin more 
simply with modal logic under a possible-worlds semantics. 
Nonstandard Nomenclature Warning: OUf consideration of modal language will compare three 
ways that modality may be expressed, depending on whether necessity is taken as a proposi
tional operator, a first-order quantifier, or an operation on proposition-valued functions. We 
assume that any modal logics we are interested in might have ordinary quantifiers, and perhaps 
higher-order functions; so we shall appropriate the adjectives propositional, first-order, and 
second-order J when applied to modal concepts, to indicate which of these three treatments of 
the modal operators is pertinent. We shall use the adverb "modally/' to modify these three 
adjectives. 

Let us use the term modally propositional formula in reference to the standard syntax of 
modal logic, in which the modal operators are sentential operators, and with the semantics 
defined with respect to possible worlds in the manner of Kripke[9J. Below, we ""sume the type 
PW is the type of all possible worlds, and (W Pwrt W' ) means 101 is possible with respect to W' . 

It is well known that (what we call here) modally propositional formul"", can be translated 
into a non-modal language.[3, 2, 1] The modal sentential operators are eliminated in favor of 
explicit quantification over possible worlds, and various properties and relations are extended 
to take a possible world as an extra parameter. The same goes for temporal logics and logics 
of tense. Thus, the definition 

Nec(W. p(w) ; W') == Vw:PW. (II Pwrt II') ~ P(w) 

having as its definiens the result of the standard translation, may be regarded as a definition 
of the necessity operator. Let's call this operator first-order necessity, since it is works like a 
first-order quantifier. 

Now, applying the method used above to explain d/dx, we stipulate that terms of the form 
Nec(theWorld. <P> ; theWorld) are to be displayed as []<P> . Note that we are further 
restricting this method of display so that it applies only when the variable is exactly the World. 
Again, we shall make theWorld an implicit parameter in the display of the sub term <P>, in 
order to allow its suppression. 

We can now characterize the modally first-order formulas of our language"" those in which 
the World is the only variable, free or bound, that ranges over PW , and further, that thellorld 
is bound only by modal quantifiers, such as necessity. These formulas are very nearly those 
that result from the standard translations of modally propositional formulas into non-modal 
formulas. The differences are two: we use the first-order necessity operator instead of what it 
expands to by definition, and we completely limit the choice of possible world variable. So the 
actual standard translations are all the alpha-variants of our modally first-order formulas after 
eliminating the first-order necessity operator by expanding it according to its definition. 

Next, let us sayan operator is first-order world-relative when it has an argument place for 
expressions of type PW . When adding first-order modal operators such as necessity, it is not 
necessary to make all other operators world-relative as well; we just need to ascertain whenever 
a new operator's meaning depends on possible worlds, and make it world-relative. 

For example, let Person(101) comprise the persons existing in world \01, and when theWorld 
is implicit, display Person(theWorld) simply"" Person. Further, for II E PW and for all 
possible persons x, let "x invented bifocals in !,oJ" mean what it looks like. Then 

,[](3 x:Person. x invented bifocals) 

is simply 

,Nec(theWorld. 3 x:Person(theWorld). 
x invented bifocals in the World 

theWorld) 

2...~. 



but is more effectively displayed. More generally, if for every world-relative operator, the user 
has specified a display form which elides theWorld when it is implicit, then modally first-order 
formulas will be displayed with ordinary modal notation. 

It should be emphasized here, that this is not a translation from modally propositional 
to modally first-order formulas - there is only the one non-modal language here, and we are 
simply providing an alternative explanation of the standard modal notation as a combination 
of notational devices for the non-modal language. When one constructs proofs in Nuprl, the 
display forms are not visible to the inference engine, so the usual tactics apply to these formulas. 

If in the course of using modally first-order formulas, the user should generate a formula 
that is not, this becomes evident from the disappearance of the standard modal notation. For 
example, even rewriting a first-order necessity operator by its definition results in a term that is 
not modally first-order, since avoiding capture of theWorld forces a change of bound variable. 

[J [](3 x:Person. x invented bifocals) 

becomes 

Vw:PW. (w Pwrt thellorld) => 
Nec(theWorld. 3 x:Person(theWorld). x invented bifocals in theWorld ; II) 

Even though the second occurrence of the necessity operator remains, it is no longer a modally 
first-order formula because it is no longer necessity with respect to theWorld; and observe that 
no alpha conversion of the whole can restore it. Roughly put, denoting a relation between two 
possible worlds, gets you kicked out of the modal notation. Of course, you can still proceed 
with the non-modal formulas, and maybe you'll recover modal formulas down the road. Either 
way, it will be easy to discern in the display of the terms. 
Before moving on to temporal logic, we shall review how to construe modal notation in non
modal higher-order logic. 

Lifting: second-order necessity 

Here we examine an already-existing method for embedding modality in a non-modal higher
order language. The HOL system[7] has been host to embed dings of Lamport's Temporal 
Logic of Actions (TLA)[12J. Exposition may be found in [11, 17, 4J. Let us examine how their 
methods apply to the simpler modal logic we have been using. 

As it was with the derivative,2 we may also define 

NEC(F) == >'11' .Nec(lI. F(W) ; II') 

which may even be used in concert with the first-order necessity operator we have been dis
cussing. 4 These two operators denote the same function, in a sense, by different methods. Their 
use differs by how one applies them in order to form propositions. Let us call this operator 
second-order necessity, since it is most likely to be useful in a higher-order language. 

In the previous section, modal notation was explained by adopting notational conventions 
for eliding thellorld from the display of world-relative operators. Any other constants and 
operators were simply left intact with the usual meanings and notations. Observe, for example, 
that in 
,[] (1 :;;; 1 V (3 x:Person. x invented bifocals)) , the operators for negation, equal
ity, existence, disjunction, and 1 are the ordinary operators, with no unusual interpretation. 

In contrast, interpreting necessity as the second-order necessity operator NEC(F) entails 
interpreting the propositional formulas generally as functions on possible worlds. Adding an 
operator for bifocal inventing would go like this. Who there is, and bifocal inventing, are world 
dependent, so PERSON E PW~Type is a simple function-valued constant, having no built-in 
argument places. The operator "x INVENTED BIFOCALS" has only the one built-in argument 



place, and for any possible person x, (x INVENTED BIFOCALS) E PW->Prop so the possible 
world must be supplied through function application. Gall such operators second-order world
relative. 

Let us say a modally second-order formula is an expression of type PW-+Prop , having no 
variables ranging over PW. SO, just as expanding the definition of first-order necessity within 
a modally first-order formula destroys its status as such by forcing the use of two different 
PW variables, expanding the definition of second-order necessity within a modally second-order 
formula destroys is status as such by forcing the use of a binding PW variable. 

Now we come to what may be the main drawback of this perfectly legitimate higher-order 
method of interpreting modality. In order to build complex formulas to which we shall apply 
modal necessity, we must lift all the non-world-relative operators of the language, which means 
to define variations of them that operate on functions from PW. For example, we must define a 
lifted version of negation, perhaps by, 

NOT(F) == AW.~F(W) 
Then, by stipulating that the second-order modal operators, the lifted operators, and the re
maining second-order world-relative operators are displayed the same as their modally proposi
tional counterparts, we achieve yet another alternative explanation of standard modal notation. 
Then, NEC(NOT(x INVENTED BIFOCALS» would display as []~(x invented bifocals) . 
Again, this is essentially the method of [11, 17, 4]. 

Of course, in a higher-order language, both first-order and second-order necessity can coex
ist. If all the first-order world-relative operators have been supplied with second-order relative 
counterparts, and all the non-world-relative operators have lifted counterparts, then one can 
translate between the modally first- and second-order formulas. To translate a modally second
order formula, form its application to theWorId, then do the beta-conversions. Reverse the 
process to translate back. 

So, if you want to use a first-order logic, or otherwise avoid lifting all your operators, then 
use first-order necessity. 

Temporal Logic: addresses 

Now we move to temporal logic, which is a modal logic where the possible worlds are times. 
The interesting additional feature is a class of "variables" whose values are taken relative to a 
state that varies with time. Let us use the terms temporal and temporally instead of modal and 
modally. Our purpose here will be to give an alternative explanation of temporal notation as a 
display form for temporally first-order formulas. 

Let's take the first-order temporal logic given by Kroger[lO] as our standard. Its temporal 
operators such as nexttime, henceforth, and atnext are applied to propositions, so we may say 
this is a temporally propositional logic. Time is taken to be the natural numbers, with successor 
being the next time. 

Each "variable" is classified as "local" or "global." The globals are ordinary logical variables, 
but the locals cannot become bound, and their values are time-dependent. This is effected 
by a parameter to the semantics which is a function from time and locals to values. We 
shall avoid this nomenclature, reserving the term "variable" for logical variables susceptible 
of quantification-as-usual, and instead of "local variable" we shall say "address" in order to 
emphasize the connection to program state. 

Let's begin. The type of addresses will be Addr, which we may assume here to be some 
class of identifiers. Address literals will be distinguished by some characteristic form such as 
addr{XYZ}, which we'll simply display as XYZ in the same way as done above for numeric literals. 
Here are our first-order temporal operators: 

NextTirne(t. P(t) ; r) == P(r+l) 

HenceForth(t. P(t) ; r) == Vn:{r ... }. P(n) 

AtNext(t. Q(t), pet) ; r) 
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== 'ltn:{r+l ... }. ('ltj:{r+l ... }. Q(j) ~ n:::j) ~ Q(n) ~ pen) 

We define {i. .. } == {j: i.Z I i:<=;j}. The AtNext operator says that the next time, if any, that 
Q holds, then so does P. Also note that when the same variable binds in two subterms, we don't 
need to display the binding occurrence twice. Now we apply the display device for first-order 
modal operators to these first-order temporal operators, using theTime as the distinguished 
variable, getting these three standard temporal notations: 

o<P> ; [] <P> ; <P> at next <Q> 

Now for the time-dependent values at addresses. The type of state sequences, or behaviors, is 
N~Addr~T for some type T of values. We define an operator for the value of an address 
a, at a time t, for a behavior s as a{s<ot} == s(t,a) and we stipulate that the display of 
<a>{theBeh<otheTime} when theBeh and theTime are implicit, shall just be <a>. (Of course, 
the user will need help from the editor to effectively use such "invisible" operators, to make 
their detection and manipulation easy.) Thus, the formula 

'ltx:T. x = a ~ o(x = a) 

where a is an address literal, is just an informative display of 

'ltx:T. x = a{theBeh<OtheTime} ~ 
NextTime(theTime. x = a{theBeh0theTime} ; 

theTime) 

This temporal formula is used by Kroger as part of a demonstration that you are not free to 
perform all-elimination on arbitrary expressions. In particular you must make sure that no 
address expressions are introduced into the scope of a temporal operator. One must not, say 
for address literal b, infer b = a ~ o(b = a) from 'ltx:T. x = a ~ o(x = a) . 

The corresponding phenomenon in the temporally first-order interpretation, where one may 
of course do the substitution without such a restriction, is this: 
we are actually substituting b{ theBeh~theTime} for free x, which forces a change of bound 
variable in the first-order NextTime operator. So, the substitution works, but we have been 
kicked out of the temporal notation for trying to relate two Times, t and theTime, in the scope 
of the temporal operator, ending up with 

b = a => NextTirne(t. b = a{theBeh~t} ; theTime) 

(Remember, theTime is implicitly attached to b here.) 
Let us conclude with a remark about Lamport's TLA[12J. He separates it into the simple 

TLA and the full TLA. In [17J there is a straightforward treatment of the simple TLA in HOL 
using the higher-order method; there is quite a lot of operator lifting, and several kinds of it. 
With the first-order methods we have been describing, the simple TLA is quite tractable, and 
there is no lifting (although there is one coercion from "actions" to "formulas" of TLA). There 
is no space to give it here, but with a copy of Lamport's Figure 4 of [12J in hand, you may well 
find that our methods apply fairly directly, though non-trivially. Suggestions if you want to try 
it: Use three special variables, two for states and one for behaviors, say theState, theNextState, 
and theBeh. Use the TLA "prime" notation f' simply as a display form for "let theState = 
theNextState in J", where f may contain theState free. Let the notation be your guide. 

The difficulty with extending our temporally first-order explanation of simple TLA to full 
TLA is that we treat state-dependent "variables" as addresses, and this doesn't help us to 
explain Lamport's use of these "variables" (which he calls flexible variables) for existential 
quantification, which is key to the full TLA. 

Thanks 

Bob Constable and Jim Caldwell discussed these ideas with me, and commented on drafts. 
I appreciate their generous efforts and the resulting improvements in my presentation. My 
thanks also to the referees, who provided useful criticisms. 
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Abstract. A compact and structured format for presenting proof obli
gations is described. The format places the formulas and proof obliga
tions in the form of a spreadsheet, where rows are formulas, columns 
are obligations, and cells record whether and how a formula appears in 
an obligation. This spreadsheet presentation frees the proof system from 
some interface-related restrictions, and allows users to follow a more 
natural style of problem solving. It can be applied to either sequent or 
tableau logics, and can be used by most theorem proving systems. An 
initial implementation is discussed, some recommendations are made for 
future effort, and a graphical user interface design is proposed based on 
the spreadsheet model. 

1 Introduction 

When we want to prove a theorem using a proof assistant, we the users are faced 
with the task of processing a large amount of complex information. The single, 
small theorem we wanted to prove may expand, during the course of the proof, 
into many "proof obligations" - sequents we need to prove or tableau branches 
we need to close - each of which contains many formulas. Most proof assistants 
handle this complexity by displaying only the "current obligation", and allowing 
us to change to another current obligation if we want. However, we still often 
need to answer questions like: 

"How is this obligation different from the other one I just proved?" 
"Is this formula significant in this obligationT 
"Does this formula appear in some other obligation?" 
"Where is that easy obligation that I wanted to prove first?" 

These questions are difficult to answer with conventional presentations of the 
set of active proof obligations, when that set becomes large. Displaying all obli
gations one by one takes up too much of the screen or window, and swamps 
the user in details; but displaying only some obligations hides information which 
may be important. 

The problem of displaying a collection of objects, each containing many sub
objects, also comes up in the design of computer-based accounting packages 
(for instance, when financial data for several months contains data for several 



kinds of expenses). This problem was largely solved by Bricklin and Frankston's 
revolutionary 1978 program Visicalc [Nor83]. Since then, accounting packages 
have consistently displayed information in an electronic form of spreadsheet, 
in which information is presented in related rows and columns. The computer 
spreadsheet's strength is that it provides a "good division of labor between text 
and graphics [and also] a careful integration of text and graphics" [Nar93]. 

Why should a spreadsheet format be appropriate for proof obligations? The 
key observation here is that although we may have many obligations, each con
taining many formulas, the number of distinct formulas is often small. Consider 
an initial formula of the form A V ((B V (D&F))&(C V (E&G))). The first steps 
of a proof of this formula in a sequent-based system can result in four sequents, 
each with three formulas each. These sequents would take at least 4 ·3 = 12 
lines to display in a conventional proof assistant interface, and the underlying 
structure of the sequents would not be apparent. It is arguably more compact 
and better organized to present the sequents as: 

Sequent a Sequent b Sequent c Sequent d 
Formula A • • • • 
Formula B • • 
Formula C • • 
FormulaD • 
Formula E • 
Formula F • 
Formula G • 

Here, a bullet in a cell indicates that the formula is in the sequent, and a blank 
space indicates that the formula is not in the sequent. This simplified tabular 
format contains the kernel of the idea of the spreadsheet presentation. 

The spreadsheet presentation condenses and correlates all the information 
relevant to a proof, with associated benefits. However, it can be less clear than 
conventional presentations in some respects, unless certain problems are avoided. 

In this paper, I discuss the spreadsheet presentation in detail. First, I report 
on the implementation of it in the experimental proof assistant SVP, and describe 
the merits and deficiencies of spreadsheets in general and that implementation 
in particular. Next, I give some suggestions for spreadsheet presentation imple
mentation when conventional scrolling user interfaces are used. I then describe 
a proposed design for a graphical user interface (G UI) based on the spreadsheet 
presentation, which could significantly increase the usability of proof assistants. 

2 An Initial Implementation: SVP 

It is perhaps easiest to introduce the spreadsheet presentation by describing an 
actual implementation. The proof assistant SVP is a system for proving proper
ties of Prolog programs, based on the author's semantics for depth-first, left-to
right Prolog with ground negation [And91, And93, And97]. It uses a scrolling, 
ASCII command-loop interface. At every command which changes the state of 

'Ss. 



Stage 5, proof of "\s list (X) => \s append(X, [], X)" 
-----+---------------------------------------------+--------------

I Sequent 
Fml# I Formula I abc d 
-----+---------------------------------------------+--------------

1. 
2. 
3. 

4. 
5. 
6. 
7. 

\s append([X_#1IXs#2], [], [x_#1IXs#2]) I 
\s append ([], [], []) I TC 
\s append( 'Ind_X#3, [J. 'Ind_X#3) I 
\s list (' Ind_X#3) I 
\s list(Xs#2) I 
\s tail( [X_#ll Xs#2], 'Ind_X#3) I 
\all Ind_X (\s tail( [J, Ind_X) => \s I \ 
list(Ind_X) => \s append(Ind_X, [J, Ind_X» I 

/ / 

/ 
\ \ 
/ 

/ 

\ 

\ 

=====+=============================================+============== 
Sequent provable?.. I y 

Fig. 1. A spreadsheet representing an example proof state. 

the proof, the system automatically displays the spreadsheet which describes the 
current state. SVP is sequent-based, so every proof obligation is a sequent. 

Stark [Sta97] has written a proof system with similar capabilities, though a 
different interface style. Here I focus only on the aspects of SVP that are most 
relevant to discussion of spreadsheets. 

2.1 The Layout of the SVP Spreadsheet 

Figure 1 shows a spreadsheet from one stage of an actual inductive proof 
using SVP. The property being proved is that appending any list to the empty 
list results in the original list. 

There are really two parts to an SVP spreadsheet: the spreadsheet proper 
(above the line of = characters) and the summary line (below the line of =). The 
spreadsheet proper has two large columns on the left and one more small column 
for each sequent. The second column contains the text of the formula; the first 
column contains a number associated with the formula, for reference purposes. 
If a formula does not fit within the formula column (formula 7 is an example), 
SVP displays it split over several lines at blank spaces. 

Each sequent is given a unique, one- or two-letter name for reference purposes. 
These names appear at the top of the sequent columns. The spreadsheet cells 
appear at the intersection of every formula row and sequent column. The cell at 
the intersection of the row of formula if; and sequent (j contains a code signifying 
whether and how if; appears in (j. The most common cell codes are the following: 

Blank space: ¢ does not appear at all in (j. 

\: 1> appears on the left (as an assumption) in cr. 

36. 



Stage 5, proof of "\5 li5t(X) => \5 append(X, [J, X)" 
-----+---------------------------------------------+--------------

I Branch 
Fml# I Formula I abc d 

-----+---------------------------------------------+--------------
1. \5 append([X_#1IX5#2J, [], [X_#ll X5#2J) I 
2. \5 append( [] , [], []) IT-
3. \5 append('Ind_X#3, [], 'Ind_X#3) I + 
4. \5 li5t('Ind_X#3) I 
5. \5 li5t(X5#2) I + + + 
6. \5 tail([X_#1IX5#2J, 'Ind_X#3) I 
7. \all Ind_X (\5 tail([J, Ind_X) => \5 I + 

li5t(Ind_X) => \5 append(Ind_X, [J, Ind_X)) I 

Branch closable? .. I y ? ? ? 

Fig. 2. A tableau version of the spreadsheet in the previous example. 

/: q, appears on the right (as a conclusion) in (T. 

X: q, appears on both the left and the right of (T. 

If a formula appears on both sides of a sequent, the sequent is considered proven. 
A sequent is also considered proven when a true formula, for instance a = a

J 

appears on the conclusion side or a false formula appears on the assumption 
side. For these cases there are two other cell codes: 

- TC: <P is a ((true conclusion"; it appears on the right in (J" and is true. 
- FA: ¢ is a "false assumption"; it appears on the left in (j and is false. 

The summary line ("Sequent provable?") comes below the spreadsheet 
proper. It uses the columns corresponding to the sequents, but ignores the two 
leftmost columns. This "bottom line" shows what the current provability status 
of each sequent is: whether it is provable (Y) or unprovable (N), or whether its 
provability is currently unknown by the system (-). The user's goal, of course, 
is to end up with a line of Ys on the summary line. 

SVP is sequent-based, but we could use the spreadsheet presentation in 
tableau-based systems as well; all we would really need is a change of sym
bols. Figure 2 shows how the example spreadsheet from Figure I might look in 
a tableau-based system, where obligations are branches. 

2.2 Types of Rules in SVP 

The spreadsheet presentation informs the kinds of operations we can perform 
with SVP, and particularly the view of the sequent calculus proof rules. The 



logic of SVP is classical first order logic with equality, augmented by the unary 
connectives \s and \f for success and failure of Prolog goals. The proof rules of 
SVP are divided into three kinds: automatic, default and special. 

The automatic rules include the rules for the propositional connectives, 'if on 
the right, and :3 on the left. These are the rules which can be applied without 
fear that they may lead away from a proof. The user can issue the command 
auto to ask the system to apply automatic rules until no more are applicable, 
or set a switch to ask the system to do an auto operation after every command. 
Note that with the spreadsheet presentation, the system can apply even the 
sequent-splitting rules for conjunction on the right or disjunction on the left 
automatically. This is typically not done in conventional proof assistants, because 
of the risk of producing a set of obligations too big for the user to handle. With 
the spreadsheet presentation, each sequent split simply adds a column to the 
sheet. 

Some given types of formulas on a given side of a sequent have default rules 
associated with them - for instance, :J formulas on the right and V formulas on 
the left. These are rules which may lead away from a proof, but are so commonly 
used that it is easier to have a single command for them. The user can ask the 
system to apply these default rules by issuing the command def n, where n is 
the spreadsheet number of the formula. 

The special rules include the thinning, cut and induction rules. These are rules 
which mayor may not apply to a single formula, but are used less frequently 
than the default rules or need extra arguments. The user can ask the system to 
apply these rules by special-purpose commands. 

2.3 Working with the Spreadsheet 

SVP displays the spreadsheet after every command, but it is always possible 
to get a conventional display of a sequent's contents in SVP by issuing the 
command sequent (label) , where label is the sequent's label. SVP keeps track of 
which sequents are provable, marking Y in the summary line when appropriate. 
The user can ask the system to hide any sequents which have already been 
proven. Formulas which appear only in hidden sequents are also hidden. 

To prove a formula, we typically first indicate how to prove the formula by 
induction, a subject outside the scope of this paper. Our "only" task then is to 
enter commands, in the sequence that will lead to a proof, which apply default 
and special rules. I place ('only" in quotation marks because the task is by no 
means trivial; however, it is still easier than having to select the sequence of 
applications of both the sequent-splitting rules and the default and special rules. 

3 Strengths and Weaknesses 

The spreadsheet presentation has some advantages over conventional presenta
tions, but is not uniformly superior. In addition, the SVP implementation of 
spreadsheets can be criticized in some regards. 



3.1 Strengths of Spreadsheets and SVP 

The most obvious strength of the spreadsheet presentation is that the display 
of the current proof state is more compact and structured than in conventional 
presentations. This in turn means that it is easy to compare sequents directly, 
easy to find a formula of interest and the sequents it is in, and easy to find 
sequents with predicted properties (such as the base case of an inductive proof). 
This facilitates a natural, "opportunistic" style of problem solving in which the 
subproblem which the user believes to be easiest is solved first. 

With spreadsheets, more rules are able to be applied automatically, as noted 
in Section 2.2. Also, rules which apply to a formula which appears in many 
sequents (such as a Prolog predicate unfolding, in SVP) need be applied only 
once. This cuts down on repetitive steps. 

A more subtle advantage is that proofs are made linear by the spreadsheet 
presentation. Even steps that apply to only one sequent do not require a con
ceptual shift in direction; the spreadsheet still summarizes the state of the entire 
proof. For a typical size of proof, the previous sheet appears in its entirety imme
diately above the current sheet in the window in which the system is being run, 
so the user can compare the two states and see the effect of the last command. 
The user can back up to any previous state in SVP with the backup command. 

3.2 Weaknesses of Spreadsheets and SVP 

One inherent disadvantage of the spreadsheet presentation is that it is unfamiliar 
and not immediately obvious. A user must follow a certain learning curve to be 
able to read the spreadsheet easily. 

In the SVP implementation, the rows and columns have a fixed ordering, so 
it is sometimes difficult to focus on a given sequent and pick out which formulas 
are its assumptions and conclusions. Also, the number of a formula in the sheet 
may change from stage to stage of the proof, forcing the user to look up a number 
for each command. These problems will be addressed in the next section. 

4 Recommendations for Scrolling Interfaces 

Most theorem provers are implemented at present using a scrolling, ASCII 
command-based interface. It seems clear that the spreadsheet presentation can 
be implemented, at least as a user alternative, in most such systems. Here I give 
some recommendations for implementing spreadsheets on such theorem provers, 
based on my experiences with SVP. I group these into recommendations for 
managing formulas, and those for managing obligations. 

4.1 Managing Formulas 

There are various ways in which the rows (formulas) of a proof obligation spread
sheet could be ordered. For instance: 



- In the SVP order (by lexicographic order on internal representation). 
- By order of first appearance of the formula. This would make a tableau 

appear very close to its traditional format. 
- By lexicographic order on output format. 
- By listing the assumptions of a given sequent first, then the conclusions, and 

sorting the rest by any of the above methods. This would allow the given 
sequent to be read easily. 

We should probably have the ability to choose between these orderings. 
Formulas should be numbered in such a way as to keep the numbers low J but 

to retain a unique number for each formula during the entire course of a proof. 
I suggest that the numbers reflect the order in which the formulas were first 
displayed, ignoring any formulas which have been created temporarily within a 
given step but never displayed. 

Finally, in SVP, formulas are displayed within the formula column, split 
across lines at the most convenient blank. Some form of prettyprinting within 
the column seems to be more desirable. 

4.2 Managing Obligations 

SVP orders obligations by order of creation. This has not proven particularly 
useful. The only really useful ordering seems to be by order of position (left to 
right) in a traditional sequent proof or tableau. However, it is not clear that 
labelling the columns to reflect this ordering is useful. It may be more useful to 
label them according to their order of creation, as with formulas, so as to keep 
the labels small and still attach a permanent label to each obligation. 

5 A Graphical User Interface 

Here I give some recommendations on how a graphical user interface could be 
constructed to aid a spreadsheet proof system. 

The window containing the spreadsheet should be laid out as in the scrolling 
interface, but with all formulas, column labels and cells responding to mouse 
clicks. In a drawing program, users are able to select from a set of "tools", 
such as a line-drawing tool or a box-drawing tool. The tools are displayed as 
icons which can be selected by the user. Similarly, in a spreadsheet-based proof 
assistant, the user should be able to select from a set of "formula tools" or 
"obligation tools". When a particular tool is selected, the user should be able to 
click on a particular formula, obligation or cell to apply the tool. Some possible 
formula tools are: 

- Default: apply the default proof rule to the formula. This should be the 
default tool, as well. 

- Thin: eliminate the formula. 

"to. 



Choosing a formula tool and then clicking on a cell should apply the appropriate 
operation to just that formula in that sequent. Clicking on a formula should 
apply the operation to all copies of the formula in all sequents. 

Some possible obligation tools are: 

Sort: sort the formulas to make this obligation's assumptions and conclusions 
come first. This should be the default obligation too!. 
Hide: hide the obligation. 
Induction: apply induction to the obligation. This should cause a dialogue 
box to pop up to allow the user to enter further information. 

It may be preferable for the user to do column operations by selecting the column 
first and then issuing a keystroke command or selecting from a menu. 
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Abstract 

Although a number of mechanical provers have been introduced and applied widely by academic researchers, 
these provers are rarely used in the practical development of software. For mechanical provers to be used more 
widely in practice, two major barriers must be overcome. First, the languages provided by the mechanical 
provers for expressing the required system behavior must be more natural Jar software developers. Second, 
the reasoning steps supported by mechanical provers are usually at too low and detailed a level and therefore 
discourage use of the prover. To help remove these barriers, we are developing a system called TAME, a 
high-level user interface to PVS for specifying and proving properties of automata models. TAME provides 
both a standard specification format for automata models and numerous high-level proof steps appropriate 
for reasoning about automata models. In previous work, we have shown how TAME can be useful in proving 
properties about systems described as Lynch- Vaandrager Timed Automata models. TAME has the potential 
to be used as a PVS interface for other specification methods that are specialized to define automata models. 
This paper first describes recent improvements to TAME, and then presents our initial results in using TAME 
to provide theorem proving support for the SCR (Software Cost Reduction) requirements method, a method 
with a wide range of other mechanized support. 

1 Introduction 
A good theorem prover interface has several goals. At the first, most immediate level, an interface should be 
designed to make the customary interactions with the theorem prover as convenient as possible. For example, 
the interface should make it easy and convenient to display known facts (such as theories and lemmas) [19] 
and should provide automated support for selecting applicable proof rules [21, 20]. It should also facilitate 
the selection of proof rules, lemmas to apply, expressions inside a proof goal to be used as instantiations, 
and so on. At a second, somewhat deeper, level, an interface should provide supplementary services in the 
theorem prover itself. For example, a user should be able to add annotations to proofs [13] or to obtain 
human-understandable proof scripts [5]. At a third, even deeper, level, an interface should provide derived 
proof rules that allow the user to reason in familiar ways, e.g., using his favorite logic and syntax. Isabelle 
[15, 14] is designed particularly to support such interfaces, but any "programmable" prover can support 
them. For example, a proof assistant for the duration calculus has been built on top of PVS [18]. 

We are developing a tool called TAME (Timed Automata Modeling Environment) [1, 3, 2] that provides 
interface features at both the second and third levels for PVS (Prototype Verification System) [17]. In 
particular, TAME supports reasoning about automata models by providing specialized PVS proof steps that 
are appropriate for proving properties of such models and that automatically annotate both proof goals and 
saved proofs with meaningful labels and comments. Currently, TAME is comprised of these specialized proof 
steps together with a set of standard theories and automata templates upon which the steps rely, and in 
itself has no interface features at the first level. However, we have recently investigated the integration of 
TAME into a set of tools called the SCR toolset [9, 6, 7]. The SCR tools are designed to support editing and 
performing various kinds of analysis on requirements specifications of control system software. Once TAME 
has been fully integrated into the SCR toolset, the user who wishes to apply TAME to an SCR specification 
will have first-level interface support, including the extensive interface support already provided by the SCR 
tools. Ultimately, we also plan to provide direct first-level interface support for TAME. 

Our goals in developing TAME are somewhat different from the goals of the developers of the duration 
calculus assistant. Rather than supporting a particular logic, TAME supports proof steps "natural" to 
humans reasoning about automata models [2]. To the extent feasible, TAME hides the the raw PVS logic 
from the user who is proving properties of automata, since interacting with PVS in its "raw" form has its 
difficulties. For example: 

• Formula numbers may be needed, e.g., in skolemization or instantiation; this can lead to non-portability 
of proofs or difficulty in defining generic strategies . 

• Rather obscure proof steps, e.g., the APPLY-EXTENSIONALITY rule, are occasionally needed to 
perform reasoning that is "obvious" to a human. 

"'This work is funded by the Office of Naval Research. URLs for the authors are 
http://www.itd.nrl.navy.mil/ITD /5540 /personnel/ {archer,heitmeyer} .htrnl 



• Quantified formulae may need as instantiations complex, sometimes multi-line, expressions that are 
cumbersome to supply using the standard PVS interface. 

• Proofs are often structured more for the needs of the prover than for the needs of the human construct
ing the proof. For example, splitting an hypothesis can produce several proof goals whose significance 
is hard to understand, and require the user to provide obscure proof steps. This is particularly a 
problem when, as often happens, the split hypothesis is an implication and the user's arrival at the 
later proof goal or goals is delayed in time. 

• Many proof steps provided by raw PVS are either too small or too large when compared with reasoning 
steps natural to a human. Proofs that require many small steps become quite tedious. When a large 
step involving the PVS decision procedures is used in a proof, the significance of resulting subgoals (if 
the step does not com plete the proof) is obscure. 

The problems listed above are not for the most part peculiar to PVS. They or their analogues are likely to 
arise with any mechanical theorem prover. However, these difficulties demonstrate why following a more 
natural style of reasoning in PVS requires improvements to the PVS interface. 

As indicated in [2], we have successfully defined and applied TAME proof steps which are more "natural" 
for humans than those provided directly by PVS. An important reason for our success is that TAME is an 
interface specialized for particular proof styles and particular models. However, certain barriers prevented 
us from doing more. Recent enhancements to PVS, soon to be incorporated in the general PVS release [16], 
remove some of these barriers allow more sophisticated proof steps that avoid the difficulties listed above. 
The enhancements allow us to provide more information to the user about the proof goals during the course 
of a proof and to automatically provide better documentation in PVS proof scripts. 

We believe that specialized interfaces such as TAME will encourage the more widespread use of theorem 
provers in practical software development. Our experience in developing TAME suggests that adding cer
tain capabilities to existing general theorem proving systems can encourage the development of specialized 
interfaces for these provers. 

The remainder of this paper is organized as follows. Section 2 reviews PVS, timed and non-timed au
tomata, TAME, and SCR. Section 3 describes in detail the improvements to TAME made possible by the 
PVS enhancements. Section 4 provides examples that illustrate the new features of TAME. Section 5 dis
cusses how TAME has been customized to support SCR automata models, and the progress we have made 
in integrating TAME into the SCR toolset. Finally, Section 6 discusses some issues that arise in developing 
specialized interfaces for PVS and other provers and our future plans for TAME. 

2 Background 
2.1 PVS 
PVS [17] is a higher order logic specification and verification environment developed by SRI. Proof steps 
in PVS are either primitive steps or strategies defined using primitive proof steps, applicative Lisp code, 
and other strategies. Strategies may be built-in or user-defined. PVS's support for user-defined strategies 
makes it possible to implement specialized prover interfaces such as TAME on top of PVS. Recently, several 
enhancements to PVS have been developed at SRI. These include new features better supporting specialized 
interfaces. The new features include support for labeling formulae appearing in proof goals, support for doc
umenting proof structure and proof steps (both interactively and in proof scripts) through comments, and 
the availability of certain fine-grained proof steps. The addition of some new access functions and documen
tation allows computations based on the internal data structures maintained by PVS. These enhancements, 
which will ultimately become standard features of PVS, have led to major improvements in TAME. 

2.2 LV Timed Automata and 10 Automata 
An LV timed automaton is a very general automaton, i.e. 1 a labeled transition system that incorporates 
the notions of current time and timed transitions. An automaton need not be finite-state: for example, 
the state can contain real-valued information, such as the current time, the water level in a boiler, velocity 
and acceleration of a train, and so on. LV timed automata can have nondeterministic transitions; this is 
particularly useful for describing how real-world quantities change as time passes, given upper bounds on 
their rate of change. 

The following definition of timed automaton, based on the definitions in [8], was used in our case study of a 
deterministic timed automaton [1]. A timed automaton A consists of five components: (1) states(A), a (finite 
or infinite) set of states, (2) start(A) <; states(A), a nonempty (finite or infinite) set of initial states, (3) a 
mapping now from states(A) to R?o, the non-negative real numbers, (4) acts(A), a set of actions (or events), 
which include special time-passage actions v(.6.t), where ~t is a positive real number, and non-time-passage 
actions, and (5) steps(A) : states(A) x acts(A) ~ states(A), a partial function that defines the possible steps 



(i.e., transitions). This definition describes a special case of LV timed automata that requires the next-state 
relation, steps(A), to be a function. Careful use of the Hilbert choice operator c, allows us to use the same 
basic definition in the nondeterministic case as well [3]. The definition of 10 automata is similar, except that 
it has no references to time. 

Actions (or events) may at any point be enabled or disabled. The typical specification of an LV timed 
automaton or an 10 automaton describes the actions in terms of preconditions under which they are enabled, 
and effects on the state. Below, we refer to these preconditions as specific preconditions; other, uniformly 
applied components of the full precondition may also exist) such as general timing constraints in a timed 
automaton. The transitions (or steps) of an automaton correspond to the state changes induced by enabled 
actions. The reachable states of an automaton are those states that can be reached from an initial state via 
a sequence of zero or more transitions. 

The properties of automata that one wants to prove fall into three classes: (1) state invariants, i.e.) 
properties of all reachable states, which are typically proved by induction; (2) simulation relations; and (3) 
ad hoc properties of certain execution sequences. Proofs in both (1) and (2) have a standard structure with 
a base case involving initial states and a case for each possible action. They are thus especially good targets 
for mechanization. The proof examples in this paper all fall into class (1). 

2.3 TAME 
TAME provides a standard template for specifying automata, a set of standard theories, and a set of standard 
PVS strategies. The TAME template, originally intended for specifying LV timed automata, provides a 
standard organization for defining an automaton. To define either a timed or non-timed automaton, the user 
supplies the following six components: (1) declarations of the non-time actions, (2) a type for the "basic 
state" (usually a record type) representing the state variables, (3) any arbitrary state predicate that restricts 
the set of states (the default is true), (4) the preconditions for all transitions, (5) the effects of all transitions, 
and (6) the set of initial states. The user may optionally supply declarations of important constants, an 
axiom listing any relations assumed among the constants, and any additional declarations or axioms desired. 

To support mechanical reasoning about automata using proof steps that mimic human proof steps, we have 
constructed a set of standard strategies using PVS, and included these as part of TAME. These strategies are 
based on the set of standard theories and certain template conventions. For example, the induction strategy, 
which is used to prove state invariants, is based on a standard automaton theory called machine. To 
reason about the arithmetic of time, we have developed a special theory called time-.thy and an associated 
simplification strategy called TIME_ETC_SIMP for time values that are either non-negative real values 
or (X). The important template conventions include a standard naming scheme and a standard format for 
lemmas of certain classes, such as state invariant lemmas. A more detailed description of TAME in its original 
form is available in [1]. Some enhancements to TAME in support of the verification of hybrid automata are 
described in [3]. 

Using the recent enhancements to PVS described in Section 2.1, we have simplified the original set of 
TAME strategies and provided several new strategies. In addition, progress has been made towards making 
both proof scripts and interactive proof goals "literate". Section 3 describes the details of these improvements 
to TAME, and Section 4 provides examples of their use. 

Although TAME was originally developed for reasoning about LV timed automata, it is equally useful for 
non-timed 10 automata [4] and easily adapted to many other automaton models. We have begun to apply 
TAME to SCR automata (see Section 2.4). For this new application, a slight modification to the TAME 
template has proved important for proof efficiency. Additional strategies that complete many state invariant 
proofs totally automatically seem possible. Section 5 presents the results of our initial experiments. 

2.4 The SCR Requirements Method and Toolset 
The SCR (Software Cost Reduction) requirements method is a formal method for specifying and analyzing 
the requirements of safety-critical control systems. Since its introduction in 1980 [10J, SCR has been applied 
successfully to a wide range of critical systems) including avionics systems, space systems, telephone networks, 
and control systems for nuclear power plants. A set of software tools, called SCR* [9, 6, 7], has been 
constructed to support the SCR method. In addition to a specification editor for creating a specification 
and a dependency graph browser to display the dependencies among the variables in the specification, the 
toolset includes an automated consistency checker to detect type errors, missing cases) circular definitions, 
and other types of application-independent errors, a simulator to allow users to symbolically execute the 
specification to ensure that it captures their intent, and an interface to a model checker called Spin [11, 12] 
that detects certain safety property violations. 

An SCR requirements specification describes both the required system behavior and the system environ
ment in terms of monitorcd variables, quantities that the system monitors, and controlled variables, quantities 
that the system controls. To specify the required behavior concisely, SCR specifications use two types of 



auxiliary variables, mode classes and terms. Mode classes, whose values are called system modes (or simply 
modes), capture historical information, whereas terms have very general utility. 

SCR requirements specifications contain a set of dictionaries and a set of tables. The dictionaries, which 
contain the static information in the specification, include a variable dictionary, which lists the name, data 
type, and initial value of each variable; the type dictionary, which provides the data type definitions; the 
constant dictionary, which defines the names and values of constants; the specification assertion dictionary, 
which contains statements of properties such as state invariants; and the environmental assertion dictionary, 
which describes constraints on the behavior of the monitored variables. For every variable other than a 
monitored variable, there is a corresponding condition, event, or mode transition table. Each table defines 
a mathematical function called a table function. For example, an event table describes the (post-transition) 
value of a controlled variable or term as a function of a mode and an event. The notation ((<OT(c)" denotes 
an event, defined as <OT(c) = oC /\ c', where the unprimed condition c is evaluated in the current state, and 
the primed condition c' is evaluated in the new state. Informally, "<OT(c)" means that condition c becomes 
true. 

To provide formal underpinnings for the SCR specifications, a formal model has been developed [9]. In 
the SCR model, the system is represented as a state machine that begins execution in some initial state 
and then responds to a sequence of input events, where an input event is an event that signals a change in 
some monitored variable. In particular, a system E is represented as a 4-tuple, I; = (5, So, Em, T), where 
S is the set of states, So t;. S is the initial state set, Em is the set of input events, and T is a function 
that maps an input event and the current state to a new state. The transform T is obtained from an SCR 
specification as the composition of the table functions. For T to be well-defined, the "direct" dependencies 
in the specification of a given variable in the new state on other variables in the new state must define a 
partial order. In SCR*, this partial order is verified to exist by the consistency checker, and is represented 
in the dependency graph browser as the new state dependency graph. 

3 Recent Improvements to TAME 
3.1 An Improved Induction Strategy 
The induction strategy is the major TAME strategy for proving state invariants. This strategy sets up 
an induction proof for a state invariant by breaking the proof up into a base case and induction steps 
for the transitions, one for each kind of action. In the case where the invariant involves quantification 
over variables other than the automaton state, it is frequently the case that one wants to skolemize these 
variables in the inductive conclusion, and instantiate them in the inductive hypothesis with the resulting 
skolem constants. After some standard simplification on each branch, the induction strategy incorporates 
this skolemize-instantiate step on each induction branch of the proof. It then probes the branch to see 
whether a simple decomposition into cases followed by the application of the arithmetic, propositional logic, 
and other decision procedures of PVS will complete the proof of that branch-i.e., it checks to see if the 
branch is "trivial". If so, the branch is proved; otherwise, the branch is unchanged. The induction strategy 
then returns the unproved branches to the user. 

The induction strategy was an appropriate candidate for improvement using several of the PVS en
hancements. Originally, an appropriate variant for each specific automaton required external compilation. 
Multiple versions were needed when there were state invariant lemmas both with and without quantification 
of non-state variables. Standard simplification of the branches expands certain definitions, including the 
automaton's transition function. However, PVS's proof rule EXPAND, normally used for this purpose, does 
not simply expand a definition, but does some additional steps that often, though not invariably, produce a 
desirable simplification. One case where there may not be a desirable simplification is when the expanded 
definition contains an IF-THEN-ELSE expression under a quantifier. In this case, the additional steps result 
in lifting the IF-THEN-ELSE to the top level, with the quantifier appearing in both the THEN and ELSE 
branches. When this happens in expanding the transition function in the inductive conclusion, performing 
the skolemize-instantiate step is difficult. Using REWRITE in place of EXPAND was one solution, but not 
completely satisfactory because REWRITE, too, comes with baggage, and a resulting loss in efficiency. In 
any case, automated support for the skolemize-instantiate step had to rely on knowing the exact formula 
numbers of the inductive conclusion and the inductive hypothesis. Finally, because the induction strat
egy only produces subgoals for the nontrivial proof branches, it was difficult to examine a saved proof and 
determine the correspondence of branches to cases. Knowing this correspondence is important in several 
contexts, including the case when one wants to go back and complete a partial proof. Previously, labeling the 
branches was best done interactively using PVS's original, rather primitive, comment facility: incorporating 
a comment as an extra argument in an APPLY. 

The improved induction strategy, which we call AUTOjNDUCT, avoids these problems. It need not be 
compiled; rather, it probes the body of the state invariant lemma being proved to retrieve data structures 
from which the necessary proof steps can be computed. This information includes the list of actions, with 



their arguments, that correspond to the transitions of the subject automaton. The new induction strategy 
then computes the strategy that previously was compiled externally, and applies it. Part of the computed 
strategy is a call to another strategy used in simplifying the proof branches. At the point where this auxiliary 
strategy is called, there is enough information in the current proof goal to determine whether and how to 
do any coordinated skolemization-instantiation. The auxiliary strategy computes a sequence of steps to 
accomplish this, and then applies them. 

The improvements in the induction strategy described above rely on the additional documentation and 
access functions for the PVS internals. Eliminating the remaining problems in the original induction strategy 
required several of the PVS enhancements. The problem with EXPAND was solved by using one of the 
new finer-grained steps that simply expands a definition, and does no more. The problem of knowing 
the locations of the inductive conclusion and inductive hypothesis was solved by using the new labeling 
capabilities in PVS: AUTO-.lNDUCT labels various parts of an induction goal as "inductive-conclusion", 
"inductive-hypothesis", "specific-precondition", and so on. The auxiliary strategy called by AUTOjNDUCT 
can then skolemize "inductive-conclusion" and instantiate "inductive-hypothesis". The new comment facility 
is used by AUTO_INDUCT to automatically label proof branches with their corresponding cases. An example 
proof goal with labels and comments is given in Section 4. 

3.2 Other Improvements in the TAME Strategy Set 
With the combination of tools to access and analyze PVS sequents, formulae, and expressions plus the 
enhancements to PVS, we have succeeded in implementing many of the improved or new TAME strategies 
discussed in [2]. The resulting TAME strategies are designed for simplicity of use. We list a sample below. 
We illustrate the usefulness of most of these examples in Section 4. 

• The invariant-lemma strategy for applying previously proved state invariant lemmas in a proof formerly 
had two versions; it now has a single version called APPLY jNV _LEMMA. Its first argument is the 
name of a state invariant. It checks to see whether its second argument (if any) is a state, and if so, 
applies the corresponding state invariant lemma to that state. All remaining arguments except the 
state argument (if there is one) are used as instantiations to any top level universal quantifier in the 
invariant lemma. APPLY _INV _LEMMA also displays the invariant being applied as a comment. 

• The precondition-strategy for introducing the explicit form of the precondition for the action of an in
ductive step into the hypotheses of the current proof goal is now called APPLY -SPECIFIC_PRECOND. 
It now provides two additional services. First, it displays this explicit form of the precondition as a 
comment in the proof. Second, if the precondition is a conjunction, APPLY _SPECIFIC_PRECOND 
separates the conjunct conditions into a list, and gives them additional labels of the form specific
precondition_parLi, where the index i indicates their original position in the conjunction. 

• The strategy TIME_ETC_SIMP, intended to complete the proof in a branch when a human might say 
"it is now obvious", has been replaced by the strategy TRY -SIMP. TRY -.SIMP first hides formulae 
containing quantifiers, applies TIME_ETC_SIMP, and if the current subgoal is not proved, reveals the 
formulae it hid and applies TIME_ETC_SIMP again. Experimentation has shown TRY -.SIMP to be 
frequently more efficient than TIME_ETC_SIMP, and never measurably less efficient. 

• The strategy USE_EPSILON simplifies the application of the Hilbert <-axiom. We have found 
USE_EPSILON useful in establishing certain properties of nondeterministic automata (e.g., hybrid 
automata in which there are tolerances in the amount of change in some state variables in a time
passage step; see [3]). Being able to analyze formulae and expressions in the proof goal with respect to 
content and type has enabled us to simplify the application of USE_EPSILON so that the user need 
no longer supply the domain type of the predicate to which the axiom is being applied, nor the full, 
sometimes complex, expression representing the predicate. Rather, the user need now only supply a 
hint as to which predicate to choose. 

• The strategy DISCHARGE-.HYPOTHESES is new. It removes hypotheses from any implications in 
the antecedent of a proof goal that can be deduced from the contents of the goal. While the standard 
PVS strategy ASSERT can sometimes be used to this purpose, it does not work if the hypotheses are 
of a certain complexity. DISCHARGE-.HYPOTHESES can be used to avoid unnecessary case splits in 
the course of a proof. 

Section 5 discusses a few new strategies useful in proving properties of SCR specifications. 

3.3 Improvements in the Literacy of TAME Proofs 
With the current set of TAME strategies, it is possible to maintain meaningful (sometimes multiple) labels 
on most if not all of the formulae in a proof goal. We have found labels to be useful not only in the support 
of more intelligent strategies, but in the course of an interactive proof. 

Labels can serve as reminders of the source of a formula, and therefore aid in determining what point in 
reasoning has been reached in the proof, and in choosing the appropriate steps to take next. For example, 
we have replaced PVS's CASE rule with the TAME rule SUPPOSE. The only difference between the two 
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rules is that SUPPOSE labels the introduced assumption Suppose, and in the companion proof branch in 
which the assumption must be proved, Suppose not. This documents the intended purposes of the formulae 
introduced. 

Labels can also be used to increase proof portability. For example, the PVS proof rule INST ("instantiate") 
frequently must specify the formula to instantiate, and previously, this could only be done by giving the 
formula number. We note that maintaining unique labels for individual formulae can be important for an 
analogous reason. 

The current set of TAME strategies also makes liberal use of comments. As noted in Sections 3.1 and 3.2, 
our strategy AUTO_INDUCT labels proof branches with comments, and the strategies APPLY -.lNV_LEMMA 
and APPLY_SPECIFIC_PRECOND introduce comments that spell out the actual facts being introduced. 
Several other TAME strategies do this also. This information can be useful interactively in noting how the 
facts have been simplified. One place where it is particularly useful in proof scripts is in clarifying the effects 
of certain later proof steps-e.g., in determining exactly which general fact has been instantiated. Without 
also incorporating the sequent at the beginning of each proof branch as a comment, there is not yet enough 
information in TAME scripts to completely follow the reasoning in a proof. Exactly how much information 
to incorporate into a proof script is an open question, and is largely a matter of taste. 

4 Examples 
Figure 1 shows an example of how labels are used in induction case proof goals of TAME induction proofs. 
Note that the inductive conclusion has been "flattened" into three parts. 

lemma_6_1.1 : 
;;;Case nu(timeoCaction) 
{-I ,pre-state-reachable} 

reachable(prestate) 
{-2,inductive-hypothesis} 

«(trains_part(basic(prestate»)(Uheorem) = P) 
& «gate_part(basic(prestate» = fully_up) OR (gate_part(basic(prestate)) = going_up))) 

=> first(prestate)(enterI(ctheorem)) > now(prestate) + gamma_down) 
{-3,general-precondition} 

enabled~eneral(nu(timeoCaction), prestate) 
{-4,specific-precondition} 

enabled _ speci fi c( n u (timeoC action), pres tate) 
{-5,post-state-reachable} 

reachable(prestate WITH [now:= now(prestate) + timeoCaction]) 
{ -6,inductive-conclusion_part_l ,inductive-conclusion} 

(trains-part(basic(prestate))(Uheorem) = P) 
{-7 ,inductive-conclusion_parC2,inductive-concJusion} 

«gate_part(basic(prestate») = fully _up) OR (gate_part(basic(prestate» = going_up» 
1-------

{ 1 ,inductive-conclusion_part_3 ,inductive-conclusion} 
first(prestate)(enterI(r theorem)) > now(prestate) + timeof action + gamma down 

Figure 1_ Example of a labeled proof subgoal returned by AUTOJNDUCT. 

The changes in the TAME proof of the subgoal in Figure 1 are a good example of the improvements 
now possible in TAME proof scripts. The proof of this subgoal now has only six steps where it previously 
had nine. The first step, an application of APPLY_SPECIFIC_PRECOND, results in an expansion and 
decomposition of the formula labeled specific-precondition into six individually labeled parts and the inclusion 
of a corresponding comment into the proof script. The next two steps are calls to APPLY -.lNV _LEMMA; 
previously one of these steps invoked the special version of the invariant-lemma strategy for universally 
quantified invariants. The next step, DISCHARGE_HYPOTHESES, now accomplishes simplifications that 
previously required three steps, two of which relied on formula numbers. Next, the step (INST "specific
precondition_parL5" "r _theorem") replaces an INST step that required a formula number. The comment 
introduced by APPLY _SPECIFIC_PRECOND allows one to see from the proof script exactly which formula 
is instantiated by INST. Finally, the step TRY -SIMP now replaces two steps: a HIDE step that relies on a 
formula number, and a step TIME_ETC_SIMP. 

5 Integrating TAME with SCR* 
Currently, SCR specifications define deterministic automata, so their transitions can be represented by a 
function. Because this function is computed from many incremental updates in the state variables, proofs 
that use the function representation for the transitions of an SCR machine are inefficient. In fact, dramatic 



increases in the speed of proofs have resulted from representing transitions by a relation rather than a 
function, in contrast with our experience with LV timed automata in [3]. Therefore, we adapted the TAME 
template, supporting theory machine, and induction strategy to accomodate this variation. 

Translating SCR specifications into TAME specifications is straightforward. TAME specifications are sim
ply PVS specifications with a special structure. Information in the type dictionary, constant dictionary, and 
variable dictionary of an SCR specification is translated into PVS type, constant, and variable declarations 
and the initial state predicate. The monitored and controlled variables, terms, and mode classes become the 
"basic" state variables (there are additional standard state variables reserved for encoding timing·informa
tion). The "actions" of an SCR automaton are input events, which represent some change in a monitored 
quantity. Such actions have as a parameter the new value of the monitored quantity. The environmental 
assertion dictionary contains all information about constraints on how monitored quantities can change, and 
this information is translated into preconditions on the actions. The assertions in the specification assertion 
dictionary are translated into invariant lemmas in TAME format. Finally, the definition of the transition 
relation is obtained using the event, condition, and mode transition tables and the new state dependency 
graph, and is represented in terms of "update" functions for variables that are affected by a given action 
(input event). The update function for a variable is a translation of its table, based upon translations of 
predicates and expressions in the table that are indexed numerically in the natural way. This translation 
scheme has been automated for a significant subset of the SCR specification language. Figure 3 shows part 
of the automated translation of the event table for the state variable ("term") Overridden shown in Fig
ure 2, and how the corresponding update function for Overridden is used in the definition of the transition 
relation. 

Experimentation with proving state and transition invariants for several example SCR specifications 
strongly suggests that there exists a uniform strategy that, for typical SCR applications, will suffice to 
prove many invariants automatically. We are continuing experiments aimed at the development of such a 
strategy. 

Mode Events 

High False @T(Pressure _ TooLow OR 
Pressure = Pennitted) 

TooLow, @T(Block-On) @T(Pressure - High) OR 
Permitted WHEN Reset=Off @T(Reset=On) 

Overridden True False 

Figure 2. Event table for Overridden. 

statepred : TYPE = [states -> bool ]; 
atT(P: statepred, sl,s2: states):bool = P(s2) AND NOT P(sl); 
Overridden_O_O(sl,s2: states): bool == FALSE; 
Overridden_O_I(sl,s2: states): bool = 
let eO::: (LAMBDA (s: states): Pressure(s)::: TooLow OR Pressure(s) = Permitted) in atT(eO, sl, s2); 

Overridden_assignment_D (51, s2: states): bool = TRUE; 
Overridden_assignmenCI (sl, s2: states): bool = FALSE; 
update_Overridden(sl,s2; states): bool = 

IF Pressure(sl) = High 
THEN IF Overridden_O_O(sl,s2) THEN Overridden_assignmenCO(sl ,s2) 

ELSIF Overridden_O_I(sl,s2) THEN Overridden_assignmenCl(sl,s2) 
ELSE Overridden(sl) 

ENDIF 
ELSIF 

ELSE Overridden(sl) 
ENDIF; 

tmns(s_old: states, A : actions, s_new : states) : bool = 
s_new = CASES A OF Block(Block_value): s_old WITH [basic:= basic(s_old) WITH 

[BlocLpart:= Block_value, 
Overridden_part := updatcOverridden(s_old,s_new), 
Safety Injection_part := update_Safetylnjection(s_old,s_new)]], 

ENDCASES; 

Figure 3. Fragments of TAME translation of Overridden event table and the transition relation. 

6 Discussion and Future Plans 
Providing an interface such as TAME for a theorem proving system requires several capabilities within, or in 
relation to, that system. These include support for user-defined strategies or tactics and access to the data 
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structures and some of the internal analysis tools used by the proof engine. TAME also relies on the term 
rewriting facilities in PVS. For some provers, it may be necessary to add capabilities: for PVS, we required 
additional low-level proof steps plus labeling and comment facilities. 

Capabilities needed to provide what we call first-level interface support for a prover were noted in [21]. 
These include formal languages and parsers for the data structures used in the prover and its outputs, 
and a means to communicate changes of state between the prover and the interface. As indicated in the 
introduction, we plan to provide first-level interface support for TAME and to support the use of TAME 
through the SCR* toolset interface. To do so, we will need some additional capabilities along these lines. 

With the capabilities we now have, we expect to improve our PVS interface further by providing strategies 
for PVS steps that we noted in [2] as potentially useful, e.g., in avoiding unnecessary case splitting. Examples 
are strategies for the skolemization and instantiation of embedded quantified formulae. The Lisp code needed 
in the strategies for analyzing formulae would almost certainly be simpler to create given access to analysis 
tools such as parsers already present in PVS. 
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Abstract 

Often, theorem checkers like PVS are used to check an existing proof, which is part of some 
document. Since there is a large difference between the notations used in the documents and 
the notations used in the theorem checkers, it is usually a laborious task to convert an existing 
proof into a format which can be checked by a machine. In the system that we propose, the 
author is assisted in the process of converting an existing proof into the PVS language and 
having it checked by PVS. 

1 Introduction 

The now-clMsic ALGOL 60 report [5] recognized three different levels of language: a reference 
language, a publication language and several hardware representations, whereby the publication 
language was intended to admit variations on the reference language and was to be used for 
stating and communicating processes. The importance of publication language ---{)ften referred 
to nowadays as "pseudo-code"- is difficult to exaggerate since a publication language is the most 
effective way of communicating among people. Unfortunately, the example of ALGOL 60 hM not 
been followed in the ensuing thirty years. Modern programming languages (C++, Java, HMkell 
etc.) do not admit variations. Worse still they are based on the ASCII standard which itself is 
bMed on teletype technology. 

The 3D-year tyranny of teletype technology also extends to theorem proving systems which, 
like programming languages, are typically ASCII-bMed and do not admit notational variation. It 
is no wonder that theorem provers are hard to use, even for checking theorems or programs that 
are already known to be correct. 

In the recently begun research project entitled "publication-style programming" we are aiming 
to contribute to the development of systems in which programs and specifications are written in 
a publication language and then transformed to the hardware representation required by existing 
implementations of compilers and theorem provers. Such a system will allow programmers to 
write programs and specifications in application-specific (mathematical) languages, thus facilitat
ing communication with the client and reducing the risk of misunderstandings that can bedevil 
large-scale projects. A similar project (on a much larger scale) is the Intentional Programming 
project being conducted by Microsoft under the direction of Charles Simonyi. Ultimately, as 
argued by Simonyi [13], such systems will turn programmers into language designers. 

The basis for our own work in this direction is the Mathfpad editor [3, 2] which we have developed 
as a tool to assist those writing articles containing a large amount of advanced mathematics. The 
priorities set for the Mathfpad editor were readability of on-screen documents (thus enabling the 
use of sophisticated two-dimensional mathematical notation), flexibility (no built-in notational 
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conventions but, instead, a flexible system for on-the-fly, user-supplied notational definitions) and 
writ ability (the ability to mix prose and mathematics freely in the text). Our next priority -
the subject of the current project- is to explore architectures that will enable the coupling of 
Mathfpad, or a similar system, to compilers and theorem provers. 

The recent Ph.D. thesis by Matteo Vaccari [14[ is illustrative of what we ultimately want 
to achieve. In his thesis, Vaccari discusses the calculational construction of hardware circuits, 
where the first 6 chapters contain theoretical discussions of relation algebra, circuits and regular 
language recognizers, while the later chapters contain simulations of circuits using Ruby [11) and 
Tangram [10) and a machine verification of the theory using PVS [7). Vaccari used Mathfpad in 
the process of developing and documenting the "theoretical" designs in the initial chapters, and 
then hand-coded these into the forms acceptable to Ruby, Tangram and PVS. Inevitably there 
is a lot of duplication of information since each system requires its own format. Moreover, the 
manual transformation from one format to another is a source of errors and adjustments in one 
format requires the adjustment to the other formats in a similar way. Since each system uses its 
own format and files, incorporating those files in the main document is often clumsy and also error 
sensitive. Furthermore, the user has to learn the different formats and systems, which takes a lot 
of time. It would be better if all interaction could be directed with one interface and one format, 
which takes care of updating and manipulating all the files needed by the different systems. 

In an initial investigation [9) we have looked into linking Mathfpad with Jones' Gofer interpreter 
with the goal of allowing publication-style development of functional programs. The current paper 
is a preliminary investigation of the problems that occur in trying to link a Mathfpad-like system 
to a theorem prover. We use PVS as example theorem prover, simply because Vaccari used PVS 
to check his thesis and thus both a document containing structured proofs and a PVS version of 
those proofs are available to us. 

2 The Formatted Proof 

The following text is a part of Vaccari's thesis. It defines a law with a condition and gives a proof 
by induction of that law: 

A law about map and fold is the following; given Rand S such that 

RoSxS = SoR 

then 
foldn.R 0 maPn-S = So foldn.R 

The proof is by induction on n; for n = 1 it is trivially true. For n + 1 we have 

foldn+l.R 0 maPn+l.S 

{ definitions } 

R 0 , x foldn.R 0 S x maPn.S 

{ fusion, induction hypothesis } 

R 0 Sx(S 0 foldn.R) 

{ proviso; R 0 SxS 

S 0 R 0 , x foldn.R 

{ definition } 

So foldn+l.R 

S 0 R; fusion } 

The law is written informally and the proof is formatted with a standard proof notation. That 
is, each step in the proof is augmented with a comment, explaining why the two expressions in 
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that step relate to each other according to the given operator. We will refer to such a proof as "a 
formatted proof" . 

Although the text is concise, there are still some unclear points. The variable n is not specified 
in the definition of the law and the fact that n has to be positive is part of the proof. Since n is 
not introduced, there is an ambiguity whether the quantification over n is part of the consequent 
or also part of the antecedent, which influences both the definition and the use of the law in a 
theorem prover. 

Furthermore, the author assumes that the reader has some basic knowledge on the subject, so 
trivial rules are not mentioned. The trivial rules in this case are the associativity of composition 
and the unit of composition f.,. In this case, the second ufusion step" can not be applied correctly 
without first adding the unit of composition to the right hand side of the first S, replacing it with 
SOf.,. 

The document is written with the Mathfpad system and the structure of the proof and the 
formulas is known , that is, no additional parsing is needed to construct that structure. Due to 
the structure, additional operations like formula extraction and matching are available for free. 

3 The PVS Proof 

The law in the previous section can easily he proven in PVS if the correct environment is available, 
that is, if all the definitions, theorems and proofs up to this law are already available in PVS. If 
that is the case, the above law can be entered as the theorem: 

fold_map: THEOREM R 0 (S*S) = S 0 R 
IMPLIES fold(n,R) 0 map(n,S) = S 0 fold(n,R) 

This resembles the formatted text closely, because the binary operators 0 and * are overloaded 
and the variables R, Sand n are already defined in the PVS context. Otherwise, the operators 
need to be replaced by functions with two arguments and the variables need to be introduced with 
a universal quantifier, which would result in the following PVS input: 

fold_map: THEOREM (FORALL (R:rel, S:rel, n:upfrom(1)): 
comp(R,prod(S,S)) = comp(S,R) 

IMPLIES comp(fold(n,R),map(n,S)) = comp(S,fold(n,R)) 

Since only a limited number of operators can be overloaded in PVS, it is most likely that, in a 
general case, a PVS formula will look like this last formula, thereby creating a gap between the 
familiar syntax used in the document and the unfamiliar syntax used by PVS. The translation from 
the formatted document to the PVS formula is still straightforward and easy to do automatically 
once the structure is known. 

Following the formatted proof, it is quite easy to construct a standard PVS proof of the 
theorem: 

"nil 1) (induct 
1 (grind) 

(rewrite HidO") 

2 
(rewri te "id1") 
(skolem l ) (ground) 
(skolem l ) (ground) 
(expand "fold" : if-simplifies t) 
(expand "map" : if-simplifies t) 
(assoc-rewri te "fusion" : dir RL) 
(inst?) (ground) 
(replace*) 

%induction 
%basis: trivial 

%step 

%definition 
'!.def ini t ion 
%fusion lemma 
%induction hypothesis 

(rewrite "id1") %remove unit of composition 
(rewrite "idO" 1 ("R" "S!l") 1 RL) 'l.add unit of composition 
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(assoc-rewrite "fusion") 
(rewrite "idO") 
(replaceo) 
(rewrite "comp_assoc") 

%fusion lemma 
%remove unit of composition 
%proviso 
%associative of composition 

Using PVS all the trivial steps have to be provided. In this case, the trivial lemmas are: 

idO: THEOREM R a I = R 
idl: THEOREM loR = R 
comp_assoc: THEOREM (R a S) a T R a (S a T) 

Since the last lemma is difficult to instantiate if multiple matches occur, a PVS rewrite rule had 
been defined that rewrites modulo associativity of composition, called assoc-rewri teo 

As this example clearly shows, the PVS version is less readable than the formatted version, 
partly because the formulas are missing. However, adding the formulas that PVS generates in its 
output would not really improve the readability, because notational conventions are different and 
it would increase the length of the proof dramatically, especially if all the premises are added. 

The structure of the PVS version resembles the structure of the formatted proof quite closely, 
except on some small points. In PVS, you prove that the equation is true, while in the formatted 
text, you prove that the left side is equal to the right side by transitivity of equality. As a result, 
the last step in the formatted proof (using the definition of fold) is already applied at the earlier 
step in the proof. Furthermore, in the formatted proof, a definition can be used in two directions, 
while in PVS, a definition can only be expanded. Another small difference is the changed order 
of the second use of fusion and the proviso, due to the fact that the formatted proof is less strict 
in giving the hints. 

Since PVS provides very powerful strategies, the PVS proof could be made shorter by using 
strategies like induct-and-simplify and installing automatic rewrite rules. These strategies were 
not used in order to be able to follow the formatted version and to identify problems and solutions. 

4 The Scenario 

Since the PVS proof resembles the formatted proof, system support for semi-automatically gen
erating the PVS version should be available. After the formatted proof is finished, the user would 
like to press a "Check" button to see if the proof is correct according to PVS. The system should 
generate the PVS files containing the theorem and the proof attempt and use PVS to check if 
it is correct. If errors or ambiguities occur during the generation of those files, the system asks 
the user for assistance. If PVS is unable to process the files, the user is pointed to the part of 
the document which is responsible for the error. The user can then add hints to the document 
to adjust the PVS input that will be generated. Once the PVS input is correct, PVS will check 
the proof and errors in the proof steps are redirected by the system to the hints in the formatted 
proof. Again, the user can add PVS specific hints to adjust the behaviour of PVS. 

In this feedback loop, the user should see as little PVS syntax as possible and all PVS results 
should be shown in the syntax preferred by the user. The user should of course be able to add 
raw PVS commands to the generated PVS files, to make sure that the user has full control over 
both PVS and the system itself. However, the user should not have to adjust the generated PVS 
files by hand, as that would introduce synchronisation problems and, at any time, the document 
itself should be sufficient to regenerate the correct PVS files. 

The system would analyse a part of the document and generate as much relevant PVS input as 
reasonably possible. Since the document is already structured in Mathfpad, much of the structure 
for the PVS input is already available. The formulas are converted easily as long as the PVS 
versions use a similar structure. In order to fill in the missing gaps, databases with common 
keywords, lemmas, definitions and variables are used to collect information and select PVS tactics 
and strategies. The user and system can extend and adjust these databases to optimise the 

5"3. 



automatic generation of PVS input or to adjust it to the language native to the user. In the 
example proof, the known keywords would be 'given', 'such that', 'then', 'proof', 'induction', 
'trivially', 'definition', 'induction hypothesis' and 'proviso', the known lemma would be 'fusion', 
the known definitions would be 'fold' and 'map' and the known variables would be 'R\ IS' and 
'n'. With this knowledge, much of the PVS input could be extracted. This form of extracting 
information can be compared with the methods used in the Eliza system [15J and other natural 
language processing systems. 

5 Problems and Solutions 

It is obvious that constructing such a system is not trivial and that a lot of problems will occur 
while trying. In this section, some of the foreseeable problems are discussed, together with some 
solutions. 

5.1 Extracting the Theorem 

As the text is already available, it would be nice if the system can partially extract the theorems and 
definitions and convert them to the correct PVS syntax. However, a natural language contains a 
lot of ambiguity, even in a mathematical or technical document, where the author carefully weighs 
ambiguity with readability. As a result, small ambiguities might be introduced which are not 
noticed by the reader but are important for a theorem prover. In the example, the variable n is 
never introduced and as a result, the extracted law might be either 

I/(R, S:: R 0 SxS = So R =} I/(n: n 2: 1 : foldn.R 0 maPn-S 

or 

In this situation, the meaning of the two expressions is equal, since n does not occur in R 0 Sx 
S = So R (which might not be true in a more general case). However, the PVS proofs of the 
two laws are different and, more importantly, applying the laws is different. Therefore, interaction 
between the user and the system is needed to extract the final unambiguous interpretation of the 
text. This interaction could be based on a natural language, describing the meaning of the text 
unambiguously or could be based on the native syntax, possibly extended with standard logical 
notations, as shown above. The user should be able to select one of the possible interpretations 
or change the contents of the document to remove the ambiguity. 

To reduce the number of the errors that PVS reports, the system has to make sure that all 
dependencies of the formulas are resolved by including the definitions of all referred functions, 
lemmas and variables. However, PVS remembers which lemmas are already proven and which 
theory contains them. Copying a lemma to a working document will result in error messages from 
PVS about multiple occurrences of the same lemma, with the result that the copied version is not 
proven. Therefore, the proven lemmas have to be collected in theory files, which are included by 
the temporary PVS file containing the unproven theorem. After this theorem is proven, it can 
be added to the appropriate theory file, where it has to be proven once again to update the PVS 
state and its databases. 

5.2 Proving the Formatted Proof 

In order to prove that the formatted proof is correct, a proof has to be given for each step in the 
formatted proof, that is, each consecutive pair of formulas is indeed related to each other according 
to the given relator (and this proof should be based on the hints that are given). For example, 
the proof step 

54. 



{ fusion, induction hypothesis } 

R 0 Sx{S 0 foldn.R) 

is proven in PVS by showing that the two formulas are equal, by using fusion and the induction 
hypothesis. This would result in a small lemma stating that this equality is a valid consequent of 
the induction hypothesis, as in: 

pstep2: LEMMA fold(n,R) 0 map(n,S) = S 0 fold(n,R) 
IMPLIES R 0 (I*fold(n,R» 0 (5*map(n,5» = R 0 (5*(S 0 fold(n,R») 

Again, the translation of the formulas is straightforward and can be applied to each step of 
the formatted proof and, since the document is already structured, determining the steps and 
formulas in a proof is trivial. Such a small lemma can be used to check if the corresponding step 
is correct and together these small lemmas are used to verify that the proof of the law is correct. 
The advantage of using these small lemmas is that unclear hints and problems in PVS are directly 
related to specific steps in the formatted proof. A disadvantage would be that a large collection of 
small lemmas results in large PVS files, what would effect the performance of PVS. This problem 
might be resolved by combining the proofs of the several small lemmas into one larger proof, 
thereby removing the need to define those lemmas. 

A different approach to proving that the formatted proof is correct would be to prove that 
the first formula is related to the last formula and check the PVS output to verify that the 
intermediate formulas do occur at the correct positions and that the PVS tactics have some effect 
on the formulas. However, this approach does not work in a general case. Each of the following 
proofs is in fact a combination of two proofs. 

P 

{ V introduction } 

Pv (QIIP) 

{ DeMorgan } 

(P V Q) II P 

'* {II elimination } 

P 

P 

{ '*: V introduction 

",: DeMorgan, II elimination } 

P V (Q /\ P) 

In the proof on the left, the purpose is not to show that P,*P, but to show that all the inter
mediate formulas are equal. In the proof on the right, the hint contains an explanation why the 
equality holds, by reasoning about both directions. In both cases the proof of P '* P V (Q II P) 
and P V (Q II P) '* P is combined into a single proof, which is difficult to extract in a more 
complicated case. 

5.3 Hiding Information 

After the PVS files are generated, PVS can be used to check if the definition is correct. In case of 
errors, the system should start an interaction with the user to resolve the problems. During this 
interaction, the user should not be exposed to the PVS syntax, as it is often awkward, unfamiliar 
and unreadable in comparison with the standard notational conventions used in mathematics and 
other technical fields. Instead, the system should translate all the PVS communication to the 
notational conventions native to the user. This requires origin tracing and, since PVS can not be 
adjusted freely, a parser for the PVS messages and formulas. 

An interesting proof contains a complification step, that is, a step where a simplification is 
used in the opposite direction or where a smart case analysis is applied. Such steps can not 
be determined automatically, since there are usually many possible steps, but only few of them 
will have a positive effect. Since the formatted proof already exists, the user knows where each 
complification step occurs and how each simplification lemma is applied. Somehow, the user has 
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to specify these steps to the system and add them to the generated PVS input, without being 
exposed to the PVS syntax. This can be achieved by showing the formula and the tactic that failed 
on the formula. The user can modify the formula with a restricted set of actions, all corresponding 
to actions in PVS, until the failed tactic can be applied successfully. Alternatively, the user can 
adjust the proof, if it seems to be incorrect. The actions needed to adjust the formula will be 
stored in the hints in the proof, such that a regeneration of the PVS proof will be correct the next 
time. 

All formulas are given a number in PVS, to allow the user to refer to them when a tactic 
is applied. In the formatted proof these numbers are not available and the user is usually not 
interested in these numbers. In fact, the PVS user is advised to apply the tactics without specifying 
these numbers, as they might change if the proof or the theorem is edited afterwards. Instead, the 
user should only specify whether to apply the tactic to the premises or the consequents. However, 
such general tactics might result in changes to formulas which should not change. In the example, 
the general tactic (replace» will use the premise to replace matching parts of the consequent. 

While proving something in PVS, PVS will introduce variables with ugly names. These names 
are usually not needed in the tactics, except when a rewrite rule is applied and the specific 
substitution is needed. Since the user should not be exposed to the PVS syntax, the user should 
be able to construct such substitutions with the familiar syntax, where the system will translate 
it back to PVS syntax. In the example, the complification step with lemma idO contains such a 
substitution. 

Due to tactics in PVS, the goal might get split into several subgoals. Some of these subgoals 
could be trivial if a powerful strategy is applied, such as grind. If such a strategy can successfully 
prove a subgoal, the system should not mention such a sub goal to the user, who could get dis
appointed by a large collection of unproven but trivial subgoals. Furthermore, the system should 
warn the user if the number of non-trivial subgoals exceeds a certain threshold, as it could indicate 
that an additional lemma or case analysis is needed to make the proof more intuitive. 

5.4 Defining Tactics 

When the formatted proof is used to construct a PVS proof, the PVS proof will start with a 
formula of the form A :9 B and should end with a formula of the form B :9 B. However, while 
applying PVS tactics, it is very likely that certain actions will change formula B, which could 
result in a failed proof. To prevent this, the right hand side of the formula, B in this case, can 
be replaced using a name definition before applying the tactics and hide it from PVS. After all 
the tactics are applied, the name definition can be used to check if the proof has succeeded or 
not. This approach has one disadvantage: a definition can only be expanded in PVS, which, in 
the example, prevents the last step of the proof. To solve this, a trivial lemma can be defined to 
reverse the expansion of a definition and an additional tactic can be used to apply the rule. 

In the formatted proof, trivial steps are often not mentioned, since it would make the proof 
less readable. In the PVS proof, these steps are needed before the next tactic can be applied. An 
obvious solution would be to install automatic rewrite rules and allow the user to specify which 
rules can be regarded as trivial. However, if a trivial rule is applied as a camplification step, the 
automatic rewrite rules should not undo such a step, such as the complex rewrite step in the 
example. Therefore, the trivial rewrite rules should only be applied if the next tactic would fail 
without them. This can be achieved by defining new PVS tactics. 

A lemma or rewrite rule is often used in two directions. In PVS, the direction of the rewrite 
rule has to be specified in order to apply it successfully. In the formatted proof, the hints do not 
contain this information, as it is obvious to the reader. The solution would be to define a new 
PVS strategy to apply the rewrite rule in the default direction and, if that fails, apply it in the 
opposite direction. The drawback of such a strategy would be that the result is unpredictable, as 
the rule might be applicable in both directions. In the example proof, the fusion lemma is applied 
twice in different directions and the PVS strategy would remove the requirement to specify the 
direction. 
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5.5 The PVS Interface 

The PVS system itself also causes some problems. The PVS core system is written in ilisp and uses 
the Emacs editor as a user interface. The communication between this core system and Emacs is 
hidden from the normal user and is not well documented. Since the Emacs system is too large to 
be used as a communication layer and would introduce more problems than that it would solve, 
the PVS core system has to be extract and documented. Such documentation is of course also 
helpful for other systems that try to interact with PVS. 

The PVS core system is rather large and calculations might be time consuming, especially if 
advanced and powerful strategies are used. Therefore, the system has to protect the user from 
trying to proceed with the document preparation while PVS is busy, but it should allow the user 
to perform other tasks. The best solution would be to block editing actions on certain parts of 
the document, such that PVS is always computing results which are still valid and needed. 

6 Related work and conclusions 

There are already some projects to improve the interface of PVS. TAME [1] is a layer on top of 
PVS for reasoning about timed automata and consists of a number of strategies to reduce the 
number of steps made in a typical PVS proof to the number of steps made in a hand-made proof. 
With these additional strategies, the user of TAME will not be exposed to the low-level steps and 
commands needed in PVS, thereby making the commands field specific. However, since the PVS 
interface is used, there is still a gap between the notational conventions used by PVS and those 
used in the documentation. 

The system PAMELA [4] is designed to check partial correctness of VDM-like specifications in 
the area of code generators. By providing a connection with PVS, the system supports a larger 
class of specifications, using PVS to discharge proof obligations. Since PAMELA provides its 
own interface, communication between PVS and another system seems to be feasible and some 
experience is available. 

Simons [12] has been working on a system to combine proofs in Isabelle [8] with documentation. 
The system uses the structured documentation technique introduced by Knuth [6] to allow one 
file to contain both the proofs and the documentation and uses programs to separate those. This 
solves the problem of combining several files into one document, at the expense of using different 
languages in a single file, namely, ~'IEX for formatting the document, Isabelle for specifying the 
proof and the meta language to instruct the programs. For a user, this might be confusing. 

Constructing a tool which extracts a PVS proof from a document seems to be feasible, although 
there are a lot of problems to overcome. We already have a collection of electronic documents 
which are structured and a tool to edit and manipulate those documents. For some documents, 
the PVS definitions and proofs are already available, which is very helpful to get started. 

Since PVS is not the only available theorem prover, the connection with PVS should be made 
general enough, such that a connection with a different theorem prover would not be too difficult. 
The fact that PVS is a closed system could in this case be helpful, as modifications to PVS would 
indicate that modifications to other theorem provers are needed if such a connection is required. 
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The purpose of a user interface to a theorem prover is to do with easy gestures what would otherwise be 
done with long-winded commands - use this instance of that rule to attack this subproblem - and to 
display information so clearly that alternatives become as easy to see as to invoke. 

There isn't a unique design solution to the UITP problem and - pace those outsiders who believe that it 
must just be an afternoon's work to bolt a bit of Tcl/tk onto a text-command-driven theorem prover - it is 
probable that good solutions will always require specially designed and carefully integrated components. 
UITP is as much about TP as about UI, then, but it's worthwhile to attempt to abstract from our UI 
experience, even though the designs may be difficult to export to conventional TP practice. 

Jape's[l] GUI uses the present-day gestural vocabulary - click, double-click, press-and-drag - and 
restricts itself to use no more than the present-day GUI vernacular of selection and command. Our aim is 
to make the tool easier for the novice to use, because the gesture vocabulary and language is familiar, but 
it has required considerable ingenuity to allow an expert user to exert sufficiently subtle control through 
the same kinds of gesture. 

Jape uses unification, but it has to deal with problems which don't have determinate solutions: higher
order unification (because it deals with explicit substitution formulre in rules and/or proofs); list and bag 
unification (when unifying contexts, and perhaps one day when dealing with associative/commutative 
operators). In principle and in general Jape is designed to defer decisions about ambiguous unifications, 
by introducing provisos and unknowns as necessary. In practice that deferral can introduce confusing and 
misleading detail to a proof, so it is worthwhile introducing gestures which disambiguate unification 
directly. In certain cases, especially when deciding on the formula instance which should match a 
principal formula of a rule, it makes little sense to defer the decision and direct gesturing is required. 

Indicating position and point of interest 

A natural first requirement is to be able to indicate just where in a partially-completed proof an action 
should be carried out. There is a well-attested HeI principle[2] that postfix command construction -
select first, then act - is preferable to prefix, infix or modal dialogue. Jape's first gesture, then, must be 
one which commands the visible selection of a point of interest, and in the best GUI design tradition 
Jape's users can move the selection by making just the same gesture at an alternative point. In both the 
current implementations of our GUI the selection gesture is a mouse-click over a single formula, and the 
visible effect is that the selected formula is enclosed in a box. 

Vx.R"'S(x),IVx. 'R"'S(x)~ R b SCm) Vx.R"'S(x), Vx. ,R ... S(x), ,R b SCm) 
vf 

Rv,R, Vx.R"'S(x), V'x.,R ... S(x) b SCm) 
f\l 

Rv,R, V'x.R"'S(x), V'x.,R .... S(x) b V'x.S(x) 
fig 1: selection indicates a subtree, sequent or formula of interest 

1 richard@dcs.qmw.ac.uk~ Department of Computer Science, Queen Mary and Westfield College, University of London, 
LONDON El 4NS. UK 

2sufrin@comlab.ox.ac.uk; Programming Research Group. Wolfson Building, OXFORD OXI 3QD, UK; Worcester College, 
Oxford. 
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Formula-selection is taken to indicate not only a particular instance of a formula, but also the particular 
sequent which contains it as well as the subtree rooted at that sequent instance. Depending on the 
command which is applied to the selection, Jape will choose the relevant indication: if the command is 
tree- or display-editing - prune, hide or display the subtree above the node containing the selected 
formula - then take it that a subtree is intended; if it is a proof action - applying a rule or a tactic - then 
take it that a sequent is intended (and, in that case, be sure that it is at a tip of the tree). Thus we satisfy 
the simplest requirement of the user interface, to make the tool work here rather than there in the tree l . 

The formula-selection gesture makes a finer distinction than would be required to indicate a sequent or a 
position in the tree. When used before a rule application it is taken to indicate a problem formula which 
must be matched by a principal formula of the rule. 

,(P AQ) ~ ,p,EQI 

fig 2: selection disambiguates rule-unification by indicating a principal formula 

Without formula-selection there is more than one way in which the h rule can match the problem 
sequent; after selection there is only one. Thus formula-selection resolves an ambiguity of list (or bag) 
unification, and determines it uniquely. 

Principal formulre can occur on the left or the right of a sequent, or both. Jape therefore permits both 
hypothesis (left-hand) and conclusion (right-hand) formula selection, up to one of each simultaneously. 
Simultaneous selection is occasionally essential in box-and-line presentation of a single-conclusion 
calculus: because hypotheses are written only once, at the head of the box which corresponds to the 
subtree for which they are introduced, hypothesis selection will often indicate a sequent at the root of a 
subtree, not one of the tips of that subtree. 

1 : ~R:-v-'-:R:-,r=lv=x=;. R== .... ===S';"( x'7)l~ V:-:-x.-,::R-.... -=S:-;( x--:):-l assumptions 

: I:imll 
:t;mll 
6: S(m) 

7: \fX.S(X) 

assumption 

assumption 

v' 1.1,2-3,4-5 

fig 3: hypothesis selection in the box-and-line presentation of the prooffromfig 1 selects a subtree, not a sequent 

Figure 3 shows the box-and-line version of the tree of figure I. Lines I and 7 correspond to the root of 
the tree; lines I and 6 to the antecedent of the root; lines I, 2 and 3 to the left tip and lines I, 4 and 5 to 
the right tip. Selecting a hypothesis on line I doesn't, therefore, indicate either of the tips, which 
correspond to lines 3 and 2 in one case,S and 4 in the other (each to be read, in the box-and-line 
convention, in conjunction with line I). The solution is simple and obvious - allow the user to 
disambiguate the selection by selecting a conclusion line at the same time, thus indicating both the 

Jape allows application without pre-selection in the case that there is only one tip in the tree. Her purists may shudder, and 
indeed we have not experimentally evaluated this feature of the interface, but on the face of it it seems a sensible and 
natural convenience. Then again. it may be a source of confusion. An upcoming evaluation project may supply us with data 
which will help us to decide. 

60. 
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hypothesis which is to be worked on and the tip at which action should take place I , as illustrated in figure 
42 . 

1: Rv~R,llfx.R~S(x)~ Ifx. 'R~S(x) 

: I:imlll 
:.1 ;;mJ 1 
6: SCm) 
7: \tx.5(x) 

assumptions 

assumption 

assumption 

v> 1.1,2-3,4-5 

>'16 

fig 4: conclusion seLection disambiguates subtree selection o/fig 3 

There would be a visual ambiguity in box-and-line hypothesis selection if Jape did not insist that the user 
choose an instance of a formula in the proof. Figure 5 shows a proof in which there is more than one 
instance of the same hypothesis formula in scope at once - which means, more than one instance of the 
same hypothesis fonnula in the context. It is important that the justification of the proof step refers to the 
instance selected and, as illustrated in figure 5, Jape obliges. 

2 

3 

4 

5 

6 

7 

8 

9 

: 

: 

: 

: 

Ifx.P(x) 

3x.,P(x) 

ilfx.P(x)i 

vare, ,P(e) 
... 
_B",,_B 

I_BA~_B 

~(\tx.P(x)) 

'<fx.P(x)" 4('<fX.P(x)) 

'(3x. ~P(x) 

premise : Ifx.P(x) 

assumption 2 3x. ,P(x) 

assumption 3 : Ifx.P(x) 

assumptions 4 vare, ,P(e) 

:::::> 5 : pee) 
... 

3-E 2,4-5 6 : _B",,_B 

,~ 3-6 7 _B",,_B 

A-I 1,7 8 ,(lfx.P(x) ) 

,~ 2-8 9 : Ifx.P(x)", ,(lfx.P(x» 

10 : ,(3x. ,P(x» 

fig 5: proof steps credit formula instances, not formula 

premise 

assumption 

assumption 

assumptions 

'1~ 3 

3-E 2,4-6 

,~ 3-7 

~-I 1,8 

,~ 2-9 

Jape uses a resource-labelling mechanism to achieve this effect: each formula instance in the proof tree is 
invisibly labelled with a resource number3. The resource number is copied from consequent to 
antecedentes) whenever a fonnula is not the principal formula in a rule. This enables the proof engine, 
when an instance of a formula at the root of a subtree is selected, to identify corresponding instances in 
the tips. The mechanism makes the displayed proof stick closely to the user's intentions: they can't help 
but indicate a fonnula instance, and the proof step records the instance that was used. 

S>- T , 
---..,.--,---;c- (x NOTIN C ) var lookup 
C,XHS,C>x:T 

fig 6: a rule in which the principaL formuLa determines a section of the context 

Jape doesn't require the user to indicate a tip if there is only one open tip in the selected subtree. Perhaps another He! 
shudder? 

2 Note that part of line 1 is greyed out when line 3 is selected: the first hypothesis in line 1 is 'used up' in the v~ step which 
produces lines 2-5. 

3 We haven't found any need to reveal them to the user; even the implementors hardly ever want to see them. 

01. 
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The resource mechanism has more than cosmetic advantages: it is essential in situations which require a 
much finer disambiguation of unification. When the position of a formula instance in a sequent is 
important, this device allows just the control that would be required. This permits, for example, the use of 
rules which treat the left-hand side as a sequence of type judgements, each with a preceding context. 
Figure 6 shows a rule whose application might require careful pre-selection of a principal formula, 
because the context to the right of that formula must have certain properties. Ambiguous selection would 
be more than an irritation and must be resolved: formula-instance selection does the job where necessary. 

As with all the best GUI mechanisms, formula-instance selection has an easy explanation. We tell our 
users "select the formula you want to work on". That makes good sense in logics whose rules each work 
on a single principal fonnula, exposed at the level of the sequent. It doesn't do so well with logics - such 
as the BAN logic of authentication protocols - where rules work on formula: inside tuples, or on more 
than one principal hypothesis formula. Even the simple formula-selection gesture needs further work. 

Acting on formulre 

Jape makes very little use of the double-click at present. In the vernacular, double-click means something 
like "do the right thing to this object", where the right thing is usually decided according to the object's 
type - document type, icon type - or sometimes by the style of the click - which button, what modifier 
keys. A double-click in Jape's GUI causes the proof engine to look through a list of formula-patterns till 
it finds one which matches, and to run a corresponding tactic. This has nothing to do with disambiguating 
unification, so we dwell on it no further in this description. 

Indicating points of interest within formulre 

Jape uses unification in every proof step, and it is prepared to defer some of its unification decisions until 
more information is available. This is fine for proof exploration, and in particular it permits use of Jape as 
a calculator (for example, in the Hindley-Milner proof inference algorithm), but the effects can 
sometimes be confusing to the novice. A simple example of this is the use of the V-elim rule backwards 
in a logic which demands a version of variable scoping. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

: 

: 

: 

: 

: 

: 

: 

3x.(P(x)vQ(x» premise 

vare, P(e)vQ(e) assumptions 

pee) assumption 
... : 3x.(P(x) vQ(x» 
P(_el) 

2 : vare, P(e)vQ(e) ... 
_el inseope 3 : pee) 

3x.P(x) 3-14,5 4 3x.P(x) 
3x.P(x)v3x.Q(x) v-I(L) 6 5 : 3x.P(x)v3x.Q(x) 

Q(e) assumption 6 : Q(e) 
... ... 

3x.P(x)v3x.Q(x) 7 : 3x.P(x)v3x.Q(x) 

3x.P(x)v3x.Q(x) v-E 2.2,3-7,8-9 8 3x.P(x)v3x.Q(x) 

3x.P(x)v3x.Q(x) 3-E1,2-10 9 3x.P(x)v3x.Q(x) 

fig 7: application of 3-/ rule without (left) and with (right) selection of argument 'c' 

premise 

assumptions 

assumption 

3-1 3 

v-I(L) 4 

assumption 

v-E 2.2,3-5,6-7 

3-E 1,2-8 

Jape will, quite naturally, introduce an unknown into a proof whenever a rule is used backwards which 
hasn't the subformula property (when a name in the antecedents doesn't appear in the consequent). The 
novice user, when working straightforwardly with formula: that don't include unknowns, usually wants to 
avoid the introduction of unknowns into the proof. They appear as a kind of visual clutter, justified only 
when there is a real search for a genuinely unknown formula - for example when working with classical 

62.. 



Using gestures to disambiguate unification (UITP 98 submission) Page 5 

negation axioms. In this case we've chosen to highlight the cluttering problem by illustrating use of a rule 
which includes a normally-hidden antecedent, a kind of side-condition. If the user provides a variable 
name as an argument to the rule application, Jape will automatically satisfy that antecedent and it will 
remain hidden; if no argument is provided, Jape will provide an unknown and the unsatisfied antecedent 
must be shown. 

A second gesture, then, must be used for argument selection. It can't be the same gesture as formula 
selection, and it can't be indicated in the same way. In both current implementations of the Jape GUI we 
have chosen press-and-drag within a formula, indicated by textual highlighting (using the background 
OS's GUI convention)'. If there is a single textual selection which parses as a formula and if the tactic 
invoked by the user doesn't interpret the text selection specially, then that selection is taken to be an 
argument formula which modifies the instance of the rule to be applied. Tactics can be written so that the 
same argument can be applied to more than one rule invocation, to none, to other than the first rule 
invoked by the tactic, and so on. 

Historically the argument-selection gesture was invented to solve the problem of rules which have 
substitution formulre in their consequent, but this use has been superseded by a mechanism which allows 
a user to indicate more directly the particular substitution unification which is to be used. 

nx=y np[vIY] . np{vl[l} np[vI[xl] r,p[vlxs],P[vlys]~P[vlxs++ys].. . 
-----;--+--'- rewnte Itst mductIon 

np[vIX] np[vIQ] 
fig 8: some rules naturally include a substitution in their consequent 

Using the argument-selection gesture, the original unification mechanism would accept an argument A to 
a rule such as one of those in figure 8; it would match the principal formula _p[ vIA] with a formula R 
from the problem sequent by constructing R' such that R'[vIA] was equivalent to R. This abstraction 
mechanism found as many occurrences as possible of A within R, thus making the unification 
determinate. But it was a poor way to solve the problem of higher-order unification. 

1 :~1t~¥l~lr~¥l~~= i d X ===> 1: rev(revx)=idx 
2: reverev=id ext 1 2: (reverev)x=idx Fold using. 1 

3: reverev=id ext Z 

1: (reverev)x=till~ 1: (reverev)x=x 

Z: reverev=id ext 1 Z: (reverev)x=idx Fold using id 1 

3: reverev=id ext Z 

fig 9: alternative argument selections permit alternative proof steps (using rewnte behmd the scenes) 

Nowadays Jape will - under tactical direction - interpret the user's textual selection as describing a 
substitution formula directly. The selected subformula is just the one which is to be replaced by the 
substitution variable v to form R'[ vIA]. It is now meaningful to select more than one instance of a 
particular subformula: in rev(rev x) = id x we can select one or the other or both xs, giving the user a 
choice between (rev(rev v) = idx)[vlx], (rev(revx)=idv)[vlx] and (rev(revv)=idv)[vlxF. The 
original problem formula is replaced by the user-specified selection, specially labelled as a 'stable 
substitution' so that the unifier won't immediately reduce it to the original formula. Unification between 
the stable substitution and the consequent substitution is by structure, and the ambiguous higher-order 
unification is bypassed. 

We have not implemented in either aUI any mechanism which allows easy selection of subformulre. The reason is partly 
lack of effort, partly the occasional accidental convenience of the textual mechanism (for example, we sometimes select 
just 'T' from the the unknown '_T3'), but mainly a desire to keep our options open. We have to be able to deal with 
formuire which contain associative operators, where selection has to be able to cross conventional structural boundaries, 
and probably always will. Even the simple sub formula-selection gesture needs further research. 

2 We can't, at present, let the user select the null substitution, because we don't know how to do it gesturally. This means that 
some theoretically-possible proof trees are difficult to generate: to date it hasn't proved a problem. 
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.. . ... 
1: rev(rev l'(i)=id X 1: rev(rev[])=id X 

2: (reverev)x=id X Fold' 1 =} ... 

3: reverev=id ext 2 
2: rev(rev[x4 ])=id X 

3: rev(rev xs)=id X, rev(revys)=id X assumptions 
... 

4: rev(rev(xs++ys))=id X 

5: rev(revx)=idx listinduction 1 ,2,3-4 

6: (reverev)x=id X Fold' 5 

7: reverev=id ext 6 

.. . ... 
1: rev(revx)=id ~ 1: rev(revx)=id[] 

2: (reverev)x=id X Fold. 1 =} ... 

3: reverev=id ext 2 
2: rev(revx)=id[x4] 

3: rev(rev x)=id xs, rev(revx)=id ys assumptions 
... 

4: rev(rev x)=id(xs++yS) 

5: rev(rev x)=id X listinduction 1,2,3-4 

6: (reverev)x=id X Fold' 5 

7: rev-rev=id ext 6 

.. . ... 

1 : rev( rev ¥~::::iidl ~ 1: rev(rev[])=id[] 

2: (reverev)x=id X Fold. 1 =} ... 

3: rev-rev=id ext 2 
2: rev(rev[x4 ])=id[x4] 

3: rev(revxs)=id xs, rev(revys)=id ys assumptions 
... 

4: rev( rev(xs++yS) )=id(xs++yS) 

5: rev(rev x)=id X listinduction 1,2,3-4 

6: (reverev)x=id X Fold. 5 

7: reverev=id ext 6 

figure 10: three alternattve substitution-selections, and the correspondmg proof steps usmg the Itst InductIOn rule 

Naturally we don't tell our users that they are constructing substitutions (although they can read about it 
on our web site[4]); they need not even write the rule in terms of substitution but in a kind of 
'abstraction' or 'predicate' notation (figure II). We explain the gesture as "select the subformula you 
want to work on", and to date it has fitted well into all of the logics we have encoded. 

_r_~x_=_Y---,-r_~_p-,-(y...!..). np([]) np([x]) r,p(xs),P(ys)~P(xs++ys).. . 
rewnte Itst mductIOn 

np(y) np(Q) 

fig 11: optional alternative notation allows description of rule without substitution notation 

This technique of user-directed substitution makes it much easier to use Jape as a rewrite engine, and 
extended use has exposed one interesting problem - not a VI problem this time but a TP one. In a 
classical logic the equivalence of P -7 Q and ,p v Q is provable, and many users would like to use that 
equivalence in a rewrite rule. There's a problem when attempting to rewrite within a binding formula: 
Vy(A -7 B) isn't equivalent to (Vy(v))[v\A -7 B] without extensive assurances that y doesn't occur 
within A or B, and if those assurances were given then the proof would probably be useless. A rule which 
uses formal substitution, like the one in figure 8, doesn't capture the notion of rewriting sufficiently well. 
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We can see, meta-logically, that if P--.? Q is equivalent to -,pvQ in any context or none, then it's safe 
to rewrite with that equivalence at any subformula position, no matter what its binding context. But how 
to tell that to Jape? Even the use of substitution formula: needs further research. 

Resolving context splits 

Many logical descriptions use context-splitting rules to illustrate how hypotheses are 'resources' for use 
in the proof of antecedents. This is taken seriously in linear logic[3] where multiplicative rules split both 
left and right contexts I. 

r,MD. r',B>D.' ... 
---'----'-- multIplIcative vI-
r,r',A V B>D.,D.' 

fig 12: a multiplicative rule 

Jape permits this kind of rule, and when it is applied defers a decision about the division of formula: 
between left and right subtrees. It uses a proviso mechanism: the proof is acceptable provided that some 
way is found to make the split so that a specified collection of formula: unifies with a specified collection 
of unknown contexts. 

J1,Q~~"") J2,R~_D.2 
.. ~ .. ;;.~ 

QvR, P, P ~~ PAR 
contract> 

P,QVR~PAQ,PAR 

,J2 UNIFIESW1TH P ,P 
1,_82 UNIFIESW1TH P AQ,P AR 

fig 13: a deferred context split, and use of drag-and-drop to resolve the ambiguity 

It's possible, using Jape's previously-existing mechanisms, to complete many proofs, using identity rules 
(axiom, hyp) to demand unifications which resolve the context-splitting ambiguity. But it's confusing, it 
introduces a lot of unknowns onto the screen, and it requires the user to hold in their head a complex 
unification and search strategy. Better to use gestures to resolve the ambiguity, and Jape now employs 
drag-and-drop. When a user drags a formula instance2 the engine consults its collection of provisos. If 
that instance is part of an unresolved context split, the interface is told the 'destination' variables into 
which the formula instance can be dropped3. Those variables - for example, D. I and D.2 in figure I3 -
highlight as the dragged formula passes by, and receive it if it is dropped into them. Evidently the 
gesture would be more efficient if the user could select more than one formula for dragging at a time; 

Linear logic is not yet encoded into Jape, because we haven't worked on the treatment of modalities in the last eighteen 
months. Writing this footnote is a spur: real soon now it will be done. 

2 aUI purists will note that we have two kinds of dragging: one to select text, the other to move a fonnula. This is to be 
regretted, but it seems to be as simple as it can be. 

3 If it isn't part of a split context, the engine tells the interface to ignore it; the user is allowed to drag it around, for example 
into a neighbouring window or onto the desktop, and whatever the OS does with dragged bits of text, it does. 
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perhaps our concentration on formula instances is a little fussy (for example when you have to drag one 
instance of P left and the other right, as in figure 13). But we feel that in principle the gesture is just the 
right one to resolve this kind of ambiguity, making context-splitting unification determinate. 

Conclusions 

If UIs are to affect the behaviour of TPs efficiently, we have to devise gestures which capture a user's 
intentions effectively and efficiently. It's necessary to do more than to resolve search ambiguity, or to 
describe in a single gesture a sequence of rule applications. It's necessary also to resolve the ambiguity 
inherent in rule application with a variety of gestures rich enough to convey those intentions concisely, 
but which still speak no more than the parsimonious vernacular of point and click, press and drag which 
is all that users, operating systems and programming-language libraries can deal with at present. Jape's 
formula-selection, substitution-selection (or subformula-selection) and context-dragging are a first step 
towards the goal of a UI that can truly communicate with a TP. 
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Abstract 

In this paper we present the Durham Mathematical Vernacular (MV) project, discuss the 
general design of a prototype to support experimentation with issues of MV, explain current 
work on the prototype - specifically in the type theory basis of the work, and end with a brief 
discussion of methodology and future directions. 

The current work concerns an implementation of Lua's typed logical framework LF, and 
making it more flexible with respect to the demands of implementing MV - in particular, 
meta-variables, multiple contexts, sub typing, and automation. This part of the project may 
be of particular interest to the general theorem proving community. 

We will demonstrate a prototype at the conference. 

1 Introduction: Defining a Mathematical Vernacular 

The long term aim of the project is to develop theory and techniques with which the comple
mentary strengths of NLP (Natural Language Processing) and CAFR (Computer-Assisted Formal 
Reasoning) can be combined to support computer-assisted reasoning. Our chosen area is math
ematical reasoning, with the goal of implementing proof systems that allow mathematicians to 
reason in a "mathematical vernacular" (MV). Thus, mathematicians may work in a style and a 
language which is closer to traditional practice, rather than in a formal setting. 

The MV project is a natural consequence of existing projects at Durham on Type Theory 
and on Natural Language Processing. The work on type theory includes coercive subtyping [10, 
8], implementation of automatic decision procedures [21], and applications of type theory, eg in 
concurrency. The NL work is represented by the LOLITA system [19, 4]: this large project aims to 
build a general purpose platform with which specific NL applications can be built, eg information 
extraction [14J, or object-oriented requirements analysis [12J. 

In the remainder of this section, we briefly discuss the notion of mathematical vernacular, and 
our type-theoretic approach. 

Mathematical Vernacular The term "Mathematical Vernacular" has been used before with 
varying meanings, eg in [13J and [5J. We define it to mean a language which is suitable for ordinary 
mathematical practice, and which can be implemented with current technology and under the 
guidance of a formal semantics. The basis for implementation will be constructive type theory and 
its associated technology. 

This MV is not necessarily the same as the language mathematicians commonly use, which we 
shall call "Informal Mathematical Language" (IML). Thus, we do not intend to model completely 
what mathematicians do, for several reasons. Firstly, IML is an informal solution to the problem 

"'This work is supported partly by the University of Durham Mathematical Vernacular project funded by the Lev
erhulme Trust (see http:/hlTilTil.dur.ac.ukrdcsOzl/mv.html) and partly by the project on Subtyping, Inheritance, 
and Reuse, funded by UK EPSRC (GR/K79130, see http://llllll.dur.ac.ukrdcsOzl/sir.html). 
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of communicating mathematics, and we can't be sure that it is the most effective way. Secondly, 
groups of people have their own idea about IML, of what is acceptable and what isn't, and so on. 
lt would be hard to study such variation in opinion. Lastly, IML does not take account of the 
new technology for proof checking. This is an important point: we are still learning how to use 
the formal side of the technology, so an examination of how natural language may be productively 
used with it is certainly worthwhile. We discuss further methodological issues in section 4.1. 

A Type-theoretic Approach Type theory provides a flexible language for expressing and 
checking a lot of non-trivial mathematics (eg [3]). The process of checking proofs (via type check
ing) is decidable for the type theories we will use, so it may be mechanised (implemented) straight
forwardly. However, type theory and the technology based on it is hard to use: humans require a 
lot of training to use it effectively, and experts are not fully satisfied with the current implementa
tions. One aim of our project is to contribute to this technology, especially in terms of being able 
to support the demands of MV. 

Constructive type theory with dependent types is also a useful framework for natural language, 
eg in semantics (see Ranta [15]). The use of coercive subtyping may add flexibility to formal 
accounts of NL [11]. 

2 A Prototype for Experimentation 

It is difficult to design an interactive system based on MV in a top-down style. We have ideas on 
various pieces of the problem, but tying these together is difficult. Thus, we need a prototype which 
will allow experimentation with different ideas. This prototype will also be a useful intermediate 
tool. Bear in mind that our interest is not only practical - we would also like to understand 
mathematical language and how it differs from general language - so prototype development will 
not be a pure 'engineering' matter. 

This section outlines our initial design of such a prototype, discussing the basic requirements 
of functionality, and sketching the architecture which we will use to achieve this. More ambitious 
aims and future developments are discussed in section 4.2. 

2.1 Establishing Requirements 

We are taking a simple piece of mathematics as a guide in this early work. This step gives substance 
to our initial aim: it helps us gauge progress and to 'characterise' what the prototype is capable of. 
It is in general difficult to write exact requirement specifications for NL systems [4]. One possible 
reason for this is the sheer variability possible in NL and the complexity thus required of systems 
to handle this variability, and a general lack of techniques to talk precisely about NL. 

Our informal aim is then that the prototype can accept and use a good selection of the possible 
ways of presenting the material in this simple development. We do not quantify this condition: it 
does not seem possible that we could do so in a meaningful way. Hence it is not a strict minimum 
requirement. Neither is it a maximum requirement. We shall generalise when reasonable and 
'over-implement' to a certain extent based on our expectations for the next level of the prototype, 
eg with more complex grammar or more powerful logical facilities. Such considerations also affect 
our choice of architecture. 

2.2 Required Functionality 

For this prototype, we take as basis a simple mathematical development: of simple definitions on 
binary relations, and three proofs concerning those definitions. The development may be briefly 
summarised as: 

• We introduce the notion of binary relations on a type or set. 
• We define what it means for a relation to be reflexive, irreflexive, symmetric, and transitive. 

Two less common properties are also defined: 'separating' and 'apartness,l. 
• The negation of a relation is defined. 

lThe former defined as Vx,y E U· (Rxy) :::} VZ E U· (Rxz) V (Ryz), and the latter that a relation is both 
separating and irreftexive. 
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• Theorem 1: the negation of a symmetric relation is symmetric. 
• Theorem 2: if there is a 'top' element to which all others are related by some relation R, and 

R is symmetric and transitive, then it is also reflexive. 
• Theorem 3: an apartness is symmetric. 

We remark: 

• It is mathematically simple, hence formalisation is straightforward and it can be expressed 
in simple natural language. Note that the above statements of the three theorems are the 
kind of language we would like to implement. 

• Versions of this material appear in many text books in some form, eg introductions to discrete 
mathematics. It has also been formalised under several approaches, including Mizar [13J 
(comparing their MY to ours will be interesting). 

• The mathematical basis is quite fundamental, so we do not need a large 'library' of basic 
concepts first. A key point of MY is that users define the terminology they are about to use. 
If we need an non-trivial library before studying a development, then the library itself should 
be used as the case study. 

• Language-wise, there is potential for a good range of phenomena, such as mixing symbolic 
expressions and NL, different ways of referring to properties of relations (ie, some are simple 
adjectives which have noun forms - eg 'transitive' and 'transitivity', others as nouns without 
adjectival forms - eg 'apartness'), and the proofs are non-trivial enough to admit variations 
in presentation. 

• Technically, the development includes quantifier reasoning, some equality reasoning, an oper
ation on relations (negation), properties defined both independently and in terms of others. 
The proofs are short and simple. 

There is no fixed NL version of this development2 . In addition to textbook and Mizar presen
tations, we are conducting an informal empirical study of how people would express the proofs, 
including how type-theorists would explain the formalised version, how mathematicians would ex
press that piece of mathematics, and how non-experts would do it. Thus, we have access to several 
independently-produced ways of expressing the ideas in IML, which we can use for development 
and testing. 

2.3 Basic Architecture and Development Method 

This discusses how we produce a prototype to satisfy the above aim, in terms of what components 
and techniques we will use. There are two aspects to this (type theory and natural language), 
which we discuss separately; then we discuss how we envisage the two interacting. As noted 
before, we will implement the prototype more generally than needed for short term goals, so in 
places we discuss techniques which are more complex than immediately required. The prototype 
will be constructed "bottom up", ie starting with the type theory levels and then implementing 
the NL functionality. The main implementation language is the non-strict functional programming 
language Haskell [6]. 

Implementing Luo's LF The type theory aspects will be based on Luo's typed logical frame
work LF (see [9], chapter 9). LF has not been implemented in any form before. The plan is to 
first implement a very basic proof assistant for LF, with a single context, definition mechanisms, 
basic refinement proof etc. We will then be able to experiment with ways of using type theory, as 
explained in section 3. A minor goal is to implement an efficient type checker in Haskell which will 

2 And there is no unique formalisation of the mathematics. This raises the interesting question of how we actually 
demarcate the development: in a sense, it is the mathematics involved, but in what form is this to be expressed? 
The various NL and formal versions are just expressions of some underlying idea. What is this underlying form? 
We leave this question open, since ouc concern is with how the manifestation in NL corresponds to a manifestation 
in a formal language (which then may be checked etc), and not with what mayor may not be the 'real' process 
in-between. 



be suitable for large-scale work, eg by implementing inductive types as a primitive notion, rather 
than as an extension to an existing system. 

Using LF avoids the particularities of specific proof assistants (which are oriented towards 
helping experts prove things quickly) and of specific type theories (we can use LF to implement 
just the type theory we require). Thus we have more control over what happens - for example, 
we don't have to attempt to explain to the user when the proof assistant makes some complicated 
inference which would not be understandable to a novice type theorist. The LF implementation 
will also be useful in other projects, eg the coercive subtyping research at Durham. 

Processing MV We will use a conventional NL analysis architecture3 : essentially this is lexical 
analysis (normalising and categorising word forms), parsing (building the structure of a sentence), 
semantics (converting the tree to an expression in the semantic language), pragmatics (checking 
restrictions are observed and propagating other restrictions), and discourse (connecting the infor
mation from several clauses or sentences). Generating replies to the user will be implemented by 
using simple sentence patterns. 

Parsing is (algorithmically) the most complex component: for the moment we shall use an 
implementation of Tomita's algorithm [20] due to Hopkins [7], aB is used in LOLITA. This will 
allow us to write and parse heavily ambiguous grammars. It is almost certain that syntactic 
ambiguity will be present. For example, even the simple grammar in Ranta's prototype [16] 
contains ambiguity. However, a powerful parser introduces problems of (syntactic) disambiguation, 
of choosing which interpretation to use in further analysis. This will be considered when we get 
evidence about the behaviour of a realistic grammar. 

Semantic and pragmatic interpretation will be implemented as operations on an abstract ma
chine. This will hide detail of the type theory underneath, such as details of how concepts are 
actually represented. Part of this design is considered in [11]. Discourse will be implemented as a 
simple post-processor of semantic information. 

As to the strategy for populating this infrastructure with rules, we shall start with the basic 
language sufficient to communicate the development, even if it is cumbersome to use, and then 
look at adding "surface language" conveniences such as forms of deixis4 and more varied syntax. 

Particular new problems to be solved include: mechanisms for introducing new terminology and 
for getting that recognised as such even with standard transformations of languageS; interaction 
with symbolic expressions - particularly the understanding of these in order to perform semantic 
checking and interpretation, plus the translation of these to formal notation. 

One distinction that may be useful is the language used for definitions vs. that used for proofs. 
Definitions and statements of theorems must be expressed with precision - they are statements 
of ideas or concepts in a mathematician's mind, and it is generally impossible to infer missing 
details. Contrast this with proof, where competent mathematicians can fill in the missing details 
by inference, thus the communication does not need to be as precise. 

How the Prototype will Work The type checker will be used during NL analysis, thus in
terspersing analysis and interpretation to a degree (the alternative is to perform all type checking 
once analysis has finished). One consequence is that type information is potentially available for 
disambiguation - although we need to experiment to see how effective or useful this is. Another 
consequence is that errors can be detected quickly and the user given useful error messages, rather 
than just saying 'yes' or 'no' to a sentence. 

We would also like to use the type theory level to handle parts ofNL analysis where appropriate. 
For example, anaphora could be attempted purely at the NL level, but some anaphoric references 
can be interpreted as meta-variables and attempted with the automatic reasoning procedures. (NB 
especially above sentence level, the fadors governing anaphora are heavily dependent on domain 

3See [1, 19) for more information. 
4 Indirect references to objects - eg use of pronouns and partial expressions like 'it', "the group" ,etc. Anaphora 

is the common case where the referent occurs in previous context. 
5 A simple example: transitivity being introduced as an adjective 'transitive', and later being referred to with 

the noun 'transitivity'. Where we allow phrases containing more than one word, more complexity is possible, eg 
"monotonically increasing with respect to x", "increases monotonically wrt. x", "monotonically increases" (with 
the variable left implicit), etc. 
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factors, such as types of objects - hence this is reasonable.) Coercive subtyping is another good 
example [11]: we can handle aspects of NL analysis at the type theory level (see section 3.4). 

The style of operation is expected as follows. Users will make statements, which are possibly 
incomplete - eg requiring pre-conditions or additional formal detail. The NL analysis translates 
such sentences into a representation of this imperfect information, using meta-variables to represent 
the incompleteness; eg steps in proofs will give rise (internally) to proof terms. Cues from the 
sentence will be used to classify the meta-variables, and depending on the classification, different 
kinds of automatic reasoning will be employed to resolve the omissions. For example, statements 
marked with phrases like "obviously" or "qed" can be viewed as assertions that a proof exists and 
is easy to obtain in the current mathematical context - automatic reasoning will try to find one 
by combining the proof steps (ie the internal proof terms) the user has previously described. 

3 Technical Issues for Supporting Implementation of MV 

This section outlines work in progress on the type theory side of the system. The basis of this is 
an implementation of Luo's LF in Haskell, as explained above. We discuss issues of how this type 
theory is used, ie what support we give the user. These are points which we have also identified 
as being necessary or extremely useful in an implementation of MV; they are also open questions 
in contemporary proof assistants. 

3.1 Meta-variables 

Meta-variables are 'holes' or 'place-holders' in a proof. They must be replaced with a concrete 
term before a judgement can be decided. They have known types, but of course the types may 
contain other meta-variables. There are several uses of meta-variables: 

• Productivity: less important details of a proof can be left whilst the key details are explored. 
For example, proofs which are simple but tedious to do formally can be left, and supplied 
when the main proof is complete. 

• Flexibility in creation of a proof. Lemmas which are found to be useful can be 'assumed' for 
the purposes of a proof, then proved separately when convenient. 

• Interface with automation. Meta-variables can be used to represent information which the 
user believes should be inferable. Hence automation can be used to try to remove (or satisfy) 
meta-variables. 

• For MV, to allow direct expression of NL statements in the formal system. The alternative 
is to implement some mediator which collects NL information and when possible outputs 
completed formal expressions. Clearly, use of meta-variables is more flexible. 

However, meta-variables cannot be used like normal variables because of logical difficulties. In 
particular, they should not be abstracted over - they cannot appear in the body of a newly created 
lambda abstraction, for example. The term used to satisfy a meta-variable must be constructed 
from the entities available when the meta-variable was introduced. Abstraction (and then appli
cation of this abstraction) alters this context - the information that the metavariable could have 
used some x is lost when x is abstracted and then replaced by some arbitrary term E. 

One solution is the restriction that meta-variables are eliminated (ie satisfied) before abstraction 
occurs. Another solution is to annotate meta-variables with the terms that can be used in their 
satisfaction - but this is much more complex than the first solution. 

Meta-variables will be implemented as variables with restrictions on how they are used, and 
their elimination as a Cut operation. Cut is, however, an expensive operation - it essentially 
involves global substitution of the meta-variable, hence a rewrite of the relevant context. This 
could be made less expensive through lazy evaluation (ie the non-strictness of Haskell), and by the 
structure of multiple contexts restricting the amount of rewriting needed. 



3.2 Multiple Contexts 

Most proof assistants implement a single context, that is, development proceeds in a single line, and 
a new proof cannot be started until the previous Oile is completed or abandoned. Clearly, this is 
inflexible. However, how to design an alternative is not clear, and like meta-variables, the concept 
needs careful design. Multiple contexts may have a deep effect on treatment of meta-variables, 
and vice-versa. Allowing multiple contexts could have several benefits, depending on the scheme 
chosen: 

• It will allow flexible development of proofs - in particular, allowing the user to introduce 
lemmas freely when needed, or to develop several proofs in parallel. This is very powerful. 

• For NL, different contexts of development can be used to represent scoping of names and 
concepts, eg separating re-use of standard names like x, R. 

• Libraries: can be represented as parts of the context, and 'imported' when names from them 
are used. One could also extend or create new libraries more easily. The problem of organising 
a large development, which includes formation of libraries, is frequently mentioned (eg [3)). 

• The structure of the multiple contexts is likely to be a graph which represents dependency 
between objects of the development (see below), thus it can represent association between 
objects. This can replace fixed linear structure in type theory to provide a more natural 
view. For example, a prototype group 9 can be introduced, and then the components of 9 
introduced and noted as being related to, or dependent on, g. Then, when a theorem based 
on 9 is used in another context for another group g', the user would have to supply objects 
which are related to g' in analogous fashion. 

We are considering the following scheme. A 'context' is the set of objects which are in scope 
at a particular time. Objects can be in several scopes simultaneously, eg a lemma which is used 
in several theorems. Objects in a given context have unique names; obviously, identical names in 
different contexts can refer to different objects. Contexts can be joined by importing objects from 
other contexts, eg by applying a theorem in the current proof. (Obviously the context used in 
developing the applied proof should remain hidden.) 

Many issues still need to be considered and experimented with. One is how theorems devel
oped inside a multiple contexts framework are used. We could do a conventional 'abstraction' or 
discharge operation, and then reapply to local terms. Note that this operation is not a procedure 
a mathematician would recognise: they seem to use a Cut-like operation, essentially substituting 
local terms for the variables in a proof statement. This cut operation seems more natural than 
abstraction for multiple contexts. 

3.3 Questions of Automation 

A useful implementation of MV should contain automatic reasoning, in order to support the user. 
For MV, techniques which help a formal mathematician may not be useful. What we need is 
techniques to fill in the small details a mathematician would typically omit, and to tie steps of 
proofs together to prove the whole. 

Meta-variables provide 'hooks' for automatic reasoning, by representing the places which need 
attention. We can also differentiate between kinds of meta-variable to provide appropriate treat
ment for certain cases of reasoning. As mentioned above, the user's statements will be translated 
in to terms containing meta-variables, and automation will attempt to build complete proof terms 
from these, eg when the user claims a proof is complete. 

Several kinds of automation will be required, such as type-theoretic model checking [21], or the 
various procedures implemented in the verification tool PVS [18]. Interfacing to computer algebra 
systems will also be useful for heavy calculations. 

3.4 Use of Coercive Subtyping 

Coercive subtyping aids use of a type theory by providing a type-secure abbreviational mechanism 
[10]. As noted in [11], it can be used to simplify implementation of MV, in particular expressions 
denoting classes of mathematical object. For example, if 'finite' is defined for sets, and 'group' is 



declared as a subtype of 'set', then the construction representing "finite group" is well-typed and 
immediately understandable as meaning "group whose set is finite". No further action is necessary, 
eg NL analysis does not need to make this inference. 

Forms of coercive subtyping have been implemented in Lego [2] and Coq [17], but have cer
tain restrictions, such as working on syntactically equal terms rather than computationally equal 
terms (the latter being more general). Implementing subtyping at a more fundamental level, ie in 
LF, avoids such restrictions [10]. The implementation will also complement theoretical work on 
subtyping, eg [8], by helping to explore ideas. 

4 Discussion 

We have presented the initial design of a prototype for interactive development of mathematics, 
in terms of a first goal of functionality and the architecture we will use to achieve it. We discuss 
a few methodological points, and then outline future directions for the project. 

4.1 A Bottom-Up Strategy 

There are many methodological issues to be considered in an interdisciplinary project like this. 
For example, how do we define what our requirements are, and how do we evaluate the results, or 
quantify the worth of the work? De Bruijn noted in his design of an MV that there were many 
arbitrary decisions to make [5J; what guidance do we have in such cases? These questions are hard 
to answer. 

One way in which we tackle them is by adopting a "bottom-up" strategy of working. That 
is, we look at pieces of the problem that we can understand, and fit them together to establish a 
coherent, if limited, whole. The prototype is one example of this. We shall use it to explore further 
issues. Also bear in mind that our intention is to develop the technology for a successful future 
system, and not to create a system in the short term. 

4.2 Future Developments 

The chosen development is a modest start, so clearly there are many aspects of mathematics which 
it does not contain. The following two aspects are the obvious next steps, and will allow us to do 
more substantial examples. 

Algebraic Structures Definition of structures that satisfy certain axioms, and examination of 
how such structures relate to other structures is a central part of mathematics. An obvious example 
is of 'group'. MV must allow us to define the notion of group, and then to use that definition in the 
usual ways, including access to the component parts and use of the axioms of groups. A particular 
problem is correct handling of proof terms, especially since these will not be visible to users. We 
may also allow different axiomatisations of structures; this is useful if mathematicians wish to 
explore the relationships between axiomatisations. Multiple contexts may support such activity. 

Induction We shall concentrate on induction with natural numbers, this being the form most 
used by mathematicians. We will need to implement the basic language, and the necessary au
tomatic reasoning to support it. Induction is a standard form of argument, so in an interactive 
system we could prompt the user for the necessary cases, and calculate what those cases are. Note 
that a proof by induction often begins by the user stating this is the method he will use. 
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Abstract 

The ILF system offers a uniform interface for several automated theorem 
provers. It does not assume that the user has any knowledge of the particular 
language and options of the single provers. The menu system is restricted to 
setting the most general parameters, common to all provers. More specific 
options can be set by configuration files. Use of the provers is facilitated by a 
sorted input language, visualization of proof structures and generic natural 
language proof presentation in LaTeX and HTML. 



1 Introduction 

One of the major aims of the German research program "Deduktion" (1992-
1998) was to combine the power of several automated theorem provers. The 
ILF system [DG97] attempts to realize this. Moreover it intends to make 
current reasoning technology available to the non-specialist. Its interface 
has been designed to simplify 

• the use of many theorem provers 

• by userS familiar with informal proofs but with no acquaintance with 
theorem proving technology 

• in a large variety of situations, possibly III cooperation with other 
systems. 

During the early years of the research program it became clear that 
the integration of technologies from different provers within a single new 
prover could not be achieved. At that time, the ILF system, which has 
been developed at the Humboldt University Berlin since 1988 under the 
name FLEXLOG, offered the possibility to call the automated theorem 
prover OTTER from within several small interactive theorem provers. The 
system, previously developed under MS-DOS, had been redesigned and 
implemented to work under UNIX. This made it possible, to run several 
copies of OTTER simultaneously in the background while the user could 
continue his work with an interactive theorem prover in the foreground. 

It was only natural to use the experience gained with the integration 
of OTTER [MC90], to integrate other provers developed within the" Deduk
tion" program in very much the same way. The equational prover DISCOUNT 
[De95], developed at the University of Kaiserslautern, was the first German 
prover used this way. Soon thereafter, it was followed by the provers SETHEO 
[GL94] (Technical University Munich) and KoMET [BB94](Technical Uni
versity Darmstadt). Later, the provers PROTEIN [BF94] (University Koblenz), 
SPASS [WG96] (Max-Planck-Institute Saarbriicken) and CM (Humboldt 
University Berlin) have been added. The integration of the equational prover 
WALDMEISTER (University Kaiserslautern) and the tableau prover 3TAP 
(University Karlsruhe) has been recently completed. We mention that ILF 
has also a COMPETITOR prover which runs several of the aforementioned 
provers in a competition and a COOP prover which lets two of these provers 
exchange information at run time. 



Each of these provers has its own input and output syntax. Each has its 
own variety of switches, parameters and flags. None of them had a graphical 
user interface. When deductive systems are to be used outside their own 
circles they are confronted with potential users without knowledge about 
logical calculi. These users will not be willing to memorize a variety of input 
languages and parameter settings. Only accidentally their proof problems 
will be in clausal form. They just want to specify a proof problem, give it 
to the system and see the anSwer. Even inside the deduction community, 
the situation is not very much different when developers of theorem provers 
test provers from other groups. 

Obviously, a unified interface was needed that hides the differences be
tween the provers as much as possible from the user. However, it was another 
reason that enforced the development of a graphical user interface for the 
ILF system in an early stage of the development. 

Recall that we have a user in mind who considers theorem provers just 
as a tool for his work. Consequently, he will not allow the tool to interrupt 
the main work he is doing, i.e. the provers should do their job whenever 
they can quietly. Hence, normally, the ILF user launches several automated 
theorem provers simultaneously and these provers run asynchronously in the 
background on several machines in the local network. Each of them gen
erates output files and messages. While most of the output files are kept 
for automated post-processing, a selection of the messages - especially those 
concerning success or failure of the single proof jobs - has to be presented to 
the user. It is quite inappropriate to let these messages interfere with user 
input. Hence, a separate window for prover messages is needed. At that 
time, Tcl/Tk was not yet available. Therefore, the user interface was imple
mented using Xll /Motif. This interface will be explained in the following 
sections. 

ILF is available for education and research free of charge with update and 
installation service. The update service includes updates of the integrated 
automated theorem provers. 

The major design principles of ILF were 

• integration of several automated theorem provers without any change 
of their code 

• support for asynchronous work of several provers in the local network 

• common parameters of provers can be configured by common com
mands, specific parameters can be configured by configuration files 



• reuse of preprocessing steps (e.g. clause generation) for several provers 

• user access to Prolog to control prover systems 

• high level typed input language with automated translation into an 
untyped first order language 

• support for a variety of user interfaces (QUI, command line, EMACS, 
WWW, Mathematica) 

2 The Windows 

The user interface of the ILF system can be configured in many ways. Es
pecially, it is possible to work without the graphical user interface, directing 
all output into the same stream and reading from standard input. This 
variant of ILF is used as part of scripts when ILF works as a server for 
other systems. Also interactive use is possible when automated provers are 
not used, e.g. to generate natural language presentations of existing proofs. 
However, the default user interface comes with four windows. 

The main window is used for the dialogue with the user. It has a menu 
bar, an output area and an editable command line. Lines can be copied for 
reuse from the output area to the command line. 

Though ILF can generate lb'IEX presentations on the fly, the main win
dow can be also used for a quick review of proofs or axiom systems. Through 
this window the ILF user has also complete access to the underlying Prolog 
system. Any Prolog command he enters will be immediately executed. It is 
possible to write Prolog commands which call ILF procedures to load the
ories, configure automated provers, launch them, analyze their output and 
generate natural language proof presentations. User defined commands can 
be re-loaded at run time or auto-loaded at start-up. 

Also system messages go to the main window. ILF comes with the 
interactive theorem prover PROOFPAD. The PROOFPAD calls automated 
provers in order to close gaps in the proof edited by the user. The main 
window is also the user interface of the PROOFPAD, which adds its own 
special menu. 

It was mentioned above that the ILF core system consists of two sep
arate parts - the foreground system communicating with the user and the 
background system communicating with automated provers (called experts). 
The ILF user will not see prover output. Nevertheless, this output is kept 
in files for some time for use by the prover expert. ILF analyzes prover out
put and displays appropriate messages in the expert window. This window 



does not have menus and cannot be used for input. Normally the user is 
informed which prover is working on a particular job and whether it suc
ceeded or not. For provers running on a single machine, the name of the 
selected host is also displayed. These informations are sufficient to review 
the native prover output files if necessary. Output from the foreground and 
background system is logged for later inspection. 

The remaining two windows of the ILF system are controlled by a sep
arate program - the TREEVIEWER. This tool can display labelled directed 
acyclic graphs. It is used to display proofs, term structures and hierarchies 
of theories. When proofs are displayed, nodes of the graph are labelled with 
formulas. Since these can be quite complex, they are displayed in a separate 
window. Both windows are synchronized, i.e. labels are hidden in the sec
ond window when their nodes are hidden in the first. Nodes can be colored 
(e.g. to characterize nodes belonging to the same subproof) and marked 
with one out of ten user-editable symbols (e.g. to distinguish proved nodes 
from unproved). 

It is of special importance that the TREEVIEWER can be used as a 
graphic input device for the client program (ILF in our case). So the user 
can select a location in a proof with the mouse or select a formula, edit it and 
send it to the ILF core system. The client program can add menus at run 
time to each of the two windows of the TREE VIEWER. It can also request 
from the TREEVIEWER informations on the status of each node (hidden or 
displayed, contracted or separated). 

When the graph is changed by adding or removing leafs, changing labels, 
colors or attached symbols, only the changes have to be retransmitted. This 
enables the TREEVIEWER to display dynamically a proof in progress. 

Internally, ILF transforms proofs found automatically into a standard 
format describing their structure as a labelled directed acyclic graph. Then, 
uniform procedures can be applied to display all these proofs from different 
sources with the TREEVIEWER. 

ILF has its own input language to specify proof problems. This language 
has an order-sorted polymorphic type system. Theories are automatically 
translated into input files for the single provers. This includes the conversion 
into clauses with the normal form transformation ofthe KoMET prover, the 
addition of equality axioms and the encoding of type checking into unifica
tion if necessary and possible. Of course, this is kept transparent for the 
user. 

The input language is an important part of the user interface. In soft
ware and hardware verification it is frequent that quite complex expressions 
have to be written. This is facilitated by the ILF input language. So names 
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of variables can be reserved for specific types and the user can specify ab
breviations which are unfolded during the parsing process. When a proof 
is edited interactively within ILF, the same abbreviations are available too. 
Also when theories or proofs are displayed, the abbreviations will be applied. 
Sometimes this can have the effect, that a formula is displayed in a more 
compact way than entered by the user. The ILF type system requires that 
each term has a unique minimal type. When it is necessary and possible to 
add missing type parameters to achieve this, ILF will do it tacitly. If not, a 
parser error is generated. The use of types is not necessary. There is a more 
simple format for untyped theories which are automatically converted into 
typed theories. 

There is a separate small generic editor GENEDIT installed with the 
system which supports user defined templates. Templates for editing typed 
and untyped ILF theories are included. 

3 The Menus 

By default there are three menus - a command menu, a menu for working 
with theories and proofs and a menu for configuring the background system. 
The command menu has items for switching the Prolog occur check and for 
closing the system. 

The theories menu contains items and submenus to edit load and display 
typed and untyped theories. Theories are stored in a database on disk. This 
database caches also preprocessing steps for the single automated provers for 
later use. This accelerates the generation of prover input files when several 
proof jobs use similar axiom systems. Consequently, there is a menu item 
which enables the user to erase the database. This can be automated - if 
desired - by including an appropriate command in a theory or in a file which 
is auto-loaded on start-up. 

Proofs can be loaded from the same menu for display with the TREE
VIEWER or in natural language with 1\\'I£X or HTML. These proof presen
tations transform the native proofs into block structured proofs [DW96] and 
apply a series of further proof transformations to enhance the readability of 
proofs. This sequence of transformations depends on the prover which has 
found the proof. It can be changed by the user. Proof presentation tech
nology was described in [DW96]. It is currently available for untyped proof 
problems for all integrated provers except OTTER. Since anything can be 
proved correctly from an inconsistent theory, proof presentation has turned 
out to be a valuable tool to discover errors in formal specifications. It is also 
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useful to demonstrate the results of the work of theorem provers to the ILF 
user without requiring acquaintance with a formal calculus. 

By varying the typesetting declarations (see next section) the user can 
easily change the form in which proofs are displayed. These declarations 
can be edited in a file which can be reloaded with an appropriate menu 
item without restarting the system. Also the level of detail used in proof 
presentations can be set by the user. 

The second default menu has items to connect with any of the integrated 
provers. When such an item is selected, the prover isn't launched yet. The 
background system only creates a data module for a proof job for this prover 
and prepares a default configuration. Moreover, the foreground system adds 
a menu to access basic properties of the prover configuration. It is possible 
to prepare several proof jobs for the same prover at the same time. 

In earlier versions it was possible to change each prover setting by a 
menu item. However, it turned out that users, inexperienced with the pos
sible settings of all the available provers, where overwhelmed by the many 
parameters and switches that could be set. On the other hand, specialized 
users being very familiar with the particular possibilities of a single prover, 
do not need support by an extensive menu system. They are used to write 
configurations or command line options. Therefore most prover menus have 
only items to change settings which concern the integration of the prover 
into the ILF system. This includes an item to load a suite of prover settings 
from a configuration file which has been prepared by the prover authors, 
possibly modified by the user himself. 

In order to explain the possibilities common to all provers it is necessary, 
to say a few words about the way ILF handles proof jobs. Such jobs can 
be created and launched automatically. For each of these jobs a prover is 
launched on one or more machines in the local network. ILF guards the 
network resources and delays jobs if necessary. Each prover is guaranteed 
a minimal wall-clock time to work (fiexykill-time). If this time has expired 
and there are more proof jobs waiting, the prover is killed in order to free 
resources. Moreover, there is a maximal amount of time (max-time) which 
the prover is allowed to work. flexykill-time and max-time can be modified 
for each job by menu items. 

For some provers there are advanced menu items which are invisible at 
start-up. For example, the selection of such an item can modify the way ILF 
adds equality axioms to input files generated for the prover SETHEO. Which 
of these advanced menu item are shown depends on a numeric parameter 
called menu-level. There is a menu item for changing this parameter and 
there are refresh-items on the prover menus to extend or shrink the menu. 



The menu system is read from a file. By editing this file, the user has 
complete control over all menus. For example he can easily add menu items 
to call procedures which he added to the ILF system. Each line in this file 
describes a menu or submenu or a menu item. Each of these entries specifies 
at which menu level the item occurs, what is written in the menu and which 
action has to be taken when the item is selected. For the leafs of the menu 
tree these actions insert a command into the command line of the main win
dow. This helps the user to memorize the main ILF commands. The user 
can modify the command line, e.g. by adding parameters. For some com
mands which do not require parameters it can be specified that the selected 
command is immediately executed, without an additional confirmation by 
the user. 

4 Configuring the Systems 

Each ILF installation has a central part and a user specific part. As a 
principle, each required information for configuring ILF or the integrated 
provers, is taken from the user specific part whenever possible. This concerns 
especially the basic configuration file which can include other user specific 
files like menu settings. In this file it is specified which components of the 
ILF system are to be used, especially which automated provers are made 
available. Also the use of the ILF type encoding mechanism is specified 
here. 

This is also the place to modify the details of natural language proof 
presentation. ILF uses context-dependent templates to determine the type
setting of formulas and proofs. The user can easily add templates to deter
mine the typesetting of the formulas he is actually working with. In fact, 
ILF has possibilities to create these templates for presentations in Jt>.1EX 
and HTML from a single generic format. Formulas or rules of inference 
that are to be suppressed in proof presentations, as well as the amount of 
explicit references can be set by the user. Advanced users can modify the 
default sequence of proof transformations which is applied before a proof 
is presented. For example, by switching off all proof transformations it is 
possible to inspect the proof in a form very close to that generated by the 
prover. 

The configuration of automated provers is determined by configuration 
files. In fact, a default configuration is considered first which can be later 
modified by user specific settings. These can change a large variety of prover 
specific parameters. Especially it is possible to specify strings which are di-



rectly inserted by ILF into prover input files or prover command lines. Thus 
prover-internal changes concerning these parts will not affect the integration 
of the prover into the ILF system. 

Recently, ILF has been extended by the DBFW tool [JW97] developed 
at the Technical University Munich. This tool extracts automatically sta
tistical informations of runs of provers within ILF. These informations are 
regularly mailed to the developers of the prover for support purposes, pro
vided that the ILF user has enabled this procedure. 

Thus, besides its main purpose to facilitate the use of a variety of provers, 
ILF can help prover authors to develop their products in a way more directed 
to user needs. 

5 Interfaces in Use 

Most users prefer the graphical user interface, switching off particular com
ponents which they don't need for a specific job. It is very popular to mod
ify ILF's menus by inserting individual commands, especially to call Prolog 
programs for preparing individual prover jobs. On the other hand, the pos
sibility to insert user specific menus in the TREEVIEWER and to modify 
them dynamically, is seldom used. Also, users tend to stay with the default 
prover configuration. This emphasizes the value of provers which are able 
to configure themselves, like in the automode of the OTTER prover. In case 
of the PROTEIN prover, ILF will modify the configuration automatically to 
select the right way to treat equality in PROTEIN. 

The way ILF outputs formulas can be easily modified by the user. This 
is widely used. The procedures used to transform proofs for better read
ability can be also selected by the user. However, this requires acquaintance 
with the available procedures and is hardly applied to replace the default 
procedures. 

Though ILF works internally with a typed language, many users from 
the deduction community have only first order problems. Therefore, it was 
necessary to design a more simple input language for first order theories 
together with an automated translation into typed theories. But for more 
realistic problems, polymorphic types are necessary. The ILF input lan
guage supports such types. The parser will automatically augment type 
parameters when they can be inferred. Writing complex terms in theories is 
facilitated by user-defined abbreviations which are automatically unfolded 
by the parser and folded back by the ILF presentation tools. Note that this 
has the consequence, that terms are sometimes presented in a form different 
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from the form in which they were entered. However, the resulting reliabil
ity in communicating complex terms with the user is a more than sufficient 
compensation for this. disadvantage. 

The command line interface is mainly used to run large experiments with 
provers from skripts. ILF has also a possibility to communicate over the 
internet, either via a web server using a cgi skript or directly using socket 
communication. This is mainly applied to give remote users access to the 
ILF mathematical library from a NETS CAPE web browser or from within 
the computer algebra system MATHEMATICA. 

6 Work Accomplished with ILF 

ILF has been used in a variety of ways. Perhaps most popular is its use 
as a proof presentation tool. This has turned out to be a valuable help in 
discovering deficiencies in the work of provers as well as inconsistencies in 
formal specifications. It was also an indispensible tool to extract the math
ematical content of the solution of ROBBINS' problem by BILL MCCUNE'S 
prover EQP, since it permitted to look at this proof from several views. 

The interactive prover PROOFPAD has been used e. g. to verify some 
communication protocols, to edit a proof of the intermediate value theorem 
in calculus and a proof of BUSULINI'S theorem on lattice-ordered groups. 
These experiments confirmed that automated provers make it possible to 
use an interactive prover without knowledge in formal logic. 

Many experiments have been made with ILF to evaluate the power of the 
integrated provers for various applications. In cooperation with a software 
engineering group at Braunschweig university, they have been tested on 
problems to be solved for selecting components from a software library. 
Within these experiments, the provers SPASS and DISCOUNT have been used 
also in an ILF configuration where they communicated at run time. This was 
developed in cooperation with DIRK FUCHS from Kaiserslautern university. 

ILF has a mathematical library which consists of a data base, extracted 
from 50 articles from the mathematical library of the MIZAR system. ILF's 
proof presentation technology has been used to provide Web access to this 
library. This has demonstrated the benefits of an electronic library which 
genereates texts dynamically on user demands. Automated theorem provers 
have been used in a competitive way in ILF to search the library for theorems 
in an intelligent way from within MATHEMATICA. The contents of the library 
can be exported in a format that can be easily parsed by Prolog or Lisp based 
systems. This has been used to generate a series of about 100 proof problems 
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as a test suite for automated theorem provers. 
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Abstract 
Various programs to assist learning natural deduction for first order logic are presently available. Relevant issues 
when comparing them are: the version of natural deduction being taught, how proofs are visualized (notably 
whether proofs are trees or sequences), whether both forward and backward reasoning are supported, the 
availability of global, tactical and strategic help and 'debugging' facilities, and proof checking. Five natural 
deduction proof assistants are compared within this framework: MacLogic, Jape, Hyperproof, Carnegie Mellon 
University Proof Tutor, and Symlog. Other programs are briefly mentioned. Jape's interface is visually most 
appealing and least biased towards forward or backward reasoning. Hyperproof's natural deduction assistant suits 
proof checking very welL Symlog's help facilities are remarkable. Interface design for full-fledged theorem provers 
can profit from experiences with simple proof assistants. 

1 Introduction 
A natural deduction proof can be visualized in different ways. As an example of that we give two 
different visualizations of the same proof of p --> (q /\ r) 1- (p --> q) /\ (p --> r): 

1 1 P --> (q /\ r) assumption 
2 

2 2 P assumption P ..., (q A r) P"" (q A r) 
1,2 3 2, -->E, 1, 2 

-P- -p--
q/\r 

...,E ...,E 1,2 4 q AE,3 qM qM 
1 5 p-->q ~I, 2, 4,-p __ AE 

AE 
3 6 P assumption q r 
1,3 7 qAr 2,~E,1,6 -- ~I.-l ~I,-2 

1,3 8 r AE,7 p""q p...,r 
1 9 p-->r -41,6,8, -p 
1 10 (p --> q) A (p --> r) AI,S, 9 

Al 
(P ..., q) A (p ..., r) 

What are the differences? The proof on the right has a tree-like representation, the one on the left a linear 
representation, In the linear proof assumptions are withdrawn by repeating them, as -p in line 5, in the 
proof tree they are referred to by number. Assumption p --> (q /\ r) occurs once in the linear proof, but 
occures twice in the proof tree. A certain two-dimensional proof symmetry is noticeable in the proof tree 
but less so in the linear proof, this being a one-dimensional proof format. Assumptions are explicit (by 
reference) in every step of the linear proof, e.g. 1, 3 in line 8, whereas in the proof tree they remain 
implicit on the level of a single node. 

Proof visualization is just one issue when comparing interfaces for natural deduction proof assistants. 
In section 2 we will discuss the issue of visualization and other relevant issues. In section 3 we will 
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compare five natural deduction programs. The conclusions are in section 4. We finish with conjectures 
on future developments. 

2 How to compare natural deduction programs 
We will not address general grounds on which to compare educational software, such as platform 
portability, and the kind of window management facilities. We restrict ourselves to interface issues that 
are related to proof assistance. Unless expressly mentioned, we will refrain from value judgements and 
present different options as the alternatives they are. Some relevant issues are: 

• the version of natural deduction 
• proof visualization 
• forward and backward reasoning 
• proof help 
• the method of proof checking 

We relate the issues to the example above. Below the level of mathematical interest of users of theorem 
provers but well above the level of student perception is what we call a version of natural deduction: 
instead of a two-case AI-rule, as in step 10 of the linear proof above, one might prefer a multiple-case AI
rule. The matter of visualization will be already clear. Naturally, we'd want a program to allow one to 
introduce steps 5 and 9 given 10, thus constructing the proof by backward reasoning, as well as to proceed 
by forward reasoning, going from say step 1 and 2 to step 3. And what kind of proof help is available when 
one is stuck: is there truly sensible advice such as in step 1 of the proof 'assume the antecedent of a given 
implication, in order to apply --7E'? How about proof checking: suppose the user has entered q instead of 
p as assumption in step 2, does the system allow him to proceed beyond step 3, so that he can at least 
finish what he thinks to be the entire proof, or not? That some of these issues are truly 'issues' might come 
as a surprise to a regular user of theorem provers. It turns out that what is normal for theorem provers 
often is not realized in natural deduction courseware. We will now discuss the issues in some detail. 

2.1 Version of natural deduction 
A multiple-case rule for AI is more 'natural' than repeated application of a two-case rule, which is to be 
preferred for proof theoretical reasons. Some other determinants of versions of natural deduction are: 
the treatment and appearance of a contradiction in a proof, minimizing assumption-withdrawing rules, 
and the kind of variable constraints on quantifier rules. Some versions can be criticized, and some 
software rejected for that reason. We have restricted the comparison to programs that use acceptable 
versions of natural deduction, and we will therefore not separately comment on that issue. A further 
issue is whether proof assistants can handle equality. Except for one, they all can. A side issue is whether 
theorems and derived rules (e.g. 'De Morgan') are allowed as a single step in a derivation. When 
relevant, this is mentioned. 

2.2 Proof visualization 
We have seen one basic distinction: one can show a natural deduction proof either as a tree or as a 
sequence. A tree is a two-dimensional representation, a sequence is one-dimensional. A tree is to be 
preferred. A derivation rule, although always having one conclusion, can have two or more premises. 
In a sequence, where the obvious visual reference is the preceding proof line, one has therefore to refer 
to other premises of rule application (generally, but not necessarily, by the numbers of the relevant proof 
lines). In tree format a reference isn't necessary. Determinants of proof visualization are: 

• tree or linear 
• rule name explicit when applying rules (yes, no) 
• assumptions explicit (,Gentzen-style') in a proof line/node (yes, no) 
• reference to active assumptions at each rule application (by repetition, by number) 
• reference to withdrawn assumptions (by repetition, by number, by boxing subproof) 
• reference to rule application premises (various visual ways, by number) 

Notice that the two example proofs differ on all but the second of these six issues. Proof schemata and 
derivation rules are often visualized differently from actual proofs. This can be confUSing to students. 
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2.3 Forward and backward reasoning 
When making a natural deduction proof, one can proceed either forward or backward. In order to prove 
(p v q) /\ (r v s) from assumption p /\ r one can either start by applying /\E on p /\ r and proceed by 
attempting to derive (p v q) /\ (r v s) from assumptions p and r, or one can start by applying /\1 on p v q 
and r v s resulting in (p v q) /\ (r v s) and then proceed by attempting to derive both p v q and r v s from 
p /\ r. The first is forward reasoning (or assumption-driven), the second backward (or goal-driven). The 
best strategy is generally considered backward reasoning. Best is a program that allows both forward 
and backward reasoning, and has no bias towards one or the other. Bias can result from proof 
visualization, interface constraints, and the underlying theorem prover. An example: a linear, 
numbered, proof format is biased towards forward reasoning, as one does not know the last proof line's 
number when reasoning backward. 

2.4 Proof help 
We distinguish four different kinds or proof help, namely: global help, tactical help, strategic help, and 
debugging. 

Global help is proof help unrelated to a particular proof. An example is on-line advice on how to apply a 
derivation rule, regardless of any stage in the proof. Being insecure about which rule to apply, a student 
might look up the rule for /\1 when having to proceed from an assumption p /\ q. This will not help a lot! 
Whether one needs such an on-line manual, also depends on whether the proof assistant comes with a 
textbook. 

Tactical help is advice on how to extend an unfinished proof by one step. In the example above: 'try /\E'. 
This is a forward (assumption-driven) tactic. This is different from backward (goal-driven) tactics. A 
further option is to refer explicitly to relevant sub formulas: 'Try applying /\E on (p /\ q) /\ r. You can 
derive either p /\ q or r.' In theorem proving terminology: tactical help is advice on what simple tactics 
to apply, and how. 

Tactical advice can be wrong: when proving s from p /\ q, (p /\ q) --> r and r --> s, we do not want to be 
advised to derive p or q from p /\ q. More helpful is strategic help, in theorem proving terminology: advice 
based on a proof plan. In this case we expect the advice that we have to proceed by forward reasoning, 
by applying -->E on p /\ q and (p /\ q) --> r. More 'dangerous' advice in this case is: 'in case of atomic 
conclusions, proceed by backward reasoning, by trying to apply an elimination rule' (in this case -->E). 

It is unclear how much 'proof help' really helps. There are two reasons why it might not help: detailed 
advice is essentially if not practically incomplete and thus pOSSibly incorrect; but even when it is correct, 
too much guidance makes a student lazy. On the other hand, a program that instead of an interactive 
fully guided proof, presents the entire proof without interaction at all, isn't very helpful either. 

A somewhat different issue is what we call 'debugging': when wrongly applying a rule, or making other 
mistakes during execution, sensible advice on what went wrong is very helpful. In other words: 
debugging is advice on proof repair. 

2.5 Proof checking 
A truly helpful proof assistant allows one to make possibly incorrect entire 'proofs', that are to be 
criticized after finishing them. Just as a student submits an entire proof on paper to a live teacher. Some 
proof assistants criticize only stepwise: they do not allow the user to proceed beyond one incorrect proof 
step. Some go beyond that: when the student selects a rule, they automatically generate its output. 

3 Comparison of natural deduction software 
We will now discuss MacLogic, Jape, Hyperproof, eMU Proof Tutor and Symlog, in this order. After 
that we will comment on some other software for natural deduction. The programs will be compared on 
the issues from section 2, except for the issue 'version of natural deduction', as already mentioned. For 
the sake of brevity, we restrict ourselves to remarkable pluses or minuses. Accompanying pictures show 
a stage in the proof of p --> (q /\ r) 1- (p --> q) /\ (p --> r). This is the example we already know from section 
1. For product information we refer to the web site mentioned on the first page. 
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3.1 MacLogic 
MacLogic (Roy Dyckhoff, St Andrews University, Scotland) is the oldest of the five compared. Apart 
from natural deduction for classical predicate logic, it supports other proof systems and logics. The user 
can choose between two bracket conventions (enclosing quantifiers in brackets, or not), a useful feature. 
MacLogic has two modes for making proofs: check mode and construct mode, displayed in different 
windows. These modes differ in several of the investigated issues. 

• Proof visualization Both in check and construct mode the proof representation is linear!, with 
assumptions explicit in every proof step, i.e. sequent notation. In check mode assumptions are 
referred to by number (see picture below), in construct mode they are explicit. 

• Fonvard and backward reasoning In check mode only forward reasoning is possible. In construct 
mode both forward and backward reasoning are possible. 

• Proof help MacLogic fives extensive global help on how to apply the different derivation rules. It 
gives no tactical help. However, it can be quite helpful in debugging: explaining why user input 
is not applicable (e.g. that application of ~E requires two premises, in case the user has supplied 
only one). Its validity checker gives some kind of strategic advice: it warns students if their input 
is 'probably not provable in the current logic'. 

• Proof checking MacLogic is proof checking while constructing proof. 

3.2 Jape 
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Jape (Richard Bornat, QMW, and Bernard Sufrin, Oxford, England) is acronym for 'Just Another Proof 
Editor'. The natural deduction part is called IlL Jape. Apart from natural deduction for classical 
predicate logic it contains other proof systems and logics and allows for user·defined logics. In both Jape 
and MacLogic natural deduction is based on an underlying sequent theorem prover. 

In Jape the required action for rule application is minimal (and not unlike MacLogic in construct mode): 
the user selects a formula and a rule; the position of the formula in the subderivation determines 
whether a forward or backward proof step results; on 'return' the proof step (if applicable) is 
automatically executed. Based on the formula's main logical connective, in case of forward reasoning 
the execution automatically introduces another assumption, if so required, and the conclusion; in case 
of a backward step it introduces the assumption(s). Both might as well result in a new subproofbeing 
created. There is also a 'double click' mode, for which just formula selection suffices. Essential to this 
approach is the introduction of formula variables in the proof, that at a later stage must be unified with 
actual formulas. 

The required user interaction for this semi-automatic procedure is not entirely satisfactory. For an 
example we refer to the Jape Session picture below. Formula q /\ r in line 3 of the proof results from 
applying ---7E to assumption p ---7 (q /\ r) and assumption p in the first subproof. For this application the 

1. Roy Dyckhoff regrets not having developed a tree format interface (personal communication). 
2. Possibly different for a later version of MacLogic. 
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user has to select p --> (q 1\ r) and q: in order to determine the relevant subproof one has to select its goal. 
One might prefer having to select both assumptions p --> (q 1\ r) and p instead. Also, when (really ... ) badly 
structuring proofs, the program may worsen the situation by incorrectly pasting the resulting formula 
of rule application in another part of the proof. 

• Proof visualization Jape's proof construction interface exceeds anything achieved in other 
programs. Not just because of its functionality but because of its simplicity (or, as Richard Bornat 
rightly calls it: its quiet interface). For natural deduction the proof format is 'Fitch-style', i.e. boxed 
linear proofs (as in the figure below). Worth mentioning is, that in Jape's sequent proof systems 
one can switch between tree and linear representation at any stage of proof construction. If only 
this were possible as well for natural deduction! Unfinished proofs or subproofs are visualized 
schematically, by using dots. Something similar holds for parts of a proof outside the scope of the 
subproof one is working in. This gives some screen unrest. 

• Forward and backward reasoning Jape allows for both forward and backward reasoning. In some 
rules Jape is remarkably 'backward'. We give three examples. (1) The rule VI cannot generally be 
use in a forward way. Jape is too restrictive here. This is mentioned by the authors of Jape. It is 
because the underlying proof engine is sequent-based. (2) Given two assumptions, one cannot join 
them by applying 1\1, unless the relevant conjunction is already present as a goal. So 1\1 can only be 
applied backward. (3) The same holds for -->E: given an assumption p --> q, one cannot proceed 
forward by assuming p. Therefore, Jape is biased towards backward reasoning. This seems partly a 
didactic choice by the designers. 

• Proof help There is no proof help, apart from 'debugging' help: helpful warning messages when 
wrongly applying rules. 

• Proof checking It is not possible to submit entire proofs. It is not even possible to make an incorrect 
proof step, as rule execution is automatic given a formula and a rule. This makes Jape less fit for 
teaching natural deduction to 'absolute beginners'. 

~ Jilpe Session for Theory ~HL R I'll 
Fie LEdit Rules I iJ 

->-I 
A-I 

v-I(L) 
v-Ita) __ I 

'-I 
3-1 --->-E 1, P--7(QAR) assumption 
A-E(L) 

"8 lll.sumption 
"-E(R) 
V-E 3: QAR -+-E 2,1 __ E 

4: Q I\-E(L) 3 

'-E 5, P-C>Q -7-12-4 
3-E 

"[8 IIHumption --
hyp 7: QAR -+-E 6,1 

8: R A-E(R) ., 

" P-c>R -+-16-8 

10: (P-c>Q)A(P-c>R) 1\-15,9 

3.3 Hyperproof 
Hyperproof Oon Barwise, Indiana, and John Etchemendy, Stanford, USA) is mainly known for its 
diagrammatic reasoning and not as a natural deduction program. We do not discuss diagrammatic 
reasoning. This kind of visual inference is unrelated to visualization of natural deduction proof. 
Hyperproof is accompanied by a textbook [Barwise & Etchemendy 94]. Various rules are available in 
more general, multiple-case versions. One can postpone proof obligations by applying a (first order) 
'logical consequence' rule in any part of the proof. A successor of Hyperproof, called OpenProof. is in 
the making. This will contain more domains for visual inference and allow user-defined interpretation. 
Just the natural deduction part of Hyperproof is going to be incorporated in the successor of Tarski's 
World (a different program, for interpreting formulas in a blocks world and vice versa), called Fitch 
Xtreme, probably (and hopefully!) to be released soon. 

• Proof visualization The visualization is linear, with boxed proofs, as in Jape. Application of the 

Page 5 

. <;!I I 



quantifier rules VI and :IE comes with introducing subproofs assuming an arbitrary fresh variable 
that is a visual primitive in the proof (this is also called Fitch-style). Instead of referring by number 
to earlier proof lines in rule applications, proof lines are referred to in a visually direct way, by 
appearing black on the screen when the user has selected the proof line containing the rule's 
conclusion (see figure below). As this is only the case when the relevant rule is selected, this makes 
the entire proof less readable. When a proof window is printed though, number references are 
automatically added. 

• Forward and backward reasoning Both are fully functional. Hyperproof seems somewhat biased to 
forward reasoning, because its proof representation is linear. This bias is enhanced by the 
interface. The textbook gives extensive advice on applying backward reasoning as well (see e.g. 
[Barwise & Etchemendy 94], 148). 

• Proof help There is only global advice on how to apply various deduction rules. For help while 
wrongly applying proof steps, see proof checking. 

• Proof checking Anything goes: one can either check the entire proof or check proof steps. Finishing 
one's proof entirely before checking it seems, rightly so, the recommended procedure. Some 
elementary proof 'checking', such as whether an application of -->1 has two assumptions, is not 
delayed. If only one assumption is given, the user gets a debugging advice. Further, the system 
response to proof checking can be to propose a countermodel that invalidates a supposed 
consequence. The proof checking mechanism in Hyperproof is very useful and helpful. 
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The CMU Proof Tutor (Richard Scheines and Wilfried Sieg, Carnegie Mellon University, USA) is for 
natural deduction in propositional logic only. A predicate logic extension is under construction. Its 
interface is primitive: logical connectives have ASCII key combination approximations, such as -> for 
implication. 

• Proof visualization Proofs are visualized in linear style with boxed subproofs. Tree visualization is 
a simultaneous option, being the result of (and only of) backward reasoning. 

• Forward and backward reasoning Both forward and backward reasoning seem to be supported 
equally. Surprisingly though, the system is strongly biased to forward reasoning: even a complete 
proof produced by backward reasoning has then to be 'verified' by the user step by step in a 
forward way. Unverified proof nodes are output in italics, and change to normal when verified. 
The single-node goal tree in the down-right comer of the figure below is therefore in italics. The 
verification procedure seems superfluous, and restricting a visualization to one strategy seems 
unfortunate. 

• Proof help Global help facilities are rather extensive: there is help on rule definitions and on how 
to apply rules forward and backward, there are example proof runs of complete proofs, and there 
is an on-line tutorial. Supposedly, there is also tactical and strategic advice. We couldn't assess 
this, as it is not functional when remotely accessing the system, but we have the impression it is 
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not much beyond debugging. 
• Proof checking Proof checking occurs while executing single proof steps. Entire proofs cannot be 

submitted. This lack surprises in a system that is otherwise intent on maximizing help. 

3.5 Symlog 
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Symlog (Frederic Portoraro and Robert Tully, Toronto, Canada), for Symbolic logic, comes with a 
textbook: Logic with Symlog [Portoraro & Tully 94]. It contains a standard as well as an extended natural 
deduction proof system. The extended system also contains derived rules such as 'quantifier negation' 
(~O3 = 't~) and 'De Morgan', thus allowing more natural (and more 'computational style') proofs. The 
interface is rather (old and) primitive, e.g. quantifiers 3 and 't are displayed as L and fl. While editing a 
proof, one regularly has to delete empty (unused) proof lines in completed subproofs. Deletion isn't 
bugfree: it is not possible to delete an unused last proofJine in a sub proof. 

• Proof visualization The visualization is linear with 'Fitch-style' square-bracketed subproofs (which 
amounts to the same as boxing subproofs, but is visually less appealing). 

• Forward and backward reasoning These are both available. Because of its linear proof visualization 
and design constraints, Symlog is somewhat biased towards forward reasoning. 

• Proof help Symlog has global help on derivation rule definition and application, as well as a 
mixture of - very well thought out - tactical and strategic help. It is a mixture, because sometimes 
the program is smart enough to determine the best move and apparently uses a proof plan, 
whereas other times it is deficient and just gives an applicable tactic, that is apparently based on 
the main connective of the conclusion but is possibly the wrong one under the circumstances. An 
example is that when asking for advice on how to prove p, in the presence of an assumption (p 1\ q) 
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1\ r, the system suggests to try ~E and assume ~p! Apart from these misses, proof help is very user 
friendly. An(other) example: when trying to prove (p 1\ q) 1\ r the advice is not 'use ~I' but 'apply 
~I on premises p 1\ q and r'. Symlog's proof help is impressive and more developed than in the 
other programs discussed. 

• Proof checking This is both stepwise during proof, and step by step after finishing an entire proof. 

3.6 Other programs 
Apart from the programs mentioned here, there are various others, that are less interesting from our 
point of view. On the one hand there are proof assistants that have been developed for purely 
educational purposes but that are less successful. On the other hand there are user interfaces for full
fledged theorem provers. 

An example of the first kind is the 'Logics Tutor' of the Philosophy Department of Vrije Universiteit 
Amsterdam [Jonker & De WaaI97]. It comes with a textbook [de Jong 88]. It has been under 
development since 1995. The project originated from the desire to improve an existing course. Software 
fitting the lecturer's preferred logical language and preferred version of natural deduction was not 
available (personal communication). The results of this project are a Windows-based module for natural 
deduction in propositional logic and a similar one for natural deduction in predicate logic. It is a big 
improvement over the former course, that lacked computer assistance. Available user interaction is 
somewhat poor. It would require major and costly further development to become generally acceptable 
software. We assume similar projects to abound throughout the world, for the similar reason of lecturers 
wanting educational software to meet their preferences. What if these preferences had been facilitated 
by a proof assistant that allows finetuning logical notation, setting the version of the natural deduction 
system, choosing the kind of visualization, and so on? 

Also approaching our goals but from a different perspective are products of the theorem proving 
community, such as Euodhilos-II [Ohtani et al. 96], XBarnacle [Lowe 97], and very many others, as e.g. 
presented in previous UITP workshops. Exceptions granted, and we assume Jape to count as one, they 
seem to fall short of being helpful to teach logic to absolute beginners. Partly this is because they are not 
intended for that: they cover a much wider area of 'mathematical' proof where inductive definitions 
playa major part, such as XBarnacle. On the other hand interfaces for theorem provers can be rather 
unappealing and unhelpful, as in the case of Euodhilos. Theorem provers that could work miracles if 
educational front-ends were developed for them, seem to abound. We think such efforts would payoff. 
Also, ideas from user interface design for purely educational software might prove fruitful for theorem 
prover interface design. 

4 Conclusions 
We have compared interfaces for natural deduction proof assistants from the issues: version of natural 
deduction system used, proof visualization, backward and forward reasoning facilities, proof help, and 
proof checking method. Jape's interface is visually most appealing and least biased towards forward or 
backward reasoning. Hyperproofs natural deduction assistant suits all kinds of proof checking very 
well. Symlog's help facilities are excellent but not always correct. As to date, tactical and strategic help 
are a rare good in a proof assistant. Flexible choice of notation might stimulate introduction of 
educational logic software in the classroom, as logic teachers would rather teach in their preferred 
logical language than take advantage of a computerized proof assistant. Developing educational front
ends to automated theorem provers also seems a fruitful approach. 

5 Conjectures 
In this section I allow myself a more personal address to the reader. I will comment on the situation in 
the Netherlands, and on some future directions. 

There is a general demand for proof assistants that can be used in introductory logic education. 
Although there are many complaints about the limited applicability of Tarski's World (the predecessor 
of Hyperproof), that 'is just for interpreting sentences in a blocksworld' and does not even have a proof 
assistant apart from the Hintikka game for tableau reasoning, Tarski's World is nevertheless widely 
used on Dutch universities: in Groningen, Amsterdam, Utrecht, Twente, etc. There have been several 
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Slnaller projects for proof assistant construction, as the mentioned project at Vrije Universiteit 
Amsterdam. Also, rumour spreads about some major efforts at other Dutch universities. Apparently, 
people are still not satisfied with available proof assistants. 

Developments from the Barwise&Etchemendy team are very hopeful. A combined semantic tool and 
proof assistant as Fitch Xtreme promises to be, might well sweep the field. They put many person years 
of effort into building these products. Naturally that pays off. On the other hand a beautiful tool as Jape 
is presently claimed to be a 'two-persons-in-their-spare-time' effort. I sincerely hope it will be further 
developed, and especially its interactivity still improved. Who knows what else might be in the making. 
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Abstract. This paper proposes a set of guidelines for use in the design of au
tomated support for theorem proving. In particular they are aimed at graphical 
user interfaces to existing interactive proof engines. The application of these 
guidelines to the design of a graphical user interface to Isabelle is described. 

1 Introduction 

This paper presents a number of principles formulated to guide the design of enhance
ments to a graphical user interface of an interactive theorem prover. An interactive 
theorem prover is a tool in which a user chooses and applies proof steps to terms in 
a given logic, to produce theorems. The prover actually performs the proof steps and 
ensures that only valid chains of inference are developed. 

Although there are many standards and texts which provide general guidelines 
for designing GUIs there is great benefit in attempting to formulate principles and 
guidelines that are specific to the problem domain of an application. Such specific 
principles can be informed by the purposes to which applications are put. 

These guidelines were used to design enhancements to XIsabelle [9J, a graphical 
user interface to Isabelle [10J. This paper considers some aspects of XIsabelle and how 
they relate to the guidelines. 

Section 2 presents a categorisation of the purposes to which theorem provers are 
put. A user interface and its underlying design principles can only be evaluated with 
respect to which of these categories it is intended to support. Section 3 sets out a 
list of principles for guiding the design of interactive theorem proving GUls. The 
rationale for these guidelines is discussed in terms of the aims described Section 2 
and guidelines in general texts on interfaces. A description of aspects of XIsabelle 
that illustrate these guidelines is given in Section 4 and Section 5 discusses possible 
directions for future work. 

2 Aims of Theorem Proving 

Automated support for theorem proving must be designed with the purpose of theo
rem proving activities kept in mind. In this section we define four very broad categories 
for the use of theorem provers. 

We assume there are basically two objects of interest: goals which are statements 
of theorems to be proved in a machine readable form; and proofs which are evidence 
or methods which show a goal or set of goals to be true. 



We can distinguish between the first three of these categories by what objects are 
inputs (on the left of the arrows) and outputs (on the right of the arrows) to the 
system using a typing notation. 

Truth Validity: Goal -t [7rue I False). To find out whether a goal is true or false. 
This aim is usually the domain of automatic theorem provers and model-checking 

systems. However, the logic for which truth validity is decidable or mechanisable is 
fairly limited. For interactive theorem proving this aim is equivalent to proof discovery 
except that the form of the proof is not important and it is more usual to invoke 
"heavy duty" tactics that perform many low-level steps and tend to be iterative, 
perhaps using automatic proof procedures to solve subgoals of the problem. However, 
it is very rare for the proof to be completely unimportant, since at least it could 
be re-used to establish the validity of another goal. Therefore we shall consider this 
purpose to be subsumed by the aim of proof discovery. 

Proof Checking: Goal x Proof -t [True I False). To check that a proof does prove a 
goal. 

Here a proof may be at any level of formality, for example: a proof in the head 
of a user; a proof in a text book; a formal proof which is not rendered in a machine
readable format; or a machine-readable proof. As the level of formality decreases proof 
checking moves closer to being proof discovery. 

Proof Discovery: Goal-t [None I Some Proof). To find a proof of a goal. 
The difference between proof discovery and truth validity is that here the proof 

itself is also an important artefact. Most interactive theorem proving GUls appear to 
be aimed at this category. 

GUls in the past have been criticised for not supporting re-use or replay very 
well, especially after modification of goals or assumptions [7). This results from the 
difference between proof discovery and proof checking. Design of GUls tends to aim 
at support for proof discovery. A separate activity is the manipulation of resulting 
proofs into those that have more general applicability. One proves a theorem however 
one can and then later sees if the proof can be generalised. Further goals may be 
proved by proof checking with the more general proof. One compelling reason for 
keeping separate the aim of making a proof re-usable is the application of theorem 
proving to software and system design. Here the specific proof steps, theorems and 
assumptions which were used can provide vital information about the design. The 
author is aware of one project where the fact that a certain assumption about the 
behaviour of a device was not used in the proof of a critical property enabled the 
design of the device to be simplified. On the other hand highly re-usable proofs have 
an obvious advantage in productivity. There is some tension in what a proof tool 
provides in terms of proof discovery and proof checking support. 

Educational Purposes To construct or check proofs as a way of learning about formal 
logic. 

3 Principles for Theorem Proving Support 

These principles are based on the assumption that the user interface is being built 
upon a basic proof engine which maintains the internal representation of the current 



state of proof and performs all logical operations associated with the proof. It is also 
assumed that the proof engine is tactic-based meaning that a proof is constructed 
by formulating proof steps (tactics) in some tactic language and applying these to a 
proof state resulting in a new proof state. Certain proof states are associated with 
successful proof and a proof is complete when such a proof state is reached. 

3.1 Multiple Views 

For a complex and intellectually demanding activity such as theorem proving it is often 
productive for the user to develop more than one model for the task at hand [11 J. 
Supporting several models implies having several concurrent representations of the 
current state of computation which the user can assess and use to decide on further 
action. 

Different views make different information and manipulation of information ex
plicit and easy to understand. For example, the freeness of a variable as a side con
dition of a rule is easier to see in a sequent calculus formulation than it is in natural 
deduction. Trees can represent the logic dependency between proof steps whereas a 
linear structure records the chronological history of proof steps. A declarative rep
resentation of a proof, such as a proof term, can have advantages over a procedural 
representation of a proof, such as a list of tactics [3J. Representing a proof at a high 
level of abstraction may make its structure clearer. Domain-specific proof support 
may extend as far as providing views which visualise objects at the domain level. 

The use of multiple views is an under-used enhancement in existing prover inter
faces. Some tools have a proof tree representation but they either do not visualise it, 
or they do not allow appropriate commands to be invoked within that view. Some 
tools allow the proof state to be represented at different levels of abstraction but once 
again tend to only allow operations within one level. 

This leads to the following guidelines: 

Principle 1 There should be a number of complementary views of the proof construc
tion and the user should be able to choose to see any number of the views simultane
ously. 

Principle 2 Within any view the user should be able to invoke operations that are 
meaningful in that view. 

3.2 Default Actions 

It is often convenient for the user to choose a single object and perform an action 
which means "execute the obvious command" . The program must be able to infer the 
other variables of the command from the context. For example, the form or the name 
of a theorem often indicates its intended use: a theorem with the name gcd_def or 
of the form "gcd(x,y) = ... 11 can indicate that the theorem will be used to rewrite 
terms. 

Principle 3 For multiple-part commands the interface should provide defaults for 
any variables that the user does not specify. 



The principle of default actions is reflected in the work of Kolyang et al. [4J where 
an object can have one of several subtypes which determine what operation on that 
object should be inferred. However, object can only have one subtype at a time (un
less explicitly changed) whereas this general principle of default actions allows the 
variables to be inferred from the whole context of the action. 

As there is a greater chance than normal that a default action is not the desired 
step, backing up from that action should be fast and easy. This supports the general 
HCI principle that the ease of undoing an action should be proportional to the ease 
of doing the action [6J. 

Principle 4 If there is a choice for the default values then the option which results 
in the simplest proof step and the easiest to undo should be chosen. 

The implicit nature of the action means that the behaviour can be confusing and it 
is rarely appropriate for proof checking. However, it is a very good way for learners to 
articulate proof steps easily and can be useful for proof discovery because the simple 
actions mean there is little cost in experimenting. The principles of default action are 
closely related to flexible invocation. 

3.3 Flexible Invocation 

Many guidelines and texts on user interface design promote flexibility in input meth
ods because it allows users of different skills, knowledge and experience to perform 
tasks in the way in which they prefer [12], [13J. As users of theorem provers can have 
a very wide range of skill and experience levels we include a principle of flexibility. 

Principle 5 There should be a high level of flexibility in the way in which the user 
can articulate commands to the prover. 

Flexibility can include the ability to provide input to the prover in different ways 
(e.g. by selecting items in a list, by keyboard, by direct manipulation of graphical 
objects) and in different orders (e.g. choose a rule before the name of a proof step or 
vice versa). 

3.4 Relevant Information 

One of the difficulties that users of popular interactive theorem provers face is the 
sheer volume of information, from which they must choose those pieces that will 
advance the current proof. This includes the large number of theories each with their 
own set of definitions, axioms, proved theorems and proof procedures. The benefits of 
a user interface which can asses the potential relevance of such components is obvious 
for proof discovery. Even for checking of a proof, selecting from a smaller list of objects 
can improve the speed at which a proof progresses. 

Principle 6 The user interface should support the user by displaying only informa
tion that is relevant in the current state. 

This principle is reflected in general HCI texts by general guidelines such as "Only 
Necessary Information Displayed" [13J or more concrete rules such as greying out 
non-applicable menu selections. 



3.5 Multiple User Threads 

Many popular software packages (e.g. word processing, spread sheet, games) allow the 
user to swap between different execution threads of the program. For theorem provers, 
the principle of multiple threads allows different proof strategies to be investigated 
concurrently and encourages experimenting by learners. 

Principle 7 The user interface should support several concurrent proof construc
tions. 

4 XIsabelle 

XIsabelle is a Tcl/Tk [8] implementation of a graphical user interface for Isabelle. It 
is implemented in a way similar to Syme's interface for HOL [14]. XIsabelle processes 
and records all variables as strings and all logical operations are sent to Isabelle (using 
Expect [5]) for processing. XIsabelle has three main components: 

the Theory Browser, which allows the user to view and edit the definition of 
theories of a logic; 
the Theorem Browser which displays theorems (both axioms and derived ones) of 
a theory; and 
the Prover which provides an interface to Isabelle's subgoal package for proving 
theorems in a goal-directed fashion. 

Each of these components are windows divided into smaller frames which display 
various groups of information on the current state and available options to the user. 
The user controls it by means of a mouse, invoking commands by choosing from a 
menu, clicking on buttons or clicking on other objects. Shortcuts for commands and 
additional user input may be provided by way of the keyboard. 

4.1 Multiple Views 

The XIsabelle Prover has three views of the current proof state. These three views 
are complementary in the sense that each of them contains information that the other 
two views do not. 

The main window of the Prover forms the primary view and is a structured tex
tual view closely resembling that of the underlying subgoal package of Isabelle. The 
current subgoals, the current tactic (the last tactic applied or the tactic currently 
being formulated), and lists of tactics are displayed in separate labelled sub-windows. 

Another view is the history view which displays the history of the proof as a list of 
tactics. Clicking on a tactic in the list displays the tactic in the current tactic window 
and double-clicking on the tactic directly applies the tactic. 

The most graphical view is that of the tactic tree. Each subgoal in the history 
of the proof is represented by a node in the tree with the original goal at the root. 
Clicking on a node displays the subgoal corresponding to that node in a small text 
window adjacent to the tree display and displays the tactic applied to that subgoal (if 
there was one). Using another button, clicking on the node displays the sequence of 
tactics corresponding to the subtree with that node as its root. These tree operations 
provide a convenient means for re-use. Experience with using the Prover has shown 
the tactic tree view very useful for case-based reasoning in proof discovery with it 
being used to articulate proof commands approximately half the time. 

(00. 



4.2 Default Actions 

This principle is already partially embraced in the Isabelle system itself with the 
simplification and classical reasoning tactics. Isabelle maintains two lists of theorems, 
the current simpset and the current claset, which are used automatically with these 
tactics. 

For most Isabelle built-in tactics there are at most three variables: the tactic name, 
a theorem or a list of theorems and a subgoal or a list of subgoals. Xlsabelle provides 
a mechanism by which anyone of these variables may be given by the user (usually 
by double-clicking on an item from a list) and other variables will be inferred. We 
describe how the value of each of these variables is inferred. 

Inference of the tactic name depends on what other values are supplied. If only a 
subgoal is chosen by the user, the simplify tactic will be applied to the subgoal. As 
already mentioned, the simplify tactic infers a the current simpset as an argument to 
the tactic. The Browser displays theorems in lists associated with a category of rule 
(e.g. definition, introduction rule, induction rule) If a theorem is chosen from a list 
then the associated category of the list is used to infer a default tactic. 

Inferring theorems is a more difficult problem because there usually is a very wide 
choice of possibly applicable theorems. It generally involves matching, but should the 
inferred value be all theorems that match or just one, such as the most relevant one 
by some measure. In order to support Principle 4, Xlsabelle takes the first matching 
theorem according to some heuristic measure of relevance. 

During a proof, XIsahelle maintains a current active subgoal. This is either chosen 
by the user or the default is the first subgoal which is a child of the previous active 
subgoal. A subgoal parameter is always inferred as the current active sub goal. 

It is difficult to cater for bespoke tactics that use the full range of expressiveness 
of ML. However, a future capability is to allow a power user to define default values 
for variables. The power user may also change the default variables to suit their own 
needs. 

4.3 Flexible Invocation 

A tactic can be invoked in a number of ways: double-clicking on a theorem; double
clicking on a tactic's name in a list; double-clicking on a subgoal; reusing a tactic from 
the current proof history or another proof history; reusing the tactic in the current 
window; reusing a tactic by pointing at a node of the proof treej or hand-crafting a 
tactic by editing the current tactic window. 

4.4 Relevant Information 

Xlsabelle has two mechanisms for restricting information to that which is relevant to 
the current state. The first is based on a theorem matcher in the Theorem Browser. 
This matcher finds the theorems in a list which are relevant to a given term. After 
each application of a tactic in a proof, the theorem matcher displays all theorems 
in the current view of the Browser which are relevant to the current subgoal. The 
way in which a theorem is determined to be relevant to the subgoal depends on the 
category of theorems currently being viewed. For example, if the current view is of 
introduction rules, then the theorems whose conclusions unify with the conclusion 
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of the subgoal are chosen. If the current view is of constant definitions, then the 
definitions for constants which occur in the subgoal are chosen. 

The second mechanism is a filtering of tactics to those that are applicable to the 
current proof state and return a new state. The way this is achieved is not very clever 
and tends to be computationally expensive. Therefore the user can choose, by means 
of an options menu, how much filtering XIsabelle does. In the case of proof-checking 
it is often more convenient to disable the filtering mechanisms. 

4.5 Multiple User Threads 

Isabelle itself supports multiple user threads with its push, pop, rotate_proof com
mands that maintain a stack of proofs, and the save_proof and restore_proof com
mands that allow access to proofs by name. However, the subgoal package does not 
record the tactic history and any history of intermediate subgoals. Therefore XIsabelle 
maintains an array indexed by proof name of the additional information needed to 
swap between proof contexts. This additional information includes the tactic history, 
the current active subgoal, and the proof/tactic tree structure. A menu which contains 
the list of currently open proofs is used to change proof contexts. 

5 The Future 

In this paper we have proposed seven guidelines for the design of theorem proving 
GUIs. These guidelines are based around five concepts: multiple views, flexible in
vocation, relevant information, default values and multiple threads. The guidelines 
are by no means complete. They are intended to be a contribution towards a larger 
body of guidelines for designing graphical user interfaces for theorem provers. Such a 
set of guidelines would provide one means for comparing and evaluating proof tools. 
Concerted effort should be made to compile a more complete list and investigate the 
validity of these guidelines by user experiments and other HeI techniques. Such a de 
facto standard could go a long way towards greater movement between proof tools of 
users, theorems and proofs. 

Aitken et al. [1] define three levels of abstraction for describing user interfaces: the 
logical level which describes a logical view of the theorem proving task, the abstract 
interaction level which describes the information presented to the user and the con
crete interaction level which describes the physical aspects of the interaction. General 
user interface guidelines focus at the lower end of this abstraction spectrum and work 
on theorem prover interfaces tend to focus on reducing the gap between the logical 
and abstract interaction levels. We can view the logical level as part of the interface 
too and another level can be added to this hierarchy called the domain level. This 
level can be used to describe proof tools in which the user can reason about and guide 
a proof using actions and objects that are meaningful with respect to a specific do
main [2]. Examples may include visual geometric reasoning tools and hardware design 
tools. Although this idea does not have the appeal of genericity it is perhaps the only 
hope for the integration of theorem proving into mainstream design tools and other 
tools to aid human reasoning. The potential benefits of the multiple view, flexible 
invocation and default value principles seem even greater for such interfaces. 

As discussed in Section 2 there is some tension between producing goal-specific 
proofs, which can hold important information about assumptions which have been 
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made, and highly re-usable proofs. User interfaces should provide support to the user 
in managing this tension. 

Finally, the implementation of the principles of relevant information and flexi
ble invocation make heavy use of unification and theorem indexing procedures. For 
proof tools to provide more sophisticated support in these areas, performance of these 
searching procedures must continue to be improved. 
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Abstract 
ERMIA (Entity-Relationship Modelling of Information Artefacts) provides an extension to entity-relationship 
modelling techniques to provide a structural representation of the interaction between people and "information 
artefacts". Such a representation may then be used to compare contrasting interface designs or identify potential 
usability problems in an existing system. In this paper we present an application of ERMIA analysis to a version 
of the XBarnac1e semi-automated theorem proving system that features interactive proof critics. 

1. Introduction 

Benyon and Green have introduced a method for understanding and describing Human-Computer Interaction 
known as ERMIA (Entity-Relationship Modelling of Information Artefacts (Benyon and Green, 1995; Green and 
Benyon, 1996; Benyon. Green and Bental, in press). ERMIA uses an extended entity-relationship modelling 
technique to provide a structural representation of the interaction between people and computer systems or other 
information artefacts. This representation can then be examined and discussed between designers in order to 
highlight features of the interface. The construction of the model can itself reveal insights into a proposed design 
and the final models used to communicate between designers or between users and designers. 

ERMIA can be used in a number of ways during interface development; to look at possible 
interfaces at an early stage of design, long before the final rendering has been decided on; to compare different 
mental models (designer's/user's, or across different users); or to analyse distributed systems, i.e. worksystems in 
which requisite information is distributed across different people and/or artefacts. 

In this paper we show how ERMIA may be used to provide a conceptual model of a theorem prover 
and a perceptual model of an interface to this theorem prover. We then show how analysis of the conceptual 
model in itself and also with relation to the perceptual model may highlight potential usability problems. We also 
describe some experimental results showing how some problems identified during the ERMIA analysis then 
arose during an empirical evaluation of the theorem prover. 

2. XBarnacle and Interactive Proof Critics 

XBarnacle (Lowe and Duncan, 1997) is a version of CLaM automated proof planner (Bundy, van Harmelen, 
Horn and SmaiIl, 1990) incorporating a graphical user interface that allows users to interact with CLaM during a 
proof. XBarnacle is designed to allow users to step in and use their domain knowledge to guide CLaM in the 
search for a proof. This might be appropriate if they conclude that CLaM is pursuing an unproductive search 
strategy or CLaM performs a proof step the user knows is unproductive. 

The version of XBarnacle described in this paper also features an implementation of interactive 
proof critics (Ireland, Jackson and Reid, 1997; Jackson, 1996). Proof critics (Ireland, 1992; Ireland and Bundy, 
1996) provide functionality to CLaM to allow the patching of failed proof steps allowing then to succeed. 
Examples of proof patches include generating a required lemma, perfonning a case-split or revising an induction 
step earlier in the proof. Critics are associated with CLaM's methods and are triggered by patterns of failure of 
the related methods preconditions. Proof critics can extend the power of CLaM allowing it to prove theorems 
previously beyond its reach. Interactive proof critics allow a user to interact with a proof critic and view all the 
possible patches that a critic proposes and to apply, customise or reject these. Interacting with proof critics may 
improve the efficiency of CLaM over the purely automated critics version and also allow theorems to be proven 
that are beyond the reach of the automated CLaM. Part of the functionality of the interactive proof critics is an 
explanation facility which describes why a method failed in terms of its preconditions, why a critic was 
applicable, in terms of failure of the associated methods preconditions, and what the critic will do. 
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INAME I Name 

Entity Type Attribute Type Identifying Attribute 
(Key) 

Relationship Type Clone entity (if required) -
perceptually indistinguishable 
entity occurrence 

Degree of a Relationship and Participation Conditions: 

~ 
Each instance of entity A may relate to one or more 
instances of entity B. 
Each instance of entity B must relate to one instance of 
entity A 

Figure 1: Basic Notation of Constructs in ERMIA 

3. An Introduction to ERMIA 

The entity-relationship (E-R) model is a graphically-based technique for representing the things of interest 
(entities) in an application and the associations between them (relationships). An Entity type is an aggregation of 
one or more property (or attribute) types. The concept of an entity provides two types of abstraction. The 
aggregation of properties into entities allows the designer to focus on the entities and to suppress details of the 
attributes. The classification of entity occurrences as entity types allows the designer to deal with a class of things 
rather than the individual things themselves. For example the methods (specifications of tactics) used by CLaM 
can usefully be viewed as instances of an entity METHOD, say, which has attributes Name and Definition, and 
so on. 

Entities in the same set have the same types of attribute, though typically these attributes will take 
different values for different occurrences of the entity. For example, each method will have a different value for 
the Name attribute. Entities are defined by their attributes. The characteristics which define an entity are obtained 
by analysts in consultation with users. ERMIA does not accept that there is an objective world waiting to be 
carved up into a universal set of entities. Entities are subjective. Defining the entities makes such subjectivity 
explicit. 

A further level of abstraction may be obtained by recognising that entities can have sub-types. This 
allows us to generalise certain characteristics or relationships between entity super-types, whilst recognising that 
the sub-types may differ from the super-type in some (relatively) minor respect. For example as XBarnacle 
allows user-CLaM collaboration during a proof we have the notion of an AGENT entity with sub-types USER and 
CLAM (the CLaM planner) as both these entities may take actions in CLaM. Each sub-type of an entity may 
share some attributes and/or relationships with their super-type entity but differ in others. Entities in ERMIA also 
demonstrate the principal of encapsulation. It is possible and often desirable to deal with quite complex artefacts 
as if they were a single entity, hiding the details of their construction. This type of abstraction again delivers a 
degree of simplification which makes for a more powerful model. 

Conceptual entities, or concepts, are cognitive constructs. Conceptual entities can be seen as having 
some correspondence with the ideas or notions which users and/or designers have in their minds. We develop 
concepts in order to make sense of the experienced world. We represent those concepts and the relationships 
between them by developing ERMIA models. Perceptual entities are things in the experienced world which are of 
interest to the ERMIA modeller within the terms of some discourse. They are defined at some level of abstraction 
which is suitable for the intended perceivers. 

In ERMIA, entities (but not relationships) have attributes (also known as properties or 
characteristics). An entity is the aggregation of its attributes in that it is defined as the total of its attributes. 
Usually one or more of the attributes are used to distinguish between entity occurrences. This attribute (or 
attributes) is known as the entity identifier. For example Name may be considered to be the identifying attribute 
of the METHOD entity since each method used by CLaM has a unique name. The structural attributes of 
perceptual entities are their perceivable characteristics (typically visual, audible or tactile properties). 
Behavioural attributes describe perceptual changes which occur under certain circumstances. An important 
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Figure 3: A Perceptual ERMIA for the XBarnacIe 3.2 Interface 
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Figure 4: Various components of the XBarnacle interface 



development for ERMIA models is that perceptual entities are not always distinguishable from one another. Thus 
we introduce the notion of a 'clone'; an entity type which has instances which are perceptually indistinguishable 
from other instances of that entity. 

In ERMIA, as in ER models, entities are associated with each other and sometimes with themselves 
through relationships. There may be more than one relationship between entities. A one-to-one relationship (1-1) 
between entities A and B associates an occurrence of entity A with at most one occurrence of entity B and an 
occurrence of entity B with at most one occurrence of entity A. A one-ta-many relationship (l-m) between entities 
A and B may associate many occurrences of entity B with each occurrence of entity A, but each occurrence of B is 
associated with at most one occurrence of A. A many-ta-many relationship (m-m) permits many occurrences of 
entity B to be associated with each occurrence of entity A and many occurrences of entity A to be associated with 
each occurrence of entity B. It is useful to decompose m-m relationships by the introduction of a new entity. For 
example there is a potential m-m relation between goals and methods since a method may be applied to a number 
of goals and each goal may have a number of methods applicable to it. In Figure 2 we have broken up this m-m 
relationship revealing the entity TESTED METHOD, resulting from the application of a specific method to a 
specific goal. 

Further semantics of relationships are represented by including participation conditions of entities in 
relationships. Mandatory participation constrains the entities in a set so that they must always participate in the 
relationship. Optional participation allows some or all occurrences of an entity not to participate in the 
relationship at any particular time. Sometimes it is desirable to insist that an entity must participate in two or 
more relationships (inclusivity). This is represented on an ERMIA diagram by suitable annotation of the diagram. 
Similarly we may want to represent that an entity may only participate in one of several relationships 
(exclusivity). Other constraints on the participation of entities in relationships may be represented by natural 
language annotations. 

The basic notation used for ERMIA is shown in Figure I. Figure 2 presents an ERMIA of the 
conceptual elements in XBarnacle. 

4. A Perceptual ERMIA of the XBarnacle interface 

The XBarnacle interface may be viewed as a viewport onto the underlying conceptual domain. In Figure 3 we 
present a perceptual ERMIA of this viewport, components of which are shown in Figure 4. Where conceptual 
entities and attributes are rendered at the interface we have used the same entity and attribute names as in the 
conceptual model of the underlying CLaM system. Note that there are new entities, however, for example 
METHOD-SCORE PAIR or WHY METHOD FAILED EXPLANATION, which have no specific conceptual 
analogue. 

Note that nodes (denoting a super-type of the perceptual entities representing PROOF STEPS and 
OPEN GOALS) have a perceptual attribute, Colour, and that the value of this attribute directly reflects the type of 
node (i.e. is it a proof step node or an open goal node). Note also that nodes in the proof plan as displayed by 
XBarnacle are clones as there may be no way to tell certain occurrences of nodes apart at the interface. This may 
have serious implications for the user as we describe in the next section. 

5. Using ERMIA to Identify Potential Usability Problems 

We now give examples of how analysing the conceptual ERMIA in itself, and also comparing the conceptual 
ERMIA to the perceptual ERMIA of the viewport, can highlight potential usability problems. The work on 
ERMIA models of XBarnacle was done as part of research into the utility and usability of interactive proof 
critics. A co-operative style evaluation (Monk, Wright, Haber and Davenport, 1993) has been performed to 
address this question. One of the aims of this evaluation was to see if the problems highlighted by an ERMIA 
analysis undertaken prior to the evaluation arose in actual use of the interface by real users, thereby giving 
evidence as to the utility of conducting an ERMIA analysis. When discussing the problems highlighted by 
ERMIA we shall give examples where those problems arose in practice. 

Problem 1. A Problem Due to the Collaborative Nature of the Interface 

From our knowledge of' how XBarnacle is used we know that a proof step may have been chosen by the CLaM 
planner or the user. However our ERMIA model shows that neither the PROOF STEP nor APPUCABLE 
PROOF STEP entities (of Figure 2) of XBarnacle contain any attribute to record which agent actually applied 
each proof step. Thus the system is limited in that there is no means of determining the division of labour (if any) 
between the CLaM planner and a user when performing a proof. Related to this is the fact that critics may also be 
responsible for applying proof steps and, again, no means of storing this fact, in such cases, is provided. 
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This is important since users and other interested parties may over-estimate or under-estimate the 
power of CLaM or may gain a false impression of the reasoning strategies used by CLaM if this information is 
not available to them. An example of this arose during the evaluation. One participant, an expert in CLaM and 
proof critics, remarked on being presented with a proof: 

" ... so its chosen an induction on a, double induction on a which was very clever of it. How did it manage to 
think ofa double induction? That's cunning." 

The participant was unaware that the double induction resulted not from a method application, as they assumed, 
but rather from a critic which may redo induction steps. Another participant, also an expert in CLaM stated 
during the same example: 

"That's no normal induction analysis ... that's somebody being clever" 

This problem is an example of how providing functionality at the interface (in the case of user/CLaM 
collaboration) or providing conceptual and/or interface functionality (in the case of proof critics or interactive 
proof critics) can create the need for new attributes in certain underlying conceptual entities to support the 
implications of this additional functionality. In this example this would perhaps entail the addition of an attribute 
to the conceptual PROOF STEP entity to identify who executed each step in the proof (or if the proof step arose 
from a critic application) and the provision at the interface of a suitable presentation of this new attribute. 

Problem 2. Positions in the Proof Plan 

Figure 3 shows how XBarnacle displays proof steps and open goals using a node entity. Analysing the ERMIA 
we see that this entity (and hence its rendition at the interface) has no identifying attribute meaning that nodes at 
the interface are clones - node entities do have an attribute Location, the location of the node on the XBarnacle 
display, but this may change as a proof progresses and is unrelated to the underlying position of a proof step or 
open goal in the proof plan. This demonstrates a problem with the interface since the proof steps and open goals 
in the underlying theorem prover, which nodes at the interface represent, do have an identifying attribute - their 
position in the proof plan, as may be seen in Figure 2. Therefore the interface may, in certain circumstances, 
cause navigation problems for the user if two separate parts of a proof plan have the same sets of proof steps or 
open goals as these will be indistinguishable at the interface. Also, referring to proof steps or open goals in the 
proof plan by position may cause problems since there is no direct representation of this position in the entities 
that display the proof plan - the user must take extra action to display the position of a node in the proof plan. 

A problem of this type arose in the evaluation. For example the induction revision critic which may 
propose the revision of an application of the induction method at a proof step earlier in the proof plan prints as 
patches to the user information of form: 

Apply method induct(x:pnat,s(x)) at node 000 

where 000 is a proof step/node position in the conceptual proof plan. One participant in the evaluation pointed at 
the displayed proof plan and remarked: 

"I think you need to label these nodes if you're going to refer to them by some number ." its not obvious which 
one you're talking about. " 

despite these addresses being in a form similar to that in which node addresses are usually presented (as another 
participant correctly identified). Another participant stated on the same task: 

" ... so the question is where's node 000 ?" 

and like the first participant had to head to the root of the proof plan and count down to the correct point in the 
proof, which would be very problematic in large proofs, as one participant stated. Another participant stated: 

"J want it to do the induction that its suggesting but J want to do it on this node. " 

pointing to the node where the induction would be done and assuming wrongly that it gets done at the current 
node, where the critic was invoked. The participant here did not pick up the fact that 000 referred to the node at 
which the induction would be done. 
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Unlike Problem I this problem arises as a result of a key attribute of important theorem proving 
entity (proof steps and open nodes) not being rendered directly at the interface. 

Problem 3. Where was the critic invoked and to what does it apply? 

In Figure 2 we see, by following the appropriate relations and examining the attributes, that critics are invoked at 
specific positions in the proof plan, those positions corresponding to the position of the open goal where the 
associated method fails. However, we also see that the effect of a critic may be to take action at a different node 
in a proof tree, for example the induction revision critic described above. Related to Problem 2 problems relating 
to positions of proof steps and open goals in the proof plan may arise due to the interface not rendering these 
attributes at the interface (as is highlighted by the omission of such attributes from the perceptual ERMIA of 
Figure 3). Firstly the interactive critics interface, when invoked by CLaM, does not display the node at which it is 
invoked as one participant stated: 

"Which goal's it working on now .. , which one's it asking about ?" 

The user must take extra action to elicit this information, as one participant verbalised: 

"I'm hitting the "Why did method fail ?" button which tells me which node the problems at which isn't entirely 
clear unless you actually do something like this.,. " 

causing the explanation as to why a method failed to be displayed, this explanation (as Figure 3 shows) rendering 
the conceptual attribute InvokedPosition, which stores the position in the proof plan of the goal to which the 
critic was invoked from. The participant later stated: 

" ... it really would be useful if the display, the interactive critic window tells you which node its looking at ... " 

Similarly the critic interface does not always say to which node it does apply. Nor do the explanations. This led 
to comments of the form: 

"I think it would be quite useful if the ... the display actually showed which nodes they were proposing to be 
applied to without actually having to hit one of the buttons to get the more detail. " 

and 

"It certainly would be useful if you could see what nodes each of the patches were applying to. n, 

The utility of showing the nodes to which a critic is applied was borne out by a comment from a participant with 
respect to the display of patches for induction revision which do state the node they affect: 

"It's more clear from these what they're going to do which is apply an induction at a particular node." 

Again these problem arises from the interface not rendering certain attributes of conceptual entities in the 
appropriate place i.e. here the position where the critic invoked and the position to which each of the proof 
patches apply should be rendered in the main interactive critic window, not just in the explanation windows 
which pop-up only after extra action by the user. 

Other Problems 

(Jackson, Benyon and Lowe, 97) describes in detail other potential usability problems that may arise, most of 
these also relate to the standard XBarnacle system described in (Lowe and Duncan, 97). The problems include: 

• As stated proof critics may create a lemma automatically. This sets up a requirement for the lemma to be 
proven. CLaM has functionality to prove such lemmas automatically resulting in a system where a conjecture 
may either have been defined by the user or a critic. This leads to a problem related to Problem 1 in that false 
impressions of XBarnacle's power may arise if outside observers are unaware of this fact. Therefore some means 
of recording who defined what conjecture should perhaps be provided. 
• Each applicable proof step has an associated set of resulting sub-goals but only the sub-goals for the 
applicable proof step actually applied may be accessed (since these become sub-goals in the proof plan); 
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• Method applicability is determined by their preconditions but there is no way of accessing the preconditions 
of a method as they relate to a goal in the proof plan i.e. one cannot see why a method was applicable to a given 
goal. Nor can one see why other methods failed to be applicable to a goal i.e. the pattern of precondition failure. 
This is important since a failed method may lead to a failed proof plan. The exception is for methods whose 
critics invoke, the precondition pattern may then be viewed using the interactive critic interface. One participant 
in the evaluation used this feature extensively and this may give indications as to the utility of this form of 
explanation in general. 

6. Conclusion 

We have presented an introduction to ERMIA and a model of the conceptual structure of a version of XBarnacle 
that features interactive proof critics. We also provided a perceptual model of a viewport onto that conceptual 
structure and showed how analysis of the conceptual structure, both in itself and in relation to the perceptual 
structure, highlighted potential usability problems, some of which arose when potential users of XBarnacle 
participated in an evaluation of the utility and usability of interactive proof critics. 

There is little doubt that developing the ERMIAs has provided an insight into XBarnacle. Whether 
such insight could have been gleaned through other approaches is a moot point We would argue that a task 
analysis approach would not have highlighted some of the usability problems, because we are not dealing with 
existing tasks, rather we are dealing with the distribution of knowledge throughout the underlying system and the 
representation of this knowledge at the user interface. 

This is not however to state that task analysis approaches or other interface modelling techniques are 
of no use. On the contrary in many respects these approaches may be superior to ERMIA. For example one 
limitation of ERMIA is the problem of highlighting the fact that some entities may exist only for a certain limited 
period of time and then cease to exist in a conceptual system. This further serves to emphasise the fact that 
ERMIA is one of a number of modelling techniques of great use in interface design and that interface designers 
may need to consider the pro's and con's of each of techniques, in conjunction with their own areas of concern, 
to choose the tools most suitable for their task. 
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Abstract 

We present a view of interactive theorem proving 
as a collection of diverse activities which impact on 
one another. We catalogue a number of features 
of existing theorem proving assistants (TPAs) and 
connect them with the activities which they seem 
to support. We then volunteer approaches to eval
uating these features respecting the connectedness 
of the activities they support, and begin to make 
explicit some questions which could be passed on to 
psychologists, taking the perspective of a designer 
attempting to construct a powerful and well inte
grated interface for a TPA. 

1 Introduction 

At UITP '95 with [MDH95]' we presented a paper 
which viewed theorem proving assistants (TPAs) 
as "levers" for extending human cognitive processes 
through the mechanisms of planning, reflection and 
reuse, rather than just looking at how proof com
mands could be articulated. At UITP '97 with 
[MH97], we talked about the influence which one 
part of the interface can have "downstream" on 
subsequent activities, to be precise the way that a 
proof created using a graphical direct manipulation 
interface would tend to contain more unnecessary 
dependencies than one created using a command
line interface. In the present paper, we attempt to 
integrate the insight that interactive theorem prov
ing is about all of formalisation, planning, articu
lation, reflection and reuse with the understanding 
that these activities are interrelated. In addition 
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to trying to understand these issues, we use our 
perspective to examine how designers of TPA in
terfaces could select from a range of functionality 
to provide well integrated and powerful interfaces. 
It has been observed that some of the issues that 
we consider have their roots not in the interface but 
in the underlying functionality of TPAs. By con
fining ourselves to the design of the interface only, 
we will be tackling some such issues in a rather 
shallow way. The constraints of time and expertise 
have thus far focussed our research on the inter
face and we are of the opinion that it is, in fact, 
worthwhile to consider how interfaces do support 
existing theorem proving technology. 

To this end, in Section 2 we present a view of 
interactive theorem proving activity as made up 
of diverse elements which are related and interde
pendent, an observation which will lead us away 
from criteria which would consider only one activ
ity in isolation. We then, in Section 3 examine 
the demands placed on the interface in supporting 
these activities and correlate them with some rele
vant features of existing TPAs and envisage some 
possible new features which might satisfy these de
mands. In Section 4 we look at the extent to which 
the technology of Section 3 provides answers to the 
questions of Section 2, taking the part of a designer 
selecting functionality to provide in a new TPA in
terface. 

Here we consider only TPAs supporting inter
active backward reasoning, systems like PVS, see 
[SOR95], and Jape, see [SB95J. 
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2 Interactive Proof Activities 

In order to gather information about the activ
ities involved in interactive proof we have con
ducted informal interviews with users of TPAs 
working at Universities including Cambridge, Glas
gow and York. We used PVS in an attempt to 
prove Kleene's theorem, identifying the languages 
accepted by finite state automata with the lan
guages generated by regular expressions. That 
exercise had the dual objective of recording data 
about the time spent on different kinds of activ
ity in interactive theorem proving and also increas
ing our understanding of, and familiarity with, the 
"world" of machine assisted theorem proving. 

Interactive theorem proving means different 
things to different people, either because they are 
looking at very different kinds of theorem proving 
assistant or because they are focussing on one par
ticular kind of activity. We can attempt to clas
sify TPAs by degree of automation. A TPA like 
CLAM, see [BvHHS90), aims to prove the theorem 
automatically; user intervention is required to en
sure that the system is appropriately configured to 
start with, rather than to supply input during the 
proving process. At the opposite extreme, TPAs 
like Jape, see [SB95), and MathSpad, see rVer), al
lows the editing of a proof (according to enforced 
rules) and it aims to make this editing process as 
painless as possible but not to automate the pro
cess of proof discovery. However for our purposes 
the distinctions along this continuum will be noted 
but do not change our approach. 

We are more interested in the diversity of activi
ties which comprise interactive theorem proving re
gardless of the degree of automation on offer: 

• Formalising the problem, writing formal de
scriptions of the entities about which we wish 
to prove properties and collecting these to
gether into theories, takes significant time and 
effort. It has much in common with program
ming, about which much has been written, but 
will be informed by the proving process. In
deed it may well be the case that the specifica
tion is the deliverable and the proofs are just 
there to establish certain kinds of consistency 
within the specification . 

• Discovering the plan is convincingly suggested 
by [PoI57) as the essential and most "creative" 

problem solving activity. 

• Articulating the proof plan to the TPA is 
the core activity of theorem proving. We can 
view this as taking place in two, not necessarily 
distinct stages, as the plan is translated to a 
form which can be communicated to the TPA 
and then this form is translated into a series of 
syntactically correct commands. For example 
the plan might be "prove by induction", the 
intermediate form might be "use the induction 
command, on the base case use commands .. , , 
and on the step case use commands ... " and 
the final, interface articulated form might be 
"(induct "i") ... ", 

• Understanding the proof by reflecting on it 
is essential to answer "where am I?" questions. 
In the case of a very automatic theorem prover, 
this may be connected with monitoring, and 
then possibly influencing, the progress of au
tomated procedures. 

• Reusing proofs is vital in order to keep the 
time required for theorem proving within sen
sible bounds. This dominates serious theorem 
proving, which would be impossible without a 
host of "ready-to-wear" proven theorems both 
relating to the problem domain and also pro
viding basic proof tools, such as induction. 

We can view our theory store as a 
database of theorems, useful facts to be 
employed in the construction of the cur
rent proof. 

We can also view the theory store as a 
database of proofs. We might refer to a 
proof as an example of how to use a par
ticular proof command. We might also 
extract part or all of a proof as a starting 
point for the current proof. Store proofs 
may show common patterns, which we 
wish to translate to an automated pro
cedure that can generate future proofs. 

In order to be able to reuse theorems ef
fectively we need tools to allow them to 
be combined with a particular statement 
quickly and easily. 

In a process of discussion with with Stuart Aitken 
and Tom Melham at the University of Glasgow, 
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we came to the realisation that we can identify 
(greatly) interleaved phases of proof which include 
the actual proving but also expressing the theorem 
to be proved, formalisation, and in "tidying up" 
the results of proving into orderly theories of ef
ficient proofs, proof management, see [AGMT96]. 
Whilst this concept of phases provides a useful tool 
for understanding what is going on during inter
action with a TPA, we have presented the above, 
less separate, categorisations because they seem to 
give us a more pragmatic foundation for looking at 
design questions. There is no clear relationship be
tween our categories and the phases of proof, since 
our categories are neither a direct expansion of the 
phases nor an orthogonal classification. 

3 Tools for Supporting Prov
mg 

We can interpret our list of activities as a list of 
questions about how we support those activities 
and then correlate this list with a list of interface 
tools provided by currently available TPAs which 
support those activities. In order to collect ex
amples, we have looked at CADiZ [TV97], CLAM 
[BvHHS90], CtCoq [BBC+96], Isabelle [Pau94], 
HOL (unmodified [GM93] and with additional in
terfaces such as CHOL [TBK92] and TkHOLWork
bench [Sym]), IMPS [FGT98]' Jape [SB95], MU
RAL [JJLM91] and PVS [SOR95] and the toolkit 
of [CH95]. Of course, it is not necessarily the case 
that one tool will support only activity in one of 
our categories but for the convenience of the pre
sentation we will tolerate some duplication across 
categories. 

3.1 Formalisation 

In order to commence theorem proving, we require, 
in the TPA's specification language, a statement 
of the theorem to be proved, which will typically 
rely on the definition of some functions. For exam
ple, if we want to prove that every natural number 
greater than one has a unique bag of prime factors, 
we must at least define, or reuse from somewhere, 
a predicate which characterises prime numbers and 
a datatype for bags. Questions which arise with 
regard to formalisation include that of how the hu
man prover knows the correct syntax for expres-

sions and they find and browse existing specifica
tions to find useful material. With regard to the 
first question, there is little support in the inter
face with existing systems. PVS uses the emacs 
font lock mode to offer the possibility of highlight
ing correctly spelt keywords, and emacs bracket 
matching to show how correctly balanced paren
theses match up. These simple features mean that 
the user gets some immediate feedback about the 
syntactic accuracy of their specification as they are 
entering it and would seem to make an appreciable 
contribution to usability. PVS also has online help 
for the specification language with such information 
as the precedence of infix operators. 

All TPAs perform some checking of specifica
tion files, usually for syntax and then for type
correctness. CADiZ requires the creation of a text 
file with embedded codes outside the TPA environ
ment which is then read, checked and represented 
to the human prover with the codes replaced by 
appropriate non-text symbols of the Z specification 
language, described in [Spi92]. PVS, with its text
based interface, offers an integrated process of edit
ing, checking and error reporting for the construc
tion of specification files, obviating the need for two 
dissimilar forms of the information. 

With regard to the second question, many TPAs 
provide displays of a graph of dependencies be
tween theory files which can be used to drive a 
browser. However, naming conventions and text 
searches also provide a powerful way of investigat
ing theories. For example, we can be fairly certain 
that a theory file which deals with prime numbers 
will contain the string 'lprime". Of course a search 
for that string will also turn up all other files which 
refer to prime numbers and it may be possible to 
refine the search to also look for a characteristic 
expression associated with the definition of predi
cates. 

3.2 Planning 

As an aid toward the goal of completing proof, 
TPAs typically provide decision procedures and 
automated search strategies in order to automate 
some theorem proving work. It may be that these 
obviate the need for the human prover to think 
about the proof plan but when this is not so, the au
tomation needs to be carefully deployed by the hu
man prover. It seems appropriate to ask the ques-
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tion, how can the interface support the user in plan
ning a proof using such automatic tools and there 
is no clear answer. There are no simple metaphors 
which the interface might attach to such compli
cated functions. We are reliant on appropriate 
naming and on-line help in order to assist the hu
man prover in understanding the functions avail
able and how to deploy them. Therefore we will 
not attempt to address questions of how an inter
face can support the discovery the plan of a proof. 

However, in order to carry out such planning of a 
proof effectively, the plan must not only be discov
ered but recorded and effectively implemented. It 
may be entirely appropriate to record the emerging 
proof plan on paper before and during the interac
tive proving process but, as we will see when we 
come to reflect on the proof part way tbrough, it 
can be very useful to be able to connect informal 
(or extra-formal) information about the proof plan 
with the interface representation of the proof. One 
suggestion for achieving this in some measure is 
Kalvala's annotations for proofs and specifications, 
see [KaI94]. This allows annotations to be attached 
to proofs and to be propagated through them, a fa
cility which could be used to record the role that 
component parts play in the overall proof plan. 

3.3 Articulation 

Compared to planning, it is perhaps easier to see 
what the user-interface might provide to support 
the articulation of proof commands. Although dif
ferent interfaces exhibit a rich diversity of different 
components, we can identify almost all of them as 
employing primarily command-line interaction or 
graphical direct manipulation. If we look at the ex
ample of the PVS proof checker, we find a host of 
tools supporting the command-line interaction, in
cluding cut-and-paste, history mechanisms, bracket 
matching, short-cuts. TPAs such as CADiZ, see 
[TV97] and Jape have interfaces which break away 
from the limitations of the ASCII character set and 
exploit high resolution displays to use more conven
tional mathematical notation in the representations 
of terms. The human prover can directly interact 
with these by selecting (sub)terms on which to per
form commands from menuS or tool-bars. 

Some TPAs attempt to aid in the selection of 
proof commands. In such a case, articulating a 
proof command may mean making a selection from 

a menu. It is our belief that such a tool is provided 
not in order to help the human prover decide how 
to progress the proof but either to make the work 
of articulating a particular command easier or to 
make the human prover aware of the range of com
mands and arguments, especially theorems, which 
are applicable. It is quite possible that the human 
prover may be unaware of some commands or the
orems, or at least have overlooked the possibility 
that they may be useful in the current context. In 
this case this tool could be viewed as an aid to 
planning. However, we have chiefly observed the 
use of such a tool when the human prover was hav
ing difficulty in articulating a proof command any 
other way, that is as an aid to articulation and not 
selection of commands. 

We have not yet discussed the higher-level is
sue of articulation, that of transforming the kind 
of proof plan that humans are trained to devise 
into a sequence of steps which can be achieved us
ing the particular TPA. At this level, the human 
prover is reliant on their ability to comprehend the 
behaviour of the proof tools provided by the TPA. 
As we mentioned with regard to planning, more 
powerful automatic proof tools may mean that this 
becomes more difficult, diminishing to some extent 
the advantage they offer. 

3.4 Reflection 

Most TPAs allow a proof to be viewed as a tree, 
with the goal statement at the root and supporting 
statements, fanning out, connected by the appro
priate inference commands. These tree form proof 
displays are at least based on Gentzen trees, see 
[Gen69J. Such a display is generally thought to be 
helpful in answering "what am I doing now?" ques
tions, when the human prover's understanding of 
the current context has been lost due to a pause in 
proving, or because they have been attending to one 
branch of the proof tree and are now turning their 
attention to one which was suspended some time 
ago. The shape of the tree, provided that a suffi
ciently large portion can be viewed on the screen 
at one time, allows the human prover to compre
hend the structure of the proof and the location of 
the current goal within this structure. Such tree 
displays will typically elide information about the 
content of each statement, just showing the struc
ture of the proof and some clues as to the com-
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mands which have been entered. This allows much 
more of a proof tree to be displayed than if all the 
information were displayed in a tree form. An ex
ception to this is Jape and in order to overcome 
the problem of very wide proof tree displays Jape 
provides an alternative, Fitch box presentation, see 
[Fit52]' which ensures that long proofs only exceed 
screen size in the vertical dimension. TPAs other 
than Jape have to provide a display which actu
ally shows the information content of the proof, not 
just its tree structure. In the case of command
line based interface TPAs this is provided by the 
scrolling transcript of interaction. It is useful to be 
able to ask of the tree display what is the elided 
information and both PVS and CADiZ provide the 
facility to inspect the hidden goal information. 

3.5 Reuse 

Existing TPAs exhibit a host of tools for support
ing reuse of proofs. PVS provides many of these, 
allowing theorems to be reused conveniently either 
singly, with a rewrite command, or composed into 
groups for "automatic" rewriting. PVS also pro
vides the means to edit proofs off-line, whilst not 
actually within any proving process. Arbitrary 
parts of any proof may be inserted into any other 
proof. In addition, parts of other proofs may be "re
played" during the current proof, where they can 
be single-stepped. The ability to replay a proof ad
mits the possibility of not only adding new parts 
to the proof tree through proof commands but of 
editing arbitrary parts of the tree and replaying the 
resulting proof. In [MH97], we discussed the impact 
of different kinds of proof command on the viscos
ity of a proof, our ability to make small changes 
to a proof without having to make large numbers 
of edits to maintain consistency, see [Gre89]. We 
can recast this issue as one of reuse, with the ob
servation that when we make a small change to a 
proof we are reusing the old parts in this new and 
slightly different context. Thus proofs with high 
viscosity are proofs which are difficult to reuse in 
all but the most similar contexts. We made the 
observation that with a direct manipulation inter
face, articulating a command may be made easy 
by the ability to point to a particular (sub)term 
but that the record of the proof will then be lit
tered with references to (sub)terms in a very spe
cific context and will be highly viscous. Conversely, 

with a command line interface, the human prover 
tends to indicate information in a convoluted, indi
rect way, using constraints such as matching rather 
than specifying specific (sub)terms, which can be 
painfully awkward and require an understanding 
of the internal representation of displayed terms. 
However the resulting proof is far less viscous and 
therefore far easier to reuse than that created with 
direct manipulation interaction. We also indicated 
that if it were possible, as suggested by [Ste96], to 
automatically "renumber" references to (sub)terms 
as needed, the viscosity problem with direct manip
ulation proofs would be greatly reduced. An ana
logue of this is the way that direct manipulation 
word processors can renumber list items, avoiding 
the need to change numbers by hand when adding 
an entry. 

Another possibility is that, rather than alter
ing such specific commands each time, a tool be 
provided to generalise commands once and for 
all. It would be possible for specific references 
to (sub )terms to be replaced by the use of mini
mal constraints sufficient to achieve the same se
lection, especially if commands are combined into 
more meaningful groups. An example of this is 
rewriting, which is the composition of introducing 
an equality-based lemma, instantiating its univer
sally quantified variables and then replacing some 
OCCUrrence of the left hand side of equality with the 
right hand side. As separate steps it is hard to see 
how the variable instantiation could be expressed in 
terms of constraints but in conjunction, it is clear 
that the values to be introduced should be exactly 
those which will permit the replacement to happen 
by generating a match with the target expression. 

In fact, we have identified three ways of think
ing about how a lemma is used in another proof. 
Firstly, it may represent a key step in the proof, like 
an induction theorem. The requirement of the in
terface is to allow the human prover to be able to be 
aware of, locate and properly deploy such theorems. 
There are several ways in which we might want to 
try to locate a theorem. We might wish to search 
for all theorem which match some part of the cur
rent goal, we might use knowledge about the overall 
theory structure to look through certain theories, 
or we might take advantage of naming conventions 
in order to perform textual searches for a theorem. 

Secondly, a lemma may be used, probably in con
junction with others, in order to reduce some term 



to a normal form. In this case, we are not inter
ested in each individual application of each theo
rem, we simply want to understand that the result 
is in a normal form with respect to a certain set 
of theorems. Here, we require the interface to al
low us to assemble such sets of rewrites, perhaps 
to perform certain kinds of analysis on those sets, 
such as an investigation of confluence, to be able to 
automatically apply the set of theorem repeatedly 
and to be able to interrupt the process if it is tak
ing too long, perhaps because it is non-terminating. 
Industrial strength theorem provers, such as PVS, 
support this kind of use to some degree. 

There is a third way of using theorems, especially 
those which capture associativity, commutativity, 
distributivity and absorption properties, and this 
is to allow a term to be easily rearranged into a 
new form. Here the requirement of the interface 
is that it provide efficient commands for articulat
ing these relatively simple transformations. We are 
only aware of one TPA which currently supports 
which way of using theorems, which is a version of 
CtCoq, see [Ber97aj. 

4 Integrating Tools for a Sin
gle TPA 

Here we consider how we can evaluate the effective
ness of the support that the TPA features listed 
above provide for the activities we have identified. 
We offer not so much criteria against which each 
can be scored but rather concepts which help in 
assessing the trade-offs. 

With regard to support for formalisation, this is 
sufficiently close to the task of programming that 
we are tempted to borrow from the literature on 
that subject. We need to consult with psycholo
gists about the extent to which results for one be 
applicable for the other. Assuming that this can, 
by and large, be done, we note that colourisation 
and formatting according to syntactic rules have 
proved very popular in the programming commu
nity and there is evidence that formatting has an 
effect, see for example [MMNS83j. 

FUrthermore there is no clear winner for formal
isation between the three options of an ASCII
only specification language, a specification lan
guage with more traditionally mathematical nota-

tion compiled from a separate text file, and a math
ematical notation language using menus or key
sequences to express non-keyboard symbols. Most 
importantly, we believe that if one is to be cho
sen in preference to others, it must be respectful of 
its impact on other activities, such as searching to 
support reuse, or the ability to reflect on a proof 
in progress, where the goals in that proof are ex
pressed using the same specification language. This 
makes it hard to imagine a rigorous psychological 
experiment that would identify one option as the 
strongest. It seems more practical to make a study 
based on cooperative evaluation, see [MWHD93], 
for a particular application of theorem proving. 

The various ways of articulating proof com
mands, through gesture, by menu selection, or with 
textual commands all have merits both for articula
tion and in terms of their impact on other activities. 
It is not simply the case that command-lines are out 
of date and that we now have access to better tech
nology. As well as affecting reuse through the vis
cosity issue raised above, the choice of commands 
provided and the way in which they can be articu
lated affects planning. There is already a recogni
tion of this interconnection in the field of psychol
ogy and some work has been done to explore the 
relationship, see [GGC96j. Also we may look to the 
resources model described in [FWH97, FWH96]. 
Among other things, the ability of the user to pre
dict the outcome of commands and to use this in
formation to select an action is captured by the 
resources model's notion of an action-effect model. 

There is anecdotal evidence for the value of tree 
displays of proofs and, since they are quite easy to 
implement and can be hidden or switched off, they 
are almost certain to be part of new TPAs. Thns, 
from our design perspective, we are not concerned 
with debate about the intrinsic value of such dis
plays. What is more interesting is how such a dis
play is linked with the possibly separate parts of the 
interface which display goals and allow commands 
to be articulated. CADiZ allows the human prover 
to select a part of the tree display to summon a 
display of that goal and make that goal the object 
of the next proof command. With the PVS tree 
display, the human prover must enter some num
ber of textual "(postpone) 11 commands in order 
to perform such a change of focus and it may be 
difficult to decide the right number of such com
mands, looking at a large proof tree display. The 

II.'. 



introduction of tree displays admits new kinds of 
manipulation based on a view of the tree structure 
of the proof, such as large scale copying and moving 
of subproofs which has previously only been possi
ble with textual representations of the proof. It is, 
of course, hard to phrase specific questions in the 
absence of more implemented examples. 

With regard to the reuse of theorems, we believe 
that it is important to recognise the three different 
ways in which lemmas may he used: as key results, 
for normalisation or for algebraic rearrangements. 
Tools must be evaluated with respect to all three 
of these unless it is clear that some are irrelevant 
for some reason. It seems reasonable to use psy
chological experiments to evaluate such software, 
since metrics such as error rates and performance 
times would seem to be sensible indicators of their 
value. The retrieval of theorems can be awkward, 
to the point that simple theorems might be proved 
from scratch rather than located within the exist
ing corpus, see [AGMT95]. In general information 
retrieval is the subject of considerable current re
search effort and it is beyond the scope of this paper 
to properly explore that field. We must be content 
with recognising that simplistic matching for re
trieval can be a powerful tool but that the effective 
practical strategies that we have observed are prin
cipally reliant on naming conventions and flexible 
textual searches. 

With regard to the reuse of proofs, however, we 
again find that the representation of the proof has 
a great impact on other activities as well as reuse 
and we need more holistic methods. The provision 
of some benchmarks for the reuse of proofs is un
realistic because they the logics used by difference 
TPAs vary too much. 

5 Summary 

We have presented a view of interactive theorem 
proving as a diverse collection of closely interrelated 
activities. We have catalogued a number of features 
of existing TPAs and connected them with the ac
tivities which they seem to support. We have then 
volunteered approaches to evaluating these features 
and begun to make explicit those questions which 
need to be passed on to psychologists. As a whole 
this lays down foundations for the design of new 
TPAs whose interfaces effectively support the range 

of activities involved in interacting theorem prov
ing. 
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Abstract 

This paper gives an overview of the Grail system and its use as a tool for 
the development and prototyping of grammar fragments for categorial logics. 

Grail is an automated theorem prover based on proof nets, a graph-based 
representation of proofs, and labeled deduction. The theorem prover is im
plemented in SICStus Prolog, the user interface in TclTk. 

Though the underlying logic is decidable, and the theorem prover can 
operate automatically, user guidance is often desirable during the proof search. 
It can increase the performance of the algorithm and, more importantly, help 
the user visualize the status of the proof attempt thereby showing why a given 
statement is provable or not. 

The Grail user interface is based on the Prolog debugger. At each proof 
step the user can take one of the following actions: select allows the user to 
select an inference step, leap performs automatic proof search until a proof 
is found, fail marks the current branch of the search tree as unsuccessful and 
abort abandons the entire proof attempt. 

We have found the interface gives users better insight in the operation 
of the theorem prover and greatly enhances its facilities for prototyping and 
debugging of categorial grammars. 
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1 Introduction 

Since 1958 [Lambek 58], linguists and logicians have been trying to specify gram
mars as logical theories (see e.g. [Morrill 94J or [Moortgat 97J for an overview). An 
advantage of this approach over more traditional approaches to linguistics is that 
we can prove OUf grammars have abstract properties like soundness, completeness 
and consistency. 

In the logical framework we are proposing, the grammaticality of sentence should 
correspond to the derivability of a logical statement. More specifically a string of 
words Wo, . .. , Wn is a sentence of our language if and only if the lexicon I maps 
these words to formulas such that l(wo), ... , l(wn ) f- s is a theorem of our logic. 

Grail is a tool which allows you to specify such logical theories together with a 
lexicon and see what kinds of sentences are derivable for the given logic. 

2 Logical Background 

Much of the inspiration for the Grail theorem prover comes from recent advances 
in linear logic [Girard e.a. 95J and labeled deduction [Gabbay 94J, so I will briefly 
touch on these subjects. 

2.1 Linear Logic 

Linear logic, introduced in [Girard 87J, was developed as a logic where the use of 
the structural rules of contraction and weakening, which apply freely in classical 
logic, is restricted. Without these structural rules the meaning of our connectives 
changes. Linear implication, written as '--0', is perhaps the clearest illustration of 
this. A formula A~B consumes or destroys an A formula in order to produce a B 
formula. 

The sequent rules for (intuitionistic) linear implication are essentially the same 
as those of intuitionistic logic. Commutativity of the sequent comma is implicit. 

Sequent Rules 

[ J 
Ll.f-A r,Af-C [C J 

A f- A Ax r Ll. f- C ut 

Ll. f- A r, B f- C [L~J 
r, Ll., A~B f- C 

, 

r,A f- B [R~J 
rf-A~B 

Example 1 If we assign the formula np~(np~s) to a transitive verb like 'likes', 
we say it combines with two np formulas like those assigned to {Nixon' or (cigars' 
to produce an s formula. 

-np-'-f--n-p [AxJ -s f--s [[~xJ J 
np f- np [AxJ np, np~s f- s J ~ 

[L~ 
np, np~( np~s), np f- s 
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This allows us to derive {Nixon likes cigars' as a sentence, but not, in the 
absence of weakening, {Nixon likes cigars special relativity', nor, in the absence of 
contraction, 'Nixon likes '. Unfortunately, as commutativity still applies, the current 
logic makes the incorrect linguistic prediction that any permutation of a sentence is 
also grammatical. We will remedy this in section 2.2 

2.1.1 Proof Nets 

A clear advantage of the (minimal) fragment of linear logic introduced above is that 
it has an exceptionally elegant proof theory, called proof nets. 

For a given logical statement we can obtain a graph by taking the formula 
decomposition trees and linking atomic formulas to their negations using axiom 
links, which correspond to the sequent axiom rule. We call these graphs proof 
structures. Proof structures are a superset of proof nets and not all proof structures 
will correspond to sequent proofs. However, it turns out that we can distinguish 
proof nets from other proof structures by looking only at graph theoretic properties 
of the proof structure. 

Linear implication is decomposed as follows, depending on whether it occurs in 
a positive (non-negated or succedent) or negative (negated or antecedent) position. 

A B 
+ 
B A 

\/ ....... ;' 

..... , .. , .... 
+ 

A-<>B 

Example 2 A proof structure for the sequent (A-<>B)-<>B f- A. 

+ 
(A-<>B)-<>B A 

From a proof structure we can obtain a correction graph by 'switching' each of 
the dotted links either to the left or to the right. A proof structure is a proof net 
if and only if all its correction graphs are acyclic and connected. 

Example 3 The proof structure of example 2 is not a proof net, as shown by the 
correction graph on the right. 

I 2..'2.... 



A Sl A Il \ 
+ + 

A--<lB B A--<lB B 

\/ \/ 
(A--<lB)--<lB 

+ + 
A (A--<lB)--<lB A 

Proof search for a given logical statement consists merely of trying all linkings 
of atomic formulas. A practical downside is that for 2n atomic formulas there can 
be O(n!) of these linkings, so while computing them all is possible, it is unlikely 
that it can always been done efficiently. 

2.2 Categorial Grammars and Labeled Deduction 

Although the proof net approach described above gives us a very elegant proof 
theory, it does so only for associative, commutative logics. For serious linguistics, 
however 1 we will want the structural rules of associativity and commutativity, like 
weakening and contraction, to he optional. 

In categorial grammars we drop commutativity and associativity as global op
tions. Without commutativity the connective -0 will split into two versions, de
pending on whether the implication looks for its argument to the left or right. We 
will write A/ B (resp. B\A) for the formula which yields an A when it finds a B to 
its right (resp. left). 

Because different linguistic constructions may require access to different sets of 
structural rules, we will also use a multimodallogic. We will indicate the modes of 
connectives by using an index as subscript (e.g. A/iB, A\iB). 

In order to build upon the proof theoretic advances of linear logic, we embed 
the categoriallogic into linear logic by means of labeling. Instead of using formulas 
A as our basic declarative unit we use labeled formulas X : A, where the label 
X represents structural information. The label assigned to the (single) succedent 
formula of the proof represents the way the formulas in the antecedent are organized. 
Labeled sequent rules for '/' are the following (the rules for '\' are symmetric). 

D-I-- Y: B r,x'i Y: A I-- Z: C [L/J 
r,D-,x: A/iB I-- Z: C 

r,x:BI--X·ix:A [R/J 
rI--X:A/iB 

Compared to the sequent rules for linear implication, we note that the only 
difference is in the labels. For the [L/J rule, the label X 'i Y assigned to the 
result category A is a structured term indicating that the label Y computed for 
the formula B occurs to the direct right of structure label X assigned to formula 
A/iB. The [R/J rule says that in order to prove a formula A/iB we assign B a new 
label x and demand it occurs on the direct right of the structure label assigned to 
formula A. 



Structural rules operate on the labels only. For example, we can declare a 
mode c to be commutative by means of a structural rule which allows us to replace 
sublabels X" Y by Y " X. 

r f- Z[Y " X] : C 
r f- Z[X " Y] : C [Com] 

Example 4 When we have a commutativity rule for mode c, x : AI,B f- x : B\,A 
is a theorem. 

-----;--,----.[Ax] 
] 

x,, y : A f- x " y : A 
[Ax [Com] 

y : B f- y : B x,, y : A f- y " x : A 
[LI] 

x: AI,BoY : B f- y', x: A [R\] 
x : AI,B f- x : A \,B 

Moortgat [Moortgat 97, section 7] proposes the following way to add labeling 
to proof nets (the cases for '\' are again symmetric). 

+ 
X' i Y: A Y: B 

\/ 
X:Ali B 

+ 
x:B X:A 

.... .~ 

\, .... 
-'.,.,.-.../ 
+ 

(Xlix) : AliB 

We can see the similarity between the labeled sequents and the labeled proof 
nets. Only the case for positive occurrences is somewhat different from the [RI] 
rule: the label Xlix should be seen as a constraint specifying that x should be a 
sublabel occurring on the immediate right of X. We check this constraint by means 
of a conversion: 

(X'i Y)liY -+R/ X 

Similarly, we will have a label conversion for each of the structural rules. 
Using this labeling we can generate an acyclic, connected proof structure, com

pute the label of the succedent formula and check if we can satisfy all constraints 
on this label by means of the conversion rules. 

Example 5 A proof net corresponding to the sequent proof above would look like 

I I 
+ 

x.,X:A X:B 

\/ 
I 
+ 

y:B Y:A 

The unifications X := y and Y := X,, X will produce the label y\,(x., y) for 
the conclusion. We can then apply the conversions 

y\,(x., Y) -+Com y\,(Y" x) -+R\ x 

showing x : AI,B f- x : B\,A is a theorem. 
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3 The Grail Theorem Prover 

3.1 Brief history 

In the end of '95, the first incarnation of Grail was a piece of Prolog code of some 
250 lines. You could enter a logical statement and wait until it produced an answer 
in the form of yes or no, or until you got bored (which happened a lot those days). 
In spite of a number of improvements to the efficiency of the original code, several 
grammar fragments designed in it could not handle longer sentences in a reasonable 
amount of time. 

I therefore tried to give a user-friendly representation of the computation state 
with which the user can inspect and guide the computation. The benefits of this 
are twofold: firstly, the user can select a promising state from the possible states 
and abandon hopeless subgoals, and secondly, it gives the user insight into why 
specific statements are underivable, without having to use the Prolog debugger 
where tracing the execution is difficult even for the programmer. 

The current version is some 8000 lines of mixed Prolog and TclTk code, using 
the TclTk library included with SICStus Prolog. It can be used without knowledge 
about Prolog and produces output in human-friendly natural deduction format. 

Grail is used as a research tool and as courseware for introductory to advanced 
level courses in categorial grammar. 

3.2 Execution Model 

Though we work in a hybrid system of proof nets and labeling, the basic execution 
model of the interactive mode is the same in both cases. It is based on a simplified 
version of the Prolog debugger. 

From the current state x we can apply a finite number of steps to get in a next 
state Yi. If no rules are applicable or the user selects fail, we backtrack to the first 
parent of the current state which still has unvisited daughter states and proceed 
from there. When the current state is a successful state (i.e. we have found a proof) 
we can either abort the computation or continue to search for more proofs. 

Yo Yl ... Yn 

When we select creep the proof continues with Yo as its next state, as shown 
below. This step is nondeterministic; when no proof can be found for descendants 
of state Yo, computation will continue with state Yl. 

The select step, of which creep is a special case, enables the user to reorder the 
goals, such that a state Yi of his choice will be the next state. When no proof can 
be found for descendants of this state, control is passed to the user who is then 
allowed to select a next state. 
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x x 

A~ 
~ Yl ... Yn ~ Yo ... Yi-l Yi+l ... Yn 

ereeped to Yo selected state Yi 

There are two other safe commands we can use: leap, after which Grail will 
compute until it has found the first solution and nonstop which will cause Grail to 
grind on until all proofs have been found. 

The final two commands are unsafe in that they can prevent proofs from being 
found by pruning the search space. fail will mark the current state as unsuccessful 
and continue computation on the next unvisited state, and abort will completely 
abandon the current proof attempt even if in leap or nonstop mode. 

3.3 The Proof Net Window 

In the proof net window we see the current partial proof structure, with positive 
atomic formulas drawn in white and negative atomic formulas drawn in black. Here 
atomic formulas of opposite polarity are linked until we find a proof structure which 
is both acyclic and connected, after which we can try to satisfy the label constraints. 

As an example we give a proof of the theorem sf a(np\as), (np\as)f anp, np I- s 
which the lexicon would produce for 'Someone killed JFK'. 

We first select an atom. This is a committed choice step; after we select the atom 
we are forced to link it before we can select another atom. After this selection all 
possible ways to link it by an axiom link will appear. As shown below, the selected 
np will appear in a black box and the atoms of opposite polarity which have not 
been tried before will appear in a white box. Each of these atoms will represent 
a possible next computation state and they will normally be searched from left to 
right. For the moment however, we use some user guidance and select the rightmost 
atom, knowing we can always try the other possibility later. 

1. Selecting np 2. Linking 

Next, we select the second negative np, which we are forced to link to the final 
np. 
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3. Selecting other np 4. Linking 

We select one of the s formulas. Linking it to the rightmost s would create a 
cycle with the switch set to the left and cause that branch of the search space to 
fail immediately, so we pick the other s. 

5. Selecting s 6. Performing non cyclic link 

Finally, we connect the last two formulas. 

7. Selecting final s 8. Done 

3.4 The Rewrite Window 
We check the label constraints by means of a very simple term rewrite system. 
Because a typical grammar fragment will have a number of rules (like e.g. commu
tativity) for which a naive algorithm would loop, Grail keeps track of visited labels 
in a closed set. Again, we have the option to either creep through Grail's built-in 
rewrite system, which uses breadth first search with local heuristic ordering, or to 
select the conversion we want to apply ourselves. 



Grail will draw the current label as a tree. Next states will be all labels which 
can be obtained by a single rewrite step from the current label. Clicking on a node 
in the tree will cause a pop-up menu to appear with the possible conversion steps 
rooted at this node. Here we can select the conversion we want to apply, and Grail 
will keep track of the other possibilities. 

For the example we used in the previous section, we will start with the label 
below. 

The constructors denoting unsatisfied constraints, like the '\a' above, will be 
drawn in dark grey. In this case we can immediately convert this label to 

which satisfies all constraints. 
Typically there will be a large number of language specific structural rules in a 

grammar fragment and checking the label constraints will be a lot more complicated 
than the one step reduction above, making user interaction a valuable asset. 

4 Conclusions 

We have given an overview of the Grail interactive theorem prover and its under
lying logical theory. Grail displays an intuitive representation of the state of the 
computation and allows the user to guide the computation by interacting with this 
representation. 
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On the proof net level, an advantage over sequent or natural deduction systems 
is that linking atomic formulas is a relatively trivial way to generate all proofs 
for a given statement. User guidance allows more experienced users to perform 
the axiom links they are interested in immediately, thereby sidestepping the G(nl) 
complexity. 

On the label rewrite level, it is often enlightening to see Grail (ab)use your 
carefully chosen structural rules in unintended ways, showing linguistically incorrect 
predictions of your logical theory, or to see it fail to satisfy a critical constraint, 
pointing to a missing or not sufficiently general structural rule. User interaction can 
considerably improve the performance by allowing the user to perform the intended 
label conversions himself. 

Finally, though proof nets are in many ways an optimal proof theory for proof 
search, natural deduction is generally a better theory to display them. Therefore, 
source code which transforms the completed proof net into J!).'IEX natural deduction 
output is included with the release. 
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Abstract. This article describes uses of dependencies in tools to maintain big proofs in in
teractive proof assistants. 

1 Introduction 

When developping a large proof or a large theory in an interactive proof system, it is often necessary 
to modify previous results and axioms or to move theorems from one context to another. To maintain 
the consistency of the mathematical development after such an operation it is necessary to take care 
of the results that depend on the modified objects. 

Our objective is to use notions of dependency to develop general tools to help users in the task 
of maintaining their large proof developments. 

We have concentrated on two activities, which we believe to be the most frequent ones for 
maintenance tasks, and which could benefit from automatic support. 

Changing axioms and basic definitions. During a proof or theory development, a user often 
has to modify some of the basic facts. For instance, if the objective is to fe-use a theorem in a more 
general context, one may need to weaken the assumptions on which it relies. It is then necessary to 
know which part of the development may be reached by these modifications and must be checked 
again. We want to produce tools to guide the user in this task. 

Code motion. A development is a set of definitions and theorems, but it is generally organized so 
that related parts are grouped together. Ensuring that related theorems are all stored in the same 
area is important for the long term re-usability of the proofs. Unfortunately, users are sometimes 
reluctant to organize correctly their mathematical results, as they are intimidated by the task of 
restoring the consistency of their proof development. 

A situation that frequently leads to mathematical results being misplaced is that users discover 
that a theorem is missing only when they need it. Users then tend to prove the missing theorem 
in their own context, and store it there. This often leads to duplicated efforts, as other users will 
not know that the theorem has already been proved if it is not stored in its natural place. However, 
putting a theorem in its natural place requires an effort, as adding a theorem in a well-used theory 
may have consequences in very large contexts, due to automatic proof procedures. 

Tools described in this paper are not fully implemented, but some experiments have already been 
performed to understand the needs and design these tools in detail. In the rest of this paper, there are 
five sections. Section 2 describes the dependencies that we use in our tools and the data on which they 
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are computed. Section 3 describes the most basic tool that uses these dependencies: a visualizer. 
Section 4 describes how these dependencies are used to support the work that is necessary after 
modifying axioms or lemmas. Section 5 describes the issues involved when moving lemmas around. 
Section 6 brings a conclusion to this work. 

2 Computing dependencies 

Computing dependencies is a well known issue for people interested in the maintenance of large 
software systems. The usual approach is to consider files as the basic units (for instance a compiler 
processes one file at a time), and tools like make [FeI79] use descriptions of the dependencies between 
files to process them in order, while tools like makedepend[Wal84] produce these descriptions by 
analyzing the C code they contain. But we need a finer grain. 

Pure object versus object used to build it. Some provers maintain a concept of proof objects 
(in the form of A-terms as in Coq[CCF+95], Lego[LP92], Alf [MN94], in the form of a derivation 
as in Jape [BS] ,EUODHlLOS[SM092] ... ). The relations between different proof objects, which we 
will call logical relations of dependency, make it possible to understand which objects are necessary 
to construct a given object. 

Some provers (Coq, Lego ,HoI [GM93] ... ) provide concepts of tactics and proof scripts. A tactic 
is just a command which transforms an initial goal into zero or several sub-goals remaining to prove. 
The proof is finished when there are no more sub-goals. A sequence of tactics constitutes a proof 
script. 

In some systems (Coq, Lego) scripts can be used in to construct the proof object which is the 
only thing stored in the system. 

In fact, it is the proof script itself that we want to maintain. The proof script is the real source 
code that was initially given by the user. Because it may use automatic proof search procedures, 
this proof script may be more concise and abstract than the resulting proof object. 

That will be mainly done by using the logical dependencies. To compute those dependencies we 
must use the most informative structure. This is generally the proof object when it exists. In fact 
proof script usually do not contain all the information which is hidden by complicated and automatic 
tactics. 

Computing the dependencies is done by going throw the object and finding all the object used 
in it simply by scanning term for identifiers. 

Example. Consider the following Coq proof script: 

Lemma ass_app : (l,m,n : list) (app I (app m n))=(app (app I m) n). 
Intros. 
Apply syrn_equal. 
Auto. 

This script leads the system to construct the following proof object: 

ass_app = 

[l,m,n:list] 
(sym_equal list (app (app I m) n) (app I (app m n)) (app_ass I m n)) 



Going through this proof term we can say that it depends on sym_equal, list, app, app_ass. 
Even if these name do not appear in the proof script the objects are necessary for the construction 
of the proof. 

Performing this kind of analysis for all the objects of the development makes it possible to 
construct a complete dependency graph. 

3 Visualizing and navigating dependency links 

With a dependency graph, it is possible to allow the user to understand and check the struc
ture of his development. We can provide a global visualization of dependencies by compiling our 
graph data structure into a formalism (like [Him97a)) understood by a graph displaying program 
[Him97b,Fr697,MF96]. For example, the following figure gives the dependency graph between the 
theorems and definitions of the List theory provided in the standard library of Coq. 

For large developments, this display mechanism becomes quickly very obscure and it is relevant 
to provide tools to navigate this graph. When selecting an object and with a single key stroke, we 
want to highlight all the objects on which it depends, the objects that directly depend on it, the 
objects that transitively depend on it, etc. 

4 Changing a set of definitions 

Now that we have tools to understand the structure of a development we discuss the design of a tool 
to help the user restore the consistency of his development after changing axioms or lemmas. 



4.1 Initial operation of the user 

When the user needs to modify established results or axioms, he can require the help of the depen
dency tool to evaluate the amount of theorems that will need to be adapted to the new context. The 
tool simply computes the set of all the objects that can be reached through the dependency links 
from the modified objects. The tool can even be used before actually committing the modification, 
to evaluate the amount of extra work it will imply. 

4.2 Working method 

The dependency tool answers by proposing a list of theorems to be modified. It can propose extra 
information to ease the choice of the user (visualizing the statement of theorems, counting the number 
of descendants, ... ). The user chooses and modifies a theorem taken from this list. The dependency 
tool then re-computes its graph to take into account the new modified object and proposes a new 
selection of theorems that must be redone, or informs that the end of the modifications propagation 
process has been reached. 

4.3 Opaque and transparent dependencies 

For a given modification, the sub-graph of the dependency graph that contains all the objects that 
depend transitively on the modified objects is often a gross over-estimation of the amount of proofs 
that need to be re-done. Theorems depend on each other only through their statements and not their 
proof. This is the opaque dependency. As a consequence, the need to propagate modifications will 
stop as soon as one can adapt the proof of a theorem without changing its statement. For instance, 
if theorem T depends on theorem U that depends on V, a change in the statement of V will require a 
change in the proof of U, but not in T if U's statement is left unchanged. In systems based on type 
theory, an opaque dependency is a dependency on an object's type. 

On the other hand a dependency on the term is called a transparent dependency. Transparent 
dependencies correspond to objects whose type gives too little information on their actual value (for 
instance, plus, mult, and power have the same type nat->nat->nat). 

Instead of analyzing separately each dependency, we consider transparent and opaque objects: all 
the dependencies on opaque objects are opaque. It is harder to determine the status of a dependency 
on a transparent object, but a safe approximation is to consider such dependencies as transparent. 
Practically, the problem is to tell apart opaques and transparent objects. Usually theorems are 
opaque, while definitions are transparent. This can usually be determined with a good knowledge of 
the proof system behavior. The dependency tool simply considers that an opaqne node has not been 
modified if its statement does not change after the modification. By analogy, separate compilation 
uses interfaces to describe modules. These interfaces play the same role as theorem statements and 
procedures declared but not described in the interfaces are opaque. In the C programming language 
for instance, procedures are usually perceived as opaque while macroS would be transparent. 

4.4 Incompleteness with respect to scripts 

Theoretically, the propagation should stop when we have gone through all the nodes reachable from 
the modified nodes. 



Nevertheless the presence of automatic decision procedures that can be seen as a ('black boxes" 
complicates the matter. A modification of the code or the context in which these procedures execute 
can change their behavior and thus invalidate the proof script. Thus, we cannot be sure to be able to 
replay the code after that all the modifications provided by the calculation of the logical dependencies 
have been done. We come back later to this issue, as it is strongly related to that of code motion. 

4.5 Necessary data structures 

We maintain a graph of dependencies. The algorithm of propagation marks on the nodes of the 
graph (so that we constantly know their status). The graph is doubly linked so that each node can 
immediately know the status of its parents. 

Recovering a proof development is a longlasting activity, that may span over several days. It is 
necessary to allow for interruptions and store the current state of the task. 

The information that needs to be kept consists in three parts: 

1. the whole consistent script before the first modification, 
2. the script that contains all the objects modified so far, 
3. the dependency graph, annotated to indicate the object being modified at the moment of inter

ruption. 

4.6 Automatic support for adapting individual objects 

When updating an individual theorem, it is useful to replay the proof commands that were used to 
prove this theorem in the old context. 

There are two possible cases: 

1. The replay succeeds. In this case, there is not much more to do. If the theorem's statement is 
unchanged and the theorem is opaque then the theorems that depend only on the current one 
do not even need to be studied. Their proof can also be replayed automatically. 

2. The replay fails. In this case, the script, and maybe the theorem's statement, need to be updated. 
A simultaneous replay of the previous script in the old context and the new context, in two 
different sessions, will help reuse a large part of this script. The local dependencies as described 
in [Pong7] can also be used for this purpose. 

5 Moving data around 

We consider the reordering of a set of theorems by moving proof script fragments from one place to 
the other. We only want to consider moves that respect the structure imposed by the dependency 
graph. If two theorems T and U are unrelated by the dependency relation, then U can be moved 
freely around T. Theoretically, this move should not have any consequence on the validity of the 
proof script. In the presence of automatic procedures whose behavior depends on the context, this 
will not be true. 



5.1 Working method 

The user marks a theorem or a definition in the script by a mouse click and then select a new position 
for this theorem. There is censor that uses the dependency graph to check if this move is coherent 
so that those code motion can not introduce incoherent state of script. 

We can move an object in two direction (upward or backward) and there is two level of code 
motion, displacement in files or from one file to another. 

When we move an object backward, there may be two cases. If it is independent from all the 
objects of the script between its old position and the new one then we can move it without additional 
work. If it dependson any objects inhis interval those objects also have to move to keep the rightorder. 

The system computes the intersection of the dependency graph of the moved theorem and the 
set of object present in the part of the script between the old position and the new one.a 

For an upward move the principle is the same with the object of the script that depend on the 
moved theorem. The computation is done in the same way. 

5.2 Failure due to code motion 

Let us consider a proof script that contains the proofs of two theorems T and U in that order, and 
so that the proof of U does not depend on the proof of T. If U is moved in front of T and the proof 
of T uses automatic procedures, the behavior of these automatic procedures may be changed by the 
presence of U in a way that adds a dependency on U for the proof of T. 

For instance, the proof of T may contain a subgoal that is solved easily when U is in the context 
and not otherwise. In this case, the initial proof of T contains commands to solve this subgoal the hard 
way, while this subgoal simply vanishes when executing the same proof script in the new context. 
The useless commands interfere with the rest of the proof and make the proof of T fail. 

It seems that the problem is only that automatic procedures become more powerful when one 
adds theorems in their context. In this case, it should be possible to automatically clean the proof 
script for T, by removing the now useless proof commands. To do this, the tool must compare the 
runs of the proof script in the two contexts. 

This solution assumes that the subgoals for the proof of T in the new context were already present 
in the old context. The next section shows that this property is not always achieved 

5.3 A counter example in Coq. 

In this example, we use a few tactics from the Coq system. The automatic tactic Auto uses all the 
theorems declared with a Hint command. The tactic Apply thm where thm has the statement A, -> 
... -> Ak -> B, matches the current goal with B and returns the k sub-goals corresponding to AI, 
... , Ak. The tactic Split breaks goals corresponding to inductive inductions with one constructor 
(conjunctions fall in this category) and fails on other kinds of goals. Tactics can be composed with 
a semi-column, where tacticI ;tactic2 applies tactic2 to all the subgoals generated by tactic!. 
Tactics can also be combined using an Ore1se combinator with an obvious meaning. 

We first construct a context by defining some theorems and definitions: 

Inductive B: Prop -> Prop -> Prop -> Prop := 

B_intro: (a, b, c:Prop) a -> b -> c ->(B a b c). 
Parameters HI, H2, H3, H4:Prop. 
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Parameters thl:Hl; th3:H3. 
Hint thl. 
Parameter th:(B Hi H2 H3 /\ H3). 

Then, in this context, we state a specially crafted goal and apply a compound tactic. 

Goal «H4 /\ H4) /\ (H4 /\ H4)) /\ (B Hi H2 H3 /\ H3). 

Split; (Split; Auto; Split) Orelse Apply tho 

This command leaves four subgoals with the same statement: H4. As a quick explanation, we 
can see that the first Split generates two subgoals. On the first one the first branch of the Orelse 
compound succeeds and produces four subgoals of statement H4. On the second one, the second 
Split produces three new subgoals: Hi, H2 and H3 /\ H3. The tactic Auto solves the first one and 
does nothing for the other two. Then the Split command fails on the subgoal of statement H2. The 
whole first branch of the Orelse compound fails, but the second branch succeeds. 

Now let us consider that we move theorems that prove H2 and H4 before this proof and make 
them availlable to Auto. 

The compound tactic produces completely different subgoals. The first Split still produces two 
subgoals, but the first branch of the Orelse compound does not fail anymore on these subgoals, 
thanks to the Auto command. So the whole command produces two subgoals with the same state
ment: H3. We see here, that Auto has become more powerful due to the motion of theorems th2 and 
th4 and that the subgoals generated by the compound tactic are not a subset of the subgoals that 
existed before. These goals will not be solved by script fragments coming from the previous script. 

This is due to the fact that the Orelse combinator is not monotonous: if Auto solves more goals in 
the new context, we are not ensured that Auto Orelse tac will solve more goals. However, Orelse 
is seldom used and an automatic approach like the one given in the previous section will give good 
results in many cases. 

6 Conclusion 

In this paper we address two important tasks for computer-verified proof maintenance. The data we 
want to maintain is the proof scripts, that is, the sequences of commands that can be sent to a proof 
system to make it verify the proof. 

The first task we consider concerns the modification of logical statements for established facts or 
axioms. When users need to perform this kind of modification, they have to propagate the modifica
tion in the proof development and this can be very time-consuming. The second task concerns code 
re-organization. This activity is important to ensure the readability and the long-term usability of 
the proof development. 

We show that a notion of dependency is central in these issues. We propose to construct tools 
around a dependency graph. The first tool makes it possible to visualize dependencies and to navigate 
the graph. This helps the user understand the structure of the proof development. The information 
this tool can bring is useful before taking the decision to modify or move an artefact. A second tool 
helps the user when he has modified the statement of a lemma or an axiom. It uses the dependency 
graph to indicate to the user the theorems and proofs that need updating. While this tool does not 
directly help the user making the right modification, it helps propagating all its consequences to 



other objects. A third tool supports the activity of code motion, where dependencies can be used to 
indicate the set of theorems that must be moved together. 

This work shows that there are two notions of dependencies. The dependency graph that we 
study uses direct dependencies, where a theorem depends on another only if the proof of the former 
refers to the latter. However, since we consider proof script maintenance, we are also faced with 
indirect dependencies, where theorems may influence the behavior of proof search procedures, so 
that the move of a theorem may invalidate proofs that were initially unrelated. 

We believe that this case is rare, and we think that a more thorough study of the abstract 
properties of tactics and tactic combinators is needed. 

References 

{BBc+g61 J. Bertot, Y. Bertot, Y. Coscoy, H. Goguen, and F. Montagnac. User Guide to the CtCoq Proof 
Environment. INRIA, Feb 1996. 

[BSJ Richard Bornat and Bernard Sufrin. Jape - a framework for building interactive proof editors. 
Available at http:/ jwww.comlab.ox.ac.ukjoucljusers/bernard.sufrinfjape.shtmL 

[BT98] Yves Bertot and Laurent Thery. A generic approach to building user interfaces for theorem 
provers. Journal of Symbolic Computation, 22, 1998. 

[CCF+95] C. Cornes, J. Courant, J.C. Filliatre, G. Huet, P Manoury, C. Munoz, C. Murthy, C. Parent C. 
Paulin-Mohring, A. Saibi, and B. Werner. The COQ Proof assistant, Reference Manual, Version 
5.10. INRIA, Le Chesnay Cedex, France, July 1995. 

[FeI79] Stuart 1. Feldman. Make-a program for maintaining computer programs. spe, 9(4):255-65, April 
1979. 

[Fro97] M. Frohlich. Incremental Graphlayout in the Visualization System da Vinci (in german language). 
PhD thesis, Department of Computer Science; University of Bremen, November 1997. 

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL: a theorem proving environment for higher 
order logic. Cambridge University Press, 1993. 

[Har97] John Harrison. Proof style. Technical Report 410, University of Cambridge Computer Laboratory, 
New Museums Site, Pembroke Street, Cambridge, CB2 3QG, UK, 1997. Available on the Web 
as http://..,..,.., . cl. cam. ac. uk/users/jrh/papers/style.html. Revised version to appear in the 
proceedings of TYPES'96. 

[Him97a] M. Himsolt. Gml: A portable graph file format. Technical report, Universitat Passau, 1997. 
[Him97bJ M. Himsolt. Graphlet manuals: Gml, graphscript, c++ interface. Technical report, Universitat 

Passau, 1997. 
[LP92] Zhaohui Luo and Robert Pollack. The LEGO proof development system: A user's manual. Tech

nical Report ECS-LFCS-92-211, University of Edinburgh, May 1992. 
[MF96] M. Werner M. Frohlich. davinc.i v2.0 online documentation, 1996. Available at 

http://www .informatik.uni-bremen.dej-davinci/ doc _ V2.0. 
[MN94] Lena Magnusson and Bengt Nordstrom. The ALF proof editor and its proof engine. In Henk 

Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs, pages 213-237. Springer
Verlag LNCS 806, 1994. 

[Pon97] Olivier Pons. Undoing and managing a proof. In Electronic Proceedings of IIUser Interfaces for 
Theorem Provers 199711

, Sophia-Antipolis, France, 1997. Available at http://www.inria.fr/croap/
events/uitp97-papers.html. 

[SM092] Hajime Sawamura, Tashiro Minami, and Kyoko Ohashi. Euodhilos: A general reasoning system 
for a variety of logics. In Proceedings of the International Conference on Logic Programming 
and Automated Reasoning (LPAR 92), St. Petersburg, Russia, volume 624. SpringerVerlag LNCS, 
1992. 



[TBK92] Laurent Thery, Yves Bertot, and Gilles Kahn. Real Theorem Provers Deserve Real User-Interfaces. 
Software Engineering Notes, 17(5), 1992. Proceedings of the 5th Symposium on Software Devel
opment Environments. 

[Wa184) Kim Walden. Automatic generation of make dependencies. spe, 14(6):575-585, June 1984. 



COUL: A Distributed Graphical User Interface for the 
Interactive Proof System DMEGA 

Ji.irg Siekmann, Stephan Hess, Christoph Benzmiiller, Lassaad Cheikhrouhou, 
Detlef Fehrer, Armin Fiedler, Helmut Horacek, Michael Kohlhase, 

Karsten Konrad, Andreas Meier, Erica Melis, Volker Sorge, 
FB Informatik, Universitiit des Saarlandes, Germany 

http://www.ags.uni-sb.de 

Abstract 

Most interactive proof development environments are insufficient to handle the complexity 
of the information to be conveyed to the user and to support his orientation in large-scale 
proofs. In this paper we present a distributed client-server extension of the nMEGA proof 
development system, focusing on the cnuz (Lovely OMEGA User Interface) client. This 
graphical user interface provides advanced communication facilities through an adaptable 
proof tree visualization and through various selective proof object display methods. Some of 
Cf!UI's main features are the graphical display of co-references in proof graphs, a selective 
term browser, and support for dynamically adding knowledge to partial proofs - all based 
upon and implemented in a client-server architecture. 

1 Introduction 

One (of several) reasons, why current deduction systems have not found a wider acceptance in 
mathematical practice is that they are too inconvenient to use. The OMEGA system [BCF+97j -
an interactive, plan-based deduction system with the ultimate goal of supporting theorem proving 
in main-stream mathematics and mathematics education must address this, in order to reach its 
goal. In order to provide a conceptually structured, understandable and easily usable front-end, 
the interface LOUI of the OMEGA system is designed with respect to the following requirements: 

• In any proof state the system should display the proof information to the user at different 
levels of abstraction and detail and furthermore in different modes (e.g. as a proof tree, as 
a linearized proof, or in verbalization mode, etc.). 

• The system should minimize the necessary interaction by suggesting commands and pa
rameters to the user in each proof step. Optimally, the system should be able to do all 
straight-forward steps autonomously. 

• The interface should work reasonably fast, and its installation in other environments should 
be possible with minimal effort and storage requirement. 

These issue are elaborated in detail in the following three sections. We will only discuss the 
OMEGA proof system (the current system consists of a proof planner and an integrated collection 
of tools for formulating problems, proving subproblems, and proof presentation) where it becomes 
necessary to understand the interface issues. 
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Figure 1: A linearized proof and its graphical tree-representation in .cOUI 

2 Multi-modal Views: Proof Tree Visualization and Proof 
Content Display 

The OMEGA system provides different techniques to analyze partial or complete proofs. As in 
traditional theorem proving systems, .cnU'L can present a proof in a linearized form, in our case 
as a higher-order variant of Gentzen's Natural Deduction (ND) calculus (see figure 1). For long 
proofs, such a presentation lacks transparency and structure. Therefore .cOUI offers two additional 
ways of representing proofs: as a tree that models the logical dependencies between the different 
proof lines and as a text in natural language, as it would appear in a mathematical textbook. 
Before we go into details let us look at an example: 

Example 2.1 (Proof Representations in .cOUI). The left window in figure 1 shows the lin
earized ND format of a simple proof of the transitivity of the subset relation, while the right 
window shows .cOUTs main window with a tree representation of the proof. Below, we have a 
natural-language representation of the same proof that has been automatically generated by the 
OMEGA system. 

Assumptions: 
(l)aCb. 
(2) b c c. 
Theorem: a C c. 

Proof: 
Let x E a. That implies that we have x E b. That leads to 
x E c. We have a C c since 'Vx. x E a :::::} x E c. 0 

2.1 Hierarchical Plan Data Structure 

The entire process of theorem proving in OMEGA can be viewed as an interleaving process of proof 
planning, plan execution, and verification that is centered around the so-called Proof Plan Data 
Structure (PVS). 

The hierarchical data structure represents a (partial) proof at different levels of abstraction 
(called proof plans). It is represented as a directed acyclic graph, where the nodes are justified 
by methods. Conceptually, each justification represents a proof plan (the expansion of the justi
fication) at a lower level of abstraction that is computed when the method is expanded. A proof 
plan can be recursively expanded, until a fully explicit proof on the calculus level (ND) has been 
reached. In OMEGA, we keep the original proof plan in an expansion hierarchy. Thus the PVS 
makes explicit the hierarchical structure of proof plans and retains it for further applications such 
as proof explanation or analogical transfer of plans. 

Once a proof plan is completed, its justifications can successively be expanded to verify the 
well-formedness of the ensuing PVS. When the expansion process is completed, the establishment 
of correctness of the ND proof relies solely on the correctness of the verifier and the calculus. This 
approach also provides a basis for a controlled integration of external reasoning components - such 
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as an automated theorem prover or a computer algebra system - if each reasoner's results can (on 
demand) be transformed into a sub-PDS. 

A PDS can be constructed by automated or mixed-initiative planning, or by pure user in
teraction. In particular, new pieces of the PDS can be added by directly calling tactics, by 
inserting facts from a data base, or by calling some external reasoner. Automated proof planning 
is only adequate for problem classes for which method and control knowledge have already been 
established. 

2.2 Visualization - Proofs as Trees 

In the main display window of LflUI., the structure of proofs is shown in a pure tree format, 
independently of the logical terms associated with the nodes (see the central part in Figure 1). 
Since logical proofs are in general acyclic directed graphs and not trees, LflUI. represents nodes 
with multiple predecessors (i.e. subproofs used more than once) as co-reference nodes: The 
subproof is displayed only in one place, and the other occurrences are represented as a special 
node - the co-reference node - that points to the root of the displayed subproof. Thus the 
resulting structure is a proper tree, which is displayed in such a way that node categories are 
expressed by color and shape (see the front panel of the window in the right part of figure 1): 

Terminal nodes are represented by triangles, with assumptions, assertions, and hypotheses dis
tinguished according to their color (green, yellow, and violet). 

Intermediate nodes are represented as circles, with ground, expanded, unexpanded, and open 
nodes distinguished according to their color (dark blue, bright blue, yellow, and red). 

Untested nodes are represented by red squares. A node is considered untested in case flMEGA 

assumes an external reasoner to be able to solve the associated sub-problem but the assump
tion is not yet verified. 

Co-reference nodes, which mayor may not be terminal nodes, are represented by diamonds and 
uniquely colored in orange. 

The categories of intermediate nodes need some explanation. While open nodes are subject 
to further derivations, the other nodes are distinguished by their respective level of abstraction in 
the PDS. Ground nodes are at the ND level, while all others are on higher levels of abstraction; 
Expanded nodes are nodes, where the expansion to the natural deduction level is known, but not 
displayed. The user has the following possibilities to manipulate the appearance of the proof tree: 

zooming between tree overviews and enlarged tree parts, 

scrolling to a desired tree part, 

focusing on a subtree by cutting off the remaining tree parts, 

abstracting away from details of a subtree derivation by hiding the display of that subtree, which 
then appears as a double-sized red triangle. 

2.3 Term and Proof Content Display 

The design decision to separate the tree structure from the terms associated with individual 
nodes enables the display of large trees without crowds of annotations. The connection between 
the tree structure and the associated content can be selectively re-established by the user. One 
possibility to achieve this is the introduction of annotations by clicking at a node, so that a yellow 
box enclosing a label and a justification appears besides that node (four such boxes appear in 
Figure 1). Another possibility is to apply the term browser (see the smaller window beside of the 
proof tree in Figure 1): by double-clicking at some node the associated term is displayed in the 
term browser. Nodes whose terms appear in the term browser are numbered dynamically in the 
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displayed proof tree. Pointing to either a node or a term leads to botb objects being highlighted 
in their respective windows. Co-references are not handled by the term browser. Instead, pointing 
to a co-reference node leads to the temporary appearance of a line between the co-reference node 
and the node it co-refers to. 

2.4 Proofs in Natural Language: PROVERB 

I1MEGA uses an extension of the PROVERB system [HF97] developed in our group that presents 
proofs and proof plans in natural language. In order to produce coherent texts that resemble 
those found in mathematical textbooks, PROVERB employs state-of-the-art techniques of natural 
language processing and generation. 

Due to the possibly hierarchical nature of PDS proofs, these can be verbalized at more than 
one level of abstraction, which can be selected by the user. Since a user will normally want to vary 
the level of abstraction in the course of a proof, the current verbalization facility will be extended 
to one that explains proofs to users guided by their feedback. 

3 Controlling OMEGA 

I1MEGA's main functionality - especially including those commands and facilities important for 
interactive proof development - is available via the structured menu bar in Cf'!.U'L's main window. 
Its entries reflect the conceptually different facilities of the I1MEGA-system. For instance, there 
are a menu entities Black-box and Planner providing all useful commands of these conceptual 
categories to the user. 

For non-experts and especially for novices, a graphical user interface has many advantages 
over a purely command-shell based user interface, as it provides a steady overview on the - mostly 
unknown - system commands to the user and thus relieves him from searching for appropriate 
commands in an interactive shell. Experts, who are familiar with nearly all of the commands, may 
prefer the interaction via a command-shell. Therefore, LOUT, also provides a command shell for 
expert users (see the bottom-right part of the figure). 
One important feature of COUI is its dynamic 
and generic menu extension, i.e. COU']: selec
tively offers commands to the user depending on 
the current system state. This is in contrast to 
most systems which always present all commands 
even if some of them do not make sense within 
the current state. For instance, when working on 
a problem within a given theory, only those com
mands will be offered which belong to this theory 
(or it's parent theories) or which are defined to be 
always applicable. This generic approach eases 
the integration of new commands as they can be 
either integrated fully automatically by connect
ing them with a certain theory or by just adding 
the command-name to one of the non-dynamic 
menu entities. 
In the following subsections, we illustrate the connection of COUI to major parts of OMEGA. 

Theories In I1MEGA, mathematical knowledge is structured with respect to mathematical do
mains and is therefore organized in a hierarchy of theories. Theories represent signature extensions, 
axioms, definitions, theorems, lemmata, and the basic means to construct proofs, namely rules, 
tactics, planning methods, and control knowledge for guiding the proof planner. Each theorem T 
has its home theory and therefore a proof of T can use the theory's signature extensions, axioms, 



definitions, and lemmata without explicitly introducing them. A simple inheritance mechanism 
allows the user to incrementally build larger theories. 

The user can both use and manage OMEGA'S knowledge base through LOUI. In particular, 
it is possible to load theories or their single components incrementally and separately, browse 
through available assertions and import them into the active proof. Furthermore, if a problem has 
been proven by constructing and verifying a proof it can be stored into the theory where it was 
proven. 

Rules, Tactics and Methods The hierarchic organization of theories and their incremental 
importation does not only affect their availability for a proof but also LOUTs menu structure. 
Since theories contain rules, tactics and planning methods, these are also incrementally loaded. 
To each inference method there is an attached command which is not statically contained in the 
interface but is dynamically appended to the menu structure. Commands for inference methods 
are inserted into the respective menu topic for rules, tactics, and methods. Within these topics, 
the commands are ordered in additional sub-menus. Since rules are always defined in OMEGA'S 

base theory, they are just sorted by their type: elimination rules, introduction rules, structural 
rules, etc. The menus for both, methods and tactics, are divided into sub-menus according to the 
theories the inference methods belong to. These sub-menus can be further divided by categories 
specified within these theories. Moreover, each inference method can be listed in several subtopics 
in the menus. 

Inference rules are applied by executing the at
tached commands. In general, it is necessary to 
provide some arguments for the application of a 
rule, which can be specified inside a generic com
mand window. The command window adjusts it
self automatically to the number of required argu
ments and provides some help for the requested 
parameters. The user can then specify the ar
guments either by manually entering them or by 
referring to certain nodes with a mouse-click. 

In order to provide further support for interactive proof development, OMEGA uses a multi
layered focusing technique to compute suitable default values for rule applications [BS98]. These 
default values are suggested to the user as arguments in the command window. 

Planner flMEGA's proof planner is based on an extension of the well-known STRIPS algorithm. 
It constructs a proof plan for a node g (the goal node) from a set I of supporting nodes (the 
initial state) using a set Ops of proof planning operators, called methods. The plans found by 
this procedure can be incorporated into the PDS as a separate level of abstraction. Furthermore, 
the proof planner also stores the reasons for its decisions for later use in proof explanation and 
analogy. 

The OMEGA commands for evoking the planner and changing some settings relevant to the 
planner are provided by LflUI as menu items, such as applying the planner step by step, to do a 
certain number of planning steps, or to change the list of the proof operators (methods) considered 
by the planner. When the planner succeeds to find a plan, one can apply this plan to the PVS. 
The graphical representation of the resulted PDS in LflUI shows the proof part of the PDS 
constructed by the planner. 

In the near future, we intend to extend the planner so that it can be run in a reactive modus, 
i.e. reacting to user suggestions, such as to consider a given task next, or to take back some planner 
decision, and to continue with the next possible alternative. For this, the graphical representation 
of the PDS in LflUI must reflect the progress of the planner. Furthermore, the current agenda 
of planning goals must be displayed in parallel. This extension is facilitated by the client-server 
architecture (see section 4) of flMEGA that allows the user to enter suggestions to the planning 
process asynchronically with the help of appropriate Po-pup-menus. 



External Systems - Automated Theorem Provers and Computer Algebra Systems 
OMEGA employs several automated theorem provers and computer algebra systems (for details 
d. [KKS98]) as modules that can be applied to special-purpose proof problems. OMEGA uses for 
example OTTER [McC94], an automated theorem prover based on first order clause set resolution. 
We have described the integration of OTTER in [HKK+94] and the proof transformation necessary 
for incorporation of the result into the PDS in [HF96]; the methods described there also apply 
for the other theorem provers (SPASS, PRoTEIN, and LEO) available in OMEGA. These systems 
can prove first-order theorems using various flags that control the search and the proof strategies. 
If for instance OTTER is called from OMEGA, some of these flags are set automatically, but others 
must be set by the user individually every time he uses OTTER. 

To set these flags directly in OMEGA is laborious because it is necessary to know all valid 
values. £OUI. provides an input mask that contains all flags with short descriptions of their valid 
values and what they will affect. Additionally, £OUI. stores the last settings and offers it as a 
default value in the next call. £OUI. controls several such "computational modules" by mapping 
their interface functionality into flexible input masks. 

4 The Client-Server Architecture 

A client-server architecture that separates OMEGA'S logical kernel from its graphical user interface 
has increased its efficiency and maintainability. 

In local computer networks the situation is quite common that users have relatively low-speed 
machines on their desktop, whereas some high-speed servers that are accessible for everyone operate 
in the background. Running the user interface on the local machine uses the local resources that 
are sufficient for this task while the more powerful servers can be exploited for the really complex 
task of actually proving theorems. 

The maintenance advantage applies to both the user's and the developer's side. OMEGA is 
a rather large system (roughly 17 MB of COMMON LISP (CLOS) code for the main body in 
the current version), comprising nUmerous associated modules (such as the integrated automated 
theorem provers and a small computer algebra system) from different original sources, written in 
various programming languages. For the user it is a difficult task to install the complete system. In 
particular successful installation depends on the presence of (proprietary) compilers or interpreters 
for the respective programming languages. 

In the current client-server architecture, the user only has to install the £f!UI client, which 
connects to the main system and exchanges data with it via the Internet. Thus the user interacts 
with the client, which can be physically anywhere in the world, while the OMEGA kernel is still 
on our server (here in Saarbriicken, where it is maintained and developed). Since £OUI. is imple
mented in the Oz programming language [Saa98], which is freely available for various platforms, 
including UNIX and Windows95, this keeps the software and hardware requirements of the user 
moderate. The installation of the client is further simplified by the possibility of running £OUI. as 
a Netscape applet, i.e. £OUI. is automatically downloaded via the Internet. Thus we are able to 
provide current versions of OMEGA and COUT- without need for re-installation at the user's site. 

Technical Realization LOUT- is realized via a distributed programming system, called MOZART, 

which is an interactive distributed implementation of Oz. Mozart provides the full infrastructure 
to write distributed applications. Its main strength comes from its network transparency and 
network awareness. 

Network transparency means that the semantics of Oz programs does not change if you dis
tribute computations among different sites. For example, the programmer can use lexical scoping, 
logical variables, objects, etc. in distributed applications. 

Network awareness means that the programmer has full control over the network operations. 
The language provides mobile and stationary objects, i.e. methods are executed locally (the 
object moves) or remotely (the message moves). The programmer has control over structure copy
ing among sites. Structures may be copied eagerly or lazily. To reduce the bandwidth needed 



for communication, OMEGA implements an incremental approach based on SMALLTALK'S MVC 
triad', which only transmits the parts of the PVS that are changed by a user action. This not 
only improves response times for low-bandwidth Internet connection but also focuses the user's 
attention to the effects of an action. 

The Omega Client/Server Network A ser
vice called OMEGA is established on the server 
side, to which clients in form of L.OU]; applets 
can connect to. By addressing the port of the 
service an OMEGA daemon is started, the connec
tion to the client is fulfilled and the main OMEGA 

LISP process comes up. This LISP process is also 
connected to the OMEGA daemon by an Internet 
socket. The administration and monitoring of the 
service's port is done by the Internet super server 
INETD, which listens for connections at certain 
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Internet sockets. When a connection is found on one of its sockets, it decides what service the 
socket corresponds to, and invokes a program to service the request. Therefore, each client using 
the OMEGA service, has its own OMEGA daemon and LISP process running. As mentioned the 
whole communication between the client and the server process is realized via Internet sockets 
using strings. The above figure illustrates the client-server architecture. 

Since the presentation of the proof tree is defined by a context-free grammar, it should be easy 
to connect L.OU]; to different kind of provers. In this sense L.OU]; can be seen as a generic proof 
viewer. 

Distributing OMEGA Up to this point, we have considered a client-server network with one 
server that is dedicated to OMEGA itself and several clients that use this server. In reality, a 
OMEGA network may consist of several servers that can be accessed via a gateway service. The 
gateway daemon runs on one machine that provides the OMEGA service_ It can start the actual 
OMEGA process and its the associated modules on any of the servers, depending on their current 
work load_ In this way, we are able to employ the whole computational power of a local area 
network with a background of several larger servers. 

5 Related Work 

User interfaces for theorem provers are credited with increasing importance in the field. These 
interfaces comprise graphical illustrations of proof structures and their elements, and facilities to 
set up commands in the proof environment. 

Some special modes of proof types express part of the semantics of proof steps by graphical ob
jects and annotations. Examples of this sort of visualization are binary decision diagrams for first
order deduction systems [PS95], which have special display facilities for the relation between quan
tified formulae and their instantiation, and natural deduction displays of sequent proofs [Bor97] 
where the scoping structure of the proof is visualized by adjacent and by nested boxes enclosing 
segments of proof lines. Another presentation technique displays proof steps in an appropriately 
formatted and interactive way. [BJK+ 97] is able to present a proof in natural language, to a 
certain level of detail with deeper levels indented. In addition, levels of detail temporarily hidden 
can be exposed by clicking on the corresponding root proof line. A rather elaborate presentation 
system is CTCOQ [BKT94] which distributes the information about a proof over three sections of 
a multi-paned window: a Command window records the script of commands sent to the proof en
gine, a State window contains the current goals to be proved, and a Theorems window contains the 
results of queries into the proof engine's theorem database. Some other approaches put particular 

ISee for instance http://st-vvw.cs.uiuc.edu/users/smarch/st-docs/mvc.html for an overview. 



emphasis on visualization by making the tree format of proof structures explicit in the display. 
The user interface for the SEAMLESS system [EM97] provides display facilities for a proof graph 
at different levels of abstraction in a framed window: a variety of lay-out operations including 
zooming and reuse of multiple appearances of lemmas. The user interface of INKA [HS96] allows 
for the display of induction proof sketches at varying levels of detail. Its features include status 
information, typically expressed by different coloring, and context-sensitive menus of possible user 
actions. 

In comparison to these systems, flMEGA in some sense combines features of SEAMLESS and 
CTCOQ. Its graphical display is similar to that of SEAMLESS, but the set of node categories and 
their display is fixed to the particular proof environment. However, [OUTs tree visualization can 
easily be adapted to a different set of node categories and display options. Its status information 
display is similar to that of CtCoq, but the database window is handled differently. Apart from 
that, the strict separation of visualizing the proof tree structure and browsing the terms associated 
with individual nodes selectively, handling of co-references, and the client-server architecture are 
unique features in OMEGA. 

References 
[BCF+97] C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber, M. Kohlhase, K. Konrad, 

E. Melis, A. Meier, W. Schaarschmidt, J. Siekmanu, and V. Sorge. OMEGA: Towards a mathematical 
assistant. In William McCune, editor, Proceedings of the 14th Conference on Automated Deduction, 
number 1249 in LNAI, pages 252-255, Townsville, Australia, 1997. Springer Verlag. 

(BJK+97] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. An Overview of the 
Theorema Project. In ISSAC'97, Hawaii, 1997. 

[BKT94] Y. Bertot, G. Kahn, and L. Therry. Proof by pointing. Theoretical Aspects of Computer Software, 
789,141-160, 1994. 

[Bor97J R. Bornat. Natural Deduction Displays of Sequent Proofs: Experience with the Jape Calculator. In 
First International Workshop on Proof Transformation and Presentation, Dagstuhl Castle, 1997. 

[BS98J Christoph Benzmiiller and Volker Sorge. A Focusing Technique for Guiding Interactive Proofs. Submit
ted to the 8th International Conference on Artificial Intelligence: Methodology, Systems, Applications, 
1998. 

[EM97] J. Eusterhrock and N. Michalis. A World-Wide Web Interface for the Visualization of Constructive 
Proofs at Different Abstraction Layers. In First International Workshop on Proof Transformation and 
Presentation, Dagstuhl Castle, 1997. 

[HF96] Xiaorong Huang and Armin Fiedler. Presenting machine-found proofs. In M.A. McRobbie and J.K. 
Slaney, editors, Proceedings of the 13th Conference on Automated Deduction, number 1104 in LNAI, 
pages 221-225, New Brunswick, NJ, USA, 1996. Springer Verlag. 

[HF97] Xiaorong Huang and Armin Fiedler. Proof verbalization as an application of NLG. In Martha E. Pol
lack, editor, Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI), 
Nagoya, Japan, 1997. Morgan Kaufmann. 

[HKK+94J Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica Melis, Daniel Nesmith, J6m Richts, and 
Jorg Siekmann. n-MKRP a proof development environment. In Alan Bundy, editor, Proceedings of the 
12th Conference on Automated Deduction, number 814 in LNAI, pages 788-792, Nancy, France, 1994. 
Springer Verlag. 

[HS96] D. Hutter and C. Sengler. A Graphical User Interface for an Inductive Theorem Prover. In International 
Workshop on User Interface Design for Theorem Proving Systems, 1996. 

[KKS98] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Integrating computer algebra into proof plan
ning. Journal of Automated Reasoning, 1998. Special Issue on the Integration of Computer Algebra 
and Automated Deduction; forthcoming. 

[McC94] W. W. McCune. Otter 3.0 reference manual and guide. Technical Report ANL-94-6, Argonne National 
Laboratory, Argonne, Illinois 60439, USA, 1994. 

[PS95] J. Posegga and K. Schneider. Interactive First-Order Deduction with BDDs. In International Workshop 
on User Interface Design for Theorem Proving Systems, Glasgow, 1995. 

[Saa98] Programming Systems Lab Saarbrlicken, 1998. The Oz Webpage: http://vvw.ps.uni-sb.de/ns3/ oz/. 

146. 



User Interfaces for Generic Proof Assistants 
Part II: Displaying Proofs* 

Bernard Sufrin t Richard Borna! j 

June 1998 

Abstract 

JAPE is a generic proof editor which (amongst other things) offers the teacher, user, or logic designer the 
opportunity of constructing a direct manipulation interface for proofs. 

In the first part of this paper we introduced JAPE, illustrated some aspects of proof development by direct 
manipulation, and described some of the infrastructure provided for interpreting the gestures which users make at 
proofs. In this part we discuss the problem of displaying proofs at appropriate levels of abstraction, and describe 
the infrastructure JAPE provides for doing this. We also show how specialised modes of display for proofs which 
use cut and identity rules can be exploited to give the illusion of forward (natural deduction style) proof. 

1 Introduction 

In the first part of this paper we gave an account of the interaction tactics which are used by 1 APE to interpret users' 
gestures in context in order to invoke proof tactics and rules. We also explained how such tactics provide support for 
interactive proof activity at level of abstraction closer to provers' intuitions than that of the basic inference rules of a 
logic might be. 

lust as it is important to be able to define tactic programs which implement intuitive proof moves, so it is important 
to be able to show proofs at an appropriate level of abstraction: for otherwise the human engaged in a proof has to 
abstract the essence of a proof situation from a display which may well present too much detail. 

We start this part of the paper by describing the mechanisms which JAPE currently provides for displaying proofs at 
a level of abstraction chosen by the interaction designer. Then we describe JAPE's linear presentation style for proofs 
in which identity and cut rules have been used - and show how the use of a simple display transformation coupled 
with appropriate interaction tactics can be used to give the illusion of forward proof. 

2 Displaying Equational Proofs 

Logical presentation masks equational essence 

Consider the following proof state, reached during a proof that list-reversal is self-inverting: 

"'This is the second part of a paper whose first part[l] was presented at the workshop "User Interfaces for Theorem Provers", York, U.K., July 
1996. 

t Computing Laboratory and Worcester College, Oxford 
tQueen Mary and Westfield College, London 

1'1":1. 



~----~----~--~ . 
(rev. rev)x = rev(rev x) rev(rev x) = x 

'd id -'-------'---~(,--'----_c)-------'-----'-- rewrite 
1 X=X rev.revx=x 
-"---"------~------.,-----_c.,-----'--- rewrite 

(rev. rev)x = id x 
'd ext rev.reV-l 

At an intuitive level we might describe the history of this proof as follows: 'The extensionality rule is followed by 
unfolding the term id x into x, and this is followed by unfolding the term (rev. rev) x into rev(rev x)." 

But the display shows so much detail that it can be hard for someone who didn't do the proof (or who doesn't care 
that an unfolding proof step happens to be implemented by an application of the rewrite rule) to follow what went 
on. What's needed is a way of suppressing the irrelevant logical detail from the proof display whilst preserving its 
equational essence. 

One way of doing so would be to augment the basic rules (and definitions) of the the logic in question with specialised 
derived rules. For example, from the rule id X = X which defines id, and the rewrite rule 

RULE rewrite (X, Y, ABSTRACTION PI 
FROM X=Y 
AND P(YI 
INFER P(XI 

we can derive the rule t 

RULE 
FROM 

"Fold id" (X, Y, ABSTRACTION PI 
P(XI 

INFER P(id XI 

Using this rule, and the corresponding rule for compositions, the proof would become. 

rev(rev x) = x 
~--'-----'----- Fold 0 
(rev 0 rev)x = x 

-'-----,-'----. - Fold id 
(rev 0 rev)x = ld x 

'd ext rev 0 rev = I 

But this isn't really a practical proposition: in any interesting logic there will simply be too many derived rules 
for us to install before we can start work on the conjectures which really interest us. What is needed is a way of 
transfonning the presentation of the logical proof state into a presentation in the equational style. 

Subtree Selection - a partial solution 

In order to explain the partial solution which JAPE currently offers we shall first have to explain the machinery for 
displaying proofs. In effect there's a two-stage pipeline. 

Logical I . I Abstracted I . I Displayed 
Proof -----* Proof AbstractIOn --+ Proof --+ Proof Rendenng --+ Proof 

The rendering stage depends on the proof display style currently in use, and constructs a proof layout from the 
abstracted proof. The details of this stage of the transformation will become important when we come to discuss 
automatic elision of redundant formulae, but they're not important here. 

The abstraction stage is guided by abstraction descriptions which are installed in the logical proof tree as it is being 
constructed. This is done by tactics of the form 

I Why is the rule called Fold id? Because when we read the proofjorward, the transformation is from x to jd x. Such a right-ta-Ieft use of 
a defining equation is generally referred to as a folding transformation. 
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(LAYOUT reason branch-list tactic, tactic, ... ) 

A tactic of this form is executed by running its component tactics in sequence. If this succeeds, then the proof subtree 
which it generates is marked to be displayed as an abstraction of the logical proof tree. explained with (a text derived 
from) the given reason. The only form of abstraction currently provided is subtree selection, and the branch-list is 
a (possibly empty) list of the numbers of the branches of the generated subtree which are to be displayed. 

For example, if the tactic form 

(LAYOUT "Fold id" (1) (rewrite (id x)) id) 

is executed in the proof state 

(rev 0 rev)x = id x 
'd ext rev 0 rev ~ 1 

it transforms the logical proof into 

'd id( ) I x=x revorevx=x 
----c---...:..,----::-"--- rewrite 

(rev 0 rev)x = id x 
'd ext rev 0 rev = 1 

but the proof abstraction stage of the display process ensures that only the second branch (numbered 1) of the new 
proof subtree is selected for rendering, as shown below. 

(rev 0 rev)x = x 
---'-------,-'----. - Fold id 
(rev 0 rev)x = Id x 
-'-----'----;-;-- ext 

rev 0 rev - id 

It makes sense to generalise this tactic over the rule (or tactic) used to close the left branch of the rewrite tree, so we 
define: 

TACTIC Unfold (term, rule) {LAYOUT "Fold %s" (l) (rewrite term) rule) 

When an application of this tactic is succesful, the reason annotation of the displayed proof node is constructed by 
expanding" Fold %8" in the layout tactic - replacing the %8 by the name of the rule used at the base of the branch 
which is suppressed. Although this simplistic way of constructing the annotation is nearly always good enough, we 
shall see later that there are circumstances where it can be uninformative or misleading. 

In part I we developed a tactic, UnfoldSelectionOrsearch, to support the construction of "fold" moves in 
equational proofs. The production version of that tactic - presented below - reports proof steps at exactly the right 
level of abstraction for someone who is conducting an equational proof. 

TACTIC UnfoldSelectionOrSearch(rulebase) IS 
(WHEN 

(LETHYP (_L=_R) 

(LETSUBSTSEL _TERM 
(LAYOUT "Fold with hyp" (1) (WITHSUBSTSEL rewrite) (hyp ( L= R))))) 

(LETSUBSTSEL TERM 

(LAYOUT "Fold %8" (1) (WITHSUBSTSEL rewrite) rulebase» 

(LAYOUT "Fold %8" (1) (UNFOLD rewrite rulebase») 

The last stage of development of the tactic was very simple: the three underlined sequential tactic forms of the 
original which are underlined below were simply embedded in LAYOUT forms which select their second branch. 



Shallow and weak though it is, the form of tree abstraction provided by LAYOUT has been sufficiently powerful to 
support coherent proof presentations in several theories based on equational reasoning. These range from a simple 
untyped theory of functional programming, to a reasoning system for typed category theory. In the latter theory, the 
typing antecedents of rules are decided automatically by tactic, but the proofs of well-typing are suppressed (unless 
they fail) in the presentation. 

Universally Applied Tree Transformations 

In one experimental JAPE implementation, the annotations which guide proof abstraction were described declar
atively in a tree-transformation notation. For example. the following transformation could be used to present an 
unfolding - an application of rewrite whose left subgoal is closed directly by a rule. 

TRANSFORM Unfolding (rulename, proof) 
r f- Q BY rewri te 
FROM 

r f- X=Y BY rulename. 
AND 

r I-- P FROM proof. 
END 

INTO 
r I- Q BY (Fold rulename) 
FROM 

r f- P FROM proof 
END 

The following transformation could be used to present a more deeply-nested proof - a fold, in fact. 

TRANSFORM Folding (rulename, proof) 
r I-- Q BY rewrite 
FROM 

r I-- X=Y BY "::::;. Synunetric" 

FROM 
r I-- Y=X BY rulename. 

AND 

END 
INTO 

r I-- P FROM proof. 

r I-- Q BY (Unfold rulename) 
FROM 

r I-- P FROM proof 
END 

The declarative style seemed, for a while, to be inappropriate: partly because the notation is rather long-winded, 
but mainly because transformations were applied without discrimination to all proof trees of the right form - even if 
the tree in question was constructed by applying primitive rules by hand. The resulting display could misleadingly 
suggest that high-level proof steps like "unfold" have been employed when they hadn't. 

Selectively Applied Tree Transformations 

It took us a while to realize that the selective application of declarative transformations could help us solve a class of 
awkward problems which arise from the simpleminded way in which LAYOUT forms construct their explanations. 

Consider programming a Fold tactic - designed to replace an occurence of the right hand side of a definition by the 
corresponding left hand side. This tactic is much the same as the Unfold described earlier, but we will use the rule 
.. = symmetric" (defined as FROM X=Y INFER Y=X) before applying the definitional rule. 
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TACTIC Fold(term, rule) 
(LAYOUT "Unfold %s" (1) (rewrite term) "= syrrunetric" rule) 

The tactic does the right job, but unfortunately the "%s" in the reason component of this tactic picks up the name of 
the" = symmetric" rule - and explains the move as Unfold "= symmetric II when what we really want is 
the name of the rule which was actually used. 

In situations like this the LAYOUT form is just inadequate. The problem can be remedied by introducing the 
TRANSFORM tactic form, which is analogous to LAYOUT save that the tree abstraction it performs is described 
by a declaratively described transformation of the kind discussed above. The Fold tactic is now written as follows2 

TACTIC Fold{term, rule) 
{TRANSFORM Folding (rewrite term) - syrrunetric" rule) 

3 Natural Deduction Displays of Sequent Proofs 

As we demonstrated in the previous section, there are certain proofs whose presentations can be improved if the 
interaction designer takes the trouble to program interface tactics in a certain way. In this section we show how JAPE 

can automatically exploit the presence of certain kinds of structural rule in a logic to eliminate uninformative or 
redundant material from proof displays. One consequence of the display transformations we describe in this section 
is that it is easy to present a convincing simulacrum of forward proof in the natural deduction-style - despite the fact 
that JAPE is a backward proof system based on sequents! 

The simplest automatically applicable display transformation is the removal of uninformative identity rules. We can 
best explain it by giving a concrete example. 

hyp hyp 

P f- P P,Q f-Q 

hyp -k 

P f-P P, P--7Q f-Q 

-k 

P--7(P--7Q) , P f-Q 

"4 
P--7(P--7Q) f- P--7Q 

Figure I: A proof presented in the tree style 

The proof tree in figure I built using the following rules is shown rendered in the (untransformed) linear style in 
figure 2. 

RULE 
RULE 
RULE 

" 1---+" 
"--+1- " 
hyp(A) 

FROM r, A f- B INFER r f- A-+B 
FROM r, A-+B f- A AND r, B f- C INFER r, A-+B f- C 

INFER r, A f- A 

In this style the proof of each sequent 1'1, "'I'n f- C is shown in a box, with the hypotheses at the top and the 
conclusion at the bottom, and the proofs of any antecedent sub-sequents recursively shown between them (ellipsis 
represents an unclosed subtree). If any of the hypotheses have already appeared at the top of an enclosing box, then 
they are omitted, and if this results in a box with no hypotheses at the top, then the conclusion is presented unboxed.3 

2"Folding" is the proof transform we described on the previous page. 
3We note, in passing, that this presentation style is ambiguous for some logics: just because a hypothesis appears at the head of a box, that 

doesn't mean that it's in scope at the conclusion of all the boxes nested within. For example, the hypothesis P-}(P-}Q) is not in scope at 
line 8 of the proof displayed above, because that line comes from the proof of the sequent P, P-}Q f-- Q. In JAPE we resolve the ambiguity 
dynamicaJly: when a particular conclusion is selected we "grey out" the hypotheses which aren't in scope at that conclusuion. DuaJly, when a 
particular hypothesis is selected we grey out those parts of the proof at which it isn't in scope. 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

P---1(P---1Q) 

P 

P 

P---1Q 

P 

~ 
Q 

Q 

P---1Q 

assumption 

assumption 

hyp 2 

assumption 

hyp 2 

assumption 

hyp 6 

-)f- 4,5,6-7 

---1f--- 1,3.4-8 

1----7 2-9 

Figure 2: The same proof presented in the linear style 

Notice that line 8 is justified in part by the P established on line 5 by hyp from the identical assumption on line 
2. Likewise line 8 is justified in part by the P established on line 3 by hyp from the assumption on line 2. Finally 
notice that line 7 simply duplicates the assumption Q made on line 6. We say that hyp is an identity rule because its 
conclusion is identical to one of its assumptions. It seems fair to say that the use of hyp at lines 3, 5, and 7 do not 
really add to our understanding of the proof, and that these lines could therefore be eliminated. Figure 3 shows what 
happens when this is done. 

Removing Cuts 

2 

3 

4 

5 

6 

7 

P---1(P---1Q) 

P 

[] @] 
Q 

Q 

P---1Q 

assumption 

assumption 

assumption 

assumption 

-+ 3,2,4 

-H- 1,2,3-5 

1----7 2-6 

Figure 3: The same proof with hyp elided 

A more interesting automatic display transformation is the elimination of cut rules: these take the form 

FROM r f- J.t AND r, J.t I- C INFER r I- C 

It is used to "cut" the task of finding a proof of r I- C into two parts: that of establishing an intermediate formula J.t 
from the hypotheses r, and that of establishing the conclusion C from the hypotheses augmented with the interme
diate formula. In figure 4 we show a Cut proof, and its standard linear display. Notice that the intermediate formula 
/-l appears once at the foot of its own proof, and again - as the new hypothesis opening the subproof which estab
lishes C. The cut display transformation can sometimes replace the vertically adjacent (but structurally separate) 
occurences of f..t with a single occurence, as shown in figure 5. 

The following concrete example demonstrates the cut transformation in action during a proof of p--t(p--tq) r p--tq 
in a natural-deduction style logic, InI[3], which includes the following rules: 
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r 

:, 

c 

Figure 4: A cut proof and its standard linear display 

r 

:, 
C 

Figure 5: Linear display of a cut proof after transformation 

RULE "--+-intro" FROM r,P f- q INFER r f- p--+q 
RULE "-->-elim" FROM r I- p--+q AND r I- p INFER r I- q 

RULE hypothesis(p) INFER r, p f- p 

The intuitive approach to this proof for someone who has learned natural deduction is to use "~-intro" to 
establish the proof state 

1 H(P-lq) 

2 fl
q

P 

3:lJ 
4: p-lq 

assumption 

assumption 

---7-intro 2-3 

then to use implication elimination to establish p-->q. In a backward proof engine such as ours this has to be done 
by cutting the proof first, then applying implication elimation. The resulting state is shown in complete detail in the 
diagram below on the left, and with applications of the hypothesis rule suppressed on the right. 

2 

3 

4 

5 

6 

7 

8 

9 

P-l(Hq) 

P 
p-lp-lq 

p 

Hq 

rJ 
q 

Hq 

assumption 

assumption 

hypothesis 

hypothesis 

---7-elim 

assumption 

cot 5,6-7 

--7-intro 

1 H(p-lq) assumption 

2 2 P assumption 

3,4 3 p-lq ----1-elim 1,2 

4 

5 rJ assumption 

6 q cut 3,4-5 

2-8 7 p-lq ---7-intro 2-6 



Whilst these details may be illuminating to a specialist, someone who's simply trying to do a natural deduction proof 
would almost certainly be overwhelmed by the technicalities of the left-hand display, and would find the right-hand 
display uninformative. 

Fortunately, application of the identity and cut-suppression transformations reveals just how simple the (natural 
deduction) proof situation is4 

p-l(Hq) assumption 

'0 assumption 

3, p-lq -----7-elim 1,2 

4, q 

5 Hq -----7-intro 2-4 

Now novices shouldn't have to know that forward application of elimination rules requires the use of cut! How do 
we arrange that simply invoking the implication elimination rule ends up doing the right thing? We do so by defining 
an interaction tactic [1] which assumes that when both a hypothesis and a conclusion are selected, rules are to be 
applied in the forward direction, but when only a conclusion is selected, rules are to be applied backwards, 

The forward application of a proof rule R, trom a hypothesis I is implemented by the sequential composition of cut, 
R, and hypothesis(f). This is easily arranged: an approximation to the interaction tactic used for this purpose in the 
presentation[4] of the logic is shown below 

TACTIC ElimRule{rule) 
(WHEN 

(LETHYP --p 

(ALT (SEQ cut (WITHARGSEL rule) (WITHHYPSEL hypothesis» 
(FAIL ("%s is not applicable to %s", rule, --p»» 

{FAIL ("Select an assumption before applying %s", rule») 

The sequence of proof states which this evokes during the forward application of "-4-elim" by (ElimRule 
"-+-elim") described above is shown in Figures 8 through 10. Before the user sees the proof again, the automatic 
invocation of the hypothesis rule specified by the presentation designer will have disposed of the outstanding proof 
obligation in the left-hand subproof of figure 10. 

One difficulty is the problem of deciding what is meant when the middle formula (/L) is selected in a cut-transformed 
display such as the one in figure 5. Did the user intend to select the J.L conclusion (in the left antecedent of cut) or 
the /L hypothesis (in the right antecedent). A simpleminded approach to the problem might be as follows: if there's 
a selection below it in the display, then it is the hypothesis; if there is no other selection, or if the other selection is 
above it in the display, then it is the conclusion. Unfortunately this approach would make it impossible to interpret 
certain kinds of lone selection made in the presence of the cut transformation, and this would dramatically complicate 
the programming of interaction tactics. In fact we restrict the application of the transformation to situations in which 
one or both of the antecedents of the cut rule have already been proven. If /L is selected when the left antecedent 
is proven and the right antecedent is open, then it is the hypothesis for the right antecedent. If it is selected when 
the right antecedent is proven and the left antecedent is open, then it is the conclusion. The details are explained at 
length in [2]. 

4 Conclusion and Prospects 

Although JAPE is a generic tool, we believe that the techniques we have described here could easily be adapted for 
use in provers designed for specific logics, and would be of considerable benefit to users. Without the complexities 
induced by JAPE'S generic nature they might also be much easier to implement! 

4 JAPE automatically applies the display transformations described above only when declarations are made which inform it of the existence 
(and names) of the structural rules in question. 
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We have just started work on extending the cut, and hyp transformations to rules of transitivity and reflexivity. 
Resolving the meaning of selections in the presence of these extended transformations imposes its own difficulties, 
but we are beguiled by the prospect of presenting an transitivity proof which would normally take the form shown in 
Figure 6 without the "transitivity noise", and without the explicit movement of formulae from the right hand side of 
one line to the left hand side of the next. 
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e-l(e-lq) . p f- pI e-l(p--)q). p. pI f-q 
,~ 

e-l(e-lq) . p f-q 

e-l(e-lq) f- e-lq 

Figure 8: Proof state after cut 

p--)(p--)q) . p f- p2--) pI e-l(e-lq) . p f- p2 

--,!-e\im 

P--)(e-lq) . p f- pI e-l(p--)q) . p._p1 f-q 

P--)(e-lq) . p f-q 

---:I-intro 

P--)(e-lq) f- e-lq 

Figure 9: Proof state after (WITHARGSEL --)-elirn) 

hypothesis 

e-l(e-lq) . p ~e-le-lq P--)(e-lq). p ~p 

--1-elim 

P--)(e-lq) . P f- e-lq p--)(p--)q) . p. p--)q f-q 

e-l(e-lq) . p f-q 

---:l-intro 

p--)(e-lq) f- p--)q 

Figure 10: Proof state after (WITHHYPSEL (p--) (p--)g) ) ) 
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Proving as Editing HOL Tactics 

Koichi Takahashi' and Masami Hagiyat 

Abstract 

We introduce an Emacs interface for writing HOL 
proof scripts in SML based on the Computing-as
Editing paradigm. Tactics in a proof script are con
sidered as constraints, and the process of interactive 
theorem proving becomes that of solving constraints. 
In addition, constraint solving is subsumed by the 
process of editing a proof script. Tactics are exe
cuted while the script is being edited. The user does 
not have to pay attention to the status of the HOL 
prover. In our interface, the user can also enjoy proof
by-pointing. The result of proof-by-pointing is in
serted as a tactic into a proof script. We expect that 
our interface will be widely used as an extension of 
the familiar HOL mode on Emacs. 

1 Introduction 

With a tactic-based proof assistant such as HOL [4] or 
Isabelle [7], the user (i.e., the writer of a proof script) 
interactively inputs tactics to decompose the top goal 
to subgoals. In this process of interactive theorem 
proving, the current goal of the proof assistant is al
ways printed out when the user inputs a tactic (Figure 
1). The history of interaction therefore becomes very 
long, but it is difficult to understand the proof with 
only the sequence of input tactics (Figure 2). 

After finishing the entire proof of the top goal, 
many users of a tactic-based proof assistant then com
pose a large structured tactic from the sequence of in
teractively input tactics using tacticals such as THEN 
and THENL in HOL, which represent control struc
tures. Such a structured tactic can prove the top goal 
at one time. Some users also try to write a structured 
tactic as they prove the top goal. While editing a 
structured tactic, they successively send fragments of 

*Electrotechnical Laboratory. takahasi@etl.go.jp 
tDepartment of Information Science, University of Tokyo. 

hagiya@is.s.u-tokyo.ac.jp 

val it = 
cCc + sue x = sue xc, 

c, C = 0" 
(Cc+X=x'c 

goalstack 

Figure 1: A printed current goal 

the tactic to the proof assistant by hand. Of course, 
they have to keep track of the relationship between 
the edited tactic and the status of the proof assis
tant. The reason to write structured tactics is to 
gain reusability of proof scripts, but the readability 
of a structured tactic is relatively low because no sub
goals are shown. 

In this paper, we introduce an interface for writing 
HOL proof scripts in SML based on the Computing
as-Editing paradigm (CAEP) [5]. In this approach, 
tactics in a proof script are considered as constraints, 
and the process of interactive theorem proving be
comes that of solving constraints. In addition, con
straint solving is subsumed by the process of editing a 
proof script. Tactics are executed while a proof script 
is being edited. 

In contrast to other interfaces based on the CAEP 
(such as that for computer algebra [5]), the interface 
in this paper does not require a new format for ex
pressing constraints. Users can directly edit HOL tac
tics written in the syntax of SML. A proof script in 
SML is regarded as a constrained document, where 
each tactic in the document is solved as a constraint 
by the HOL prover. 

With our interface, the user can write a proof script 
while interactively executing tactics. When a com
mand called check is invoked under the text editor, 
the tactic just before the text cursor is locally exe
cuted and confirmed by the HOL prover. According 
to the result of this execution, the text of the proof 

Page 1 
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g '(c=O) ==> !x . c + x XC; 

e UNDISCH_TAC; 
e INDUCT_TAC; 
e (ASM_REWRITE_TAC [theorem "arithmetic U I1ADD_OI1J); 
e (REWRITE_TAC [GSYM (theorem "arithmetic" "ADD_SUC")]); 
e (POP_ASSUM (tn th => REWRITE_TAC [th]»; 
save_thm(lla_thm", top_thmO); 

Figure 2: A sequence of tactics 

val a_thIn = store_thm(U a_thm l1
, 

C'(c=O) ==> !x . c + x = xc', 
DISCH_TAC THEN 
INDUCT_TAC THENL [ 

ASM_REWRITE_TAC [theorem "arithmetic" "ADD_D"] 

REWRITE_TAC [GSYM (theorem "arithmetic" "ADD_SUC")] THEN 
POP_ASSUM (tn th => REWRITE_TAC [th]) 

]) ; 

Figure 3: A structural tactic 

script is changed; when the tactic has produced sub
goals, an appropriate template for solving the sub
goals is inserted. 

Using our interface, the user can avoid the bugs 
that arise when he or she composes a structured tac
tic from a successful sequence of tactics. In addition, 
the user can write a structured tactic in a very flex
ible manner. No specific order is imposed on which 
subgoal to solve first, and the user can switch the cur
rent subgoal simply by moving the text curSOr. Since 
a tactic at the position of the text cursor is executed 
and confirmed locally, the user can check the slight 
change of a tactic immediately after he or she has 
modified the text of the tactic. This greatly helps 
the user to reuse existing proof scripts. 

In our interface, to make local execution of a tac
tic efficient, subgoals (i.e., intermediate goals) can be 
explicitly embedded in a proof script, which also im
proves the readability of the proof script. It is not 
necessary to write such subgoals by hand, as they are 
usually inserted as a result of the local execution of a 
tactic. 

TkHol [8] is a graphical user interface for HOL. By 
using TkHol, the user automatically gets a structured 
proof script from a sequence of input tactics, but its 
design does not take into account the reusability and 
readability of proof scripts. We think that directly 
editing tactics under Emacs is more flexible, and al
lows for reusing existing tactics. 

In our interface, the user can also employ proof-

1":)8. 

by-pointing [1]. At any position in a proof script, the 
user can pop up the current goal window (Figure 7), 
and point out a subterm in the current goal using 
a mouse. A tactic called a proof-by-pointing tactic 
is then generated and inserted into the proof script 
(Figure 8). Since the result of proof-by-pointing is 
expressed in the form of text, it is possible to undo, 
reuse or modify the result by deleting, copying or edit
ing the corresponding text. In addition, the user can 
replay proof-hy-pointing by specifying the proof-by
pointing tactic in a proof script. 

In the next section, we describe our interface, called 
Boomborg-HOL, in detail. In Section 3, we explain 
how proof-by-pointing is performed in our interface. 
Section 4 is about the implementation of our inter
face. In Section 5, we discuss how the problems of 
graphical user interfaces pointed out by Merriam and 
Harrison [6] are solved in our interface. Section 6 
summarizes the merits and demerits of our interface 
that we found through our experience in using it. In 
the last section, we give plans for future work. In 
the Appendix, we list some additional example scripts 
written with our interface. 

2 Boomborg-HOL 

In our interface (Boomborg-HOL) two functions, CLAIM 
and BY, are prepared to make subgoals (i.e. interme
diate goals) in a proof script explicit. They are tac
ticals since they take a tactic as an argument. They 
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val a_thm = STORE_THM("a_thm", 
~ t (c=o) ==) ! x + c + x = x { t, 

DISCH_ TAC THEN 
BY (INDUCT _TAct 

Figure 4: Before the check command 

are used as follows. 

CLAIM "assumption part" "conclusion part" 
"tactic" 

BY "tactic" 

The assumption part and the conclusion part of a 
CLAIM specify the assumption and the conclusion of 
a goal as compared with the goal at its outer sur
rounding CLAIM or BY (or STORLTHM, a variant of 
store.thm in HOL). The assumption part is a list 
whose elements are either of the form 

assume A 

or of the form 

forget A. 

The form assume A means that the assumption A is 
added to the goal at the outer CLAIM or BY. The form 
forget A meanS that the assumption A is deleted 
from the goal at the outer CLAIM or BY. The conclu
sion part is either of the form 

holds C 

or of the form 

thesis. 

The former simply specifies C as the conclusion of 
the goal at this CLAIM. The latter means that the 
conclusion of the goal at the outer CLAIM or BY has 
not been changed. 

BYs are used for specifying goals at inner CLAIMs 
(refer to a later example). 

In our interface, the user edits a proof script that 
may contain CLAIMs and BYs in an Emacs buffer. 
While editing the script, the user can use the fol
lowing command. 

• check 

The check command executes a tactic just before the 
text cursor and inserts each subgoal produced by the 
tactic in the form of a CLAIM. 

After the check command is invoked in Figure 4, a 
CLAIM is inserted as in Figure 5. The check command 
first calculates the goal at the outer CLAIM or BY, and 
sends it to the HOL prover with the tactic between 
the text cursor and the outer CLAIM or BY. 

In Figure 5, the CLAIM 

CLAIM [] (holds "c + a = c") ( 

means that there is no change in the assumption part 
of its goal as compared with the goal at the outer BY, 
while the conclusion is specified as (C C + 0 = 0' c. 

Notice that the goal at the outer BY has the assump
tion ' 'c = 0". This is not explicitly specified by the 
CLAIM. Using BYs, the user can avoid specifying evi
dent changes of goals. If there was no BY, the CLAIMs 
in Figure 5 would be 

CLAIM [assume fCC = 0"] 
(holds ( (c + 0 == c' () ( 

and 
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a_thm = STORE_THM("a_thm", 
( \ (c=O) ==) 1 x • c + x = X \ t, 

DISCH_TAC THEN 
BV (INDUCT_TACITHENL [ 
CLAIM [] (holds "c + 0 = 0' ') ( 

) , 
CLAIM [assume "c + x = x' '] 
(holds' 'c + SUC x = SUC x' ') ( 

Figure 5: After the check command 

CLAIM [assume ee c + X = XC" 

assume ec c = oct] 

(holds "c + SUC x = SUC x") ( 

In Figure 6, the check command shows the mes
sage OK at the message line of the editor because 
no subgoals remain. As in this example, the check 
command can be executed at any position in a proof 
script, even if the script is incomplete. 

In our interface, the user does not directly interact 
with the HOL prover. The user just edits a proof 
script, and sends a fragment of the script to the HOL 
prover from time to time by invoking the check com
mand. This process can be considered as constraint 
solving in the sense of the CAEP. The user does not 
have to pay attention to the status of the HOL prover. 

Specification of subgoals by CLAIMs has two pur
poses. One is readability, as it is easier to understand 
the proof if the subgoals are explicitly embedded in 
the proof script. Another is to minimize the size of 
the code sent to the HOL prover. The check com
mand assumes that the subgoal specified by an outer 
CLAIM is correct. This makes it only necessary to 
send the tactic between the text cursor and the outer 
CLAIM. 

There are a few more commands supported by our 
interface. 

• check-claim-body 

• check-claim-specs 

These two commands are available at CLAIMs. 
The check-claim-body command checks whether 

the body tactic of the CLAIM proves the goal specified 

by the CLAIM. If the tactic can prove the goal, the 
message OK appears at the message line. Otherwise, 
an error is reported. 

The check-claim-specs command recalculates 
the goal at the CLAIM by executing the tactic just 
before the CLAIM. If the obtained goal is as specified 
by the CLAIM, it merely shows the message OK. Other
wise, it replaces the assumption part and the conclu
sion part of the CLAIM so that they correctly specify 
the goal. This command is intended to be used for 
reusing a proof script. When the top goal of a proof 
script has been changed, it is possible to propagate 
the change through the script by repeatedly invoking 
this command. It is also considered as solving the 
constraint between a CLAIM and a tactic before it. 

3 Proof-by-pointing 

Proof-by-pointing [1] is a very useful interface for in
teractive theorem proving. Proof-by-pointing starts 
with pointing to a subterm in a goal. The goal 
is repeatedly decomposed by inference rules until 
the subterm appears at the top-level. For exam
ple, when the user points to the subterm B in the 
goal ?- A ==> B \I C, the implication and disjunc
tion are decomposed and the user gets the new goal 
A ?- B. Many proof steps are executed by one point
ing. Note that pointing is a graphical operation. 

Our interface also supports proof-by-pointing. We 
first prepare a tactic to perform decomposition, called 
a proof-by-pointing tactic: 

PROOF....BY -.POINTING "subterm" "position" 
"instances" . 
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val a_thm = STORE_THM("a_thm", 
( t (c=O) ==) ! x + C + x = x' t J 

DISCH_TAC THEN 
BV (INDUCT_TAC THENL [ 
CLAIM [] (holds "c + 0 = 0' ') ( 

) , 
CLAIM [assume "c + x = x"] 
(holds "c + SUC x = SUC x") ( 

REWRITE_TAC [GSVM (theorem "arithmetic" "ADD_SUC")] THEN 
POP_ASSUM (fn th =) REWRITE_TAC [th])1 

Figure 6: An example of using the check command 

The "subterm" specifies a subterm in the conclusion 
of the current goal. The "position" is the index of the 
occurrence of the subtermj 0 means the first occur
rence, 1 the second, etc. The "instances" are terms 
that instantiate quantified variables during decompo
sition. The call 

PROOF-BLPOINTING s n [Uj,U2,···J 

means that the n-th subterm of s in the conclu
sion of the current goal is pointed to and quanti
fied variables are instantiated by Ul, U2, ... in this 
order. For example, when B is pointed to in the 
goal ?- A ==> B \I C, the corresponding proof-by
pointing tactic is 

PROOF-BY..POINTING "B :bool" 0 [J. 

In our interface, the user can pop up a window 
showing the current goal at any position in a proof 
script (Figure 7). In the window of the current goal, 
the conclusion appears at the top line, and the as
sumptions are represented below the underlines, as is 
HOL. The user can point to a subterm in the pop-up 
window using a mouse. A proof-by-pointing tactic is 
then generated and inserted at the given position. In 
Figure 7, if the user points to the first occurrence of 
x, then a proof-by-pointing tactic is generated and 
inserted as in Figure 8. The "position" is 0, meaning 
the first occurrence. The "instances" of an inserted 
tactic are always a null list; the user is expected to 
fill in this list as needed. The proof-by-pointing tac
tic is only inserted, and not executed. OUf interface 
for proof-by-pointing is only for inputting a tactic; 

val a_thm = STORE_THM(" a_thm" J 

"(y = T) ==> !x . x \/ Y ==> 
DISCH_TAC THEN 

PROOF_BY_POINTING "x" 0 [J 

x" , 

Figure 8: A proof-by-pointing tactic inserted 

the check command is used to execute it. A simi~ 
lar approach to proof-by-pointing has been taken by 
Bertot, Schreiber and Sequeira [3]. We discuss the 
differences between our approach and theirs in Sec
tion 5. 

4 Implementation 

Since OUf interface is implemented on Emacs and 
communicates with a HOL prover, its implementation 
consists of an Emacs Lisp program and an SML pro
gram for communication and manipulation of goals, 
including the definitions of CLAIM and BY as functions 
in SML. 

Before describing the implementation of the 
check command, let us explain an Emacs 
Lisp function called get-goal-at-point. The 
get-goal-at-point function calculates the goal at 
a CLAIM or BY, or at the beginning of a proof (i.e., at 
STORE_THM). If the text cursor is at the beginning of a 
proof, it returns the goal as specified by STORLTHM. 

If the text cursor is at a CLAIM, since the difference 
between the goal at the CLAIM and the goal at the 
outer CLAIM or BY is specified by the arguments 
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Figure 7: A window of the current goal 

of the CLAIM, it returns the goal at the CLAIM by 
calculating it with the difference; the goal at the 
outer CLAIM or BY is calculated by a recursive call of 
get-goal-at-point). If the text cursor is at a BY, 
the get-goal-at-point essentially uses the HOL 
prover. It sends to the HOL prover the goal at the 
outer CLAIM or BY (obtained by a recursive call) and 
the tactic between the BY and the outer CLAIM or BY, 
and returns the result of the tactic. 

The check command executes the tactic between 
the text cursor and the outer CLAIM or BY by send
ing it to the HOL prover with the goal at the outer 
CLAIM or BY (obtained by get-goal-at-point). It 
then inserts the subgoals returned by the tactic into 
the buffer with appropriate control structures using 
THEN or THENL. 

To implement the proof-by-pointing interface, we 
need to know the position of each subterm in a goal 
that is shown in the pop up window. We modified 
the pretty printer of HOL so that it records the po
sition of each subterm as it prints out a given goal. 
(Unfortunately, we could not make use of the extensi
ble pretty printer of HOL for this purpose. We had to 
directly modify the source code of the pretty printer.) 

In HOL, every term surrounded by , , must be com
pletely typed by itself after it is parsed; it cannot be 
polymorphic in the sense of Milner and Damas. So 
terms that appear in the arguments of a CLAIM must 
also be completely typed. The default HOL pretty 
printer has two modes. In oue mode it never shows 
the types in a term, while in the other mode it prints 
every variable or constant with its type. If arguments 
of a CLAIM are printed in the former mode, they may 
cause errors when they are sent to the HOL prover 
because they may not be completely typed. In the 
latter mode, however) outputs become too noisy. In 

order to solve this problem, we modified the original 
HOL pretty printer and made a new one that shows 
types as little as possible. This pretty printer shows 
a type only on one occurrence of each variable or con
stant; and if the type of a variable or constant can be 
easily inferred, the type is not shown. 

5 Discussion 

As Merriam and Harrison [6J pointed out, one prob
lem of proving with graphical user interfaces (GUIs) 
has been their weakness in reusability. When the user 
has modified the top goal of a proof script, he or she 
may want to reuse as many parts of the old proof 
script as possible, but it is difficult to do so under 
G UIs because the history of interaction is either lost 
or not editable. Supporting editable records of inter
action is essential for reuse. In our proof-by-pointing 
interface, a user's pointing is inserted into a proof 
script as a tactic, and the user can reuse these tactics 
as other parts of a proof script. This suggests a way 
to utilize various kinds of GUI (e.g., drag-and-drop 
rewriting [2]) in our interface. 

In order to utilize GUIs, some conditions are re
quired: 

• one operation on a G VI has to be translated into 
one tactic, 

• the translated tactic has to cause the same effect 
as the operation, and 

• from the translated tactic, it should be possible 
to replay the operation. 

Although there are many ways to satisfy the first con
dition, the reusability of translated tactics is heavily 
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affected by the design of the translation. In our case 
of proof-by-pointing, "pointing of a subterm" could 
be represented by one number, the position of the 
subterm from the beginning of the entire goal. A 
tactic with such limited information can hardly be 
reused. For such reasons, independence of transla
tion from the context of interaction is important. 

To achieve the second condition in the case of proof
by-pointing was relatively easy, and we were able to 
implement the required function in only a hundred 
lines. 

Once translation satisfying these conditions is im
plemented, a new GUI becomes available in OUf in
terface. We expect that various kinds of GUI will be 
introduced in this manner. 

Bertot, Schreiber and Sequeira have developed an 
interface for proof-by-pointing on XEmacs [3J. In 
their interface, the current goal is displayed in the 
goal buffer and pointing in the goal buffer by the 
user generates plain proof commands for the LEGO 
proof assistant, and inserts them in a buffer for sav
ing in a proof script. While their interface translates 
a pointing to a sequence of primitive commands such 
as intros and impE, ours inserts a proof-by-pointing 
tactic, so that it is possible to replay the operation for 
proof-by-pointing using the inserted tactic. As men
tioned above, we think that replayability is a key to 
reusing graphical operations. Proof-by-pointing tac
tics also make proof scripts more compact and read
able. 

6 Experience 

In this section, we describe some of the insights we 
have gained through the experience of writing HOL 
proof scripts using OUf interface. We found the merits 
of our interface to be as follows. 

The most important is that there is little overhead 
for the user in retrying tactics. In the course of con
structing a proof, repeated trial and error is often 
used, and this prevents the user from concentrating 
on the activity of proving. With our interface, in or
der to try a new tactic, the user merely rewrites the 
old tactic to a new one, and invokes the check com
mand. When the user interacts directly with HOL, 
he or she must recover the status of HOL before a 
new tactic can be tried. The merit of our interface is 
particularly evident when the user wants to change a 
part of a finished proof script, because setting up the 
status of HOL properly by hand is very difficult. 

When the check command is executed, control 
structures (THEN or THENL) and parentheses are au
tomatically inserted, meaning that the user does not 

need to pay attention to the structure of the proof 
script. 

We also noticed some demerits of our interface. 
One is that proof scripts written with our inter
face tend to become long because they contain many 
CLAIMs. In particular, when a goal term is large, each 
CLAIM may consume many lines. In such cases, the 
user has to delete CLAIMs by hand. But the user has to 
pay attention to the effect of deleting a CLAIM from a 
finished script; replacing a CLAIM with a BY is safe, but 
deleting a CLAIM may be harmful because the specifi
cation of the goal at a CLAIM is relative. The user can 
resolve this conflict by using the check-claiM-specs 
command. 

Another inconvenient point is that when an error 
arises, the user has to investigate the cause of the 
error by looking at the output of HOL. Since typo
graphic errors or careless mistakes often occur, we 
consider that error handling is a serious problem to 
be solved. 

7 Conclusion 

We developed an Emacs interface for writing HOL 
proof scripts based on the Computing-as-Editing 
paradigm. By using this interface, the user can edit 
structural proof scripts while interacting with the 
HOL prover. The interface also supports proof-by
pointing to input tactics. 

In the future, we plan to implement drag-and-drop 
rewriting [2J and other kinds of GUI under our frame
work. 

Our experience so far suggests that the cost of com
munication between Emacs and HOL is not large, but 
it is important to investigate how the communication 
cost increases as we treat huge goals with our inter
face. 

It is also important to solve the problem that for 
huge goals the text inserted by check becomes too 
long. The representation of terms needs to be im
proved, for example, by embedding huge terms into 
hyper text [9J. 

As mentioned in Section 6, error handling is an
other important issue. 

The developed interface will be available from the 
following URL in the near future. 

http://nicosia.is.s.u-tokyo.ac.jp/boomborg/ 
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A An example of script 
(. 

* DESCENDING_CHAIN, NOETHERIAN_CHAIN 
.) 

use "bbg-hol.sml"; 
nell_theory "example"; 
add_theory_to_sml "arithmetic"; 

val NOETHERIAN_CHAIN_DEF = 

nell_definition( 
"NOETHERIAN_CHAIN_DEF" , 
"!(k_:num->num). NOETHERIAN_CHAIN k_ = 

?n. !m. (n < m) ;=) (k_ m = k_ n)'f); 

val noetherian_prop_l = 

STORE_THM("noetherian_prop_l". 

16 'I. 

<'I(k_:num->num). 
NOETHERIAN_CHAIN k_ = ?n. !m. (n <= m) ==) (k_ m = k_ n)", 

REWRITE_TAC [NOETHERIAN_CBAIN_OEF. LESS_OR_EQ] THEN 
GEN_TAC THEN 
EQ_TAC THEN 
STRIP _TAC THEN 
EXISTS_TAC "n:num" THEN 
REPEAT STRIP_TAC THENl [ 
CLAIM [assume' 'n < m". 

assume "!m. n < m ==> «k_:num->oum) m = k_ n)"] 
(holds "(k_:num->oum) m = k_ n") ( 

RES_TAC 
). 
CLAIM [assume' 'n:oum = m", 

assume "!m. 0 < m ==> «k_:oum->num) m ~ k_ n)"] 
(holds "(k_:oum->num) m = k_ n") 

ASH_REWRITE_TAC(] 
), 
CLAIM (assume' '0 < m". 

assume "!m. n < m \/ (0 = m) ==> «k_:num->oum) m = k_ n)" 
(holds "(k_:oum->num) m = k_ n") ( 

RES_TAC 
)] 
) ; 

val DESCENDING_CHAIN_DEF c 

nev_definition( 
"DESCENDING_CHAIN_DEF" , 
"!k_. DESCENDING_CHAIN k_ = 

) ; 

!(n:num). (k_ (SUC n» <= (k_ n)"); 

!n m. n <= m ==> k_ m <= k_ n". 
GEN_TAC THEN REWRITE_TAC[DESCENDING_CHAIN_DEF] THEN 
DISCH_TAC THEN 
CLAIM [assume "~tn. k_ (SUC n) <= k_ n"] 
(holds "!o m. n <= m ==> k_ m <= k_ n") 

REWRITE_TAC[LESS_EQ_EXISTS] THEN 
CONV_TAC (DEPTH_CONV LEFT_IHP_EXISTS_CONV) THEN 
REWRITE_TAC(GSYM LESS_EQ_EXISTS] THEN 
REPEAT GEN_TAC THEN 
HAP _EVERY SPEC_TAC 
[(' 'm:num",' 'm:num' '). (' 'n:num".' 'n:num' '), 
("p:num","p:oum")] THEN 

CLAIM [J (holds "!p n m. (m = 0 + p) ==> k_ m <= k_ n") 
INDUCT_TAC THENL [ 
CLAIM [J (ho1ds "In m. (m = n + 0) ==> k_ m <= k_ n") 

SIMP_TAC hol_ss [] 
), 
CLAIM [assume "!n m. (m = n + p) ==> k_ m <= k_ n"] 
(holds "!o m. (m '" 0 + SUC p) ==> k_ m <= k_ n") ( 

REPEAT STRIP_TAC THEN 
ASH_REWRITE_TAC(GSYM ADD_SUC] THEN 
MATCH_HP_TAC 
(SPEC "k_ (n + p):num" 
(SPEC "k_ (SUC (n + p»:num" LESS_EQ_TRANS)} THEN 
STRIP_TAC TRENL [ 
CLAIM [assume "m = n + SUC p"] 
(holds "k_ (SUC (n + p» <= k_ (n + p)") 

FIRST_ASSUH MATCH_ACCEPT_TAC 
) , 
CLAIM [assume "m = 0 + SUC p"] 
(holds "k_ (n + p) <: k_ nU} ( 

FIRST_ASSUM MATCH_MP_TAC THEN 
CLAIM [] (holds "n + p = n + p") 

SIMP_TAC hol_ss [] 
) 

)] 
)] 
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1 Introduction 

The Knuth-Bendix completion procedure, or more precisely the family of completion 
procedures, is at the heart of algebraic theorem proving and equational programming. 

In a theorem proving setting, it can be used for solving the word problem in a given 
algebra (is s equal to t modulo some given equations 7) by first trying to determine 
a convergent rewrite system equivalent to the equations and then rewriting using 
these rewrite rules. It also provides a semi-decision procedure for solving arbitrary 
equations (unfailing completion [2]). 

In a programming environment, it can be seen as a program transformation tech
nique for constructing programs with desired properties (usually convergence, conflu
ence or coherence [10, 16]). Equational programming, or its generalization rewriting 
logic, is a very high level specification language with a direct operational counterpart, 
ie. specifications are immediately executable as long as the rules and equations verify 
some of those properties. 

Ongoing research on completion has led to many tools implementing variations 
of the completion procedure (for instance REVE [12], Orme [13J, Cime [3]). On the 
other hand, programming environments based on term rewriting have also become 
available (OBJ3 [5J, Maude [14J, ELAN [11], CafeOBJ [4]), with various semantic 
extensions to the basic model and with fast implementations [15J. 

However, these programming environments remain static in the sense that they 
provide a descriptive framework and an implementation, but do not integrate program 
transformation. Namely, it is up to the user to provide systems of rules and equations 
meeting the required properties: no facility is provided for the construction of the 
program, which usually implies using some kind of completion procedure. 

Finding a system of rules and equations verifying the desired properties is not 
an easy task. First of all, it is undecidable in general whether such a system exists, 
hence one cannot expect an automated procedure to produce the desired result: user 
interaction is a necessity. 

Then, reaching the solution (when it exists) implies making the right choices at the 
right time. Because the number of rules and equations generated by the completion 
procedure may grow very quickly, it is very important to present information in a way 
easy to understand when asking the user for interaction. Because a choice may lead 
to a dead end, it is also important to allow a possibility of backtracking for undoing 
previous choices. A well designed user-interface is of upmost importance. 

Existing theorem provers dedicated to completion were often designed to imple
ment and test theoretical ideas, but are usually weak from a user interface point of 
view. Most run in some kind of batch mode, taking a text file as input and producing 
a text file, with little interaction and often no possibility of backtracking. 



Reusing interfaces developed for other kinds of theorem provers is not an option, 
because completion is quite different from other theorem proving techniques. The 
objects on which it operates are sets of rules and equations, with a complex structure 
and the notion of critical pair at the heart of the deduction process. It is not goal 
directed, all consequences of the initial set of rules and equations must be generated 
in order to find a solution. 

I will present here some preliminary ideas towards a user interface for completion 
and its integration within programming environments. These ideas mainly stem from 
the "proving aB editing" paradigm [7, 8]' which considers that developing a proof 
consists of editing the proof object (typically in a buffer of GNU emacs), where the 
baBic editing operations correspond to deduction steps. 

An important feature of the user interface presented here is dependence-baBed 
backtracking, that is the ability to undo an operation and all the subsequent opera
tions dependent on it, without undoing unrelated operations even if they took place 
later in time. This makes proof reuse easy and intuitive. 

Because of space limitations, I will assume familiarity with term rewriting and 
completion. A gentle introduction to these concepts can be found in [1]. 

2 Definition 

I will present here a "typical" completion procedure. There are many variations or 
extensions of this procedure, but they all work along the same baBic principles and 
should be able to accomodate the same interface. 

A completion procedure starts with a finite set of equations E and tries to find 
a convergent rewriting system R equivalent to E, that is such that the relations =E 

and =R are the same. It works on pairs (Ei' R i ), with Eo = E and Flo = 0, and each 
deduction step 

(Ei,Ri) I- (Ei+"Ri+,) 

is an application of one of the inference rules given in figure 1. A completion succeeds 
if En = 0 for some n, in which case Rn is a convergent rewrite system equivalent to 
E. It may also end in failure if En oF 0 and no inference rule applies, or it may not 
terminate. 

Note that the order> on terms (in the condition part of ORIENT) is a parameter 
of the completion procedure. 

In the case of DEDUCE, the terms sand t are normally defined using the notion of 
critical pairs. For two rules II --+ Tl and l2 --+ T2, if there is a position p in II such 
that Z, Ip is not a variable and there exists a most general unifier u of 1,Ip and 12 (with 
their variables renamed), then (ur" (ul, Hur2]p) is a critical pair. A critical pair (8, t) 
is trivial if there exists v such that s ---t v t-- t. The set of all critical pairs between 
rules of R is denoted CP(R) ; the condition part of DEDUCE could thus be rewritten 
aB (8, t) E CP(R). 

Other variations or extensions of this basic completion procedures have similar 
sets of rules. The main difference relevant to our purpose is that some of them use to 
mark and unmark rules or equations. 

The inference rules can be claBsified according to their shape: 

Type 1. moving one rule of R to an equation of E or vice-versa (ORIENT, L-SIMPLlFY
RULE), or modifying one rule or equation (SIMPLIFy-IDENTITY, R-SIMPLIFY
RULE) 

Type 2. removing a rule or equation (DELETE) 



DEDUCE 

ORIENT 

DELETE 

SIMPLIFY -ID ENTITY 

R-SIMPLIFY-RULE 

L-SIMPLIFY-RULE 

E,R 
EU {s - t},R 

EU {s = t},R 
E,RU {s ---t t} 

Eu{s=s},R 
E,R 

EU{s=t},R 
EU{u-t},R 

E,RU 
E,RU 

E,RU{s---tt} 
Eu {u - t},R 

if S t--R u ---tR t 

if s > t 

if S ---tR u 

if t ---tR u 

if S ~R U 

Figure 1: The inference rules for completion as presented in [1 J. Equations s = t 
are considered non oriented, in order to avoid two copies of ORIENT and SIMPLIFY

IDENTITY 

Type 3. introducing a new rule or equation (DEDUCE, as well as the introduction of 
equations by the user) 

An application of an inference rule of type 1 and 2 is uniquely determined by 
the equation or rule on which it "applies", ie. the equation or rule singled out in 
the premisse (this is not exactly true because the reduct u in the simplification rules 
may not be unique, but the representation we will choose for the proof object allows 
to recover u). Applications of inference rules will thus be denoted ORIENT(e), L
SIMPLIFY-RULE(p), SIMPLIFY-IDENTlTY(e), R-SIMPLIFY-RULE(p), and DELETE(e). 

An application of DEDUCE is uniquely determined by a critical pair in CP(R), 
that is two rules II -----t Tl and l2 ----+ T2 and a position p in h. It will be denoted 
DEDUCE(Pl, P2,p). 

3 The proof object 

In the proof as editing paradigm, proving is editing the proof object. Our first task 
is thus to define the structure of this proof object. 

According to the definition of a completion procedure, a proof is a sequence 

(Eo, lW) I- ... I- (En, Rn) 

Given (Eo, lW), we can drop the intermediate terms (E;, Ri) and define a proof as a 
sequence of applications of inference rules, for instance 

ORIENT(en ) ; SIMPLIFY-IDENTITY(em ) ; 

This linear structure is not very informative, in particular it doesn't emphasize the 
commutation properties of the deduction steps. We would like to consider a comple
tion proof modulo commutation axioms such as 

ifm;;in 

l~:z. 



I will not try to give here all such axioms, but basically one would like to allow two 
deduction steps to commute as long as the second does not make use of a rule or 
equation that has been deleted or modified by the first. 

The proof objects that we shall consider from now on are thus sequences of infer
ence rules applications quotiented by these commutation axioms. 

In order to represent these proof objects, I propose the following structure, based 
on the notion of acyclic hypergraph. A hypergraph has nodes and multiedges, that is 
arrows with an arbitrary number of sources and targets. Hypergraph rules describe 
transformations of hypergraph. See [6J for a formal definition. 

The nodes of our hypergraph are rules and equations, possibly deleted (we are 
not allowed to discard them if we want to preserve the structure of the proof) and 
possibly marked or unmarked: 

Is = t I 
an equation 

18--+tl 
a rule 

's ::. il 's -=-::; il 
L.:=-~ L.: __ ~ 

a deleted equation a deleted rule 

Hyperedges are labelled with the name of an inference rule. To each inference rule 
corresponds one of the following hypergraph rules: 

Is = t I --+ ' ;l L!=t.J-
ORIENT 

18--+tl 

Is = t I --+ ' - ilSIMPLIFY-IDENTITY~ 
L!::'~' u=t 

18 = t I --+ ' il R-SIMPLIFY-RULE I I 
L!--+~- s--+u 

Is = t I --+ ' - - ilL-SIMPLIFY-RULE 
L!--+~- lu = t I 

18 = S I --+ [<=~ 

Il,--+TII --+ III --+ r, I p 

~ DEDUCE Is = t I 
112 --+ r21 ~ 

112 --+ r21 

In the first four cases (rules of type 1), a non deleted node is marked as deleted, 
and a new node is added with an edge labelled with the inference rule pointing to the 
old node. In the case of simplification rules, the reduced u is present as the left or 
right-hand side in the newly introduced node, and does not need to be made explicit 
as a parameter of the application. 

In the fifth case (DELETE), the node is simply marked as deleted. 
In the last case, an application of the inference rule DEDUCE depends on two rules 

and a position, hence the corresponding hyperedge has two targets, and is labelled 
with the position. 

Without a formal proof, we will take for granted that the class of hypergraphs 
constructed by repeated applications of these hypergraph rules (plus the rule corre
sponding to the introduction of a new equation by the user) is isomorphic to the class 
of derivations quotiented by the appropriate commutation axioms. 

We will say that a node n depends on a node m if there is a path from n to m in 
the hypergraph. 



equations 
al = a2 
bl = b2 

rules 
c1 -> c2 
dl -> d2 

spacial separation 

al = a2 
cl -> c2 
bl = b2 
dl -> d2 

mixed representation 

Figure 2: Two types of syntax 

4 Editing operations 

4.1 Textual representation 

A basic principle of the proof as editing paradigm is that there should be no state (also 
called principle of visibility), ie. the visible text should be an exact representation of 
the proof object being manipulated. 

The proof object can be shown in its entirety by displaying both deleted and non 
deleted rules and equations, and labelling them with the application that produced 
them (using rule numbers). Deleted rules and equations can be identified by a special 
marking and/or grayed text. For instance: 

f(x) = x + x 

f(x) --> x + X 

[1, Intro,Deleted] 
[2, Orient (1) 1 

In this example, Intro means a rule or equation introduced by the user. Although 
following the principles of proof as editing, such a display may not be suited for two 
reasons: 

• The number of deleted rules and equations grows very quickly, and can become a 
nuisance. On the other hand, deleted rules and equations may provide valuable 
information about the paths that have already been explored and help make 
future choices. I suggest that it should be possible to switch between displaying 
or not deleted rules and equations. 

• The information about edges is normally needed only at one point, when pre
viewing the effect of dependence-based backtracking (see section 4.3). This 
information can be displayed by highlighting all rules and equations depending 
on the currently selected one, which avoids the need of a textual representa
tion of edges and minimizes the amount of information displayed. It is however 
possible to provide a textual representation on demand. 

Obviously, a textual representation of edges is meaningless when the rules or 
equations referred to are deleted and not displayed. 

Five out of six inference rules replace one given rule or equation with an other. In 
order to keep the user focused, it is important that these operations can be done in 
place, and thus choose a "mixed" syntax that does not rely on spacial separation to 
identify what is a rule and what is an equation (see figure 2). 

The application of an inference rule of type 1 or 2 is now simple: point to the 
appropriate rule or equation, and select the rule to apply. 



(x+y)+Z -> x+(y+'l 

i(xli'X -> e 

,------------,I] 

Source window (possibly 
split in two). The supe:tposition 
is shown by highlighting 
subten:ns. 

Critical paits window. 

Figure 3: A sample display: selecting a critical pair for the application of DEDUCE. 

The application of DEDUCE is defined by a critical pair. Because identifying 
critical pairs is a difficult and non intuitive task, it is not reasonable to leave this 
burden to the user. I propose to have a second window displaying all current critical 
pairs (possibly limited to non trivial ones). Applying DEDUCE would consist then of 
choosing a particular critical pair in this second window. A sample display may look 
like figure 3. 

Finally, another editing operation should be provided, although not corresponding 
to any inference rule, namely the introduction of a new rule or equation. Not being 
able to complete a system may be a symptom of a bad design, for instance an incom
plete function definition, and an introduction operation makes it possible to modify 
the original system without restarting the proof from scratch (it also makes explicit 
the initial input of the set of equations). 

4.2 The order 

In the definition of completion, a given order> is used when orienting equations into 
rules (ORIENT). Finding the "right" order is part of the art of doing a completion 
(different orders may lead to failure or non termination of the completion procedure, or 
simply to different results), and it would be very convenient to be able to construct the 
order incrementally during completion (allowing backtracking also on the definition 
of the order). Such an incremental definition is actually possible for a large family of 
orderings (the recursive path ordering and its variations) and has been implemented 
for instance in REVE. 

In order to apply ORIENT to an equation s = t, we should have either s > t or 
t > s, but > may be a partial order and sand t may not be comparable. When this 
is the case, one may try to extend the definition of the order according to the desired 
orientation (it may be the case that neither orientation is possible, this is a cause for 
failure of the completion procedure). 

A nice feature of many kinds of orderings is that the definition of the order can be 
infered automatically from the chosen orientation. This leads to a nice user interface 
where one simply selects orientation of equations, without having to know about the 
underlying order. Otherwise, the application of ORIENT may start a dialog requesting 
the needed information. 

4.3 Backtracking 

Backtracking can take two forms: 
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• chronological: undo the last inference step 

• dependence based: remove a rule or equation, undoing all operations that were 
dependent on it 

Chronological ordering is easy to implement by numbering the edges of the hyper
graph in the order in which they have been added. Dependence-based ordering can 
be implemented by following paths in the hypergraph, removing all nodes depending 
on a given node and all the edges between them. 

This possibility of dependence-based backtracking, made possible by the structure 
we choosed for representing proof objects, provides a basis for proof reuse: all infer
ence steps that were not dependent on the removed rule or equation are preserved. 
Proofs can be reused between sessions by saving the whole proof object. 

As suggested in section 4.1, it is possible to preview the effect of dependence 
based backtracking by highlighting all rules and equations depending on the one to 
be deleted. 

4-4 Other issues 

Other aspects of this nser interface should or could be addressed, bnt I will only give 
here a brief summary for lack of space: 

• determining the set of critical pairs presented to the user is computationally 
intensive, it should be updated incrementally after each editing operation. 

• the same goes for the rewrite engine: reduction in simplification rules or in the 
test of trivial critical pairs uses the current set of rules. Fast rewrite engines 
contruct automatas for fast matching, these should be updated incrementally. 

• it should be possible to define tactics 

• although this is not possible in general, some common cases of non termination 
can be detected by identifying so-called forward closures [9J. This information is 
highly valuable for the user in order to avoid running into dead ends and could 
be computed for instance by a background process. 

5 Conclusion 

The preliminary ideas presented here have yet to be implemented and tested against 
practical usage. I hope however to have made clear the whole architecture of the 
system and shown how it can be effectively realized. 
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Abstract 

Yarrow is an interactive proof assistant based on the theory of Pure Type Systems, a 
family of typed lambda calculi. It offers both graphical and textual interfaces. It has been 
coded entirely in Haskell, making use of the Fudget library for the graphical interface. In 
this paper we concentrate on the software architecture of Yarrow, in particular the coupling 
of user interface and proof engine. We also treat the presentation of proofs in the flag-style 
format. 

1 Introduction 

In this paper we describe the system Yarrow, an interactive proof assistant based on the theory 
of Pure Type Systems, a family of typed lambda calculi. In typed lambda calculi, theorems and 
proofs can be represented as well-typed terms, proof checking amounts to type checking, and proof 
construction to the construction of a term of a given type. These properties make typed lambda 
calculi well suited as formal basis of systems that support interactive construction of proofs, so
called proof assistants. Some well-known proof assistants of this kind are Coq [Coq97], LEGO 
[LP92], and Alfa [Ha197]. 

The system Yarrow has been designed as a flexible environment for experimentation with PTSs, 
extended with a definition mechanism. It can handle a large class of PTSs, the so-called bijective 
PTSs [PoI93], which includes all systems of the lambda cube [Bar92]. A typical Yarrow session 
consists of: selecting a PTS and loading several modules of definitions and theorems based on 
this PTS, after which a number of proof tasks are carried out. Each proof task consists of the 
interactive construction of a term which is well typed with respect to the loaded context. Besides 
a conventional command line interface, Yarrow also offers a graphical interface with windows for 
global context and proof tasks, menu and mouse selection of tactics and subterms. 

Yarrow has been coded entirely in the purely function language Haskell [Th096, Pet97]. In this 
paper we discuss two interesting aspects of the Yarrow: 

1. The architecture that supports for multiple interfaces: The Yarrow proof engine has been 
designed in such a way that it can cooperate with various user interfaces. Two such interfaces 
have been developed. First, a simple command line interface, which can be used on any 
platform supporting Haskell, because this interface is based on the standard 10 monads 
[Th096]. Second, a graphical interface based on the Fudget system [HC95], which is a Haskell 
library available for a limited number of platforms. The coupling between user interface and 
engine is very thin, consisting of just a single function. 

2. The ability to print proofs in the so-called flag-style format. 
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Figure 1: Global system architecture 

In section 2 we describe the global architecture of Yarrow. Section 3 treats the top level user 
interface, and the communication with the engine. Section 4 discusses the flag-style format. We 
give the conclusion in section 5. 

2 System architecture 

Figure 1 shows the architecture of Yarrow. Each block is a module with a certain functionality, 
and each arrow indicates a dependency. The block labeled "Engine" is the part that defines the 
objects of our system (terms, contexts, specification of PTSs) and the functions that manipulate 
these objects, like the typing routine, the tactics, and the routines that extend the context. 

The block labeled "Service routines" consists of all sorts of routines needed for the user interface 
without actually performing any 10. This includes printing and parsing routines, and the displaying 
of help texts. The service routines depend on the engine in a rather trivial way. They use only 
the representation of the objects and some elementary functions on these representations. 

The block labeled "Top level user interface" (TLI) contains the main loop of the program. This 
handles input by the user, sends the appropriates messages to the engine, and presents the results 
of these messages on the screen. The TLI uses several service routines, but only one function of 
the engine. The combination of the TLI with the service routines forms the user interface. We 
have split the user interface in these two parts because of modularity; every pair ofTLI and service 
routines can be combined into a user interface. 

The following three sections each describe one of the blocks and the connection with other 
blocks. 

3 Top level user interface 

In section 3.1 we describe the communication between the TLI and the engine. Currently, there 
are two top level interfaces available. A command line interface (section 3.2) and a graphical user 
interface (section 3.3). 

3.1 Communication 

In this section we describe how the communication between the top level user interface and the 
Yarrow engine is implemented. From the viewpoint of the TLI, the engine is just a database to 
which queries can be sent, which will return a certain result. All possible queries are packed into 
a datatype called Query, and all possible results into Result. The only function from the engine 
available to the TLI is doQuery, which handles all queries. So the communication between the 
TLI and the engine can be visualized as in figure 2. 

Since we work in a purely functional language, the engine does not own a state. How can the 
engine then change the context, for example? The answer is that doQuery is a state transformer. 
Concretely: 

doQuery :: (Query,EngineState) -) (Result,EngineState) 
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Figure 2: Communication 

So a more precise way of viewing the information flow is that a pair (query, engineState) is sent 
to the engine, which responds with a pair (result, engineState'). It is the responsibility of the 
TLI that the next query is paired with this new engineState'. 

Now we will consider the datatypes Query and Result in more detail. A stylized subset of 
the queries and results is depicted in figure 3, in total there are about 30 queries and 20 results. 
They are grouped around five subjects. The following list gives these subjects and one or two 
representative queries with their associated results. 

l. Proof-tasks. The query QProveVar (v,t) starts a new proof-task, where t is the goal, and 
v is the name of the goal. The engine gives as result RProofTask taskld toProve. The 
variable taskld contains the identification of the proof-task (there may be several proof
tasks), and toProve contains all information about the proof-task, i.e. the proofterm, and 
all the subgoals. The query QTactics taskld tacticTerm performs the tactic associated 
with tacticTerm on proof-task taskld, with result RTactic toProve. 

2. Loading and saving of modules (i.e. a group of related definitions). For example, the query 
QLoadModule name contents request the loading of module name. Since the engine cannot 
do any 10, the TLI also gives as parameter the contents of the file associated with name. 
Usually, this leads to the result RModulesAre, which indicates that loading is done, and 
gives the new list of currently loaded modules. If the module imports other modules, more 
communication is necessarily performed through queries and results. This is quite awkard. 

3. The global context. The query QDeclareVars adds one or more declarations to the context, 
and QGiveGlobContext requests the current context. Both result in RGlobContextIs. 

4. The parameters of the system. The query QSetTypingSystem asks for a change in PTS, and 
this is answered with RTypingSystemOk. 

5. Calculation of normal forms or types. For example, QGiveType t requests calculation of the 
type of t, and RTypels returns t with its type and sort. 

So each query is associated with a small number of results (usually one). Apart from that, the 
result RError is always allowed. 

The big advantage of having only this narrow communication channel between the TLl and 
the kernel is modularity. This reveals itself in three ways: 

• The connection between the engine and the TLl is very sharply defined. 

• The TLI uses 10 monads or fudgets (both with state) in order to perform 10. Since there 
is only one communication channel, the conversion between the ordinary functional types of 
the engine on one hand, and the 10 monads or fudgets on the other hand, is limited to one 
place in the program. 

• Since different queries can have the same sort of result, the output for these queries will be 
uniform. 
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data Query = 

QProveVar (Vari,Term) I 
QTactic TaskId TacticTerm 
QLoadModule ModuleName String 
QDeclareVars ([Vari] ,Term) I 
QGiveGlobContext I 
QSetTypingSystem System 
QGiveType Term I 

data Result = 

RProofTaskId TaskId ToProve 
RTactic ToProve I 
RModulesAre [Module Info] I 
RGlobContextIs GlobContext 

RTypingSystemOk I 
RTypeIs (Term,Term,Sort) 
RError ErrorMessage I 

Figure 3: A subset of the queries and results 

3.2 Command line interface 

The actual implementation of the textual interface is not very interesting. Therefore we concen
trate on how this top level user interface is used, which is quite similar to Coq and LEGO. We do 
this by a simple example. 

Su ppose the user is working on a proof of If P, Q, R. (P -+ Q -+ R) -+ (Q -+ P -+ R). After a 
few steps, the goal is to prove the following. 

P : * 
Q * 
R * 
8 P->Q->R 

Q->P->R 

Above the dashed line is the local context of the goal; these declarations and assumptions may 
be used to prove the proposition under the line. The user now types intros to perform the 
--+-introduction tactic as often as possible. 

P * 
Q : * 
R * 
H P->Q->R 
H1 : Q 
82 : P 

R 

The --+-elimination tactic on H is now invoked as follows. 

$ apply 8 
2 goals 

P : * 
Q * 
R * 
8 P->Q->R 
H1 : Q 
H2 : P 

P 

2) Q 

I-?H{. , . 



Figure 4: A screen shot of the GUI 

At this point there are two goals. The first goal is to prove p in the local context shown; the 
second goal is to prove Q, but its local context is not shown. (In this case it is the same context 
as for pl. Here we abort the proof. 

3.3 Graphical user interface 

The Fudgets library [HC95] is used to implement the graphical user interface. Fudgets offers 
mechanisms to construct and combine windows, buttons, menus and other window gadgets. The 
implementation of the graphical user interface is described in detail in [Rai97]. 

We treat again the example given in section 3.2, but now in the graphical user interface. The 
starting point is shown in figure 4. There are two windows, one for the global context (on the 
left), and one for the proof we are working on (on the right). For this example, all actions take 
place in the latter. The main area of this window is divided into three parts. The top part 
shows the local context of the current goal, the middle part shows the current goal itself, and the 
bottom part shows the other goals. On the right-hand side of the window are several buttons 
for invoking commonly used tactics. A complete list of tactics can be found under the menu bar 
entries Tactics and Special. The far bottom of the window consists of a command line, where 
the user can type in commands, and a status line, which displays possible errors. 

The user invokes the --+-introduction tactic by clicking on the button labeled Intros. This 
results in an immediate change in the main area of the window. The user then selects the variable 
H in the local context by clicking on it, and clicks on the button labeled Apply. These actions 
form the --+-elimination tactic. The same effect can be achieved in several other ways. First, by 
clicking Apply without having selected a term. This causes a pop-up window to appear, in which 
H can be typed in. Second, by selecting the apply tactic from the menu-bar entry Tactics. Third, 
by selecting H, summoning the pop-up menu, and selecting the Apply H option from this menu. 
Last, by typing Apply H in the command line on the bottom of the screen. 

The graphical user interface has the usual advantages of GUIs over CLls. One particular 
example for Yarrow is that unfolding one occurrence of a defined variable (e.g. in the goal) is 
achieved by clicking on this occurrence and clicking the Unfold-button. The user of Yarrow with 



the CLI has to count which occurrence he wants to unfold, and type in this number as parameter 
to the unfold tactic. 

4 Flags 

Yarrow has the ability to print proofs in the flag-style format [Ned90). This is a formal notation 
for proofs which makes it clear which hypotheses are valid at each point in the proof. Every 
hypothesis is written in a box. Connected to this box is a "flagpole", which indicates the scope 
of this hypothesis. The justification for every proposition is written behind it; a justification 
typically consists ofa logical construct (e.g. II, V), a letter that indicates whether this construct is 
Introduced or ~liminated, and references to the lines or theorems which the current line depends 
on. For an example of this style, see figure 5, which proves in a certain context that the insert 
function keeps ordered lists ordered. We prefer this more formal notation to a textual presentation, 
because the flag-style format is clearer, more concise, and the propositions are not embedded within 
English "prose". A very similar notation is used in Jape [SB96), where this layout is used to build 
proofs interactively. 

The algorithm that produces this presentation of a proof from a proof-object is quite similar 
to the ones described in [CKT95) and [Cos96), although they produce proofs in pseudo natural 
language. The basic algorithm is natural and simple: the presentation of a proof-term p is a 
composition of the presentations of the subterms of p. However, this produces quite lengthy 
proofs. A big improvement is the combination of similar steps into one step, e.g. in line 20 of 
figure 5, two steps are contracted into one (VE of line 9 with term b, and ==>E of the result with 
line 19). Up to this improvement, the algorithm in [Cos96) and ours are similar. An important 
differnce is that their algorithm works for the Calculus of Inductive Constructions, whereas ours 
works for PTSs. 

5 Conclusion 

The main contribution of this paper is the design of Yarrow, that allows several user interfaces to 
be used with one engine. We decided to create a very narrow communication channel of queries 
and results, that are handled by one function of the engine. This approach is successful. It helps to 
separate the tasks of the total program, and allowed us to implement the user interfaces quite in
dependently from the engine. Furthermore, it promotes uniformity, e.g. similar commands always 
give the same format of output. The strict adherence to this discipline made the implementation 
of a few commands with a lot of 10 complicated, but most commands are well-suited to this 
approach. 

Let us tell a bit more about our experiences in building and using the graphical interface. It 
was built using the Fudgets library, which allows easy construction of windows from components 
like buttons and text-fields. However, Fudgets offers only a very basic functionality; more fancy 
features like dragging are absent. But even without these features a CUI would be a big improve
ment over a CLI. However, when using the GUI, it turned out that the Fudgets library was rather 
slow and memory demanding, that it contained many bugs (i.e. resizing a window didn't work 
properly) and that certain essentail features were missing (i.e. saving a file was not implemented). 
To conclude our experiences, we think the concepts of the fudgets library made programming a 
GUI easy and enjoyable, but the library is not ripe enough to be used in a "real-world" application. 

Another contribution of this paper is the presentation of proofs in the flag-style format, which 
is more formal than proofs in pseudo natural language. Future work could include interactive 
construction of proofs in this format, similar to Jape [SB96). 

Yarrow with a command line interface is electronically available from the world wide web 
[Zwa97J. 
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Figure 5: A long proof in flag-style 

m : flat I 
Ordered (nilllat) I 
insert m (nil Rat) _ singletonm 

Ordered (singletonm) 

Ordered (insert m (nil Rat)) 

Ordered (nil Rat) ===> Ordered (insert m (nillat» 

a : Rat 
as: List Rat 
Ordered as==} Ordered (insert mas) 
Ordered (a; as) 

(Vb: lat. Elem b as=:::} a :S b) A Ordered as 

Yb:llat. Elem b as=:> a :::; b 

Ordered as 

m$ava<m 

m < a I 
insert m (a; as) :::: m; ai as 

b : Rat 
Elem b (a;as) 

b _ a V Elem b"as 

I EI,m b as I 
I a ~ b 

a~b 

m~b 

'Vb: Jlat. Elem b (a;as)=?m ~ b 

Ordered (m;a;as) 

Ordered (insertm (a; as)) 

a < m I 
insert m (a; as) = a; insert m as 

Ordered (insert mas) 

b : Bat 
Elem b (insert m as) 

b _ m V Elem b as 

I :~: I 
a$.b 

I EI,m b as I 
I as b 

aSh 

'v'b:llat. Elem b (insert m as) ===? a :::; b 

Ordered (a; insert mas) 

Ordered (insert m (a; as» 

Ordered (insertm (a; as)) 

Va: lat. Vas: List Ilat. (Ordered as==> Ordered (insert m as» ===> 
Ordered (a; as) ==> Ordered (insert m (a; as» 

V'l:List lat. Ordered I===} Ordered (insert m 1) 

V'm:llat. \fl:List flat. Ordered I==? Ordered (insert m 1) 

hyp 

hyp 

'VE inserLnil 

'VE Ordered_singleton =_ 3,4 

=12-5 

hyp 

'VE OrdereLcons_,10 

I\EL 11 

i\ER 11 
'VE Le_Or_Gt 

hyp 

'VE Le __ insert,15 

hyp 

hyp 

'VE Le_reft =_ 20,21 

hyp 

'VE 12,23 

vE 19,20-22,23-24 

'VE Le_trans,15,25 

1f117-26 

VE OrdereLcons,10,27 

=- 16,28 

hyp 

VE Gt_insert,30 

==:::}E 9,13 

hyp 

'VE Elem_inserL,34 

hyp 

'VE m_LLn __ m_Le_n,30 =_ 36,37 

hyp 

IfE 12,39 
vE 35,36-38,39-40 

Ifl 33-41 
VE Ordered_cons,32,42 =_ 31,43 

vE 14,15-29,30-44 

1f17-45 

VE indlist,6,46 

1f11-47 
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