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Abstract

The discovery of unknown lemmas, case-splits and other so called eureka steps are

challenging problems for automated theorem proving and have generally been as-

sumed to require user intervention. This thesis is mainly concerned with the auto-

mated discovery of inductive lemmas. We have explored two approaches based on

failure recovery and theory formation, with the aim of improving automation of first-

and higher-order inductive proofs in the IsaPlanner system.

We have implemented a lemma speculation critic which attempts to find a missing

lemma using information from a failed proof-attempt. However, we found few proofs

for which this critic was applicable and successful. We have also developed a program

for inductive theory formation, which we call IsaCoSy.

IsaCoSy was evaluated on different inductive theories about natural numbers, lists

and binary trees, and found to successfully produce many relevant theorems and lem-

mas. Using a background theory produced by IsaCoSy, it was possible for IsaPlanner

to automatically prove more new theorems than with lemma speculation.

In addition to the lemma discovery techniques, we also implemented an automated

technique for case-analysis. This allows IsaPlanner to deal with proofs involving con-

ditionals, expressed as if- or case-statements.
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Chapter 1

Introduction

Discovering unknown lemmas and theorems, generalisations, case-splits and other so

called eureka steps, are major challenges for automated theorem proving. It has gen-

erally been assumed that lemma discovery requires user intervention. Consequently,

most theorem provers rely on the user to supply any additional lemmas that might be

needed. Interactive theorem provers, such as Isabelle [65], often come with large the-

ory libraries of previously proved lemmas and theorems that are carefully configured

and expected to be useful in future proofs.

Approaches to automated lemma discovery can broadly be divided into lazy and

eager techniques. Techniques following a lazy approach attempt to conjecture suitable

lemmas when needed in a particular proof attempt. An example of this is proof crit-

ics, where information from failed proof attempts is used to speculate missing lemmas

[41]. In contrast, eager techniques attempt to discover useful lemmas about available

functions in advance, thus producing a richer background theory. For a powerful the-

orem prover, with sophisticated lazy techniques for finding lemmas when needed, it

may suffice with a simple background theory. However, a richer background theory

makes it possible to find many harder proofs more efficiently, without further lemma

discovery techniques.

We have implemented and evaluated one lazy and one eager technique for lemma

discovery, with the aim of improving automation of higher-order inductive proofs in

the IsaPlanner system [26, 27, 25]. Firstly, we have implemented a lemma speculation

critic, which, following the lazy approach, tries to find a missing lemma when an

inductive proof attempt fails before the inductive hypothesis can be applied. However,

lemma speculation turned out to have some serious limitations, and is rarely applicable.

Following the eager approach, we implemented a program for theory formation in

1



2 Chapter 1. Introduction

inductive theories, called IsaCoSy, which synthesises theorems from recursive datatype-

and function definitions.

An automated technique for case-analysis was also implemented, enabling IsaPlan-

ner to deal with proofs involving conditional statements.

The hypothesis we set out to verify can be summarised as follows:

1. Automated lemma discovery techniques can increase the number of inductive

proofs found automatically. Lemma speculation is however rarely applicable

and is less useful than theorem synthesis, which can tractably produce interesting

and useful lemmas.

2. Automated case-analysis techniques enable more theorems to be proved auto-

matically, in particular, theorems involving conditionals.

1.1 Motivation

Inductive proofs are important when reasoning about repetition, for example, recur-

sively defined datatypes and functions. Reasoning about iteration or recursion in com-

puter programs requires induction, which is sometimes needed in program verification.

Program verification, is becoming increasingly important as computers become inte-

grated in a vast variety of safety critical systems such as cars, power stations, medical

equipment and aeroplanes.

Automating induction is however a difficult task. First of all, as induction is in-

complete, there will exist truths that our automated theorem prover will not be able

to prove (see §5 of [9] for a discussion). Furthermore, cut elimination is not possible

in inductive theories. The cut-rule (equation 1.1) is required in inductive proofs to al-

low introduction of an intermediate lemma or a generalisation. Informally, the cut-rule

states that if we can prove a goal ∆ from some context Γ, also using a ‘lemma’, A, and

A can itself be proved from Γ, then it is possible to ‘cut out’ A from the proof of ∆. The

proof of A can essentially be included into the proof of ∆:

Γ, A ` ∆ Γ ` A

Γ ` ∆

(1.1)

A consequence of the failure of cut elimination is that inductive proofs will some-

times require lemmas that are not already available and cannot be proved without a
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nested application of induction. Furthermore, when used backwards, the cut-rule in-

troduces a potential infinite branching point in the search space, as the ‘lemma’ A can

be any formula. To manage these consequences of the cut-rule, we need good heuris-

tic techniques for deciding which lemma is needed and when. Proof-planning critics

for lemma discovery are heuristic techniques designed to address these issues. Critics

were introduced by Ireland et al. to automatically discover missing lemmas, general-

isations and case-splits from information in failed proof attempts [41]. These critics

were implemented in the first-order proof-planning system CLAM 3 [13].

An alternative to proof critics is to use automated theory formation techniques

to eagerly attempt to find useful lemmas in advance. In inductive theories, this is

an equally challenging problem. Not only do we still need to automatically prove

theorems, but the program also needs to invent the conjectures themselves. To our

knowledge, there is only one system, MATHsAiD [59], that currently is able to perform

theory formation for inductive theories.

1.2 Aims of the Project

The aims of the project were twofold. Firstly, we aimed to extend Ireland’s idea of

proof-critics, in particular for lemma discovery and case-analysis, to higher-order logic

in the IsaPlanner system, thus improving automation. Secondly, we wished to contrast

lazy lemma discovery by proof critics with eager lemma discovery, using theorem

synthesis to discover a set of useful lemmas in advance.

One of IsaPlanner’s main weaknesses was its lack of a case-analysis mechanism,

which is crucial in many proofs involving functions with conditional definitions. We

therefore wanted to implement a case-analysis technique (see Chapter 5), to extend

the set of proofs IsaPlanner can deal with automatically. IsaPlanner did already have

a simple lemma calculation critic, which proves, as lemmas, generalised versions of

any sub-goal remaining after the inductive hypothesis has been applied. This works

well for many proofs. We implemented and evaluated a more sophisticated lemma

speculation critic (see Chapter 6). Results were however not encouraging.

We also aimed to build a program that is able to efficiently synthesise interesting

and useful theorems and lemmas from recursively defined functions and datatypes, in

different inductive theories (see Chapter 7). Synthesising a good background theory

can reduce the need for lemma speculation in an automated theorem prover, and may

also reduce the workload of a human user developing a new theory.
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1.3 Contributions

We will here summarise the main contributions and results of our research.

• We designed and implemented the IsaCoSy program, following a novel approach

for inductive theory formation by conjecture synthesis. We applied it to different

theories about natural numbers, lists and binary trees, including first- and higher-

order functions. Using Isabelle’s library theories as a reference, IsaCoSy had

high recall of 83-100%, if slightly lower precision of 38-63%. We also showed

that adding synthesised theorems to our theorem prover reduced the need for

lemma speculation.

• We designed, implemented and evaluated a lemma speculation critic for Isa-

Planner, extending previous work by Ireland et al. to higher-order logic. We

highlighted limitations of lemma speculation not discovered in previous work.

• We designed, implemented and evaluated a novel technique for case-analysis

in IsaPlanner, able to deal with if- and case-statements. We showed that it im-

proves on existing techniques, and that it allows IsaPlanner to prove a significant

number of theorems that could not previously be automated.

In addition to the above, we have also improved the IsaPlanner system by adding

tools for reasoning efficiently about goals with meta-variables, which includes heuris-

tics for restricting higher-order unification during rewriting and resolution.

1.4 Overview of the Thesis

The remainder of the thesis is organised as follows:

Chapter 2: Literature Survey. We give an overview of literature in the domain, in

particular proof-planning and inductive theorem proving. We discuss various

techniques for dealing with failure in such systems by, for example, introducing

missing lemmas or generalisations. We also give a summary of work in the area

of automated theorem discovery and theory formation.

Chapter 3: Background. We present some background material including a brief in-

troduction to higher-order unification and an introduction to rippling, as well as

overviews of the Isabelle and IsaPlanner systems.
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Chapter 4: Reasoning with Meta-Variables. We describe our new techniques for rea-

soning with meta-variables, middle-out rewriting and restricted resolution, which

are used by the lemma speculation and case-analysis techniques to restrict higher-

order unification. We also introduce the concept of partial wave-rules, which are

used in middle-out rewriting to help manage meta-variable instantiatations.

Chapter 5: Case-Analysis. Our case-analysis technique for IsaPlanner is described

and evaluated. We show that the new case-analysis technique enables IsaPlan-

ner to prove a range of new theorems involving conditionals. We also identify

some weaknesses in IsaPlanner and suggest improvements to its reasoning about

conditions as further work.

Chapter 6: Lemma Speculation. We present our lemma speculation critic for Isa-

Planner, extending existing work to higher-order logic. Lemma speculation is

also evaluated and the major weaknesses of the technique are identified and dis-

cussed.

Chapter 7: Conjecture Synthesis. The implementation of our conjecture synthesis

algorithm as the IsaCoSy program is described. We show how a generative syn-

thesis process can become manageable by deducing constraints from known the-

orems.

Chapter 8: Evaluation of Conjecture Synthesis. We evaluate IsaCoSy’s conjecture

synthesis machinery on several different theories about natural numbers, lists

and trees, and discuss some related work.

Chapter 9: Further Work. We discuss further work in the area of automated induc-

tive theorem and lemma discovery. In particular, we suggest improvements to

our conjecture synthesis algorithm.

Chapter 10: Conclusions. We draw conclusions from our results and discuss to what

extent the aims of the project have been met, and whether our hypothesis has

been confirmed.

Finally, Appendix A contains definitions of functions used in the thesis while Ap-

pendix B contains the experimental results for the case-analysis technique. Appendix

C contains experimental results for conjecture synthesis.
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All techniques described in chapters 4 - 7 of the thesis have been fully implemented

in IsaPlanner. The source code is available from the IsaPlanner web-page1.

1.5 Summary

Improving automation of inductive theorem proving is a challenging but important

problem. The main goal of this project is to investigate techniques for automating the

discovery of inductive lemmas. We do so by two different techniques, failure recovery

and theory formation. We hypothesise that such techniques can increase the domains

for which fully automated inductive proofs can be performed.

1http://dream.inf.ed.ac.uk/projects/isaplanner/



Chapter 2

Literature Survey

2.1 Introduction

Our work is implemented within the proof-planning approach for automated theorem

proving, which we introduce in §2.2. We also give an overview of available proof-

planning systems. Rippling is an important heuristic often used with proof-planning

for inductive proofs. It is described in §2.3. In §2.4 we introduce the idea of middle-out

reasoning, which allows difficult choices in a proof to be postponed. In §2.5, we survey

techniques for dealing with common failures in automated inductive proofs. These

include for example finding appropriate generalisations or missing lemmas. Similar

techniques, applied to reasoning about computer program correctness, are surveyed in

§2.6. As a contrast to the techniques that attempt to add missing lemmas when a proof

gets stuck, in §2.7, we survey other approaches that instead attempt to form useful

background theories directly from initial definitions.

2.2 Proof Planning

Proof-planning was developed by Alan Bundy, motivated by the observation that hu-

man mathematicians often first have a high level plan for how to go about solving a

proof and then fill in the exact details [8, 12]. The proof-planning technique is used

to guide search in automated theorem proving by exploiting the fact that there exist

families of proofs with a similar structure. One such family is proofs by induction. An

example of a proof-plan is given in figure 2.1, showing how one may go about trying

to find a proof by induction, using the rippling heuristic (see §2.3 and §3.4) for the

step-case.

7
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A tactic is a function that combines several lower level inference rules in a theo-

rem prover to perform some common task. Proof-planners reason about higher-level

declarative descriptions of tactics, which, for example, specify when the tactics are

applicable. Following the structure of a high-level proof-plan, such as the one for in-

duction in figure 2.1, the proof-planner assembles a tree of tactics that can be executed

by a theorem prover to give a fully formal proof.

Rippling

Fertilisation

Simplification

Induction

Step−case(s)Base−case(s)

Figure 2.1: Proof-plan for an inductive proof, using the rippling heuristic (see §2.3) to

allow the inductive hypothesis to be applied to the step-case goal (called fertilisation).

2.2.1 The CLAM-family

CLAM is a proof-planner written in Prolog developed by Bundy et al. [13]. It origi-

nally worked with the Oyster theorem-prover, a Prolog re-implementation of the NuPrl

prover [20]. CLAM was later also combined with the HOL prover [4].

CLAM is equipped with a set of methods and methodicals. Each method has a

set of pre-conditions specifying the conditions that must be true for the method to

be applicable, and a set of effects that will hold true after the method has been ap-

plied. Each method has a corresponding tactic that will be used when the proof-plan

is executed. Methodicals can combine several atomic methods into larger compound

methods. CLAM was not designed to handle higher-order logic, which motivated the

development of the proof-planner λClam [69]. λClam was written in λ-Prolog, which

is a higher-order version of the Prolog language. In addition to inductive proofs, λClam

has also been applied to proof-planning in non-standard analysis [56], and combined

with an object level prover for first-order temporal logic to plan proofs in this domain

[15].

The proof-planners in the CLAM-family are no longer actively developed.
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2.2.2 INKA

The INKA system is a first-order prover designed for reasoning about program verifi-

cation developed by Dieter Hutter et al. [38]. It provides support for inductive proofs

by rippling. In addition to its automatic reasoning capabilities, INKA also allows for

user interaction, where the user can guide the proof at varying levels of detail. INKA

is no longer actively maintained, although aspects of INKA are now instead included

in the formal verification system VSE [37].

2.2.3 Ωmega

The Ωmega system has been developed by the research group with the same name at

the Saarland University [3]. It takes a different, knowledge-based, approach to proof-

planning. Ωmega controls proof-planning by a set of high-level control-rules that se-

lects between different proof-planning methods. The control-rules encode heuristic

knowledge for a specific domain narrowing down the number of methods that may be

applied. Methods then specify the exact conditions under which they are applicable.

Within Ωmega, proof-planning has been successfully applied to, amongst other areas,

the domain of limit theorems [62].

Erica Melis and Andreas Meier extended proof-planning in Ωmega, adding yet an-

other layer of control, strategies, in the MULTI proof-planner [61, 60]. Each strategy

represents an instance of a problem solving algorithm, for example rippling. The strat-

egy layer allows the planner to let several proof-planning strategies cooperate when

proving a theorem. The planner uses a black-board architecture where strategies ad-

vertise their applicability to the current goals. Control knowledge is used to determine

which strategy should be invoked.

2.2.4 IsaPlanner

Lucas Dixon originally developed the IsaPlanner system, [26, 25], a proof-planner

for the interactive theorem-prover Isabelle [65]. IsaPlanner interleaves proof-planning

with the execution of the proof in Isabelle, allowing access to Isabelle’s powerful tac-

tics. Proofs are planned through a series of reasoning states, each containing the partial

plan constructed so far, the next reasoning technique to be applied and contextual infor-

mation. The contextual information contains knowledge acquired during the planning

process, such as annotations for rippling, information about proved lemmas etc.
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2.3 Rippling

Rippling is a heuristic used to guide rewriting of the step-case in inductive proofs [10].

Rippling has however been shown to be applicable to other areas by a range of authors,

for example summing series [73], equation solving [36], and non-standard analysis

[56]. Within the context of proof-planning, rippling has successfully been used for

automating proofs in both hardware [14] and software verification [43], as well as

in the synthesis of higher-order programs [52]. Common for these domains is that we

have some given and some goal that is to be rewritten in such a way that the differences

between the given and goal are reduced. The aim is to arrive at a situation where the

goal can be justified by the given. This is called fertilisation. If the goal matches the

given exactly, the given can be applied directly to conclude the proof, which is referred

to as strong fertilisation. If the given is an equation, it may be possible to apply it as

an extra rewrite rule even if it does not match the goal exactly. This is called weak

fertilisation.

Rippling guides the rewriting process by identifying and annotating the parts of

the goal that are similar to the given and should be preserved, called the skeleton, and

the parts that are different and need to be moved out of the way before fertilisation,

called the wave-fronts. A wave-hole denotes a sub-term inside a wave-front that is

part of the skeleton. Positions corresponding to universally quantified variables in the

given, which can be instantiated during fertilisation, are called sinks. An example of

an annotated step-case goal of an inductive proof is shown below:

Given (inductive hypothesis): ∀b′. a+b′ = b′+a

Goal (step-case goal): Suc a
↑

+ bbc= bbc+ (Suca)
↑

The wave-fronts are represented by shaded boxes. Note that the position of the uni-

versally quantified variable b′ becomes a sink in the goal, annotated by bbc. When a

goal can be annotated with respect to a skeleton, we sometimes refer to the skeleton as

having an embedding into the goal.

Rippling can reduce the differences in two ways, the arrows on the wave-fronts in-

dicate if they are to be rippled-out (↑) or rippled-in (↓). Rippling-out tries to move the

wave-fronts towards the top of the term-tree until the goal contains a sub-term match-

ing the given. Rippling-in attempts to move wave-fronts to a position of a sink, which

corresponds to a universally quantified variable in the given. Differences in sinks can

instantiate such variables, allowing fertilisation. A wave-front is only allowed to be
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rippled-in if, within its wave-hole, there is a sink to eventually unify with, or an out-

wards directed wave-front to potentially cancel it.

After the initial goal has been annotated rippling proceeds by applying rewrite-

rules derived from function definitions, axioms and existing theorems and lemmas.

These rules are referred to as wave-rules. A ripple measure is a well-founded order

on annotated terms, based on the positions of wave-fronts in the goal. Each wave-rule

application is required to decrease the ripple measure, which ensures the termination of

rippling. New goals that cannot be annotated with respect to the skeleton are typically

discarded. When no more measure-decreasing rewrites are possible, either fertilisation

is possible, or rippling is said to be blocked.

The ripple measure allows rippling to apply equations in either direction. This

makes rippling more flexible and easier to configure than conventional rewriting when

the direction of equational rules must be specified.

A worked example illustrating the different features of rippling in more detail can

be found in §3.4.

Dynamic Rippling

In the traditional account of rippling, static rippling, as described in [10], terms are

annotated at the object level, and rewrite rules annotated prior to rippling. In dynamic

rippling on the other hand, annotations are kept separate from the goal, and recomputed

after each application of a rewrite-rule. Rewrite-rules themselves are not annotated.

Dynamic rippling was first suggested by Alan Bundy and David Basin1 as a way to

avoid having to compute and store all the possible annotated versions of each rewrite

rule. They propose that wave-rules should instead be annotated dynamically, as they

are needed. Another disadvantage of static rippling is that its object-level annotations

require a special notion of substitution, otherwise illegal annotations may be produced

[2]. In dynamic rippling, annotations can be stored separately from the goal, as term-

embeddings, introduced by Alan Smaill and Ian Green [70]. As a result, no special

notion of substitution is needed.

Dennis, Smaill and Green also identified that dynamic rippling is required for rip-

pling in higher-order domains, as the object-level annotations of static rippling are not

stable over β-reduction and may introduce incorrect annotations in the presence of

meta-variables [70, 23]. Their version of dynamic rippling was implemented in the

1Personal communication. University of Edinburgh, Mathematical Reasoning Group, internal Blue
Book Notes 919 and 920
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λClam system [23]. Lucas Dixon later implemented a considerably faster version in

IsaPlanner [27, 25].

2.4 Middle-Out Reasoning

The central idea of middle-out reasoning is to postpone difficult decisions in a proof,

instead starting from the middle and expecting the simpler parts of the proof to suggest

solutions for more difficult steps. Middle-out reasoning was first suggested by Alan

Bundy et al. as a technique for handling Eureka steps, such as finding an existential

witness in program synthesis [11].

2.4.1 Middle-Out Reasoning and Tail Recursive Functions

Jane Hesketh implemented middle-out reasoning techniques in the CLAM system for

her PhD [30]. She applied middle-out reasoning to the task of generating tail-recursive

function definitions from naive ones [31]. The naive definition is taken as a specifi-

cation for the synthesis of the tail-recursive definition. As mentioned in §2.2.1, the

CLAM system works with the Oyster theorem prover. Oyster uses a constructive logic

where proof steps correspond to steps in a program. Hesketh’s technique attempts

to generate the tail recursive definition by wrapping a meta-variable around the naive

version together with a new universally quantified variable (which is to become the

accumulator). Middle-out reasoning is then used to attempt to instantiate the meta-

variable during the subsequent rippling proof.

Hesketh also applied middle-out reasoning to find generalisations for failed induc-

tive proofs. For example, conjectures about tail-recursive functions may need to be

generalised to insert a variable in the accumulator position in order for the inductive

hypothesis to be applicable. These ideas were further developed by Andrew Ireland et

al. into a generalisation critic [41], described in §2.5.1.

2.4.2 The Periwinkle system

Ina Kraan implemented middle-out reasoning techniques for synthesis of logic pro-

grams from given specifications in the Periwinkle system [51]. The body of the pro-

gram is here initially represented by a meta-variable and then instantiated during proof-

planning. Middle-out reasoning was also used to solve the problem of choosing an
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induction scheme during synthesis. The induction scheme corresponds to the recur-

sive structure of the program, which is unknown at this point. The system applies

a schematic induction scheme, which is instantiated during the step-case proof. The

instantiated induction scheme is then checked against a pre-computed set of known

schemes to ensure it is valid.

2.4.3 The Dynamis system

Jeremy Gow further developed the idea of synthesising induction schemes by middle-

out reasoning in an extension of λClam, called Dynamis [29]. As in Periwinkle, a

schematic induction scheme is applied, and the proof of the step-case instantiates the

meta-variables. Dynamis can deal with both constructor- and destructor style induction

schemes, unlike Periwinkle. After an instantiated rule has been found, Dynamis proves

whether or not the instantiated rule is a valid induction rule. The system was evaluated

on a set of theorems where common recursion analysis did not suggest a successful

induction scheme. It successfully found valid induction schemes for half of the 38 test

cases.

2.5 Failure Reasoning in Inductive Theorem Proving

2.5.1 Critics in CLAM

Proof-planning sometimes fails, but a failed proof-plan may still contain useful infor-

mation about how the proof could be patched. Critics make use of this information to

try to find a suitable patch that will allow the proof to continue [39, 41]. Critics are

typically attached to a proof-planning method and fired when that method fails in a

particular way.

2.5.1.1 Critics for Rippling

Ireland et al. present four critics; induction scheme revision, lemma discovery, gener-

alisation and case-splitting, each triggered by different ways the rippling method might

fail [41]. The critics were implemented in version 3 of the CLAM proof-planner. With

their help, CLAM was shown to be able to fully automatically prove a range of con-

jectures that would otherwise fail or require user-intervention.
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Induction scheme revision: The induction scheme revision critic can repair proof at-

tempts where it is necessary to use a different induction scheme than the one

initially chosen, for example two-step induction instead of the standard one-step

scheme. The critic is fired when no more wave-rules apply to the current goal,

but it can identify a partial match, where the skeletons of some wave-rule and

the goal match, but some wave-front in the rule is missing from the goal. The

critic attempts to trace this missing wave-front back to the induction variable to

suggest another induction scheme.

Case-splits: In the presence of conditional wave-rules, it might be the case that rip-

pling fails to apply because a condition associated with a wave-rule cannot be

proved. The case-splitting critic performs a case-analysis, and suggests a case-

split on the associated condition. The resulting goals are then proved separately.

Lemma discovery: There are two methods for lemma discovery. Lemma calculation

applies when no wave-rules are applicable and one side of an equational con-

jecture is fully rippled. A potential equational lemma is constructed with the

blocked term as the left hand side and the term resulting from weak-fertilisation

as the right hand side. The result is then generalised, using common sub-term

generalisation, and proved. Lemma speculation is applied when weak-fertilisation

is not applicable. The right hand side of the lemma is constructed by inserting

second-order meta-variables into the skeleton-term of the goal. Several options

of where to insert them exist, corresponding to outward, inward or sideways

wave-rules. After the schematic lemma has been applied to the blocked goal,

the meta-variables are instantiated through middle-out reasoning [11, 30], where

further applications of wave-rules provide instantiations for the meta-variables of

the schematic goal (also shared by the schematic lemma). After each step, an at-

tempt is made to coerce the remaining meta-variables by exploring their possible

projections. A counter-example checker is employed to filter out non-theorems,

after which any remaining candidate lemmas are passed on to the prover.

Generalisation to introduce accumulator variables: Generalisation may sometimes

be needed to strengthen the inductive hypothesis before the proof can go through.

The generalisation critic in CLAM 3 deals with one such example: generalisa-

tion to introduce accumulator variables. When rippling-in fails to apply due to a

missing sink, the generalisation critic is fired. The goal is generalised by intro-

ducing second-order meta-variables in positions of potential accumulator vari-
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ables. These are then instantiated through subsequent applications of wave-rules

followed by attempts to coerce the meta-variables, similarly to lemma specula-

tion. The generalisation critic was later extended to deal with the introduction

of multiple accumulator variables and to handle the introduction of auxiliary

accumulators in arbitrary positions [40].

The lemma speculation and generalisation critics search for instantiations of the

meta-variables by applying wave-rules to the schematic terms constructed. This re-

quires the use of higher-order unification, potentially giving rise to a large number of

possible unifiers. The CLAM 3 critics use the rippling annotations to help control

higher-order unification by dividing it into sub-tasks. When rippling-in, the wave-

holes in the goal and the rule are matched first, before unification is attempted. For

rippling-out, the super-terms containing the wave-front are pre-matched. However, in

some cases, it is still necessary to backtrack over different possibilities.

2.5.1.2 Generalisation Critics for the Induction Method

For his MSc dissertation Ewen Maclean investigated attaching generalisation critics to

the induction method of CLAM, thereby trying to apply generalisations before rippling

was attempted [55]. Critics for three types of generalisation are implemented: replace-

ment of minimal common sub-terms, generalising variables apart and replacement of

independent sub-terms. These techniques, alongside other generalisation heuristics for

inductive proofs are also described in a survey by Birgit Hummel [35].

Attaching generalisation critics to the induction method turns out to be problematic,

as the critics often either fail to fire without further look-ahead into the proof-plan, or

produce over-generalisations. Instead, Maclean suggests attaching the generalisation

critics to the rippling method, allowing them to fire when rippling is blocked. A critic

for independent sub-term generalisation was implemented as a ripple-method critic and

shown to find more generalisations than the equivalent critic attached to the induction

method.

2.5.1.3 Interactive critics

Interactive versions of the rippling critics from CLAM 3 have been implemented in the

XBarnacle system, a graphical front-end to CLAM [54, 44, 45]. Critics increase the

size of the search space: at the point of failure more than one critic may be applicable
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and each critic may suggest several patch schemes. In addition, the patch applied may

fail and require backtracking or application of further critics.

Interactive critics also give a skilled user the chance to aid the proof-planner to

solve conjectures where the critics in CLAM 3 alone would fail. An example is any

proof where a generalisation is required but a lemma needed in the process is missing

(see [44] §5). It is also argued that interactive critics give the user a chance to produce a

shorter proof by instantiating meta-variables, thus relieving the proof-planner of time-

consuming middle-out reasoning.

Michael Jackson explores the use of interactive critics in his PhD thesis [45]. Two

approaches are evaluated, active and passive interactive critics. Active critics are fired

when the associated method fails as usual. The user is presented with potential lemmas

and generalisations containing meta-variables that can be instantiated or left to the

planner. There is also an option to view an explanation of why the proof-planning

method failed and why a particular critic was invoked. Motivated by user comments, a

passive version was developed, where the user decided when a critic should be applied

and to which goal. Evaluation suggested that passive interactive critics were preferred

by users.

2.5.1.4 Critics for Patching Faulty Conjectures

Raul Monroy-Borja developed a set of critics for patching faulty conjectures in CLAM

3 for his MSc project [63]. The critics attempt to derive antecedents for the faulty

conjecture that will turn it into a theorem, or correct arguments that are in the wrong

positions. The contradictory blocked goals critic deals with failure in the base-case and

is fired when an induction attempt leads to an obvious contradiction, such as 0 6= 0. The

associated patch attaches the negation of the base-case of the most recent induction

attempt as a condition to the original conjecture. If this patch fails, another critic is

fired, attempting a patch that adds the whole of the current blocked sub-goal as a new

condition for the conjecture.

Sometimes the conjecture may need further refinement after the base-case has been

patched. If the hypothesis and the step-case goal match modulo antecedents and it can

be shown that the antecedent of the hypothesis logically implies that of the conclu-

sion, a method called conditional fertilisation is applied to conclude the proof. Should

this fail, a fertilisation critic is fired, looking for a suitable function to replace the an-

tecedent of the conjecture (§3.4 of [63] gives details of how such a function is selected).

For some faulty conjectures the base-case may succeed, with the blockage arising
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in the step-case. If a counter-example for the blocked goal can be found, the partial

success critic is invoked. This critic uses the successful instantiation of the induction-

variable from the base-case to construct a condition that is added to the conjecture to

make it into a theorem. Another critic is fired if a counter-example can be found for

the current sub-goal, with lemma calculation simultaneously being applicable. The

critic then attempts to re-arrange the arguments in the conjectured lemma, rejecting

combinations for which a counter-example can be found.

2.5.2 Generalisation in INKA

Birgit Hummel implemented a range of generalisation techniques in the INKA system

for her PhD. These include replacement of common sub-terms with new variables and

replacement of independent sub-terms. Hummel also includes the technique of apply-

ing the inductive hypothesis as a rewrite rule as one of the generalisation techniques,

which is otherwise commonly refereed to as weak fertilisation. We are unable to re-

view this work in detail as her thesis is written in German. A detailed survey of the

techniques can however be found in [35].

2.5.3 Failure reasoning in Ωmega

Andreas Meier developed some methods for failure reasoning in proofs of limit theo-

rems in the MULTI proof-planner, which is part of the Ωmega system [60] (chapter 8).

Case-splitting is triggered under similar circumstances as in CLAM. A form of lemma

speculation is triggered when unification or matching fails, leaving some residue. The

residual term is given to a constraint solver to determine if it is promising to prove

the term as a lemma and if so, attempts to provide instantiations of meta-variables.

MULTI also supports another form of failure reasoning, called goal-directed back-

tracking. This allows backtracking to any point in the proof-plan, without undoing

all previous work. When a highly desirable strategy is blocked, backtracking is di-

rected towards areas in the proof-plan that are likely to help unblock the strategy. For

example, if instantiations for some necessary meta-variable cannot be found due to

insufficient constraints, backtracking is directed towards further refining the complex

inequalities the constraints are based on.



18 Chapter 2. Literature Survey

2.5.4 Critics in IsaPlanner

The first version of the IsaPlanner system only supported one critic for lemma calcu-

lation [25] (section 9.9), [27]. If a non-trivial goal remains after weak-fertilisation, a

lemma is constructed by applying common sub-term generalisation to the goal. Gen-

eralisations are performed such that the largest common sub-terms are replaced by

variables, motivated by empirical results. This also cuts down the search space com-

pared to picking the smallest common sub-term. IsaPlanner may also apply argument

congruence rules, which allows function symbols appearing on the top-level of both

the left- and right hand side of an equation to be dropped.

After generalisation, a separate proof-attempt of the resulting lemma is launched

which, if successful, allows the proof to continue. As a consequence of the lack of

critics, IsaPlanner was previously unable to prove many of the conjectures provable by

CLAM 3.

2.5.5 Generalisation in VeriFun

VeriFun is a semi-automatic verification tool for functional programs with an auto-

matic tactic for inductive proofs in first-order logic, originally developed by Christoph

Walther [74]. Markus Alderhold has extended VeriFun with a number of standard

generalisation techniques with sophisticated heuristics, for deciding when and how

the generalisations are applied, along with a counter-example finder to avoid over-

generalisations [1]. The generalisation techniques can either be invoked by the user or

automatically when VeriFun’s verification tactic has failed. The current goal is gen-

eralised to yield a lemma that will help solve the proof. This is similar to the lemma

calculation critics of CLAM and IsaPlanner but with a wider selection of generalisation

techniques to choose from.

VeriFun supports the following techniques for generalisation:

Selector Elimination: The destructor style induction of VeriFun often leaves many

instances of selector terms (such as head and tail functions on lists). These are

replaced by fresh variables.

Common non-variable sub-term generalisation: VeriFun does not commit to gen-

eralising the largest or smallest common sub-term, but instead tries to replace

a sub-term that occurs in a recursion position of some function. Inducting on
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a variable in such a position is beneficial, as subsequent rewrite rules about the

function are more likely to apply.

Generalising variables apart: VeriFun attempts to separate occurrences of a variable

that occurs both in a recursion position and in a non-recursion position to facili-

tate an inductive proof attempt.

Inverse Weakening: Destructor style induction will sometimes leave unnecessary con-

ditions which the Inverse Weakening generalisation technique can identify and

remove.

Inverse Functionality: If both sides of an equation have the same top-level function

symbol, this can sometimes be dropped and replaced by an equality between the

arguments (also known as argument congruence). VeriFun combines this type of

generalisation with counter-example checking to ensure no over-generalisation

is found.

The generalisation heuristics of VeriFun have been evaluated on a range of problems

from the CLAM 3 corpus (see [41]) and from verification of sorting algorithms [1].

The generalisation techniques allow many of these problems to be solved while rarely

suggesting over-generalisations that have to be discarded by counter-example check-

ing.

2.5.6 Lemma Discovery in RRL

Algorithms for lemma discovery and generalisation of accumulator variables in equa-

tional inductive proofs, similar to the critics in CLAM, have also been proposed for the

Rewrite Rule Laboratory (RRL) system [48, 47].

As with the lemma speculation critic in CLAM (§2.5.1), the technique proposed

for RRL is applied in an inductive proof when it is not possible to either rewrite the

step-case goal or apply the hypothesis. It first generates a set of equations, by equating

sub-terms in the step-case goal with the left- or right hand side of the hypothesis.

These equations are then simplified and meta-variables inserted (here referred to as

instantiation schemes) in positions of non-induction variables2. The next step of the

algorithm attempts to generate constraints on the instantiations of the meta-variable by

applying rewrite rules that remove the term-context surrounding it. These constraints

are then used to speculate instantiations.
2These are the same as positions of sinks in rippling.
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A method for relating conjectures about tail-recursive and non-tail recursive func-

tions by generalisation of an accumulator variable is proposed in [48] and further re-

fined in [47]. This method initially proceeds in the same fashion as the critic in CLAM

(§2.5.1), by replacing a constant, assumed to be in the position of an accumulator vari-

able, on one side of an equational goal with a variable. The other side of the goal is

transformed by introducing a top-level meta-variable that also takes the new variable

as an argument. A new induction is then attempted on this schematic conjecture. As

above, a set of constraints is generated to help suggest instantiations. This method can

also provide counter-examples for invalid conjectures.

To our knowledge, no experimental results for the above methods have been pub-

lished, so it is not clear whether these algorithms were ever fully implemented in RRL.

2.5.7 Critics Detecting Divergence

Toby Walsh has implemented critics to detect divergence in inductive proof attempts

in the theorem prover SPIKE [72], where unsolvable problems often led to divergence.

The divergence critic studies the proof attempt in order to detect patterns of divergence,

such as accumulating term structure, by difference matching. The critic attempts to

suggest lemmas that are speculated by using heuristics enabling cancellation of term

structure that would otherwise accumulate and cause divergence. Potential lemmas

are filtered through a type-checker and a conjecture disprover, then generalised and

proved.

Louise Dennis et al. describes a divergence critic in CLAM designed to find gener-

alisations when searching for bi-simulations in co-inductive proofs [22], used to reason

about observational equivalence of functional programs. A bi-simulation is a relation

containing observationally equivalent pairs. If a co-inductive proof-planning attempt

fails, a patch is attempted that introduces another bi-simulation. Subsequent introduc-

tions of new bi-simulations may however lead to divergence. The divergence critic

can identify accumulating term structure caused by divergence and instead suggest a

generalisation.

2.6 Critics for Program Reasoning

Proof-planning and critics have also been applied to the domain of program verifica-

tion of SPARK programs within the NuSPADE system. Andrew Ireland, Bill Ellis and
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their colleagues have developed proof plans and associated critics for exception free-

dom proofs [42], and for partial correctness proofs [43]. Some of the critics within

NuSPADE have been given an extended role, not just patching proof attempts but also

acting as an interface between proof-planning and the generation of program proper-

ties, such as the discovery of a loop invariant.

Exception freedom proofs show that a program is free of run-time exceptions. The

proof-plan is used for showing that a variable does not exceed its legal bounds, causing

a buffer under- or overflow. Four critics were developed:

• The elementary critic searches for counter-examples for variables in exception

freedom goals that cannot be immediately discharged by the simplifier. If a

counter-example is found, it is used to guide the search for tighter bounds on

variables.

• The transitivity critic describes missing proof context and helps guiding the gen-

eration of additional properties for the program specification.

• The decomposition critic is given a slightly different role compared to traditional

critics, and simply flags problems that may relate to coding defects to the user.

• The fertilisation critic applies to failure of the fertilisation method, and fires

when a hypothesis is weaker than the goal but still similar. The critic attempts to

infer a stronger hypothesis from the weaker one.

Partial correctness proofs are concerned with the functional correctness of pro-

grams. The work in [43] focuses on array-based programs and makes use of rippling

for reasoning about loop invariants. Two critics were developed. The range gener-

alisation critic fires when a proof attempt of a transitive relation between adjacent

array elements fails. The critic attempts to patch the proof by generalising to consider

a range of elements, representing finding an auxiliary loop invariant. The difference

generalisation critic is associated with the ripple method when a weak-fertilised goal

requires further rippling towards another hypothesis (here, an invariant).

2.7 Theorem Discovery

To our knowledge, there are very few systems that are able to automatically discover

inductive theorems. Other than the proof-planning critics described above [41, 27],
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which use information from failed proof attempts, the MATHsAiD system [58, 59], is

the only dedicated theory formation system which has been applied to the task. We

will however also survey a few other systems for theory formation.

2.7.1 The AM system

Doug Lenat’s AM system was one of the earliest theory formation systems [53]. Al-

though no longer in use, we shall summarise its main features.

The AM system was equipped with an initial set of 115 basic concepts in set-theory,

including set equality and common operations such as deletion. It also had a fairly

large number of heuristic rules (about 250) for deducing new facts and concepts from

known ones, as well as restricting search. AM did not, however, have the capability to

prove any conjectures.

From its initial concepts and heuristics, AM managed to build theories about, for

example, natural numbers, with addition, multiplication and exponentiation. It also

went on to invent more advanced concepts such as prime numbers, and managed to

conjecture Goldbach’s conjecture (every even number greater than 2 is the sum of two

primes).

2.7.2 HR

HR is a theory formation system in pure mathematics, originally developed by Simon

Colton for his PhD [18]. HR used a set of seven production rules to derive new con-

cepts from a small set of initial concepts. For natural numbers, such concepts include

multiplication, addition and divisors. HR uses the resolution prover Otter to prove

conjectures it has created, and the MACE model generator for counter-examples. HR

has been applied to domains including number theory and graph theory. Although the

number of interesting conjectures made was rather low, HR managed to, for example,

invent some novel integer sequences. HR has also been used to generate new prob-

lems in group theory for the TPTP-library of challenge problems for (mainly classical

first-order) automated theorem provers [19, 71].

2.7.3 MATHsAiD

MATHsAiD is a recent system for theory formation [58], implemented by Roy Mc-

Casland. Its aim is to generate theorems that a human mathematician would consider
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interesting, for example, theorems that occur in mathematics textbooks. MATHsAiD

has been successfully applied to discover inductive theorems about natural numbers

[59], as well as theorems in other domains such as basic group theory. As we are

mainly interested in inductive theorems, we will here summarise how MATsAiD dis-

covers inductive theorems. It also has a similar procedure for non-inductive theorems.

When asked to discover inductive theorems, MATHsAiD first automatically gen-

erates a set of left-hand sides of potential equations. It then replaces a variable in

the term, with ‘TWO’, where the identity of ‘TWO’ depends on the type of interest,

e.g. Suc(Suc 0) for natural numbers, or a list of length 2. MATHsAiD then applies

forward chaining on these terms, using available theorems, to generate corresponding

potential right hand sides. A candidate right hand side is some new term, also contain-

ing ‘TWO’. If the new equality holds for ‘TWO’, a full inductive proof is attempted.

MATHsAiD applies structural induction, followed by what is referred to as piecewise

search, where the left- and right hand sides of the step-case goal are rewritten to match

the corresponding side of the inductive hypothesis, using available definitions and the-

orems. MATHsAiD’s inductive prover does not attempt to discover missing lemmas,

as the proof-planners discussed above, but may return to failed proofs after additional

theorems have been generated and proved.

Given some basic axioms defining the natural numbers with addition and multi-

plication, as well as the concepts of commutativity, associativity and distributivity,

MATHsAiD was able to discover the standard theorems about commutativity, associa-

tivity and distributivity of addition and multiplication in less than two minutes [59].

2.7.4 The AGInT System

AGInT is a theorem discovery system for first-order classical logic, implemented by

Yuri Puzis et al. [68]. It uses an automated first-order prover to generate logical con-

sequences of a set of axioms. This produces a large set of statements, many of which

are trivial or otherwise not considered interesting. The system then applies a set of fil-

ters and ranking scores in order to identify the interesting theorems. AGInT has been

tested on axioms about set theory and about logical puzzles from the TPTP library

[71], where it finds some theorems.
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2.7.5 Scheme-Based Theory Exploration

Bruno Buchberger’s research group has proposed a model for theory exploration based

on knowledge schemes for the Theorema system [6]. The knowledge schemes are sup-

posed to capture prior mathematical knowledge, for example describing the basics of

structures such as groups, or ordering relations. The schemes can then be instantiated

with symbols in the current theory to produce new concepts or function definitions.

There are also some theory specific schemes, capturing, for example, structural induc-

tion over the natural numbers. A preliminary case-study of the natural numbers has

been undertaken, but the process is not yet automated [32].

2.8 Summary

Our work on automated lemma discovery largely takes place within the context of

proof-planning, which is an approach for automated theorem proving exploiting the

fact that certain classes of proofs, such as proofs by induction, have a common struc-

ture. Rippling is a heuristic commonly used for inductive proofs in proof-planning.

Proof critics were developed to deal with common failures during proof-planning, in-

cluding the discovery of missing lemmas or the discovery of more general theorems,

by which a more specific and difficult theorem can be proved. We also discussed a

range of other failure reasoning techniques for inductive proofs in different systems.

In addition to lemma discovery by proof critics, our work is also concerned with induc-

tive theorem discovery by synthesising conjectures from available function definitions.

We surveyed systems for theorem discovery, but only the MATHsAiD system has, to

our knowledge, been applied to inductive theories.



Chapter 3

Background

3.1 Notation

Below, we introduce some notational conventions that are used throughout the thesis:

• We will follow Isabelle’s convention and write theorems with assumptions sepa-

rated from the conclusion using =⇒1. If there are several assumptions these are

enclosed in square brackets, e.g. JP; QK =⇒ R states that P and Q are assump-

tions for the conclusion R.

• We differentiate between two types of variables, bound variables and free vari-

ables. Bound variables are variables bound by some lambda-abstraction, e.g. x

in λ x. n + x. Free variables represent arbitrary values. Free variables that are

allowed to be instantiated by unification are referred to as meta-variables (also

sometimes called schematic variables). Meta-variables are prefixed by ‘?’, e.g.

?F , following Isabelle’s conventions.

• Goals that contain meta-variables are sometimes refereed to as schematic goals.

• An infix function (e.g. +) applied to only one of its two arguments is written as

a lambda abstraction, e.g. λ x. n + x.

• The ‘@’-symbol denotes the list append function. ‘#’ denotes cons. All func-

tions used in examples are defined in Appendix A.

1This is Isabelle’s meta-level implication

25
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3.2 Rules of Lambda Calculus

Lambda calculus is a model of computation and a commonly used logical system for

reasoning about functions, introduced by Alonzo Church [17]. Lambda calculus also

forms the basis for functional programming languages. There are several variants of

lambda calculus, for example typed and untyped. Isabelle’s higher-order logic is a

simply typed lambda calculus.

To reason about function applications, lambda calculus provides three important

inference rules, α- β- and η conversions. We let the symbol 7→ denote substitution and

use the notation x /∈ E to mean that the variable x does not occur in the expression E.

α-conversion:
λx. E

λy. E[x 7→ y]
y /∈ E

We can replace any variable x with a fresh variable y of the same type. This rule

is used to avoid variable name capture in substitution.

β-conversion:
(λx. E) t
E[x 7→ t]

This rule is concerned with the application of a function to an argument; every

occurrence of the bound variable x is replaced by the argument t in the body of

the lambda-abstraction.

η-conversion:
λx. E

E
x /∈ E

If the bound variable x does not occur anywhere in E, the expression can be

replaced by E alone.

Terms can be transformed into various normal forms using these rules, for example

a β-normal term has been reduced using β-conversion so that no applications remain.

IsaPlanner puts terms in βη-normal form during rippling.

3.3 Higher-Order Unification

Higher-order unification is concerned with the problem of making two terms equivalent

in typed lambda-calculus. Higher-order unification is semi-decidable, it is possible to

build algorithms that return a solution if one exists, but may not terminate if one does
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not. Gerard Huet proved this and designed a higher-order unification algorithm [33], a

nice description of which can be found in [28] and also in [7], §17.5.

Higher-order unification works on pairs of terms in normal form that are to be made

equal. A term in normal form can be written as λx1 . . .xn. f (u1 . . .up), where f is called

the head of the term. If the head is a constant or one of the bound variables x1 . . .xn,

the term is called rigid, as f cannot be instantiated. If the head is a variable, the term

is said to be flexible.

3.3.1 Rigid-Rigid Pairs

Rigid-rigid pairs will fail to be unified if the heads are different, or if they have a

different number of parameters, assuming the terms are in η-normal form. Otherwise,

when the heads are equal, unification will succeed if the parameters can be unified. For

example, the terms

λx1 . . .xn. f (u1 . . .up) and λy1 . . .yn. g(v1 . . .vp)

are rigid terms with the same number of parameters. If f and g are equal, this will

result in p new pairs (from the parameters) to be unified:

λx1 . . .xn. ui and λy1 . . .yn. vi

for 1 ≤ i ≤ p.

3.3.2 Flexible-Flexible Pairs

Unification of two flexible terms will always succeed, with a potentially infinite num-

ber of possible unifiers. To avoid this search space explosion, the higher-order uni-

fication algorithm simply reports that the terms are unifiable without searching for

specific unifiers. In a theorem prover, it is practical to record flexible-flexible pairs as

constraints on further unifications.

3.3.3 Rigid-Flexible Pairs

There are two ways of unifying a pair of a rigid and a flexible term: imitation and

projection. We describe these by considering unification of a pair of terms, where the

second term’s head is a variable, ?F , for which a substitution should be found:

λx1 . . .xn. f (u1 . . .up) and λx1 . . .xn. ?F(v1 . . .vq)
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Imitation will try to unify the terms by, if f is a constant, attempting to make ?F the

same as that constant, suggesting the instantiation:

?F ≡ λy1 . . .yq. f (?G1(y1 . . .yq) . . .?Gp(y1 . . .yq))

where each Gi is a fresh variable.

Projection tries to make ?F equal to one of its arguments, in other words ?F be-

haves as an identity. Projection suggests instantiations of the form:

?F ≡ λy1 . . .yq. yi(?G1(y1 . . .yq) . . .?Gp(y1 . . .yq)

given that yi is of the appropriate type.

3.3.4 Example

Consider unifying the terms rev ?l and ?F(rev ?Y ), assuming types match. These form

a rigid-flexible pair. There are two possibilities of imitation for ?F . Firstly, ?F can be

instantiated to λx. rev ?l. By η-conversion, λx. rev ?l is reduced to just rev ?l. The

argument rev ?Y of ?F has been dropped. The second imitation results in ?F ≡ λx. rev x

with the additional unification ?l ≡ rev ?Y .

By projection, we get the instantiation ?F ≡ λx. x, which is the identity function,

while ?Y and ?l form a flexible-flexible pair.

3.4 Rippling

The rippling heuristic for reducing differences between terms was introduced in §2.3.

We will here provide some more details about ripple measures, static and dynamic

rippling, and illustrate the main features of rippling in a worked example.

3.4.1 Sum-of-Distance Ripple Measure

Recall that the ripple measure is defined as a well-founded order on annotated terms,

and required to decrease with each step of ripple-rewriting, thus ensuring termination.

We will here use a ripple-measure based on the sum of distances from outward

wave-fronts to the top of the term-tree and from inward wave-fronts to the nearest sink,

occurring below one of its wave-holes. IsaPlanner also supports other types of ripple-

measures, but the sum-of-distance measure has been shown to be the most efficient
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[25]. Figure 3.1 shows the annotated term Suc a
↑

+ bbc = Suc(bbc + a)
↓

, with

sum-of-distance measure 4. The distance from the outward wave-front to the top of the

term-tree is 2 and the distance from the inward-wave-front to the closest sink is also 2.

When the ripple-measure is 0 we expect all remaining wave-fronts to be out of the way

for an application of the given, that is, either at the top of the term-tree, or in a sink.

Suc

+

b a

bSuc

a

=

+

Figure 3.1: A tree-view of the annotated term, showing where the wave-fronts and sinks

are located.

3.4.2 Examples

Example 1: A Rippling Proof

As an example of a rippling proof, consider the step-case of the inductive proof of the

commutativity of addition:

Given: ∀b′. a+b′ = b′+a

Goal: Suc a
↑

+ bbc= bbc+ Suc a
↑

Assume the following rules are available2:

(Suc x) + y = Suc(x + y) (3.1)

x + (Suc y) = Suc(x + y) (3.2)

((Suc x) = (Suc y)) = (x = y) (3.3)

2Following the conventions of dynamic rippling (see 3.4.3) the rules have not been annotated prior
to rippling.
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The proof of the step case then proceeds as follows:

Suc a
↑

+ bbc= bbc+ Suc a
↑

Measure: 4ww� by (3.1)

Suc(a+ bbc)
↑

= bbc+ Suc a
↑

Measure: 3ww� by (3.2)

Suc(a+ bbc)
↑

= Suc(bbc+a)
↑

Measure: 2ww� by (3.3)

a+ bbc= bbc+a Measure: 0ww� Strong Fert.

True

Each application of a rule moves the wave-fronts outwards, thus decreasing the ripple-

measure. In the final step, the goal is an instance of the given and no wave-fronts

remain so the measure is 0. The inductive hypothesis can be directly applied to con-

clude the proof. This is called strong fertilisation.

Example 2: Weak-fertilisation

Now, assume rule 3.3 was not available. No more rewrites would be possible at the

sub-goal:

Suc(a+ bbc)
↑

= Suc(bbc+a)
↑

Rippling is said to be blocked at such a state. However, in many cases, including this, it

is still possible to complete the proof by applying the inductive hypothesis as an extra

rewrite rule. This is called weak fertilisation. In this example the blocked goal can be

weak-fertilised to produce the new sub-goal Suc(b+a) = Suc(b+a), which is true by

reflexivity3.

Example 3: A Simple Proof-Critic - Lemma Calculation

Only rule 3.1 above comes from the standard definition of addition in Peano arithmetic.

Assuming rippling was only given the definitions of the function ‘+’, and no lemmas

3An analogous option also exists, weak-fertilisation could be applied to the right-hand side of the
goal.
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proved by the user in advance, rippling would get blocked even earlier, at the sub-goal:

Suc(a+ bbc)
↑

= bbc+ Suc a
↑

It is still possible to apply weak-fertilisation to the left-hand side of the blocked goal,

resulting in the new sub-goal:

Suc(b+a) = b+(Suc a)

This goal is however not trivially solved, which is when the lemma calculation critic

is fired. If applicable, the critic will apply common sub-term generalisation to the goal

(replacing sub-terms occurring on both sides of an equation with a new variable). This

is then followed by an attempt to prove the goal by a new inductive proof attempt. In

this case, the lemma can indeed be proved, and is in fact the missing rule 3.2.

3.4.3 Static and Dynamic Rippling

There are two approaches to rippling, static and dynamic rippling, differing in how an-

notations are represented and handled. The traditional account of rippling, described in

[10], is what we refer to as static rippling. In static rippling, rewrite rules are annotated

in advance, in all possible measure decreasing ways with respect to some skeleton.

Annotations are represented as object-level functions. Each rewrite rule typically gives

rise to several annotated copies (wave-rules). These rules are then only allowed to be

applied to a goal with matching annotations.

As mentioned in §2.3, dynamic rippling is required for higher-order domains, as

the object-level annotations of static rippling are not stable over β-reduction [70]. In

dynamic rippling, rewrite rules are not annotated at all. Instead, all ways of applying a

rule to a goal are generated, and annotations then recomputed for the new goals. Any

goals that turn out not to preserve the skeleton or decrease the measure are discarded.

Each goal in dynamic rippling may have several possible annotations, analogous to the

multiple wave-rules coming from a single rewrite rule in static rippling. Returning to

the example about commutativity of addition, there are actually two ways of annotating

the sub-goal (Suc x+ y) = y+(Suc x):

Suc x+ byc
↑

= byc+ Suc x
↑

Suc x+ byc
↓

= byc+ Suc x
↑
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The two alternatives capture the fact that rippling may either attempt to move the wave-

front on the left-hand side towards the top of the term tree (as in the previous example)

or towards the sink (imagine applying rule 3.1 from right-to-left).

Grouping Ripple Measures

In many other cases it is possible to have several measure decreasing annotations. This

raises the issue of how to search over alternative annotations of the same goal. If each

one is treated separately, every rewrite will be considered for each annotation, which

potentially increases the search space exponentially. Lucas Dixon suggests grouping

all measures of a goal as a solution [25], chapter 7. This grouped measure keeps the

highest measure of the current goal as a threshold, and only allows new annotations

smaller than this threshold. The highest one of these becomes the new threshold.

3.5 Isabelle

Isabelle is a generic interactive theorem prover which allows implementation of a wide

range of object logics, such as higher-order logic (HOL), Zermelo-Fraenkel set theory

and many others [65]. Isabelle also has a language for writing proof-scripts called

Isar [75]. A large library of theorems for various object logics is available on-line at

http://isabelle.in.tum.de.

Each object logic is formalised in Isabelle’s meta-logic, which is an intuitionistic

higher-order logic with implication, universal quantifiers and equality [66]. Isabelle

follows the LCF-approach to theorem proving, where new theorems can only be ob-

tained from previously proved statements through applications of a small set of trusted

sound inference rules. More complex tactics are built by combining these rules in

different ways, ensuring that resulting proofs will also be sound. To facilitate interac-

tive proof, Isabelle has a number of powerful automatic tactics, such as the Simplifier.

The Simplifier is typically used to perform rewriting using a set of supplied equational

rules. It may also introduce a split if it comes across an if-statement.

3.6 IsaPlanner

IsaPlanner is a proof-planner built on top of Isabelle [25]. Like Isabelle, IsaPlanner is

generic and can support different object logics, and follows the LCF approach. There
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are some important differences between Isabelle and IsaPlanner: IsaPlanner allows

meta-variables to occur in assumptions, which is not allowed when writing proofs in

Isabelle using Isar. IsaPlanner also gives sub-goals (and assumptions) explicit names,

which facilitates writing automatic techniques. In Isabelle, sub-goals are just kept in a

list, and may be reordered arbitrarily by tactics.

IsaPlanner supports automated inductive proofs using the rippling heuristic to guide

search. Previous proof-planners in the CLAM-family produced an explicit plan, using

methods with pre- and post-conditions, which was afterwards passed on to a theo-

rem prover for checking. IsaPlanner does not have explicit pre- and post-conditions

on methods, conditions are implicit in the control flow between reasoning techniques.

The reasoning techniques execute tactics, so the proof-planning and execution can be

interleaved, ensuring each step is sound. Reasoning techniques can both be Isabelle

tactics, such as simplification, as well as more complex techniques such as rippling.

IsaPlanner has a language for combining simple reasoning techniques into new, more

complex ones.

A reasoning technique is applied to a reasoning state and produces a set of new

reasoning states, one for each way the technique can be applied. A reasoning state is

a data-structure capturing a snapshot of the proof-plan so far. This includes the next

reasoning technique to be applied (if any) as well as contextual information about,

for example, rippling annotations. It is worth mentioning that the proof-plan in the

reasoning state is itself represented as a data-structure, responsible for, amongst other

things, keeping track of lemmas found and of instantiations for meta-variables during

the proof (see figure 3.2).

IsaPlanner also differs from the CLAM-family in that it supports having multiple

versions of rippling at the same time. Rippling is implemented in a modular fashion,

as a set of ML-functors with associated signatures, built on top of one another. Figure

3.3 shows how the modules depend on each other and gives a few examples of specific

implementations. For example, rippling with case-analysis or lemma calculation are

both instances of the ‘Basic Rippling Technique’ module. If we want rippling to use

a different measure, no code change is needed, we simply import a different version

of the modules rippling depends on. This also makes experimentation easy, we can

simply compare different instances of the rippling technique module.

Isabelle and IsaPlanner are both implemented in a Standard ML, and typically

used with the PolyML implementation4. The source code for IsaPlanner is avail-

4http://www.polyml.org
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− Open and closed sub−goals
− Namings of goals and variables

Proof−Plan

− Proof−plan (so far)
− Next reasoning technique
− Contextual Information

Reasoning State New 
reasoning 
states

Reasoning Technique

− Lemmas proved

− Meta−variable instantiations

Figure 3.2: Reasoning states hold a partial proof-plan, which in turn keeps track of

information such as currently open goals. Applying a reasoning technique produces

new reasoning states, updating the proof-plan accordingly.

able on-line, see http://dream.inf.ed.ac.uk/projects/isaplanner for down-

loading instructions.

3.7 The Zipper Data-Structure

The zipper data-structure, first described by Huet [34], is used to represent a tree-

structure, with a particular sub-tree that is the focus of attention. The focus of attention

can then be moved up, down, left or right in the tree. A zipper for term-trees contains

information about where a particular sub-term is located in a larger term. Figure 3.4

shows such a zipper of the term (Suc a) + b , where the focus is on the sub-term Suc

and marked by a dashed box. The symbol ‘$’ at the internal nodes of the term tree

represents function application5. The term outside the focus of the zipper is sometimes

refereed to as the context of the zipper. It is sometimes convenient to represent the

context as a lambda-abstraction, where the focus is replaced by a bound variable. For

the zipper in figure 3.4, the context is λ f . ( f a) + b.

Using zippers to move around a term-tree takes time proportional to the distance

moved. Access to the focused sub-term and its surrounding context is constant time.

Zippers are widely used for IsaPlanner’s equational reasoning (previously under the

name focus terms) [25], and are also an important tool for the implementation of other

techniques for reasoning about meta-variables.

5Following the convention of Isabelle’s higher-order abstract syntax.
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eg. sum−of−distance

eg, Ripple−case−split
      Ripple−lemma−calc

Advanced Rippling

Ripple Skeleton

Technique

Basic Rippling Technique

Ripple Measure

eg. Ripple−lemma−spec

Rippling Contextual Info

Figure 3.3: Hierarchy of IsaPlanner’s implementation of rippling. Each module is de-

fined in terms of the one above. Several versions of each module exists at the same

time, allowing for multiple versions of rippling.

3.8 Summary

This chapter provides some useful background knowledge for understanding the work

in this thesis. We first introduced some notational conventions. We then presented the

laws of lambda-calculus, followed by a brief introduction to higher-order unification.

Next, we presented the rippling heuristic for inductive proofs and explained the differ-

ence between static and dynamic rippling. The Isabelle theorem prover was described,

along with conventions of how its terms are presented, followed by an overview of the

IsaPlanner system in which our work has been implemented. Finally, we presented the

zipper data-structure, which is widely used in our implementation for navigating and

manipulating term-trees.
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$

$+

a

$

b

Suc

Figure 3.4: A zipper seen as a tree. The zipper is at the location Suc, marked by a

dashed box



Chapter 4

Reasoning with Meta-Variables

4.1 Introduction

This chapter describes techniques developed for efficient reasoning with meta-variables.

The middle-out rewriting technique (§4.2) provides heuristics for reducing the search

space when rewriting goals containing meta-variables. Our restricted resolution tech-

nique manages resolution with rules that contain top-level meta-variables.

Meta-variables are used to stand for yet unknown term-structure by several proof

critics such as lemma speculation and accumulator generalisation. The lemma-speculation

critic (chapter 6) makes use of meta-variables to represent the unknown parts of lem-

mas that are in the process of being speculated. The schematic lemma is typically

instantiated by applying it to a blocked goal, and then apply further rewriting to instan-

tiate the meta-variables shared between the goal and the schematic lemma. However,

the presence of meta-variables causes problems during rewriting as a meta-variable can

be made to unify with any rule, thus producing a large search space. Restricting the

number of potential unifiers is therefore important. The middle-out rewriting technique

has been designed for this task.

Meta-variables may also occur in the head position of rules, standing for the context

surrounding some particular sub-term of interest. If we wish to perform resolution with

such a rule, restricting higher-order unification is important to avoid producing a large

number of unwanted unifiers. Furthermore, without restrictions, the rule may apply to

any goal, not only goals containing the particular sub-term of interest. Resolution with

this type of rules is managed by our restricted resolution technique and used by the

case-analysis technique described in chapter 5.

37



38 Chapter 4. Reasoning with Meta-Variables

4.2 Middle-Out Rewriting

The meta-variables introduced in the goal by the application of a schematic lemma

are instantiated by further rewriting guided by rippling. This instance of middle-out

reasoning (see §2.4), applied to rippling rewrites, will be refereed to as middle-out

rewriting.

Because we are using rippling and therefore want to reduce the differences between

the goal and the inductive hypothesis, a candidate middle-out rewrite rule should, at

least in part, match some non-variable sub-term of the goal. In order to efficiently find

such rules, we introduce what we call partial wave-rules. A partial wave-rule contains

a zipper of the wave-rule at the location of some function symbol, and is described in

detail in §4.2.2.

4.2.1 Overview of the Algorithm

We here give a brief overview of the steps of the middle-out rewriting algorithm. The

algorithm attempts to perform one step of rewriting with some rule at a redex contain-

ing a particular function symbol shared between the rule and the goal.

1. Find a partial wave-rule that shares a function symbol with the schematic goal1.

The wave-rule and the goal are both represented as zippers (see §3.7) focused at

the matching function symbol.

2. Move up both zippers one step at a time. At each step, check if a meta-variable

occurs at the head-position of the focused sub-term of the goal-zipper.

3. When there is a meta-variable in the head-position of the focused sub-term in the

goal-zipper, use the ‘left-over’ term context from the rule-zipper to instantiate the

meta-variable in such a way that it becomes possible to rewrite the goal using

the rule.

4. If there is no head meta-variable in the goal sub-term, repeat step 2, as long as

the goal and rule match so far, otherwise fail.

5. If we reach the top of the rule-zipper and no meta-variable occurs in the head of

the focused sub-term in the goal-zipper, it is safe to use regular unification and

rewriting to rewrite the sub-term in this position of the goal.

1Recall that a schematic goal is a goal containing at least one meta-variable (see 3.1).
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4.2.2 Partial Wave-Rules

Middle-out rewriting works by using partial wave-rules. A partial wave-rule contains

a zipper of the wave-rule’s left-hand side at the location of a function-symbol, along

with the whole rule. Each wave-rule gives rise to several partial wave-rules, one for

each function symbol present in its left-hand side. If a schematic goal contains any of

these functions, this wave-rule is a candidate for rewriting, and thus also instantiating

some of the meta-variables in the goal. We use this heuristic to reduce the number of

candidate wave-rules needed to be considered. §4.2.3 describes how the rule-zipper’s

context is used to attempt to instantiate a meta-variable after a partial match has been

found.

As an example, the wave-rule

(rev ?t) @ (?h # [ ]) = rev(?h # ?t) (4.1)

would give rise to three partial wave-rules with the zippers shown in figures 4.1, 4.2

and 4.3. These partial wave-rules reflect the fact that there are three function symbols,

rev, @ and # in the left-hand side of this rule, and their corresponding zippers tells us

where in the rule they occur.

$ $

$

$

@

$

rev

[ ]

?t # ?h

Figure 4.1: The zipper for the partial wave-rule focused at @.

4.2.3 Finding a Candidate Rewrite

The first step of the middle-out rewriting algorithm is to create a zipper of the schematic

goal (which contains meta-variables), in order to be able to search through the term

while maintaining its context. The leaves of the zipper are then searched for function

symbols, such as rev. The occurrence of a particular function symbol indicates that any

partial wave-rule containing the same symbol is a candidate to use for meta-variable

instantiation and rewriting.
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$ $

$

$

@

$

rev

[ ]

?t # ?h

Figure 4.2: The zipper for the partial wave-rule focused at #.

$ $

$

$

@

$

rev

[ ]

?t # ?h

Figure 4.3: The zipper for the partial wave-rule focused at rev.

Assume that the term ?F(rev x) @ y is part of some schematic goal. A search

across a zipper of this term will find the locations of the rev and @ functions, and

suggest using partial wave-rules about these functions. One candidate is the partial

wave-rule about rev (from wave-rule 4.1) in figure 4.3.

When a matching partial wave-rule has been found the algorithm will incrementally

move one step up the term tree in both the zippers for the rule and the goal as long as

the current focused terms of the two zippers match (otherwise it fails). The procedure

stops when either a meta-variable has been found in the head-position of the goal-term,

or the top of the rule-zipper has been reached. In the latter case regular unification and

rewriting can take place, as the sub-term being rewritten in the goal does not have a

top-level meta-variable. Figure 4.4 illustrates the situation in which a meta-variable

has been found.

The sub-term in the focus of the rule in the figure, rev ?t, unifies with the sub-term

rev x in the goal (with ?t ≡ x). To make the rule applicable to the goal at this point, the

meta-variable ?F must be instantiated to the remaining term-context of the rule-zipper.
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$

$

[ ]

# ?h

$

$

$

@

rev ?t

$

$ y

$?F

x

@ $

rev

LHS of rule: Goal term:

Figure 4.4: We have moved up both the rule-zipper (left) and the goal-zipper (right).

The term in the focus of the goal-zipper now has a meta-variable in the head-position.

An appropriate instantiation for ?F can be constructed by creating a lambda-term from

the rule-zipper in figure 4.4. We replace the sub-term in the focus (rev ?t in the dashed

box in the figure), by a bound variable z 2, which results in the term λz. z @ (?h1 # [ ]).

Using this term to instantiate ?F , and then beta-reducing, gives an instantiated version

of the goal: rev(x @ (?h1 # [ ])) @ y. Now, wave-rule 4.1, can be applied to the

instantiated version of the goal without having to worry about producing too many

unifiers. The goal rewrites to rev(?h1 # x) @ y.

4.3 Resolution with Restricted Unification

Restricting higher-order unification is sometimes also useful in the context of resolu-

tion. If resolution needs to be performed with a theorem containing a top-level meta-

variable, reducing the number of unifiers is crucial. A top-level meta-variable typically

stands for some arbitrary surrounding context of a sub-term we wish to resolve. With-

out any restrictions on unification, resolution would not only produce a large number

of alternative unifiers, but also apply to any other goal, even those not containing the

desired sub-term. Restricting higher-order unification in the context of resolution is

essential for our case-analysis technique (Chapter 5).

Our algorithm for resolution with restricted unification first instantiates the top-

2At this point one must also check that this sub-term does not contain any dangling bound variables,
in which case the attempted instantiation would be invalid. This is a standard variable capture avoidance
condition.
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level meta-variable of the theorem and then performs regular resolution.

4.3.1 Overview of the Algorithm

Below we give an overview of our algorithm for restricted resolution. As a small

example, assume we have a rule of the form ?P(?a) =⇒?P( f ?a ?b) which we wish to

resolve with the goal g( f x y).

1. Find the argument of the top-level meta-variable: The first step of our restricted

variant of resolution is to check if there indeed is a top-level meta-variable in the

conclusion of the rule, otherwise it is safe to proceed with normal resolution. If

there is a top-level meta-variable, its argument should match some sub-term of

the goal that is to be resolved. In our example above, there is indeed a top-level

meta-variable, ?P, in the rule, which has the argument ( f ?a ?b). A zipper is

used to find this sub-term.

2. Find a matching sub-term in the goal: The next step is to find a sub-term in the

goal which unifies with the argument of the rule’s top-level meta-variable. Using

a zipper we traverse the parse-tree of the goal until a sub-term matching the

argument of the meta-variable is found. In the example, ?P has an argument,

( f ?a ?b), which matches the sub-term ( f x y) in the goal.

3. Instantiate the top-level meta-variable: The term context surrounding the match-

ing sub-term in the goal is used to construct an instantiation for the rule’s top-

level meta-variable. The instantiation is created by replacing the sub-term in the

goal zipper’s focus with a bound variable and abstracting over it. In our example,

this gives the instantiation ?P ≡ λ z. g(z).

4. Resolve with the instantiated theorem: Finally, resolution is performed using the

instantiated version of the theorem. In our example, we resolve the goal, g( f x y),

with the partially instantiated rule: g(?a) =⇒ g( f ?a ?b). This instantiates the

remaining variables to ?a ≡ x and ?b ≡ y, thus producing the new goal g(x).

4.3.2 Example: Splitting an If-Statement

As an example consider the following goal on which we wish to apply a case-split on

the condition of the if-statement:

i f (x = h) then True else (member(x, t @ l) = member(x, h#t) ∨ member(x, l))
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In IsaPlanner, a split on an if-statement is performed by resolving the goal with the

following library theorem:

J?Q =⇒?P(?y); ¬?Q =⇒?P(?z) K =⇒?P (i f ?Q then ?y else ?z) (4.2)

We expect this to result in two new sub-goals, as the original goal contains an if-

statement as a sub-term in some context ?P, where ?P is expected to unify with the

remainder of the goal-term. However, before applying resolution blindly we should

instantiate 4.2 to avoid undesired results.

The first step of the algorithm establishes that there is indeed a top-level meta-

variable, ?P of theorem 4.2, and that it has a non-variable argument, i f ?Q then ?y else ?z.

Next, the goal is traversed to find a matching sub-term, using a zipper. Figure

4.5 shows the zipper having located the matching if-statement in the goal. If no such

sub-term can be found, restricted resolution is not applicable and the algorithm fails.

$

$

=

member(x, h#t) \/ member(x, l)

if x=h then True else member(x, t@l)

Figure 4.5: The zipper is at the location of an if-statement. Parts of the term-tree have

been collapsed for clarity.

Using this zipper, an instantiation is created for ?P. As ?P is to match the surround-

ing context of the if-statement, an instantiation-term can be created by replacing the

term in focus of the goal-zipper (inside the dashed box in figure 4.5) with a new bound

variable u, and abstracting over it. We get the instantiation:

?P ≡ λu. u = member(x, h#t) ∨ member(x, l)

Theorem 4.2 now takes the form:

J(?Q =⇒?y) = member(x, h#t) ∨ member(x, l);

(¬?Q =⇒?z) = member(x, h#t) ∨ member(x, l) K

=⇒ (i f ?Q then ?y else ?z) = member(x, h#t) ∨ member(x, l)
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It is now safe to apply it to the goal using normal resolution, which instantiates the

remaining meta-variables as expected. The result is two new goals:

x = h =⇒ (True = member(x, h#t) ∨ member(x, l))

x 6= h =⇒ (member(x, t @ l) = member(x, h#t) ∨ member(x, l))

Naively applying resolution would result in a larger search space with alternative

unwanted sub-goals, resulting from unifying ?P with the entire goal-term while allow-

ing it to throw away its argument. In our example, such an instantiation is:

?P ≡ λu. i f (x = h) then True else (member(x, t @ l)= member(x, h#t) ∨ member(x, l))

Note that the bound variable u does not appear in the body of the abstraction, the

argument of ?P has simply been dropped. This would allow resolution to go through,

but the resulting sub-goals would not be useful in a proof (?Q, ?y and ?z would remain

uninstantiated).

4.4 Related Work

4.4.1 Middle-Out Reasoning

Previous work in middle-out reasoning has also come across the problem of getting

too many higher-order unifiers, many of them undesirable.

Andrew Ireland’s lemma-speculation critic [41], made use of rippling annotations

to help restrict which wave-rules were allowed to be applied to schematic terms. Meta-

variables were also restricted to being second order. The contents of wave-fronts (or

sinks) in the goal were first matched with wave-fronts in the rules. This was possible as

CLAM employs static rippling and thus annotates all wave-rules in advance. IsaPlan-

ner, however, uses dynamic rippling, which means that there are no annotations present

at the object-level. Annotations are instead re-computed after each step of rewriting.

Our middle-out rewriting technique only attempts a rewrite if the same function sym-

bol can be found both in the rule and the schematic goal. Starting from the matching

function symbol, we try to unify a non-variable sub-term with some part of the rule,

and deal with the rule’s ‘left-overs’ by instantiating a meta-variable. As opposed to

Ireland’s technique, our version of middle-out rewriting could be used independently

of rippling.
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Hesketh et al. [31], used middle-out reasoning to synthesise tail-recursive func-

tions. Here, meta-variables stand for the functions that are being synthesised. After

higher-order unification, the results were filtered to eliminate ‘not sensible’ unifiers.

Any unifiers introducing universally quantified or free variables into the body of the

function were discarded. Unlike our algorithm, this would not avoid the possibility of

applying every single rewrite rule to a term with a top-level meta-variable, afterwards

having to discard a large number of unwanted results.

4.4.2 Higher-Order Narrowing

Narrowing is a technique for solving equational problems by rewriting, where both

goal and rule may contain meta-variables, as is the case in our middle-out rewriting

program. Christian Prehofer has extended narrowing to higher-order logic [67]. He

found that the first order notion of narrowing could successfully be extended to a sub-

set of higher-order terms, called higher-order patterns. These are restricted not to

allow meta-variables to occur as arguments to other meta-variables. However, many of

the schematic goals we need to deal with for lemma speculation are not higher-order

patterns. For full higher-order narrowing, Prehofer suggests using lazy narrowing,

where equational reasoning is integrated into unification. Lazy narrowing is complete,

as opposed to our middle-out rewriting, which deliberately sacrifices completeness for

reductions in search space size. Furthermore, we do not usually even want all of the

possible unifiers and rewrites.

4.5 Summary

Many proof-critics make use of meta-variables to stand for unknown term-structures.

Instantiations of these variables are typically found by applying further rewrite rules. If

an unrestricted version of higher-order unification is used, any rewrite rule can be made

to unify with a meta-variable, leading to a very large search space. The middle-out

rewriting technique restricts this search space by first matching non-variable sub-terms,

and then attempting to instantiate a meta-variable with the rest of the rule, making it

applicable. This allows us to filter out undesirable cases where any rule is made to

unify with a meta-variable.

Sometimes meta-variables occur on the top-level in theorems we wish to apply

to a goal by resolution. Our algorithm for resolution with restricted unification first
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searches for a match of non-variable sub-terms in the goal and the theorem, and uses

the remaining term-structure in the goal to instantiate the top-level meta-variable. This

avoids many undesirable instantiations and reduces the search space. It also ensures

such a theorem cannot be applied to every goal.
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Case-Analysis

5.1 Introduction

Case-splits are essential if we are to automate proofs about theorems involving func-

tions with conditionals in their definitions. Examples include common list operations,

such as member and delete, as well as operations on natural numbers, such as subtrac-

tion and ≤. Automatic case-splitting was previously not available in IsaPlanner. We

have implemented a case-analysis technique which, if necessary, can introduce case-

splits both on the boolean condition of an if-statement and on arbitrary datatypes in

the presence of a case-statement. Case-statements are higher-order constructs, which

allow pattern matching on datatypes, commonly used in many function definitions.

Identifying when introducing a split on a case-statement is appropriate can be viewed

as a eureka step, as naively allowing case-splits may lead to non-termination. This

is why Isabelle’s simplifier does not attempt splits on case-statements. Automating

case-splitting increases the number of proofs about such functions that can proved au-

tomatically, which is confirmed by our results (§5.5).

Our approach to case-analysis is to unfold if- and case-statements within rippling.

The restrictions on rippling to decrease its measure ensures that termination is pre-

served, even when introducing splits over arbitrary datatypes. Whenever a conditional

statement is discovered in the goal, the case-split technique is triggered before any

more rippling to other parts of the goal is performed. The technique either picks the

relevant branch, or introduces a split if necessary. After a split it is often the case

that some branch no longer preserves the skeleton of rippling. Such goals are solved

by simplification before rippling is resumed. Occasionally, all sub-goals after a split

may be non-rippling goals and solved by simplification, in which case the proof is

47
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concluded without further rippling1.

Sections 5.2 and 5.3 describe how our technique handles case- and if-statements

respectively.

5.2 Case-Statements

For each user-defined datatype, Isabelle automatically derives its defining equations

and creates a case-construct for the datatype, to use for case-based pattern matching

[65]. Isabelle also derives rules for how to split case-statements. As an example, the

case-construct for natural numbers is called nat case : α ⇒ (nat ⇒ α) ⇒ nat ⇒ α.

When case-constructs are applied to their arguments, Isabelle writes them in the more

conventional style:

case n o f 0 ⇒ f1 | (Suc x)⇒ f2 x

Here, n is the third argument of the nat case function above, while f1 is the first and

the function f2 the second. We refer to these kinds of expressions as case-statements.

On encountering a case-statement, our technique will first inspect the term in order

to pick the relevant branch if either pattern can be matched. Returning to our example

of natural numbers, this involves attempting substitution with either one of the follow-

ing theorems, which are automatically derived by Isabelle:

case 0 o f 0 ⇒? f1 | (Suc x)⇒? f2 x = ? f1

case (Suc ?n) o f 0 ⇒? f1 | (Suc x)⇒? f2 x = ? f2 ?n

If neither of the above rules match, a case-split must be introduced, using another

automatically derived theorem2:

J?n = 0 =⇒?P(? f1); ∀x. (?n = Suc x) =⇒?P(? f2 x)K =⇒

?P(case ?n o f 0 ⇒? f1 | (Suc x) ⇒ (? f2 x)) (5.1)

The meta-variable ?P above, stands for the context in which the case-statement oc-

curs. The actual case-split is implemented as a single resolution step with theorem 5.1.

However, note that as the meta-variable ?P occurs on the top-level of the theorem, it

could be applied to any goal, not just the intended goals containing case-statements. It

1This typically indicates that the proof did not actually require induction, but rather a proof by case-
analysis.

2This theorem is derived by IsaPlanner, from the slightly different version derived by Isabelle.
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may also produce additional undesirable instantiations for goals that do contain case-

statements. In an interactive setting, the user can specify the instantiation for ?P, but

as our system is automatic, it has to employ the resolution technique with restricted

unification, as described in §4.3. This ensures we only get the results we want.

Example

Consider the proof of the commutativity of the max function, where max is defined as

follows for the Suc-case:

max (Suc x) y = case y o f 0 ⇒ (Suc x) | (Suc z)⇒ Suc (max x z) (5.2)

The step-case of the proof is:

Inductive hypothesis: ∀b. max a b = max b a

Step-case goal: max Suc a
↑ bb′c= max bb′c Suc a

↑
(5.3)

By applying rule 5.2, the left hand side of the step-case is rippled to:

case b′ o f 0 ⇒ (Suc a) | (Suc z)⇒ Suc(max a bzc)
↑

= max bb′c Suc a
↑

At this point, the case-split technique is triggered, due to the introduction of a case-

statement. We cannot proceed down either branch of the case-statement as we lack

information about the structure of b′. A case-split on b′ is thus introduced by restricted

resolution with theorem 5.1. This first instantiates P ≡ λ x. x = max b′ (Suc a), and

then produces the two new sub-goals:

b′ = 0 =⇒ Suc a = max b′ (Suc a) (5.4)

b′ = Suc z =⇒ Suc(max a bzc)
↑

= max bb′c Suc a
↑

(5.5)

Goal 5.4 does not embed the skeleton and is thus solved by simplification3. Goal 5.5

on the other hand, still has an embedding and will be proved by further rippling.

Observe that following a case-split, an equational assumption, stating the particular

value that the case-split term takes, is introduced for each branch. The equation is then

substituted in each goal’s conclusion. Not doing so would complicate further rewriting

and lemma calculation, as the case-split sub-term would have two representations. In

our example, this means replacing the occurrences of b′ on the right-hand side with 0

and Suc z respectively. This is the final step involved in splitting a case-statement into

its possible constructor cases.
3We describe experiments with other ways of solving non-rippling goals in §5.5



50 Chapter 5. Case-Analysis

5.3 If-Statements

Our case-analysis technique can also handle boolean conditions in if-statements. In

a similar fashion as for case-statements, the technique will first attempt to verify the

condition or its negation and proceed down the corresponding branch. This is imple-

mented as attempted substitution with the library theorems below:

?P =⇒ (if ?P then ?x else ?y) =?x (5.6)

¬?P =⇒ (if ?P then ?x else ?y) =?y (5.7)

Applying theorem 5.6 results in two sub-goals, one proving the condition ?P to be true

and one proving the then-branch, ?x. Similarly, applying theorem 5.7 requires us to

prove ?P is false, and then prove the else-branch, ?y. The goal arising from the con-

dition is solved either by resolution with an existing assumption, or by simplification.

The goal from the branch is passed back to rippling.

If failing to show that either the condition ?P or its negation holds, a split on the

condition should be introduced. This is performed using resolution with restricted uni-

fication, to avoid undesirable unifiers (as described in §4.3), using the library theorem:

J?Q =⇒?P(?y); ¬?Q =⇒?P(?z) K =⇒ ?P (i f ?Q then ?y else ?z) (5.8)

As before, this gives us two new sub-goals. It is common that only one of these goals

still embeds the skeleton from rippling. As for case-statements, non-rippling goals are

required to be solved by simplification.

Example

As an example, consider the following theorem:

x member (l @ m) = x member l ∨ x member m

The proof proceeds by induction on l and then uses the definition of member:

x member (h # t) = if (x = h) then True else (x member t) (5.9)

By rippling using rule 5.9, the step-case goal becomes:

i f (x = h) then True else x member (l @ m)
↑

= x member (h # l )
↑
∨ x member m
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The case-analysis technique is triggered on the discovery of an if-statement in the goal.

It is not possible to prove the condition, x = h, or its negation at this stage, so a split is

introduced. Restricted resolution with theorem 5.8, gives two new sub-goals:

x = h =⇒ True = x member(h # l) ∨ x member m (5.10)

x 6= h =⇒ x member (l @ m) = x member (h#l )
↑
∨ x member m (5.11)

The skeleton does not embed into goal 5.10 so it is passed to the simplifier, which

successfully solves it. Goal 5.11 can be rippled further by rewriting the right hand side

to:

x 6= h =⇒ x member (l @ m)= i f (x = h) then True else x member l
↑
∨ x member m

This time, taking the else-branch succeeds, as the assumption introduced by the previ-

ous case-split can be used to show the negation of the condition. The proof can now

be finished by strong fertilisation.

5.4 Eager or Lazy Case-Splits

Our case-analysis technique is interleaved with rippling and applied eagerly whenever

a rule introduces a case- (or if-) statement. Such a rule application, followed by the

case-split itself, is regarded as one ripple-step. This has two main advantages over de-

laying the case-splitting until rippling is blocked, or treating the case-split as a separate

ripple-step.

Firstly, some ripple-measures are not reduced between the goal containing a case-

statement and the resulting goal after the split. In the example about the commutativity

of max in §5.2, the goal before the split:

case b′ o f 0 ⇒ (Suc a) | (Suc z)⇒ Suc(max a bzc)
↑

= max bb′c Suc a
↑

has a wave-front in the same position as the ripple-goal after the split:

b′ = Suc z =⇒ Suc(max a bzc)
↑

= max bb′c Suc a
↑

Ripple measures, such as the ones currently used by IsaPlanner, do not take the size

of the wave-front into account, and will thus disallow the above step as non-measure

decreasing. By treating the application of the rule introducing the case-statement (here

rule 5.2 from the definition of max) and the subsequent case-split as one ripple-step, all
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known ripple measures will decrease with respect to the previous step-case goal (goal

5.3 on page 49). Similarly, for splitting data-types, substitution with the introduced

case-assumption, as described in §5.2, is typically not measure decreasing and hence

needs to be included as part of the compound ripple-step.

Secondly, when no actual case-split is needed, and the if- or case-statement can

be reduced to a known branch, the eager approach proceeds directly to the relevant

branch. If the if- or case-statement is allowed to remain in the goal, redundant rippling

steps might be applied to the branch that is later to be discarded. Eager application of

case-splitting is thus more efficient and provides shorter proofs on such theorems.

5.5 Evaluation

Functions with conditional definitions are very common, but many proofs requiring

case-splits could not previously be found by rippling-based methods. Rippling with

the case-analysis technique has been evaluated in IsaPlanner, on a set of 87 example

theorems about functions defined using if- or case-statements on lists, natural numbers

and binary trees. None of the theorems could previously be proved automatically in

IsaPlanner, but using the case-analysis technique, 47 new proofs can be found.

Of the theorems in the evaluation corpus, 41 involve if-statements, another 41 in-

volve case-statements and 5 involve both. Most of the theorems are a subset of induc-

tive theorems from Isabelle’s libraries for lists and natural numbers4. Some are more

programmatic in character and taken from a corpus for the CLAM system [41], and

from problems arising in dependently typed programming. We have also added some

further theorems to evaluate additional properties. The evaluation corpus and results

for rippling are included in Appendix B. They are also available on-line:

http://dream.inf.ed.ac.uk/projects/lemmadiscovery/case_results.php.

We did not expect IsaPlanner to prove all theorems in the corpus, even with the new

case-analysis technique. Although some progress is made in the proofs, many of the

remaining 40 theorems require more sophisticated reasoning about the side-conditions

than IsaPlanner is currently capable of. Some theorems also require conditional lem-

mas that are beyond the scope of IsaPlanner’s lemma discovery machinery. These

theorems are included in the corpus to identify where IsaPlanner’s case-splitting tech-

nique fails and how it can be improved. We discuss these limitation in §5.6.

In addition to the case-analysis technique, lemma calculation was also available

4isabelle.in.tum.de/dist/library/HOL/index.html



5.5. Evaluation 53

Figure 5.1: Number of theorems proved by each of the three versions of IsaPlanner’s

inductive prover. The number of theorems proved only by some technique(s) has also

been marked. Note that each technique proves some theorems the others do not.

to rippling during the experiments. The theorems were proved only from function

definitions (see Appendix A), no additional lemmas were provided in advance. The

experiments were conducted on an Intel Xenon 2 GHz processor. Each proof had a

timeout limit of 30 seconds, but all rippling proofs were found in less than one second,

while some failed proof attempts took slightly longer, at most taking 9 seconds.

Other Versions of IsaPlanner’s Inductive Prover

We have compared IsaPlanner’s rippling-based inductive prover equipped with the

case-analysis technique described above (we refer to this as ’version 1’ of the rippling-

based prover), with a simpler one, which applies induction followed by Isabelle’s sim-

plifier and lemma calculation [26]. We also experimented with an extension to our

case-analysis technique (’version 2’ of the rippling-based prover). This version al-

lowed non-rippling goals arising after splits, but not solvable by simplification, to be

tackled by lemma calculation. Below, a comparison of the results for each of the three

versions is made. The results are visualised in figure 5.1.

Induction and Simplification Version

The simplification based prover managed to prove 37 theorems from the corpus. The

full results for simplification are available on the website given above. There are 16
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theorems that rippling (version 1) proves, but simplification does not. Most of these

require a split on a datatype from a case-statement, which simplification is unable

to preform. There are 6 theorems that the simplification based prover can solve, but

not rippling (see figure 5.1). The majority of these involve if-statements with a non-

trivial condition. Recall that our case-analysis technique attempts to show conditions

by simplification or resolution with an assumption. The simplification based prover

on the other hand, first attempts to show which branch to go down, but may then try

to prove the condition using lemma calculation. The rippling-based prover does not

allow lemma speculation in these situations, and hence fails. An example is the proof

of the theorem last (xs @ [x]) = x. By induction on x, the step-case, will ripple to the

goal:

i f (xs @ [x]) = [ ] then h else last (xs @ [x])

The condition, or its negation, of the if-statement cannot be proved by simplification.

However, the negated condition, can be proved by induction as a lemma: (xs @ [x] 6=
[]). Having successfully proved this, the simplification-based prover proceeds down

the else-branch and concludes the proof by strong fertilisation.

However, applying lemma calculation more widely increases the risk of non-termination.

The simplification-based prover often fails to terminate on theorems it cannot prove,

as it often attempts to prove an infinite chain of increasingly more complicated con-

jectures. The 30 second time-out limit is reached during 39 proof attempts by the

simplification based technique. In contrast, the rippling-based prover does not have

these problems, and terminates on all theorems in the corpus. We conclude that the

heuristic guidance of rippling leads to better lemmas being calculated.

Rippling Version 2: Lemma Calculation for Non-Rippling Goals

After a case-split we observed that the skeleton often does not embed into one of the

new sub-goals. Such non-rippling goals were required to be solved by simplification

in version 1 of the rippling prover. However, we observed that some more complicated

theorems produced non-rippling goals that simplification could not solve. We therefore

modified the case-analysis technique for rippling, to attempt to prove such goals by

lemma calculation if simplification failed. This extended technique managed to prove

49 theorems, four of which the original technique failed to prove. Two theorems could

however no longer be proved, as the time-out limit of 30 seconds was reached. The

results are shown in figure 5.1, with full details available on-line.
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As for the simplification-based prover, allowing lemma calculation for non-rippling

goals after splits sometimes causes non-termination due to infinite sequences of con-

jectures being produced. The time-out limit was reached in 13 proof attempts. When

non-rippling goals are required to be solved only by simplification (as in version 1 of

our rippling-based prover), slightly fewer theorems are proved, but the prover is more

reliable with respect to termination.

5.6 Limitations and Further Work

We have identified some of the main reasons why IsaPlanner fails on the remaining the-

orems in the evaluation corpus, and will here discuss these in more detail and suggest

further extensions to rippling-based inductive theorem proving.

5.6.1 Conditional Lemmas

IsaPlanner is currently not able to produce conditional lemmas, in the form of implica-

tions. An example where this is needed is the proof that insertion sort produces a sorted

list: sorted(insertion sort l). insertion sort is defined as follows for a non-empty list:

insertion sort(h # t) = insert h (insertion sort t)

Using the above rule, the step-case of the proof ripples to:

sorted( insert h (insertion sort l )
↑
)

After this single ripple-step the goal is blocked. To complete the proof, we require a

conditional lemma, which IsaPlanner cannot currently find:

sorted m =⇒ sorted(insert x m) (5.12)

The required lemma is just a generalisation of the step-case goal with the inductive

hypothesis as an assumption (the common sub-term sort l has been generalised to m).

If lemma calculation was to include assumptions (such as the inductive hypothesis) of

the blocked goal, the above lemma could easily be found. However, we do not always

want the inductive hypothesis as an extra assumption to our lemmas, it should only be

included when it is needed in the proof of the lemma. Otherwise, the lemma may be

unnecessarily hard to prove and less applicable to future proofs.
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5.6.2 Reasoning with Assumptions

The proof of lemma 5.12 itself highlights further limitations in how IsaPlanner reasons

with assumptions. In particular, there are problems when the induction variable occurs

in an assumption. Applying induction on m in our candidate lemma gives the following

step-case:

IH: sorted m =⇒ sorted(insert x m)

Goal: sorted (h # m) =⇒ sorted(insert x( h # m
↑
))

The goal can be rippled using the definition of insert:

insert x (h # t) = i f (x < h) then (x # h # t) else (h # (insert x t))

Using this rule results in a new goal with an if-statement, so the case-analysis technique

is triggered and introduces a split on the condition x < h. We get two new goals:

Jsorted (h # m); x < hK =⇒ sorted(x # h # m) (5.13)

Jsorted (h # m); ¬(x < h)K =⇒ sorted(h # (insert x m)) (5.14)

The skeleton no longer embeds into goal 5.13 so it should be solved by simplification,

using the two assumptions. The skeleton does however still embed into goal 5.14, and

strong fertilisation is even possible. Recall that strong fertilisation is implemented as

a resolution step in IsaPlanner. Because the inductive hypothesis itself has an assump-

tion, the sub-goal sorted (h # m) =⇒ sorted m will remain after fertilisation. This

kind of fertilisation, where the hypothesis has an assumption, is called piecewise fertil-

isation. To prove the sub-goal remaining after piecewise fertilisation a forward proof

could be carried out, rewriting the assumption to match the conclusion. Rippling anno-

tations on the assumption could be used to guide rewriting, annotating the assumption

with respect to the conclusion, e.g. sorted ( h # m ) =⇒ sorted m.

5.6.3 Other Induction Schemes

As mentioned above, IsaPlanner attempts to solve any non-rippling goals arising after

a case-split by simplification. However, sometimes these goals will themselves require

a further case-split, which the simplifier cannot perform (see 5.7.4). In these cases, Isa-

Planner’s default induction scheme, which employs structural induction on the relevant

datatype, is not sufficient.
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An example of this is the proof of commutativity of subtraction, expressed in Is-

abelle as (i - j) - k = (i - k) - j. By induction on i, and a case-split on j on the left-hand

side, we get the two goals:

j = 0 =⇒ (Suc i) − k = ((Suc i) − k) − 0 (5.15)

j = Suc x =⇒ Suc(i − bxc)
↑
− bkc= ( (Suc i)

↑
− bkc) − b(Suc x)c (5.16)

The attempt to solve the non-rippling goal 5.15 by simplification fails, as the right-hand

side would require a further case-split on k, which the simplifier cannot perform. Had

another induction scheme been applied, for example simultaneous induction on i and j,

the proof would only require one case-split which could be performed while rippling.

One approach to solve this problem was discussed in §5.5, where non-rippling goals,

such as 5.15, were generalised and proved as lemmas. This technique did however not

always terminate.

Another option is to modify the ripple measure to take wave-front size into account,

allowing us to delay case-splitting until after regular rippling has finished. This is not

possible with the current ripple-measures, as discussed in §5.2. In the example above

this means rippling both the left- and right-hand sides of the goal, so it contains two

case-statements. The two case-splits are then applied only when no more rewrite rules

are applicable.

5.7 Related Work

5.7.1 Recursion Analysis

Case-splits on datatypes can be avoided by selecting or deriving a custom induction

scheme, using recursion analysis [5]. The first-order systems ACL2 [49] and VeriFun

[74] tackle problems otherwise needing case-splits in this way. Functions we define

using case-statements are instead defined by recursion on several arguments, and re-

cursion analysis can hence construct an appropriate induction scheme. However, for

functions defined using case-statements, recursion analysis fails to derive the needed

induction schemes.

5.7.2 The Case-Analysis Critic for CLAM

In the CLAM system [13], conditional functions would typically be defined using sev-

eral conditional rewrite rules. For example, member would, in the non-empty case,



58 Chapter 5. Case-Analysis

generate two rules:

x = h =⇒ x member (h # t) = True

x 6= h =⇒ x member (h # t) = x member t

If such a rule is applicable but the condition cannot be proved by simplification, and

there exists another rule with a complementary condition, CLAM’s case-split critic is

triggered and introduces a split on the condition [41]. In Isabelle/IsaPlanner, functions

with conditions are typically defined using an if - or case-statement, which is why our

case-analysis technique works over these, rather than complementary conditional rules

as in CLAM. As CLAM is first-order, it does not include case-statements and its case-

analysis critic can therefore not perform the corresponding splits on datatypes. Of the

87 theorems in the evaluation corpus, CLAM could thus not have proved any of the 46

theorems involving functions defined using case-statements. CLAM was however ca-

pable of employing its lemma discovery critics to produce simple conditional lemmas,

which IsaPlanner currently cannot do.

5.7.3 Case-splitting for Coq

An automated rippling-based inductive prover is under development in Coq, for deal-

ing with proof obligations arising from programming with dependent types [76]. This

prover follows a similar approach to ours, eagerly splitting on datatypes when possible.

5.7.4 Isabelle’s Simplifier

Isabelle’s simplifier applies rewriting with a set of given rules and can automatically

split if-statements but not case-statements [65], §3.1.9. In general, splitting case-

statements might cause non-termination for rewriting and is therefore not allowed. The

user must therefore identify and insert case-splits in proofs, where required, or apply a

different induction scheme, such as simultaneous induction on several variables.

Our case-analysis technique is incorporated as a step in rippling and can thus ensure

termination even when splitting case-statements over datatypes is allowed. As long as

the ripple measure decreases, splitting case-statements is safe. IsaPlanner employs

the simple default structural induction schemes for datatypes. Using the case-analysis

technique, IsaPlanner still manages to automatically prove theorems such as (i - j) - k =

i - (j + k), which in the interactive proof from Isabelle’s library uses a custom induction

scheme chosen by the user.
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5.8 Summary

Performing case-splits is an important feature for an automated inductive theorem

prover, as many common functions are naturally defined using if- and case-statements.

Our case-analysis technique can perform the needed case-analysis in many of these

proofs. Case-analysis has been incorporated as a step within rippling, and can thus re-

tain termination even though splits on arbitrary datatypes are allowed. The technique

is triggered during rippling whenever an if- or case construct is encountered in a goal.

If it is possible to prove the associated condition, the technique proceeds down the

corresponding branch, otherwise it introduces a split. This is implemented using reso-

lution with a relevant library theorem, aided by our heuristic for restricting the number

of unifiers.

The case-analysis technique has been fully implemented and tested in IsaPlanner.

Our evaluation showed 47 new theorems that IsaPlanner is now able to prove automat-

ically, including 14 which require splitting on a datatype, which is non-terminating for

other types of rewriting techniques such as Isabelle’s simplifier. Many of the more dif-

ficult theorems from the evaluation corpus require the ability to conjecture conditional

lemmas and improved reasoning with assumptions, which we suggest as further work.
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Lemma Speculation

6.1 Introduction

Finding missing lemmas is a very challenging problem for automated theorem provers.

The lemma discovery technique in this chapter has been designed to solve the problem

of automatically proving theorems without having to supply a large corpus of library

lemmas in advance, as is the case in many interactive systems, such as Isabelle.

Proof-planning critics were first introduced by Ireland et al. [41], as an attempt at

finding missing lemmas in the context of inductive proofs using rippling. The critics

were implemented in the CLAM 3 system. Rippling can provide crucial guidance in

the search for missing lemmas. In particular, any lemma used in the rippling proof

is required to decrease the differences between the goal and the inductive hypothesis,

while at the same time preserving similar parts. These restrictions provide valuable

hints as to what the missing lemma might look like, and make it feasible to attempt to

automate lemma discovery.

Ireland presents two critics for lemma discovery in CLAM 3, lemma calculation

and lemma speculation. The lemma calculation critic simply attempts to prove a gen-

eralised version of any goal remaining after the inductive hypothesis has been applied

(see example in §3.4). Lemma calculation may be a simple technique, but has proved

useful for many automated inductive proofs.

Lemma speculation is a more advanced technique, intended to discover lemmas

in cases not covered by lemma calculation. This technique is thus typically applied

when there are no more applicable rewrites but the inductive hypothesis cannot yet

be applied. The central idea of the lemma speculation critic is to create a schematic

lemma, initially containing meta-variables, that can unblock some part of the goal.

61
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Subsequent ripple-rewrites applied to the goal are intended to help instantiate the meta-

variables, until fertilisation is applicable and the meta-variables shared with the lemma

have been fully instantiated.

The lemma speculation critic will construct a schematic lemma using a sub-term of

the blocked goal as the left-hand side. There might be several such sub-terms, resulting

in alternative lemmas. The right hand side of a schematic lemma is constructed by

inserting meta-variables, standing for yet unknown structures into the skeleton of a

blocked sub-term. This guarantees that the new lemma will preserve the skeleton,

even though we do not yet know what it looks like. As a small example, consider a

blocked goal of the form:

f (x, g(x)
↑
)

The lemma speculation critic creates a schematic lemma using this blocked term as

the left-hand side. The right-hand side is created by inserting a meta-variable in the

skeleton: f (x, g(x)) = ?F( f (x, x)), which rewrites the goal to

?F( f (x, x))
↑

This lemma preserves the skeleton of the goal, and is thus allowed to be used by rip-

pling. Further ripple steps are expected to help instantiate ?F . Note however, that any

instantiation where ?F is instantiated to something of the form λ y. z, is not allowed,

as ‘ignoring’ the argument would break the skeleton.

Our work differs from that of Ireland in that we are focusing on lemma speculation

in higher-order logic, and for dynamic rippling. CLAM 3 only supports static rippling

and did not deal with higher-order theorems.

6.2 A Higher-Order Example

As a running example throughout the chapter, we use the inductive proof of the theo-

rem:

∀b n. f oldl (λ x y. x + y) n ((rev a) @ b) =

f oldl (λ x y. x + y) n (b @ a)
(6.1)

The theorem states that if we are to compute the sum of two lists appended onto each

other, it does not matter if one of them is reversed1. The function foldl is defined

1Here we start at some number n, this is to avoid the need for generalisation
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in Appendix A. Its first argument is a function of two arguments (here +), which is

applied to each argument of the list together with the value of the accumulator (here

initially n), thus computing the sum of the list added to n.

We will use theorem 6.1 to illustrate how a schematic lemma is constructed from

a blocked goal and how instantiations of its meta-variables are found. The step-case

conclusion and inductive hypothesis are shown below:

IH: ∀b n. f oldl (λ x y. x + y) n ((rev a) @ b) =

f oldl (λ x y. x + y) n (b @ a)

Step Case: f oldl (λ x y. x + y) bn′c ((rev (h#a)
↑
) @ bb′c) =

f oldl (λ x y. x + y) bn′c (bb′c @ (h#a)
↑
)

To distinguish the universally quantified non-induction variables b and n in the hypoth-

esis these have been renamed b′ and n′ in the step-case. n and n′ are of type nat and a,

b and b′ have type nat list.

The following wave-rules from the definitions of rev and foldl are initially available

to rippling:

rev(?h # ?t) = (rev ?t) @ [?h] (6.2)

f oldl ? f ?a (?h # ?t) = f oldl ? f (? f ?a ?h) ?t

After a ripple-step with rule 6.2 the step-case of our example proof becomes blocked:

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

f oldl (λ x y. x + y) bn′c (bb′c @ (h#a)
↑
) (6.3)

At this point, rippling is blocked but fertilisation is not yet applicable. Hence, the

lemma speculation critic is triggered, as we shall see below.

6.3 Constructing a Schematic Equational Lemma

When rippling has become blocked before fertilisation, the lemma speculation critic

is fired with the aim of constructing a lemma that will allow rippling to resume. The

first step is to decide which sub-term a new lemma could attempt to unblock. There

are typically several alternatives for choosing this sub-term, which will become the

left-hand side of the lemma. Our heuristics for choosing a candidate sub-term for

unblocking are outlined below:
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1. The sub-term considered must contain at least one wave-front to unblock, as the

speculated lemma must be used by rippling and thus decrease the measure.

2. The skeleton of the sub-term must contain at least one function symbol (applied

to something) to be considered interesting, as we use the skeleton to construct

the right-hand side of the lemma.

3. The sub-term, and its skeleton, is not allowed to contain any dangling bound

variables (bound by a lambda higher up in the term tree), as this would produce

a badly formed term.

Returning to the blocked goal 6.3, a number of alternative sub-terms are available.

From the left-hand side of 6.3 we get the following candidates:

((rev a) @[h])
↑

((rev a) @[h])
↑

@ bb′c (6.4)

f oldl (λ x y. x + y) bn′c ( ((rev a) @[h])
↑

@ bb′c)

The right-hand side of the blocked goal suggests another two possibilities:

bb′c @ (h # a)
↑

f oldl (λ x y. x + y) bn′c (bb′c @ (h # a)
↑
) (6.5)

Some candidate sub-terms occur on both sides of the equation, but are only included

once. Note that the sub-term (h#a)
↑

is not suggested, as its skeleton only consists of

the variable a. This would produce a lemma with right-hand side ?F(a), which is not

particularly useful for middle-out rewriting.

Alternative annotations

As IsaPlanner uses dynamic rippling, there sometimes exist several annotations for the

same term. The blocked goal 6.3 in the example has an alternative annotation, where

the singleton list [h] is considered to be in the sink position on the left-hand side, rather

than b′ as above:

f oldl (λ x y. x + y) bn′c ((rev a) @b [h] c) @ b′
↑

=

f oldl (λ x y. x + y) bn′c (bb′c @ (h#a)
↑
)
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This alternative annotation gives rise to two additional blocked sub-terms:

((rev a) @b[h]c) @ b′
↑

(6.6)

f oldl (λ x y. x + y) bn′c ( ((rev a) @b[h]c) @ b′
↑
)

Inserting meta-variables

After choosing a candidate sub-term for unblocking, which will make up the left-

hand side of a schematic lemma, the right-hand side is constructed by inserting meta-

variables into the erasure of the blocked term. The erasure is simply an instance of the

skeleton with the sink instantiated to its current contents. As mentioned above, alterna-

tive annotations may produce alternative contents of sinks. Meta-variables are inserted

above each function symbol, as well as in positions of sinks, where the contents of

the sink become an argument to the meta-variable. Each meta-variable needs to be

given some additional context parameters, here a, b′, h and n′, as these are not other-

wise allowed to be used in meta-variable instantiations. For readability, parameters of

meta-variables may be excluded in examples when it will not cause confusion.

To illustrate how to construct the right-hand side of a schematic lemma and why

erasures are used, rather than the skeleton, consider the two alternative annotations

6.4 and 6.6. These will have different erasures and thus produce different schematic

lemmas. Inserting meta-variables in the erasure of 6.4 gives the following schematic

lemma2 (the lemma is not annotated, following conventions for dynamic rippling):

((rev a) @ [h]) @ b′ =?F(?F1(rev a) @ (?F2 b′ a h n′))

Here the meta-variable F has been inserted above the @-symbol in the erasure, while

?F1 has been inserted above the rev, and F2 in the sink position of b′. Note that the

contents of the wave-front in the blocked term ‘disappear’ on the right-hand side of the

schematic lemma, as it is replaced by meta-variables. The alternative annotation of the

blocked term, 6.6, gives rise to a similar schematic lemma:

((rev a) @ [h]) @ b′ =?F(?F1(rev a) @ (?F2 [h] b′ a h n′))

Note that this version differs in that F2 now also has the argument [h], from the sink.

Neither of the above schematic lemmas will however lead to the discovery of an

actual lemma, so for the purpose of continuing our example, we consider the schematic
2For clarity, we often omit the parameters a, b′, h and n′ to all meta-variables except those arising

from sinks in the goal.
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lemma arising from the blocked term 6.5:

f oldl (λ x y. x + y) n′ (b′ @ (h#a)) =

?F( f oldl (λ x y. x + y) (?F2 n′ a b′ h) ?F3((?F4 b′ a h n′) @ a)) (6.7)

We insert meta-variables in all possible places where a wave-front could be present,

unlike Ireland’s critic where only one speculative wave-front was considered at a time

[41]. The search space should however be the same, with CLAM possibly having to

explore many more schematic lemmas, but with fewer meta-variables in each.

6.4 Rippling and Instantiation of Meta-Variables

After applying a schematic lemma, the critic attempts to instantiate meta-variables us-

ing middle-out rewriting as described in §4.2. The search space for middle-out rewrit-

ing may still be very large. We use rippling to guide the search towards a goal where

the meta-variables have been instantiated in such a way that fertilisation is possible.

The applications of alternative lemmas are attempted starting with the lemma having

the fewest meta-variables, and hence expected to have the smallest search space for

middle-out rewriting.

New issues arise when considering rippling in the presence of meta-variables. It is

no longer clear how ripple-measures should be computed, which has implications for

the termination of rippling. Below we discuss our solution for retaining termination

by repeatedly recomputing ripple-measures for the trace of middle-out rewriting steps.

We also discuss the risk of an explosion in search space size when a large number of

different possible annotations exist.

6.4.1 Potential Wave-Fronts and Measures

It is not obvious how the ripple-measure should be computed for a schematic goal.

Because we insert meta-variables in all positions where a wave-front might occur, each

meta-variable introduces a potential wave-front. This is a wave-front whose existence

depends on the instantiation of the meta-variable. Potential wave-fronts are annotated

by dashed boxes, and their wave-holes underlined. Potential wave-fronts arising from

the introduced meta-variables might disappear if the meta-variable turns out to be a

projection onto an argument in its wave-hole. As an example, consider the schematic
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term f ( ?F g(x) y
↑
) which contains one potential wave-front, introduced by the meta-

variable ?F . If ?F is instantiated to a projection on its first argument, the term becomes

f (g(x)), and no longer contains any wave-fronts. If ?F is instantiated to something of

the form F ≡ λu v. h(u, v), the potential wave-front becomes a regular wave-front:

f ( h(g(x), y)
↑
). The former instantiation results in a term with measure 0, while the

latter has measure 1.

Now, recall the blocked goal 6.3:

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

f oldl (λ x y. x + y) bn′c (bb′c @ (h # a)
↑
)

If we apply the schematic lemma 6.7 to the right hand side of the goal above we get a

new goal containing several potential wave-fronts:

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

?F1( f oldl (λ x y. x + y) b(?F2 n′ a b′ h)c ?F3(b(?F4 b′ a h n′)c @ a)
↑
)
↑

(6.8)

The blocked goal has ripple measure 4. If we were to compute the ripple measure

as we normally do, goal 6.8 would not decrease the measure, as we have introduced

two potential wave-fronts on the right-hand side, giving a naive ripple measure of 6.

However, the possible meta-variable instantiations include projecting ?F1 and ?F3 onto

their first arguments, and ?F2 and ?F4 onto n′ and b′respectively, which would remove

any wave-fronts from the right-hand side. This gives a best-case measure of only 2 for

goal 6.8 (the measure of 2 comes from the wave-front on the left-hand side of 6.8).

Hence, we consider the rewrite with the schematic lemma to be potentially measure

decreasing and allow it, at least until the actual instantiations of the meta-variables

are known. A schematic lemma is always constructed in such a way that each meta-

variable will have some argument that is a sub-term of the skeleton. If instantiated to

a projection on this argument, the meta-variable will contribute 0 towards the ripple-

measure. Thus, each schematic lemma is initially potentially measure decreasing by

construction.

As partial wave-rules are subsequently applied to the goal, some meta-variables

will be instantiated. Recall that instantiations that would break the skeleton are not

allowed. The instantiation of a meta-variable also changes its associated potential

wave-front to an actual wave-front. After each instantiation, the ripple-measure must
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therefore be recomputed for the whole sequence of middle-out rippling steps, as prior

measures may be too optimistic. This ensures that a valid ripple trace still exists as a

possibility. The new measures are again computed by considering projections of the

current set of uninstantiated meta-variables. If the new ripple-trace still is potentially

measure decreasing, the latest step is allowed, and rippling may continue. Otherwise,

it is blocked.

Returning to our example, there are two possible middle-out rewrites that instanti-

ate meta-variables and improve the ripple measure at this point, using wave-rules from

the definitions of f oldl or append (see Appendix A). Here, we consider a wave-rule

for f oldl:

f oldl ? f ?n (?h # ?t) = f oldl ? f (? f ?n ?h) ?t (6.9)

Recall the middle-out rewriting algorithm described in §4.2. This will search for func-

tion symbols occurring both in the rule and in the schematic goal. The f oldl-function

occurs both in rule 6.9 and in goal 6.8. The redex in the goal does not have a top-

level meta-variable, and it is hence safe to use regular unification and rewriting, rather

than the version with heuristic restrictions described in §4.2. The rule application in-

stantiates the meta-variable ?F3 to λ x. (?h1 a b′ h n′) # x, which then beta-reduces to

(?h1 a b′ h n′) # ((?F4 b′ a h n′) @ a). Thus 6.8 is rewritten to3:

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

?F1( f oldl (λ x y. x + y) b((?F2 n′ a b′ h) + (?h1 a b′ h n′))c (b(?F4 b′ a h n′)c @ a))
↑

To check if this is a valid ripple step, we first need to re-compute the ripple-measure

for 6.8, as ?F3 has been instantiated. We then need to check that our new goal can

potentially improve on the new measure of goal 6.8. The remaining meta-variables

are instantiated by exploring their possible projection. Instantiating ?F1 to a projection

onto its first argument, ?F2 to a projection onto n′, F4 to a projection onto b′ and ?h1 to

a projection onto h, gives the following valid ripple trace:

3The actual beta-expanded instantiation for ?F3 is λ x y z u v. (?h1 a b′ h n′) # x. This is because ?F3
also takes the (omitted) parameters a, b′,h, n′ as arguments.
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f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

f oldl (λ x y. x + y) bn′c (bb′c @ (h#a)
↑
) Measure: 4ww� by (6.7)

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

f oldl (λ x y. x + y) bn′c h#(bb′c @ a)
↑

Measure: 3ww� by (6.9)

f oldl (λ x y. x + y) bn′c ((rev a) @[h])
↑

@ bb′c) =

f oldl (λ x y. x + y) bn′+hc(bb′c @ a) Measure: 2ww� Weak Fert.

f oldl (λ x y. x + y) n′ ((rev a) @[h]) @ b′) =

f oldl (λ x y. x + y) (n′+h)((rev a) @ b) (6.10)

In addition to giving a valid ripple trace, these instantiations will allow for weak fertil-

isation to take place. Lemma 6.7 has been instantiated to

f oldl (λ x y. x + y) n′ (b′ @ (h#a)) = f oldl (λ x y. x + y) n′ h#(b′ @ a) (6.11)

By recomputing the ripple measures for the whole trace, we retain termination of

rippling, even in the presence of meta-variables and potential wave-fronts. This follows

from the standard termination property of rippling, and from the fact that the length of

the potential middle-out rippling trace is limited by the measure of the last regular

rippling goal. The last regular rippling goal does not contain any meta-variables, and

has thus a fixed ripple measure, m. Every subsequent middle-out step has to have a

measure less than m. The ripple measure is defined to be minimal, 0, when fertilisation

is possible. Thus, the maximum number of possible middle-out rewriting steps is

m−1, as each step has to reduce the measure from the previous step by at least 1.

When measures are recomputed for the whole trace, we ensure that a decreasing

trace is still a possibility after each instantiation. Retaining termination of rippling

with lemma speculation is a major improvement on the lemma speculation algorithm,

compared to the CLAM 3 version. In CLAM 3, there were no checks for potential

measure decrease of schematic goals, and termination was thus lost.
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6.4.2 Multiple Annotations

As was pointed out in §3.4.3, using dynamic rippling means each goal may have sev-

eral different annotations. The current version of IsaPlanner will, after each rewrite,

compute all possible annotations for the whole of the new goal. Schematic goals may

have an even larger number, if several of the meta-variable projections produce terms

in which the skeleton can be embedded.

If each annotated copy of a schematic goal is treated separately, the rippling search

space will increase exponentially, and quickly become unmanageable. The solution is

to use a grouped ripple measure, as described in §3.4.3, where each goal has a list of

possible embeddings and measures. Preliminary experiments showed that the search

space of lemma speculation quickly became unfeasibly large without grouping the

ripple measures. For example, without grouped measures, the proof in the previous

section had a search space so large that the ML-process ran out of memory.

6.5 Eager Fertilisation

After each step of middle-out rewriting, our lemma speculation critic attempts to ex-

plore the projections of the remaining meta-variables to compute ripple measures and

to check if fertilisation is applicable, in which case no more middle-out rewriting is

needed.

If weak fertilisation is the last step of the critic, the result is two lemmas: the now

instantiated lemma that was speculated by the critic and a generalisation of the goal

after weak-fertilisation (a lemma calculation). In addition to the speculated lemma

6.11, the example above would also suggest the need for an additional lemma arising

from the generalised post-fertilisation goal 6.10. In cases where strong fertilisation

applies, only the speculated lemma needs to be proved.

Eager fertilisation is often applicable, but in many cases the meta-variables are

instantiated in such a way that the schematic lemma becomes false. Therefore, the

critic uses Isabelle’s counter-example checker and only allows fertilisation if it cannot

find a counter-example for the instantiated lemma.

After passing counter-example checking, a proof of the lemma is initiated. In some

cases, the proof of the lemma itself will require further lemma speculations. This raises

some concerns about the termination of repeated applications of lemma speculations,

the prover might potentially apply a never ending chain of lemma speculations. An
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alternative is to let the proof-planner inform the user that a proof of the original con-

jecture can be found, if supplied with a proof of the speculated lemma. The default

for the current implementation is to attempt to prove any lemmas using the standard

version of rippling with lemma calculation, but not speculation.

6.6 Evaluation

Lemma speculation is applicable when rippling is blocked, but fertilisation (and pos-

sibly lemma calculation) is not yet possible. Furthermore, for lemma speculation to

work, there must be at least one additional ripple step after the schematic lemma has

been applied to help instantiate the meta-variables by middle-out reasoning. Unfor-

tunately, in the mathematical domains we have explored, there are few proofs failing

in this way. In equational theories, weak fertilisation and lemma calculation are often

applicable and successful. When surveying Isabelle’s list library4, which contains hun-

dreds of theorems, we found only one inductive theorem to which lemma speculation

was even applicable (theorem 8 in table 6.1 on page 73).

To find higher-order examples, we looked at the domain of higher-order function

synthesis [21]. Here, higher-order equivalents of first-order ML functions were con-

structed using functions like fold and map in order to provide potential parallelisation.

An example is rev l = f oldl # [ ] l. Many of these proofs are hard and could not

be proved automatically by IsaPlanner, even with the addition of lemma speculation.

Lemma speculation is not applicable (or appropriate) to these proofs, as one side of

the equation is typically very simple and will allow weak-fertilisation (here the left-

hand side, rev l). To automate these proofs in IsaPlanner, lemma calculation with an

improved generalisation technique seems more promising.

Exploring non-equational theorems from Isabelle’s natural number library5 about,

for example, operators like < and ≤, also gave few interesting examples. Proofs in

this domain seem to often require conditional lemma discovery, as discussed in §5.6.

For other theorems, such as m ≤ n =⇒ m ≤ (Suc n), which IsaPlanner currently fails

to prove with its default induction scheme, induction on two variables simultaneously

is required.

In the evaluation of critics in CLAM 3, only seven theorems required lemma spec-

4http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/List.html
5http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library/HOL/Nat.html
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ulation6 [41]. Of these, theorem 1 in table 6.1, could equally well have been solved

by generalising the variables apart. Most of the examples involve reversal of lists,

where rippling can become blocked as a cons-operator (#) changes into an append of

a singleton list.

In addition to the examples from CLAM 3, we have compiled an additional test

set of (mostly) higher-order theorems. Due to the small number of theorems requiring

lemma speculation, the test set is rather small and many of the examples are somewhat

contrived as they had to be constructed in such a way that both sides of the equation

got blocked. The results from our experiments are shown in the table 6.1 on page 73.

The experiments were run on an Intel Xenon 2 GHz processor. We are mainly con-

cerned with finding the correct lemmas in these experiments. Proof attempts of lemmas

are only allowed to use lemma calculation, not additional speculations, for efficiency

reasons. The lemmas given in the tables have been generalised by IsaPlanner, using

common sub-term generalisation. We used a ripple measure which is a variant of the

sum-of-distance measure, but which also keeps track of the path of the wave-fronts

through the term tree, thus reducing the number of symmetric annotations. We have

also experimented with using the plain sum-of-distance measure, but found that this

largely gave the same results.

IsaPlanner manages to find and prove lemmas for 4 of Ireland’s examples (1 and 4-

6 in table 6.1) and one of the additional theorems (theorem 12). Lemmas are found for

theorems 2 and 3, but were not automatically proved. However, the lemma for theorem

2 (which is identical to theorem 1) could have been proved if additional speculations

were allowed in proofs of lemmas. The lemmas for theorem 3 require generalisation

apart of the variables, which is not available in IsaPlanner. IsaPlanner fails to even find

a lemma for theorem 7, because the missing lemma, (a @ b) @ c = a @ (b @ c), is the

last step before fertilisation. Thus, there is no chance of finding the instantiations for

this lemma by middle-out ripple steps. For the higher-order examples, theorems 8-9

and 13 have the same problem. For theorems 10-11, lemmas are found, but not proved

due to failure of lemma calculation.

6In Ireland’s paper, an eighth theorem sorted(sort l) is claimed to need lemma speculation, although
it in fact requires a form of conditional lemma discovery described in §5.6, which is quite different from
the critic described here.
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6.7 Limitations

Several limitations of lemma speculation have become evident during our implemen-

tation and evaluation in IsaPlanner. We will summarise them below.

6.7.1 Applicability

As discussed in §6.6 we found surprisingly few theorems for which lemma speculation

was applicable. Although we cannot with certainty claim that lemma speculation is as

rarely applicable in domains other than those we have explored, it does seem like other

techniques are more promising to explore. Lemma calculation is certainly far more

widely applicable, which suggests that further work should be directed towards im-

proving lemma calculation, extending it to cope with conditions and perhaps improve

its generalisations.

6.7.2 Underspecified Lemmas

The lemma speculation critic relies on the assumption that it will be possible to instan-

tiate the meta-variables by application of further wave-rules followed by the explo-

ration of projections for remaining meta-variables in order to make fertilisation appli-

cable. Problems arise when the lemma sought would take us directly from a blocked

goal to a goal where fertilisation is applicable, without any intermediate ripple steps

to help instantiate meta-variables. This happens for five of the theorems in the test set,

namely theorems 7-10 and 14 in table 6.1.

Fertilisation will often be trivially applicable to the goal resulting after applying a

newly speculated lemma, because of the way the lemma is constructed (see §6.3). Just

projecting away the meta-variables can give an instance of the skeleton. However, this

will almost always suggest a lemma that is not valid. Applying fertilisation directly

after applying a schematic lemma, without any intermediate middle-out steps, is there-

fore not allowed in the current implementation. Ireland’s version in CLAM 3 allows for

direct fertilisation if the meta-variables are in sink positions [41]. The resulting lemma

will however not be fully specified, as meta-variables remain. CLAM 3 attempts an

inductive proof of the schematic lemma, expecting the base-case to allow the critic to

find an instantiation for the remaining meta-variables. Theorem 7 in table 6.1 can be

proved in this way, however, the technique will not work in general, and fails on the

other theorems. In these cases one might consider using middle-out reasoning to try to
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instantiate the meta-variables in the step case instead. This does however raise several

issues. Firstly, preliminary work brought up a problem with Isabelle’s induction tactic

(used by IsaPlanner), which does not allow induction to be applied to goals containing

meta-variables. Secondly, unlike middle-out rippling for lemma speculation, rippling

could in this situation no longer guarantee termination as there are meta-variables both

in the skeleton and in the goal. Middle-out rippling for lemma speculation terminates

because the last blocked ripple-goal provides an upper bound on the ripple-measure of

the subsequent steps. If the skeleton, and thus also the first step of rippling, contained

meta-variables there would be no such upper bound. Instantiations of meta-variables

could potentially introduce new meta-variables, thus increasing the initial ripple mea-

sure. Even if we recomputed the measures for the whole trace, ensuring a decrease,

there is nothing stopping the initial starting measure to increase with each instantiation.

Example

As an example of a speculation that fails due to the required lemma being the last step

before fertilisation, consider theorem 9 in table 6.1. It becomes blocked as:

len( ( f h) @ concat(map f l)
↑
) = len( ( f h) @ (maps f l)

↑
)

The required lemma is the distributivity of len over append:

len(a @ b) = (len a) + (len b)

If this lemma was available, the blocked goal above can be rippled to:

len( f h) + len(concat(map f l))
↑

= len( ( f h) @ (maps f l)
↑
)

Weak fertilisation is now applicable on the left-hand side. Hence, there are no ripple-

steps that could have instantiated the lemma and the lemma speculation critic fails with

an underspecified lemma.

6.7.3 Search Strategy

The search space for lemma speculation can still be very large, as some of our experi-

ments show. A possible improvement would be to use a different search strategy, when

trying the different alternative schematic lemmas. Currently, depth-first search is used,

starting with the lemma that initially has the fewest meta-variables. However, during

rewriting more meta-variables can be introduced, so even a small lemma might give
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rise to a large search space. A better strategy might be some form of best-first search

based on the number of meta-variables in the goal.

6.8 Related Work

Our work is an extension of Andrew Ireland’s lemma speculation critic in CLAM 3

[41]. Unlike the critic in CLAM 3, IsaPlanner’s critic is implemented for dynamic

rippling and higher-order logic. This allows IsaPlanner to apply lemma speculation

to higher-order theorems, unlike CLAM. Our critic will also terminate, thanks to the

re-computation of ripple measures for the whole middle-out rewriting trace, which

ensures each step is indeed measure decreasing. This also helps reduce the search

space for middle-out rewriting. CLAM 3 did not have such restrictions and employed

an iterative deepening search instead, which could not ensure termination. A further

difference between our critic and CLAM’s, is the heuristic for restricting which wave-

rules are applicable during middle-out rewriting, described in chapter 4. As discussed

in §4.4, CLAM uses static rippling and can thus make use of matching object-level

annotations to restrict the number of wave-rules applicable to a schematic goal. Is-

aPlanner on the other hand, uses dynamic rippling, where rules are not annotated in

advance. To avoid any rule matching the schematic goal, we only consider rules which

share some function symbol with the goal.

IsaPlanner failed to find a lemma for one of the seven examples of lemma specula-

tion given in [41] (theorem 7 in table 6.1), due to an underspecified lemma (see §6.7.2).

CLAM managed to find a lemma by initiating an inductive proof of the underspecified

lemma, where a meta-variable instantiation was found in the base-case. However, this

technique does not work for many other proofs where lemma speculation fails to in-

stantiate the lemma.

6.9 Summary

Lemma discovery is a very hard but vitally important problem in automated theo-

rem proving. Lemma speculation is a technique used in conjunction with the rippling

heuristic to suggest missing lemmas in inductive proofs. As opposed to lemma cal-

culation, which is applied after fertilisation, lemma speculation is applicable when

rippling is blocked but fertilisation is not yet possible. We have implemented a lemma

speculation critic in the IsaPlanner proof planner.
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Rippling requires any rewrite to preserve the embedding of the inductive hypoth-

esis into the new goal. The lemma speculation critic takes advantage of this and con-

structs schematic lemmas by inserting meta-variables standing for yet unknown term-

structures into the skeleton of a blocked term. The critic then attempts to instantiate

the meta-variables by further rippling and middle-out rewriting. A restricted version

of higher-order unification is used to help reduce the search space of applicable rewrite

rules. Rippling helps to further reduce the number of candidate rewrites by ensuring

that the ripple measure is still (potentially) decreasing over the whole trace after each

instantiation of a meta-variable. After each rewrite the critic will also check if fertilisa-

tion has become possible for any term resulting from exploring the projections of any

remaining meta-variables. If fertilisation is successful, the now instantiated lemma is

subjected to counter-example checking, followed by an inductive proof-attempt.

Lemma speculation has some serious limitations. It will for example fail if fertil-

isation must be applied straight after application of the lemma, without any interme-

diate middle-out rewriting steps to help instantiate the meta-variables. Furthermore,

it appears that lemma speculation is rarely applicable. We have surveyed a number

of different theories, for example from Isabelle’s libraries, and found very few proofs

where it applies, unlike the simpler lemma calculation critic which is often successful.





Chapter 7

Conjecture Synthesis

7.1 Introduction

We have developed a program for synthesising inductive theorems, which we call

IsaCoSy (Isabelle Conjecture Synthesis), as an alternative to lemma speculation. Ex-

periments showed that lemma speculation is not applicable as often as expected, and

in many of the cases where it is applicable, it fails to fully instantiate the lemma (see

§6.7). This leads to an intractable problem of trying to synthesise terms for the unin-

stantiated meta-variables without any heuristic guidance from rippling and middle-out

reasoning.

The problems with lemma speculation motivate our attempt to synthesise lemmas

from available constants and variables in a ‘bottom-up’ fashion. We incrementally

build larger terms using the set of available constants and function symbols in a given

theory. The key idea for making this tractable is to turn rewriting upside down: only ir-

reducible terms (not matching any rewrite rule) are synthesised. In terms of the imple-

mentation, these restrictions turn into constraints on the term-synthesis process, thus

avoiding a naive and inefficient generate-and-test style procedure. Counter-example

checking is still used to prune out obviously false conjectures, but as this can be rather

slow, we want to use it as little as possible. Remaining conjectures are given to Isa-

Planner to prove by induction and rippling. Any theorems found can then be used to

generate further constraints as synthesis is attempted on larger terms, as well as being

added as wave-rules, thus improving the power of IsaPlanner.

The aim of the IsaCoSy program is to automatically generate inductive theorems

and lemmas that are interesting or will be useful as lemmas in further proofs in a given

Isabelle theory.

79
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The current implementation consists of three main parts:

• A language for expressing constraints on synthesis (§7.3).

• A constraint generator, which produces constraints from available theorems (§7.4).

• The synthesis engine itself, including procedures for updating and propagating

constraints (§7.7)

Notation

Term Size

We define the size of a term to be the number of symbols (constants or variables) it

contains. For example, the term ?h1 =?h2 is of size 3 (two variables and one constant,

the ‘=’-symbol).

Holes

During synthesis, holes are positions in the term-tree that have not yet been synthe-

sised. Holes are implemented as meta-variables. Holes will have various constraints

associated with them, such as a specified size and restrictions on which constants and

variables are allowed to occur inside them.

Naming

Both holes and constraints are identified by unique names. We will use names of the

form ?hi for holes and Ci for constraints.

7.2 Motivating Examples

To illustrate the types of constraints that restrict term synthesis, we shall in this section

consider a few examples about natural numbers. These examples are instances of the

types of constraints that can be expressed in IsaCoSy’s constraint language, described

in §7.3, and used to control synthesis.

The constraints express restrictions on instantiations of holes, including which con-

stants a hole is allowed to be instantiated to, and restrictions about which holes are

not allowed to be instantiated to equal terms. Certain combinations of hole instanti-

ations may also be forbidden. The constraint language must also be able to express
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restrictions on holes that do not exist yet, but may in the future, given some particular

instantiations of the current holes.

Example 1: Definition of Addition

Addition is defined as follows:

0+ y = y

(Suc x)+ y = Suc(x+ y)

The above definitions can be used as rewrite rules. The first applies to any term that

has 0 in the first argument position of +, while the second applies to any term that

has a Suc in the first position (regardless of what the Suc is applied to). We would

like any such terms to be excluded by synthesis. Our constraint generation algorithm,

described in detail in §7.4, will process the definitional theorems above. For the first

theorem it produces a constraint stating that synthesis is never allowed to put a 0 in the

first argument position of +. Similarly, for the second theorem, it generates a constraint

disallowing Suc to appear in the first argument of +. This ensures that no term, which

can be rewritten by the definitions of addition, is ever synthesised.

Example 2: Injectivity of Suc

Assume we know Suc to be injective, expressed in Isabelle as the rewrite rule (Suc n =

Suc m) = n = m. To avoid synthesising terms to which this rewrite is applicable,

we need a constraint that forbids the two arguments of = to both be instantiated to

Suc at the same time. Either one of them may be instantiated to Suc, but not both

simultaneously. §7.5.2 describes these constraints more formally.

Example 3: Reflexivity

Reflexivity can be expressed as the rewrite rule (x = x) = True. The constraint we

derive from this theorem is that the two arguments of = never should be equal in a

term we have synthesised. This is described further in §7.5.3.

Example 4: Conditional Constraints

Imagine we have a partially synthesised term, Suc ?h3 =?h2, to which the reflexivity

constraint (above) applies. The reflexivity constraint disallows the left- and right-hand

side of the equation to be equal. The left-hand side has been partially instantiated to
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Suc ?h3. Synthesis now only needs to consider the inequality constraint if the right-

hand side hole ?h2 also becomes instantiated to Suc. The constraint propagation algo-

rithm (§7.7.3) takes care of producing conditional constraints when needed.

Conditional constraints may also arise from rewrite rules. For example, if a rule

has a left-hand side of the form f (g 0), then if a synthesised term, containing an f ,

instantiates its argument to g, then 0 is not allowed to occur as an argument of g.

7.3 Constraint Language

Motivated by rewrite rules such as those in §7.2, we have developed a small language

for expressing constraints on term synthesis. The constraint language allows us to

capture the requirement that no synthesised term should be reducible by an existing

rule.

7.3.1 Representation of Constraints

Each constraint comes from a rewrite rule about some top-level function1. When the

constraint is derived it is given a unique name, and stored in a table associated with

its top-level function. When a particular function-symbol is used during synthesis, its

associated constraints are attached to the new holes.

When we talk about arguments in constraints, we refer to a particular argument

position for a function, which can be a hole during synthesis. Other representations of

arguments are described in §7.3.2. Some constraint-types refer to several arguments,

and may thus be attached to more than one hole during synthesis.

The constraint language consists of five different types of constraints, captured by

the datatype:

datatype Constr =

NotAllowed of Arg * ConstantName

| VarNotAllowed of Arg * VarName

| NotSimult of (Arg * ConstraintName) list

| UnEqual of Arg list

| IfThen of Arg * (ConstantName * ConstraintName)

The first two constructors of the constraint-type, NotAllowed and VarNotAllowed,

simply state that some argument is not allowed to be instantiated to some (uniquely
1This is the top-level function in the left-hand side of the rule
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named) constant or variable (see Example 1 of §7.2). The NotSimult-constraint cap-

tures dependent constraints. Several arguments may not be allowed to have a particular

combination of instantiations simultaneously (see Example 2 of §7.2). The UnEqual-

constraint specifies a list of arguments that are not all allowed to be instantiated to the

same term (some of the arguments may have the same instantiation, but not all). An

example of this is the reflexivity theorem in Example 3 of §7.2. Finally, the IfThen-

constraint describes a condition under which a constraint on a future hole should be

considered. If the argument of the IfThen-constraint is instantiated to the specified

constant, the resulting new holes will have to adhere to the named constraint (Example

4 of §7.2).

We believe this language to be sufficient to capture constraints from standard equa-

tional rewrite rules. However, the constraint language is not designed to capture con-

straints from rules with side-conditions and rules containing lambda expressions, these

kinds of rules would require additions to the constraint language above. Conversely,

our synthesis algorithm does not attempt to synthesise conjectures with side conditions,

or conjectures containing lambda-expressions. Techniques for finding the correct side-

condition to make an inductive conjecture true have been studied in [63], but extending

this technique to synthesis is left as further work. Allowing lambda-expressions in syn-

thesised conjectures is equivalent to allowing synthesis of new functions, which would

increase the search space size. We leave function synthesis as further work and here

restrict ourselves to only synthesising terms about existing functions.

7.3.2 Representation of Arguments

Each constraint talks about one or several arguments of some function. Arguments

are represented differently at different stages of the synthesis process. The following

data-type is used for representing arguments:

datatype Arg =

Hole of HoleName

| Path of int list

| LocalIndex of ConstraintName * int

Arguments of Hole-type, have already been described in §7.1, so we will here

introduce the remaining two constructors.



84 Chapter 7. Conjecture Synthesis

The Path constructor is only used temporarily when analysing a new theorem for

constraints. It specifies a position in a term as a path from the top of the term-tree.

For example, in the term (a∗b)+ c, the variable b has the path [1, 2], as it is the first

(leftmost) argument of plus, and the second argument of multiplication. Variable a has

path [1, 1], while the path of c is just [2].

The LocalIndex constructor is used to represent future constraints on some hole

that does not yet exist, but may in the future. This is also how arguments are initially

represented in constraints generated from rewrite rules, which are computed and stored

prior to synthesis, when no holes exist. As synthesis proceeds, arguments represented

using LocalIndex are gradually replaced by holes. The constraint name in a LocalIndex

indicates the name of the constraint that has to be triggered in order for the LocalIndex

to be updated to a Hole-type. This is either the parent-constraint of the constraint in

which the LocalIndex occurs2 or, if the constraint has no parent, itself. Several new

holes may be produced at the same time, so the integer-index part of a LocalIndex

indicates which new hole is intended. We abbreviate an argument LocalIndex(Ci, j) to

Ci. j in order to improve readability.

As an example illustrating the use of LocalIndex-constraints, assume we are syn-

thesising an equality, and initially have a term with two holes:

?h1 =?h2

Also suppose there are two constraints, C1 and C2, (from the zero-case of the definition

of addition) with C1 attached to ?h1:

C1 : I f T hen(?h1, ‘plus’, C2)

C2 : NotAllowed(LocalIndex(C1,1) ‘zero’)

The constraints above state that if ?h1 is instantiated to plus, the first of the resulting

new holes is not allowed to be instantiated to zero. Note that C2 must use the LocalIn-

dex-constructor for its argument, as the first argument position of plus does not yet

exist as a named hole. Constraint C1 must be triggered for such a hole to be created.

This happens if h1 is indeed instantiated to plus, resulting in the new term:

?h3+?h4 =?h2

2If this constraint is a sub-constraint of a NotSimult, its arguments are named after the ‘grandparent’-
constraints, otherwise a LocalIndex-name might not be unique.
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The new holes are named ?h3 and ?h4, with ?h3 being in the first (leftmost) argument

position of plus, thus instantiating constraint C2:

C2 : NotAllowed(?h3, ‘zero’)

7.4 Generating Constraints

The constraints used during synthesis are automatically inferred from equational the-

orems. Initial constraints are derived from the definitions of recursively defined func-

tions, as well as from theorems about reflexivity and commutativity of equality and

theorems about datatypes that Isabelle’s datatype-package proves automatically. This

section describes the constraint generation algorithm, and shows how it derives con-

straints from rewrite rules.

7.4.1 Constraints and Information about Functions

To initialise synthesis, we compute some relevant information about each function.

This includes:

• The type of the function and each of its arguments.

• A domain for each argument, specifying which constants are allowed to occur in

that position. The domain is initially all the symbols with a matching type, and

is later restricted by constraints from rewrite rules.

• A set of constraints for each of the function’s arguments, arising from the initial

rewrite rules.

• Information about whether the function is known to be commutative and/or as-

sociative. This is updated as synthesis progresses, as the relevant theorems are

discovered. If a function is known to be commutative, we can further restrict

synthesis by imposing an order on its arguments. For example, always requiring

the first argument to be of larger or equal size than the second, according to some

measure on terms.

The above information is stored in a table indexed by the function-symbol’s unique

name. As synthesis proceeds, and more theorems are proved, these can be fed back into

the constraint generation mechanism to produce more constraints on future synthesis

attempts.
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7.4.2 Constraint Generation Algorithm

The constraint generation algorithm infers constraints from the left-hand sides of rewrite

rules. The algorithm traverses the left-hand side term top down, producing a set

of constraints that will be attached to the top-level symbol of the left-hand side of

the rewrite rule. As a running example, consider a rewrite rule with left-hand side:

f ?a ?a (g 0) = . . ..

Overview of the Algorithm

1. Traverse the term and find its left-hand side (LHS). In the example, the left-hand

side of the rule is f ?a ?a (g 0).

2. Create equality constraints. Positions of variables that occur several times may

not be allowed to be instantiated to the same term. In the example, f ?a ?a (g 0),

we need to consider disallowing the first and second argument of f to be the

same, as the variable ?a occurs in both these positions. To find variables, traverse

the LHS top down, keeping track of the path taken. On encountering a variable,

store its name and path in a table. For those variables that have more than one

path, create an UnEqual-constraint, e.g. UnEqual(Path(p1) . . . Path(pn)).

For the rule in the running example, there are two occurrences of the variable ?a,

in the first and second argument position of f . Using the Path-constructor from

§7.3.2, the two occurrences of ?a are represented as Path[1] and Path[2]. These

are not allowed to be equal, so we store a constraint: UnEqual(Path[1],Path[2]).

3. If the LHS term is a function application, f (x1 . . . xn), compute constraints of

its argument terms (x1 . . . xn). If not, there are no constraints.

In the running example, the LHS of rule is a function application, so we proceed

to compute constraints for the arguments of f .

Constraints for an argument-term xi are computed depending on whether the

argument-term is a variable, constant or function application. In the constraint,

the argument is referred to by its position, and parent-constraint name, using the

LocalIndex-constructor.

Returning to the example, assume we give the name C0 to the top-level constraint

we are constructing for f . The arguments of f will thus be in positions named
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C0.1 (for ?a), C0.2 (for the second occurrence of ?a) and C0.3 ( for g 0). Com-

puting the constraints for the arguments now proceeds as follows depending on

the type of the argument:

• Variable v: Look up the variable name v in the table created in the step 2,

to check if it is involved in any UnEqual-constraint. If so, the argument-

type is updated to use a LocalIndex instead of a Path as we now know the

name of its parent constraint.

In the running example, both the first and second arguments are indeed

variables, and are involved in the UnEqual-constraint created in step 2. We

give this constraint the name C1 and update it to:

C1 : UnEqual(C0.1, C0.2)

When the algorithm terminates, all arguments will be in LocalIndex-format.

• Constant c: Create a new NotAllowed-constraint for this argument and

constant: NotAllowed(Cp.i, c)

• Function application g(y1 . . . ym): Recursively compute the constraints

of the arguments. If the number of constraints on the arguments is:

– Greater than 1, i.e. a list (arg j, C j) . . . (argn, Cn). Create a NotSimult-

constraint:

NotSimult((arg j, C j) . . . (argn, Cn))

– Exactly 1, i.e. (arg j,C j). Create an IfThen-constraint:

IfThen(Cp.i, g, C j)

– 0, i.e. all arguments are variables occurring once in the term. Create a

NotAllowed-constraint for this argument and function-symbol:

NotAllowed(Cp.i, g)

In the example, the third argument of f is a function application g 0. To

compute a constraint on this, which we shall name C2, we first compute a

constraint for the single argument of g, the constant 0. This gives the con-

straint C3 : NotAllowed(C2.1, ’zero’). Hence we also get C2 : IfThen(C0.3, ’g’, C3).

Informally, this means that if the position C0.3 is instantiated to g, the first

argument of g is not allowed to be 0.
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4. When the argument-constraints are computed, we can determine the top-level

constraint. As before it becomes a NotSimult-constraint if there are several

argument-constraints. If there is only one, and that is a NotAllowed-constraint,

this constant can simply be removed from the domain of the relevant argument

position.

In the example, the complete set of constraints for the three arguments of f are:

C1 : UnEqual(C0.1, C0.2)

C2 : IfThen(C0.3, ’g’, C3)

C3 : NotAllowed(C2.1, ’zero’)

This results in the top-level constraint, C0, becoming:

C0 : NotSimult((C0.1, C1), (C0.2, C1), (C0.3,C2))

This constraint captures that synthesis is not allowed to simultaneously violate

both constraints C1 and C2, while synthesising a term containing the function f .

5. The final step of the constraint generation algorithm is to store all the constraints

in the constraint-table for the top-level function symbol on the LHS (in the ex-

ample, f ). We also store the name of the top-level constraint (here C0). These

will later be used if synthesising a term containing the function f .

7.5 Sources of Initial Constraints

The initial constraints given to the synthesis machinery are derived from function def-

initions, datatype theorems and other library theorems. Below, we give examples of

each type, and show the constraints that are derived from them.

7.5.1 Constraints From Function Definitions

Function definitions provide an important source for initial constraints for synthesis.

Recall the definition of natural numbers:

0+ y = y

(Suc x)+ y = Suc(x+ y)
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Following the algorithm in §7.4.2, the first definitional theorem has the left-hand side

0 + y. This is indeed a function application (of plus to 0 and y), so we proceed to

compute constraints on the arguments. 0 is a constant, so generates a NotAllowed-

constraint on the first argument of +. y only occurs once, so it does not contribute to

any constraints. As the NotAllowed-constraint for 0 is the only constraint, 0 can be

removed from the domain of the first argument of plus.

For the second theorem, with left-hand side Suc x+ y, the first argument is a func-

tion application (Suc x), but its argument does not produce any constraints. Hence we

again get only a single NotAllowed-constraint, this time forbidding Suc to occur as the

first argument.

In general, theorems from function definitions will restrict the domain of the argu-

ment(s) on which the function is recursive.

7.5.2 Constraints From Datatype Theorems

Isabelle’s datatype package will automatically derive a number of useful theorems

when a new datatype is defined. These will typically be used to provide constraints

on equalities. Our program automatically uses the injectivity and so called distinctness

theorems (if available) for each datatype to provide synthesis with useful constraints.

Returning to our running example of natural numbers, Isabelle derives an injectiv-

ity theorem (§7.2, Example 2):

((Suc n) = (Suc m)) = (n = m)

It also derives a so called distinctness theorem3:

(Suc n = 0) = False

From injectivity, we can derive constraints stating that the first and second argu-

ments of an equality are not simultaneously allowed to be instantiated to Suc:

C1 : NotSimult((C1.1,C2), (C1.2,C3))

C2 : NotAllowed(C1.1, ‘Suc’)

C3 : NotAllowed(C1.2, ‘Suc’)

3Isabelle actually derives a slightly different variant, of the form Suc n 6= 0, which IsaCoSy uses
to derive an equivalent theorem suitable for our constraint derivation algorithm. There is also a com-
muted version of this theorem, (0 = Suc n) = False, but this version is not necessary for our constraint
generation as we know = is commutative (see §7.5.3)
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The distinctness theorem forbids the two arguments of an equality being instanti-

ated to opposite constructors:

C1 : NotSimult((C1.1,C2), (C1.2,C3))

C2 : NotAllowed(C1.1, ‘Suc’)

C3 : NotAllowed(C1.2, ‘zero’)

7.5.3 Reflexivity: Equality Constraints

Recall the reflexivity theorem from Example 3 of §7.2: (x = x) = True. To avoid this

being applicable as a rewrite rule, we do not want to synthesise any terms with identical

left- and right-hand sides. This results in an equality constraint on the two arguments

of the equality:

C1 : UnEqual(C1.1, C1.2)

Of course, it might not be possible to establish that the two sub-terms are indeed differ-

ent until the whole term is fully synthesised. If the two arguments become instantiated

to different top-level symbols, the constraint can be dropped. Otherwise, the equality

is broken down into sub-constraints on new holes appearing after instantiation. Un-

like the constraints from injectivity and distinctness in the previous section, we do not

know in advance how many levels down the term tree we might have to look before an

equality constraint, such as reflexivity, can be dismissed.

7.5.4 Commutativity: Argument Order Constraints

Commutativity theorems are used to avoid symmetries in synthesis. If we know that a

function is commutative, we can impose an order on its argument, for example always

require the leftmost argument to be of greater or equal size. IsaCoSy has initially

access to the commutativity theorem for equality:

(x = y) = (y = x)

For an equality, ?h1 =?h2, we impose the constraint that the size of ?h2 is always

smaller or equal to the size of h1, allowing us to cut the search space in half4.

Size constraints are currently not expressed in the constraint language described

above, but attached to holes during synthesis for ease of implementation.

4Some symmetries will however remain, when both sides of the equation have the same size.
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Although only the commutativity theorem for equality is currently given at the start,

other commutativity properties will be found during synthesis and can be identified and

then used in a similar fashion.

7.6 Additional Heuristics

We also make use of some additional heuristics to constrain synthesis which are not

directly derived from rewrite rules.

7.6.1 Variable occurrence

A common heuristic for equational rewriting is to only allow rules where the variables

in the right-hand side are a subset of the variables on the left. For example, f (x, y) = x

is a valid rewrite rule, but x = f (x, y) is not. As we are interested in synthesising valid

rewrite rules, the default settings for IsaCoSy is to only allow holes in the left-hand

side to be instantiated to fresh variables, while variables on the right-hand side are only

allowed to be picked from those already occurring on the left. For example, if we have

the following partially synthesised term, f (x, y) =?h, the only variable-instantiation

allowed for ?h is x or y.

7.6.2 Number of Variables Allowed

IsaCoSy allows the user to specify how many different variables should be allowed

to occur in the synthesised terms. In many common theories, such as lists or natural

numbers, the interesting theorems often have no more than two or three variables.

Studying the theorems in Isabelle’s libraries5 for natural numbers and lists, suggests

that a good default heuristic for the number of different variables is 1 + the maximum

arity of any function involved. While restricting the number of variables obviously

may cause theorems to be missed, it is very useful in reducing the search space.

7.6.3 Eager Check for Associativity and Commutativity

Another option for synthesis is to eagerly check functions for associativity and com-

mutativity properties, prior to synthesis. If the AC-option is switched on, any binary

5www.cl.cam.ac.uk/research/hvg/Isabelle/dist/library
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function, with arguments of the same type, is plugged into associativity and commuta-

tivity templates, of the forms f ( f x y) z = f x ( f y z) and f x y = f y x respectively.

The resulting conjectures are passed through counter-example checking followed by a

proof attempt in IsaPlanner. Should the proof of commutativity succeed, we can im-

pose ordering restrictions on the function’s argument during synthesis (recall §7.5.4).

Furthermore, if the function is commutative, it is likely that the commuted variants of

its definitional theorems will be useful to our prover, so these are also added to the

set of synthesised terms. For example, the commuted definitions of plus (defined as in

§7.2) give us the two theorems6:

y + 0 = y

y + (Suc x) = Suc(y + x)

7.7 Synthesising Conjectures

After the initial constraints of the current theory have been computed, synthesis can

start. The synthesis algorithm is given a table of current constraints for the available

function symbols, along with a specified top-level symbol, in our case equality. It is

also given a maximum size limit, and will synthesise terms from the minimum size

possible given the top-level constant, up to the limit. We may optionally specify a

customised minimum size, should we wish to do so. At each iteration, non-theorems

are filtered out by counter-example checking. Conjectures that can be proved are fed

into the constraint generation mechanism to provide further constraints, thus restricting

the search space when synthesising larger terms. We have also experimented with

allowing constraints to be generated from terms that pass counter-example checking,

but IsaPlanner fails to prove (see §8.6 ).

7.7.1 A Data-Structure for Synthesis

The algorithm uses a data-structure we call STerm to keep track of information related

to the current synthesis attempt. This data-structure contains:

• The term synthesised so far.

• The name, type and size of each uninstantiated hole.

6These are obtained by commuting both the left- and right-hand sides. Commuting only one side is
also an option, which would give another two versions, but these are less useful to the prover.
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• A table of current constraints, indexed by their unique names.

• The constraints associated with each hole.

• The domain of allowed constants that each hole potentially can be instantiated

to.

• Constraint dependencies, keeping track of parent-constraints where relevant.

As synthesis progresses, constraints will be evaluated and either dropped (if they no

longer apply) or refined to provide restrictions on new holes.

7.7.2 Overview of the Algorithm

IsaCoSy starts from some specified minimum size and performs one iteration of the

algorithm below for each size, up to the given maximum size.

1. Initialise synthesis by importing the constraints associated with the given top-

level function (for example, equality). Also compute the allowed size combina-

tions for the holes.

2. Pick the next hole to be instantiated from the search agenda. The current version

of IsaCoSy uses depth-first search, but the synthesis machinery is compatible

with other search strategies.

Depending on the size associated with the next hole, instantiate:

• If hole-size = 1: Instantiate the hole to a constant of size 1 (e.g. the constant

0 for natural numbers or the empty list), or to a variable. Variables can

either be fresh or already exist in the term. Existing variables are filtered

against VarNotAllowed-constraints on the hole, in case they are forbidden

in this position.

If synthesising an equality, fresh variables are typically only allowed in

the left-hand side. Similarly, if we have chosen a maximum number of

different variables, fresh variables are only allowed as long as this limit has

not been exceeded.

• Else, hole-size > 1: Instantiate the hole to a function with arguments pro-

viding new holes. Consider all function-symbols in the domain of the hole

that have a minimum term size satisfying 1 < min-size ≤ hole-size.
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3. Update and propagate constraints, given the instantiation and possible new holes

(see §7.7.3).

4. Terminate when there are no more open holes. Filter the resulting terms through

the counter-example finder.

5. Attempt to prove remaining conjectures.

6. Feed new theorems to the constraint generation algorithm to produce additional

constraints before the next iteration for synthesising larger terms.

Note that IsaCoSy’s synthesis algorithm is independent of the order in which holes

are instantiated. The term-synthesis machinery and constraint language is designed to

allow experimentation with different search strategies. This also allows implementa-

tion of additional heuristics to exploit particular search strategies. An example is the

variable occurrence heuristic from §7.6, which works with depth-first search. As a

possible future extension, the synthesis machinery could also be used for synthesising

specific terms of interest, starting from a partially instantiated term. For example, the

user may specify a template term containing some holes, e.g. rev(?h1) =?h2, should

he/she wish to only generate equational theorems with rev on the left-hand side.

7.7.3 Constraint Propagation

The constraint propagation mechanism is crucial for the synthesis algorithm’s effi-

ciency. Our constraint language supports expressing future constraints, depending on

instantiations of current holes. These constraints need to be updated and propagated to

any new holes. In particular, we need to manage the propagation of equalities, which

will break up into several new constraints as holes are instantiated. Constraint propa-

gation will also have to take dependencies into account, by checking if constraints are

part of a NotSimult.

Constraint Propagation Algorithm

Assume the hole ?h has been instantiated to some symbol s, and has an attached con-

straint, named C. The constraint C might be a sub-constraint of some other constraint,

Cp, which must be of NotSimult-type, as this is the only type of constraint that talks

about the same holes as its sub-constraints7. Below, we use const to stand for some
7IfThen-constraints on the other hand, only have sub-constraints that talk about possible future holes.



7.7. Synthesising Conjectures 95

arbitrary constant, and v to stand for a named variable. We say that a constraint is

satisfied when some hole it refers to is instantiated in such a way that the constraint

no longer applies, e.g. the constraint VarNotAllowed(?h, v), is satisfied when ?h is

instantiated to anything other than v. A constraint is violated when the instantiation

is contrary to what is specified, e.g. if ?h is instantiated to v. This is allowed if the

constraint is part of a larger NotSimult-constraint, which specifies a set of constraints

that may not all be violated simultaneously.

Depending on the type of the constraint C, the following updates are made:

NotSimult[(arg1, C1), . . . , (argi, Ci), . . . , (argn, Cn)]: Assuming argi =?h, the con-

straint propagation function is called on the sub-constraint Ci, associated with

the hole ?h that is being instantiated. In processing Ci, the fact that it is part of

a NotSimult must be taken into account. If the constraint expressed by Ci has

been satisfied, and it no longer applies, its parent NotSimult-constraint is also

satisfied, and can be dropped. On the other hand, if Ci is violated or replaced by

a sub-constraint, its parent and sibling constraints must remain. The NotSimult

parent-constraint is thus updated as follows:

• Ci is satisfied: Delete Ci, along with its parent NotSimult-constraint (and

sibling-constraints).

• Ci is violated: Delete Ci from its parent. The initial constraint thus be-

comes:

NotSimult[(arg1, C1), . . . , (argi−1, Ci−1), (argi+1, Ci+1), . . . , (argn, Cn)].

Check that there is still more than one constraint in the parent, otherwise

there is no need for a NotSimult constraint, and it can be replaced by its

last child-constraint. For example, if we get NotSimult[(arg j, C j)], it is

sufficient to keep the constraint C j on its own.

• Ci is replaced by its sub-constraint(s), C′
i : The sub-constraint will be at-

tached to some new hole, ?h′. We replace Ci by C′
i and let arg′i =?h′ in the

parent constraint, e.g. NotSimult[(arg1, C1), . . . , (arg′i, C′
i), . . . ,(argn, Cn)].

If C′
i also happens to be a NotSimult-constraint, it is merged with the parent

constraint.

NotAllowed(?h, const): This constraint should only occur if it is a sub-constraint of a

NotSimult. Otherwise const would have been removed directly from the domain

of ?h and the constraint dropped.
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Hence, C must be a sub-constraint of a NotSimult-constraint, Cp. Assume the

hole ?h is instantiated to s:

• If s 6= const: The constraint is satisfied and Cp and all its sub-constraints

can be dropped (as described above).

• Else, s = const: The constraint is violated, we may drop C, but Cp must

remain and is updated as described above for NotSimult-constraints.

VarNotAllowed(?h, v): If considering instantiating a hole with a variable, this con-

straint is checked at instantiation, ensuring the hole is not instantiated to v. If it

is a sub-constraint of a NotSimult, the process is analogous as above for NotAl-

lowed.

I f T hen(?h, s′, C j): Assume the hole ?h is instantiated to s:

• If s 6= s′: The constraint is satisfied, and can be dropped along with its sub-

constraint, C j. If any parent constraint exists, this is updated accordingly.

• Else, s = s′: The sub-constraint C j must be considered. C j should be at-

tached to some new hole(s). To determined which one(s), the argument-

types in the sub-constraint C j are updated from LocalIndex-type to Hole-

type, as described in §7.3.1. The I f T hen-constraint C is then deleted.

If C has a parent NotSimult-constraint Cp, C is replaced by C j in the parent,

as described above. Otherwise, if the sub-constraint C j turns out to be of

type NotAllowed, the domain of the relevant hole is updated accordingly,

before C j is deleted.

UnEqual[?h, arg1 . . .argn]: Recall that UnEqual-constraints express that a set of holes

cannot all have the same instantiation (although some may). UnEqual-constraints

always break down into further constraints, until eventually disallowing particu-

lar variables or constants for the last hole left to be instantiated.

Equality constraints are updated differently depending on the instantiation of ?h:

• Variable v: The other arguments of the equality are not simultaneously all

allowed to be instantiated to the same variable v as ?h was instantiated to.
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The following new constraints are added to express this8:

C j : NotSimult((arg1, Carg1) . . . (argn, Cargn))

Carg1 : VarNotAllowed(arg1, v)
...

Cargn : VarNotAllowed(argn, v)

Finally, the original equality, C, is dropped.

• Constant c: As for variables but with a NotAllowed(argi, c) for each of

the remaining arguments.

• Function f (?x1 . . .?xm): If ?h is instantiated to a function with new holes,

?x1 . . .?xm, being created, we must create future constraints on the poten-

tial instantiations for the other arguments, arg1 . . .argn, of the UnEqual-

constraint.

The UnEqual-constraint can only be violated if the other arguments also

are instantiated to f , and the argument-positions of f are instantiated to the

same symbol everywhere. We thus first create the following new equality

constraints on the new holes ?x1 . . .?xm:

Cx1 : UnEqual[?x1, Carg1.1 . . . Cargn.1]
...

Cxm : UnEqual[?xm, Carg1.m . . . Cargn.m]

Furthermore, we need to create an IfThen-constraint for each argument

arg1 . . .argn of the original constraint (the constraints named Carg1 . . . Cargn

above). These need to specify the further constraints applying to potential

new holes in argument-positions of f :

Cargi : I f T hen(argi, f , C′
argi

)

C′
argi

: NotSimult((Cargi.1, Cx1) . . . (Cargi.m, Cxm))

8The NotSimult-constraint is obviously only necessary if there is more than one other argument
involved in the equality-constraint.
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Finally, all of the IfThen-constraints created above, are dependent on each

other. We thus create a top-level NotSimult-constraint to express the de-

pendency amongst the arguments of the original constraint:

C′ : NotSimult((arg1, Carg1) . . . (argn, Cargn))

An UnEqual-constraint C, may have several parent constraints for its different

arguments. If there is a parent NotSimult-constraint, Cp, for the hole we instanti-

ated, ?h, the constraints Cx1 . . .Cxm on the new holes ?x1 . . . ?xm replace C in Cp.

If a parent constraint exists for any of the other arguments of C, arg1 . . .argn, C

is replaced by the new constraint C′ (defined above) in the parent.

7.7.4 After Synthesis

After the synthesised terms have been filtered through the counter-example checker,

the remaining conjectures are passed on to IsaPlanner for a proof attempt. IsaPlanner

applies induction with rippling, lemma calculation and case-analysis. Lemma calcu-

lation is helpful in some proofs, as a conjecture may sometimes need a lemma that

has not been synthesised yet. An example is the proof of rev(rev l) = l, for which

IsaPlanner calculates and proves a needed lemma: rev(l @ [h]) = h#(rev l). Without

lemma calculation, the proof above would have to wait until synthesis had found the

theorem (rev a) @ (rev b) = rev(b @ a), which is a more general variant of the lemma

above. This also means that the constraints gained would not be available until later,

thus delaying a search space reduction for synthesis.

IsaCoSy will occasionally produce theorems that are special cases of other theo-

rems, e.g. (a + b) + a = (b + a) + a as well as the general version (a + b) + c =

(b + a) + c. As these specialised variants rarely are of interest, IsaCoSy has a sub-

sumption check to filter theorems for which a more general variant exists. Note that

the subsumption check does not reduce the search space, it merely acts as a filter on

what is displayed to the user.

7.8 Case Study: A Small Theory about Natural Num-

bers

To illustrate how IsaCoSy works, consider a minimal theory about natural numbers,

with one recursive function ‘+’ defined in the usual way. In total we have three function
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symbols: +, Suc and =, as well as the constant 0. To generate initial information about

constraints and argument domains, we have the injectivity and distinctness rules for

Suc, reflexivity as well as the two rules defining +. Finally, we also assume that the

heuristic for only allowing fresh variables in the left-hand side of an equation is used.

We do not impose any restrictions on how many different variables are allowed, nor

do we attempt to eagerly discover associativity and commutativity theorems. We will

compare the number of conjectures synthesised by IsaCoSy with a naive version of

synthesis, as used in [57], which generates all possible terms.

We will use the notation x ∈ {. . .}, to specify the set of constants an argument x

is allowed to be instantiated to. Addition will initially have the following associated

information about argument domains and constraints9:

Name: x + y

Min size: 3

Argument Domains: x ∈ {+}
y ∈ {0,Suc,+}

Term-Size: -

Constraints: -

Recall that the omission of 0 and Suc from the domain of the first argument comes

from the defining equations being treated as rewrite rules.

For =, the initial information is:

Name: l = r

Min size: 3

Argument Domains: l ∈ {0,Suc,+}
r ∈ {0,Suc,+}

Term-Size: l ≥ r (Commutativity)

Constraints: C1 : NotSimult((l, Cl1), (r, Cr1)) (Injectivity)

Cl1 : NotAllowed(l, Suc)

Cr1 : NotAllowed(r, Suc)

C2 : NotSimult((l, Cl2), (r, Cr2)) (Distinctness)

Cl2 : NotAllowed(l, Suc)

Cr2 : NotAllowed(r, 0)

C3 : UnEqual(l, r) (Reflexivity)

9In the implementation, arguments are identified only by the index of the arguments position. Here
we will however give them names for readability
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Finally the initial information for Suc is:

Name: Suc n

Min size: 2

Argument Domains: n ∈ {0,Suc,+}
Term-Size: -

Constraints: -

We want to synthesise equations. This means we have to start synthesising terms of

size 3, with = as the top level symbol and two holes, each of size 1. The initial term is

thus:

?h1︸︷︷︸
size 1

= ?h2︸︷︷︸
size 1

The holes, represented by the meta-variables ?h1 and ?h2 will, in addition to their

specified size, inherit the restrictions specified for the corresponding arguments of =

above.

Size 3

We can generate two terms of size 1, the constant 0 or a variable a. Putting these

together, IsaCoSy synthesises only one term: a = 0 (out of a possible five for the naive

version of synthesis). The synthesised term is not a theorem, so it is discarded after

counter-example checking. Note that IsaCoSy does not synthesise a = a or 0 = 0

thanks to the equality constraint from reflexivity. Neither does it synthesise 0 = a or

a = b, as both of these have variables in the right-hand side that do not occur on the

left.

Size 4

For terms of size 4, IsaCoSy starts from the template ?h1︸︷︷︸
size 2

= ?h2︸︷︷︸
size 1

. Note that we do not

consider terms where the right-hand side is larger than the left, due to the constraint

arising from the commutativity of equality.

IsaCoSy only synthesises one non-theorem (which is caught by counter-example

checking) for this size:

Suc a = a

Note that conjectures of the form Suc(. . .) = 0 are not generated as this can be written

to False by the distinctness theorem.
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The naive version produces ten conjectures of size 4 (we use / to separate alternative

right-hand sides):

a = Suc 0 / Suc a / Suc b 0 = Suc 0 / Suc a

Suc a = 0 / a / b Suc 0 = 0 / a

Note that IsaCoSy does not produce conjectures such as Suc a = b above due to the

heuristic which disallows fresh variables in the right-hand side of an equation.

Size 5

For terms of size 5, we get two possibilities to start from:

?x1︸︷︷︸
size 2

= ?x2︸︷︷︸
size 2

and ?y1︸︷︷︸
size 3

= ?y2︸︷︷︸
size 1

From the size restriction, the former can only attempt to generate terms of the form

Suc ?x = Suc ?y, but this is disallowed due to the injectivity of Suc, so no terms will be

generated for this case.

Using the second template, IsaCoSy produces 8 conjectures:

a+b = 0 / a / b a+0 = 0 / a

a+a = 0 / a Suc(Suc a) = a

The list above includes one theorem: a + 0 = a. The remaining conjectures are filtered

out by counter-example checking. The theorem found can be proved automatically and

is then given to the constraint generator, which will conclude that we no longer should

generate terms where 0 is the second argument to +.

The naive version of synthesis generates a total of 45 conjectures of size 5.

We will revisit this case-study in §8.3.1, where we evaluate IsaCoSy and compare

its performance with the naive version on several larger theories as well. We will also

discuss the effect of additional heuristics on the search space.

7.9 Summary

We have developed and implemented a new way of synthesising lemmas for inductive

theories in the IsaCoSy program. It works by only generating new terms, that cannot

be rewritten by any existing rules. This is achieved by deducing a set of constraints

from available theorems, initially function definitions, automatically deduced theorems

about datatypes and library theorems such as reflexivity.
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Synthesised conjectures are first given to a counter-example checker to avoid triv-

ially false statements. Inductive proofs are attempted on the remaining conjectures,

and any theorems found can be used to deduce further constraints on synthesis. The

synthesis procedure starts synthesising small terms, so any theorems discovered help

reducing the search space when synthesising larger, more complicated terms. This

way, we can greatly reduce the number of possible terms compared to a naive version.



Chapter 8

Evaluation of Conjecture Synthesis

8.1 Introduction

This chapter will present the evaluation of IsaCoSy. The implementation was described

in chapter 7.

We wish to verify the following main hypothesis about our system:

• IsaCoSy has a smaller search-space and considers fewer non-theorems than a

naive version of term synthesis, thus making theorem synthesis computationally

feasible on a regular computer.

• IsaCoSy produces interesting theorems, e.g. the kind of theorems found in Is-

abelle’s libraries.

• IsaCoSy produces lemmas that are useful in further proofs. Theorem synthesis

is thus a viable alternative to lemma speculation. Andrew Ireland’s paper on

proof critics contains a set theorems that require additional lemmas, found by

the lemma speculation proof critic [41]. We would like IsaCoSy to produce

background theories containing lemmas which allow such theorems to be proved

without critics.

IsaCoSy has been evaluated on various inductive theories about natural numbers, lists

and binary trees. We describe the methodology for the experiments in §8.2. Exper-

iments providing evidence for the first part of the hypothesis, concerning the search

space size for synthesis, are discussed in §8.3. In §8.4, we discuss whether the theo-

rems synthesised by IsaCoSy are interesting, by comparing them to Isabelle’s libraries,

and calculating precision and recall. In §8.5, we address the third part of the hypoth-

esis, and show that rippling using a background theory synthesised by IsaCoSy can

103
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prove theorems that would otherwise require lemma speculation. We then present and

evaluate some improvements of the synthesis algorithm. In §8.6 we consider constraint

generation from conjectures that have passed counter-example checking but that Isa-

Planner failed to prove. In §8.7, we restrict instantiations of type variables to avoid

synthesising uninteresting terms about nested lists. We discuss some limitations of

IsaCoSy in §8.8, and discuss related work in §8.9.

8.2 Methodology

To verify the hypothesis above, we have evaluated IsaCoSy on a number of inductive

theories about natural numbers, lists and binary trees.

The first experiment is a continuation of the case-study from §7.8. We compare

the effects of IsaCoSy’s two optional heuristics, presented in §7.6, on the size of the

search space, using a small theory about addition. Recall that the optional heuristics

concern whether to attempt to prove associativity and commutativity properties prior to

synthesis, as well as restrictions on the number of different variables allowed in terms.

In all experiments where this heuristic was used, the maximum number of variables in

a synthesised term was set to 1 + maximum arity of any function. This was motivated

by a survey of number of variables in theorems in Isabelle’s libraries (see §7.6.2).

The majority of the analysis in this chapter is based on experiments on six slightly

larger theories, with IsaCoSy’s optional heuristics switched on. Here, we recorded the

run-time for the different tasks that make up the synthesis algorithm, as well as search

space size and which theorems and conjectures were synthesised. These theories are

listed below:

• Natural Numbers:

– addition and multiplication

• Lists:

– append, reverse, length

– append, reverse, map

– append, reverse, quick-reverse (qrev)

– append, foldl, foldr

• Binary Trees:
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– mirror, height, nodes, max.

The definitions of the functions above can be found in Appendix A. We found that most

theorems in Isabelle’s library contain no more than around three function symbols,

which is why we limit our evaluation-theories to three or four function symbols each.

We suggest adding heuristics for managing larger theories as further work (see §9.3).

Some preliminary experiments were undertaken to check the maximum term size

our synthesis algorithm could manage before the ML-process ran out of memory. We

found this to be 14 (for the theories involving append and reverse) and thus ran all

experiments up to that size. Furthermore, Isabelle’s library does not contain any equa-

tional theorems about the functions in our theories that are larger than size 14 and of

the kind IsaCoSy can produce. The majority are of smaller sizes.

The experiments were run on a computer with a 2 GHz Intel Xenon processor. Full

results from the experiments are available on-line1, including all theorems, conjectures,

proofs and run-time statistics for each theory. The synthesised theorems from the

experiments are listed in Appendix C.

8.3 Synthesis Search Space

We expect IsaCoSy to cut down the synthesis search space considerably compared

to a naive version of synthesis that simply generates all possible terms, as used in

[57]. We will first present a brief evaluation of IsaCoSy’s optional heuristics in §8.3.1,

illustrating their effect on the search space size. Having established the benefits of these

heuristics, in §8.3.2, we present a comparison of the search space size for IsaCoSy and

the naive version of synthesis on the larger theories listed in §8.2. As we see in §8.3.3,

the overall run-time of IsaCoSy is proportional to how many terms are generated and

have to be counter-example checked. Hence, we do not provide any run-times for

the naive version but only compare how many terms are generated by each algorithm,

bearing in mind that this is proportional to the overall run-time in most cases.

8.3.1 Effect of Heuristics

We now continue where we left the case-study about addition on natural numbers from

§7.8. Figure 8.1 summarises the number of terms synthesised for increasingly large

term sizes. As well as the naive variant and IsaCoSy’s basic version of synthesis which

1http://dream.inf.ed.ac.uk/projects/lemmadiscovery/synth_results.php
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was described in §7.8, results are also included for two versions of synthesis using the

optional heuristics described in §7.6. The first version behaves as the basic version

of the synthesis algorithm, but restricted to only allow three different variables in the

synthesised terms (the arity of + is 2, so we allow 1 + 2 = 3 variables). The second

version does, in addition, also eagerly attempt to synthesise associativity and commu-

tativity properties for appropriate functions, prior to commencing the synthesis. As

we shall see, this version of synthesis performs the best and is thus used in all further

experiments in this chapter.

Figure 8.1: The number of equational terms generated up to size 13 about natural num-

bers with addition for a naive version of synthesis, IsaCoSy’s basic version of synthesis

and synthesis with additional heuristics. The graph shows the search space reduction

achieved by adding a pre-processing step to look for associativity and commutativity

properties, as well as restricting the number of different variables allowed in synthe-

sised terms. Note that the y-axis scale is logarithmic for better visibility.

The number of terms increases rapidly for the naive version, until the ML process

runs out of memory when reaching size 13. IsaCoSy’s basic synthesis version performs

considerably better. When reaching size 7, the commutativity of addition is discovered,

which allows the arguments to be ordered, cutting out many symmetries. In fact, fewer

terms of size 8 than 7 are synthesised by IsaCoSy. The largest number of conjectures is

synthesised for size 11. At this point, the associativity of addition is discovered. Now,

all theorems in our small theory, adhering to the constraints of the synthesis algorithm,
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have been discovered, and all corresponding constraints are available. The domains

for the arguments of addition are now empty, meaning no function symbols can occur

in the arguments of plus. If asked to continue, only 10 terms are considered of size 12

and 13. These are ‘silly’ non-theorems of the form Suc(. . .Suc(Suc(a + b))) = a + b,

stacking up lots of successor functions.

When restricting IsaCoSy to only 3 different variables (each of which may occur

several times), even fewer terms are generated for larger sizes. The same theorems are

still discovered. The greatest difference comes from the AC pre-processing heuristic,

which in this toy theory, manages to discover all relevant theorems as consequences of

associativity or commutativity (apart from associativity and commutativity themselves,

this includes the commuted variants of the definition of plus). Hence, it is only possible

to synthesise a few non-theorems possible for each size.

Size Theorem

5 a + 0 = a

7 a + Suc b = Suc(a + b)

7 a + b = b + a

11 (a + b)+ c = (b + a)+ c

11 (a + b)+ c = (a + c)+b

11 (a + b)+ c = (c + b)+a

Table 8.1: Theorems about addition discovered by IsaCoSy without optional heuristics.

Table 8.1 shows the theorems discovered and proved by IsaCoSy using the basic

setting. These are, as expected, the commuted variants of the definition of plus, as well

as commutativity and associativity. Associativity appears in a few different variants,

but not in the common form: (x + y) + z = x + (y + z). This is because of

the size constraints imposed after the discovery of commutativity. The common form

is arguably more useful to rippling, which is why the AC pre-processing technique

generates this variant.

8.3.2 Search Space Reduction over Naive Synthesis

We will now move on to comparisons on slightly larger theories. IsaCoSy is here

configured to use all the optional heuristics. The number of different variables al-

lowed in terms is thus restricted to 1 + maximum arity of any function in the theory,
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and IsaCoSy includes pre-processing steps looking for associativity and commutativity

theorems prior to the start of synthesis.

Figure 8.2 compares the total number of terms generated by IsaCoSy and by a naive

version, up to size 11 (the naive version runs out of memory for larger sizes) for the

six evaluation theories on natural numbers, lists and trees.

Figure 8.2: Number of terms generated up to size 11 for IsaCoSy and for a naive version

on six different theories on natural numbers, lists and trees. The search-space for

IsaCoSy is shown to be considerably smaller. Note that the y-axis scale is logarithmic

for better visibility.

In the natural number theory, the naive variant generates over 1.8 million terms of

sizes up to 11, compared to just over 4000 for IsaCoSy. For both the list theories with

append, reverse and length/map the naive version produces over 1.1 million terms of

size 11, compared to less than 20 000 for IsaCoSy. For the theory about quick-reverse

(qrev) the naive version runs out of memory. IsaCoSy produces less than 10 000 terms

for both the theory about foldl/foldr and about trees, while the naive version produces

between 250 000 - 400 000.

The reason for the big difference between IsaCoSy and the naive approach on the

natural number theory is because both addition and multiplication are associative and

commutative. These properties produce useful constraints, which greatly helps cutting

down the search space. The more structure a theory has, the more efficient synthesis

will be. IsaCoSy produces the largest number of terms (compared to how big the
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possible term-space is) for the quick-reverse theory. This is because many theorems

in this theory require generalisation of an accumulator variable, which is beyond the

capabilities of IsaPlanner. As the theorems cannot be proved they are not used to

generate additional constraints, so the search space remains large. We discuss this in

more detail in §8.6.

Figure 8.3: The differences between the naive version and IsaCoSy in search space

size for synthesis of terms sized 3 - 11, calculated on six theories about natural num-

bers, lists and binary trees. The differences in search space size form exponential

curves. This shows that IsaCoSy manages an exponential cut of search space size

compared to naively generating all terms. Note that the y-axis scale is logarithmic.

Figure 8.3 shows the difference in search space size between the naive version

and IsaCoSy, computed by subtracting the number of terms generated for each term-

size (from 3 up to 11) on the same six theories as above. For each theory, IsaCoSy’s

heuristics manage an exponential cut of the search space of all naively generated terms.

8.3.3 Run-time and Space Usage

We found that the run-time and space usage of IsaCoSy increases exponentially with

the size of the terms synthesised. Furthermore, the time taken per iteration is propor-

tional to the number of synthesised terms of that size. Figures 8.4 and 8.5 illustrate

two examples, on a theory about natural numbers and lists respectively. The number of

terms generated has been plotted together with the run-time for each size. The graphs

increase exponentially, and clearly mirror each other.
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Figure 8.4: The two graphs show time and number of synthesised terms for each iter-

ation from size 3 - 14 of synthesis, on the theory about natural numbers with addition

and multiplication. As the graphs mirror each other, we can conclude that the run-time

is proportional to the number of terms synthesised for each size. The y-axis uses a

logarithmic scale, which means that the growth in search space size is exponential as

the size of terms synthesised is increased.

The reason for the correlation between the number of terms and the run-time is

that IsaCoSy spends most of its time doing counter-example checking on the terms it

generates. Proof attempts make up a considerably smaller proportion of the total time.

This is because the vast majority of terms generated are non-theorems and filtered out

by counter-example checking. The total run-times, as well as timings for the different

tasks making up the synthesis process are summarised in table 8.2 on page 112. For all

theories in the experiments, IsaCoSy spends the majority of time performing counter-

example checking. Comparatively little time is spent on proof attempts.

8.4 Precision/Recall Analysis

To asses the quality of the theorems produced by IsaCoSy we perform a precision/recall

analysis using Isabelle’s library as reference. However, Isabelle does not have a stan-

dard library for binary trees, so this theory could not be analysed here. The quick-

reverse function is also not included in the library, and thus had to be excluded.
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Figure 8.5: The two graphs show time and number of synthesised terms for each iter-

ation from size 3 - 14 of synthesis, on the theory about lists with append, reverse and

length. The graphs mirror each other, showing that the run-time is proportional to the

number of terms synthesised for each size. The y-axis uses a logarithmic scale. The

growth of search space size/run-time is thus exponential.

8.4.1 Natural Numbers

The theorems synthesised for natural numbers, about addition and multiplication are

shown in table C.2 in Appendix C. The standard commutativity and associativity

theorems are synthesised, along with commuted versions on the function definitions.

IsaCoSy also synthesises theorems for the distributivity of multiplication over addition.

Isabelle’s library contains 12 equational theorems about addition and multiplica-

tion2, 10 of which are synthesised by IsaCoSy:

a + 0 = a a + Suc b = Suc(a + b)

a ∗ 0 = 0 a ∗ Suc b = a+(a ∗ b)

a + b = b + a a ∗ b = b ∗ a

(a + b) + c = a + (b + c) (a ∗ b) ∗ c = a ∗ (b ∗ c)

(a ∗ b) + (c ∗ b) = (a + c) ∗ b (a ∗ b) + (a ∗ c) = (b + c) ∗ a

Using Isabelle’s 12 theorems as a benchmark for ‘interestingness’ we can calculate

precision and recall for IsaCoSy. With ten of our theorems included in the library, this

gives recall of 83%. IsaCoSy synthesised a total of 16 theorems for this theory, which

gives precision of 63%.
2Note that we exclude any theorems of forms that IsaCoSy cannot produce, such as theorems with

assumptions. Theorems containing more than one equality were also excluded as IsaCoSy was not
allowed to use equality other than at the top-level in these experiments.
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Theory Total time Counter-examples Proof Synthesis

plus-mult 1h 22 min 1h 20 min 1 min 48 sec

app-rev-len 15h 56 min 15h 30 min 17 min 9 min

app-rev-map 17h 21 min 16h 51 min 17 min 11 min

app-rev-qrev 18h 43 min 17h 20 min 1h 11 min 12 min

app-foldl-foldr 6h 8 min 6h 5 min 3 sec 3 min

trees 9h 46 min 9h 41 min 3 min 2 min

Table 8.2: Total run-time for IsaCoSy on six theories up to size 14, along with a break-

down on how much time was spent on each sub-task during the synthesis process.

Times are rounded up to nearest hours and minutes. Note that for all theories, the

largest proportion of time is spent on counter-example checking.

The two theorems from Isabelle’s library that are not synthesised are below:

Label Theorem

add suc shift (Suc m) + n = m + (Suc n)

nat left commute x + (y + z) = y + (x + z)

These theorems are trivially derivable by simplification from theorems we do syn-

thesise. The theorem add suc shift is not synthesised as its left-hand side is identical

to the left-hand side of the definition of addition, and thus not allowed in synthesis.

Should we wish to derive theorems of this form, one solution would be to add them

to the set of theorems IsaCoSy tries to prove when discovering that a function is com-

mutative. Currently, it derives the commuted versions of the function’s definition as

theorems (for example the theorem b + Suc a = Suc(b + a)). This could easily be

extended to also include trying to prove theorems of the same form as add suc shift,

without having to relax constraints on synthesis. The theorem nat left commute is not

synthesised because of the size-constraint requiring the first argument of plus to be

larger than the second, introduced on discovering that plus is commutative.

8.4.2 Lists

Isabelle’s list library does not contain the qrev-function, so this theory has been ex-

cluded from the analysis. Recall that the foldl/foldr functions compute a single value

from a list by recursively applying a binary function to an accumulator and the head of

the list, producing a new accumulator value. The definitions can be found in Appendix

A.
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The theorems synthesised for the list theories are shown in tables C.3, C.4 and

C.5 in Appendix C. IsaCoSy produces a total of 24 theorems in these theories, while

Isabelle’s list theory contains 9 relevant theorems. All of these are synthesised, giving

recall of 100%. The ‘interesting’ theorems are listed below:

a @ [ ] = a (a @ b) @ c = a @ (b @ c)

rev(rev a) = a (rev a) @ (rev b) = rev (b @ a)

rev(map a b) = map a(rev b) (map a b) @ (map a c) = map a (b @ c)

foldl a (foldl a b c) d = foldl a b (c @ d) foldr a b (foldr a c d) = foldr a (b @ c) d

len(rev a) = len a

Because of the 14 extra synthesised theorems, not in Isabelle’s library, the precision

is just 38%. Most of the perhaps uninteresting extra theorems IsaCoSy produces are

about reverse and append. We discuss why so many such theorems are synthesised in

§8.8.2.

8.5 Using Synthesised Theories Instead of Lemma Spec-

ulation

We want to further assess the quality of the theorems and lemmas produced by IsaCoSy

by testing whether using a synthesised theory makes it possible to prove difficult the-

orems automatically without having to use the lemma speculation critic (see chapter

6). In Ireland and Bundy’s paper on proof critics [41], there are seven theorems not

provable by rippling from function definitions with just the simpler and more efficient

lemma calculation critic. These require additional lemmas that can only be found by

the more complicated lemma calculation critic. We applied rippling with the addi-

tional theorems found by IsaCoSy as extra wave-rules. Rippling could in addition use

the lemma calculation critic, if needed. The results are shown in table 8.3.

Rippling now manages to solve six out of the seven theorems without having to

use lemma speculation. The first two theorems are proved by using theorem N2, a +

Suc b = Suc(a + b), from table C.2 in Appendix C. The list theorems are proved

using three of the synthesised theorems; the associativity of append (L1 in table C.3),

the distributivity of append over reverse, (rev a) @ (rev b) = rev (b @ a), (L7 in table

C.3) and theorem L9: rev(a @ [b]) = b # (rev a). The only proof requiring even lemma

calculation in the step case was that of theorem 7, where lemma calculation produced
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Label Theorem Proved Lemma(s)

1 x + Suc x = Suc(x + x) Yes N2

2 even(x + x) Yes N2

3 rev(rev(x @ y)) = rev(rev x) @ rev(rev y) Yes L9 or L7 + L1

4 rev((rev x) @ y) = (rev y) @ x Yes L7

5 rev(rev x) @ y = rev(rev( x @ y) Yes L9

6 even(len(x @ x)) No -

7 rotate (len x) (x @ y) = y @ x Yes L1

Table 8.3: Theorems requiring lemma speculation or lemmas found by synthesis prior

to the proof attempt. The names used for lemmas refer to the labels used for theorems

in Appendix C.

the lemma l @ [a] @ m = l @ (a # m). Note that theorem 4 was conjectured by

synthesis, but the proof at that time failed as L7 was not yet available.

The only theorem that failed to be proved was theorem 6. The step-case of theorem

6 becomes blocked after rewriting using the definitions of len and even:

even( Suc(len(x @ h#x
↑
))

↑

)

At this point rippling fails as the required lemma, len(x @ (y # z)) = Suc(len(x @ z)),

is not synthesised. We discuss the failure of synthesising a more general version of

this lemma, len(x @ y) = (len x) + (len y), in §8.8.2. However, even if we had

succeeded in synthesising the more general lemma, it would in this case not be allowed

as a wave-rule in rippling, because the inductive hypothesis does not embed into the

resulting goal:

even(Suc((len x) + (len(h # x))))

Neither does rippling allow applying the synthesised theorem L5: len(a @ b)= len(b @ a).

The goal resulting from applying L5 as a wave-rule does have an embedding, but does

not decrease the measure:

even( Suc(len( h#x
↑

@ x))
↑

)

This suggests that for proof-tools such as rippling, mathematically ‘uninteresting’ the-

orems may sometimes be useful in practice. However, it is worth noting that if best-first

rippling was used [46], theorem 6 would be provable, without lemma speculation. In
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best-first rippling, steps are allowed to be non-measure decreasing if nothing better is

available, so L5 could be applied to unblock the step-case.

8.6 Allowing Conjectures to Generate Constraints

Quick-Reverse (qrev) is the tail recursive version of reverse. Many theorems about

tail recursive functions such as qrev will require a generalisation of the accumulator

variable in order for the inductive hypothesis to apply. IsaPlanner does not have the

capabilities to discover such generalisations, which is why it fails to prove many syn-

thesised theorems in this theory. One example is the theorem qrev a [ ] = rev a, which

needs the more general theorem (rev a) @ b = qrev a b to complete the proof. In

total IsaPlanner proves 19 theorems about qrev (see table C.6 in Appendix C), while

a further 46 conjectures pass counter-example checking, but fail to be proved. As a

consequence of failing to prove many theorems, few constraints were generated and

the search space remained relatively large compared to the other theories, as shown

in figure 8.2 on page 108. Some of the synthesised theorems IsaPlanner manages to

prove are also rather contrived.

A solution to make IsaCoSy generate fewer terms in situations where IsaPlanner

fails to prove many conjectures, is to allow conjectures that have passed counter-

example checking, but not been proved, to also generate constraints. This should

benefit synthesis in the theories such as the one about quick-reverse. We observed

that many of the conjectures in this theory pass counter-example checking but are not

proved by IsaPlanner appear to be theorems. A random selection of 20 out of the 46

unproved conjectures were proved by hand. Furthermore, we have not observed any

non-theorems that have passed counter-example checking in any of the experiments,

which supports our confidence in Isabelle’s counter-example checker.

We repeated the experiment on the theory about quick-reverse, this time allowing

unproved conjectures to generate constraints. The run-time for generating terms up to

size 14 was reduced by 11 hours, now only taking 7 hours and 40 minutes. 11 fewer

theorems were generated, but it was the larger, more contrived ones that were cut

out. Theorems L23-24 and L26-31 in table C.6 were still generated. As an example,

theorem L25: qrev (qrev a b)[ ] = qrev b a, is no longer generated as the simpler (but

unproved) theorem qrev a [ ] = rev a is now allowed to generate constraints. There

were also fewer unproven conjectures, only 8 as opposed to 46, as larger variants of

previous unproven conjectures were no longer allowed to be generated.
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Allowing unproved conjectures to generate constraints makes IsaCoSy less depen-

dent on the underlying theorem prover and lets it operate efficiently even when many

conjectures remain unproved. There is of course a risk of missing desired theorems

if any non-theorems slip through counter example checking, although we have not yet

encountered any such cases in the experimental theories. The benefits in efficiency

seem to be worth the risk.

8.7 Restricting Polymorphic Types

Large gains in run-time can also be obtained by disallowing instantiations of polymor-

phic type variables to another polymorphic type. This would disallow nested lists (lists

of lists) and nested trees. We noticed that many non-theorems in the list domain con-

tained highly nested lists. As an example of terms that it would be beneficial to prune

from the term space, consider a term ?h0#l, which is of type ?α list, with ?h0 :: ?α.

Suppose ?h0 gets instantiated to another cons-operator, which also instantiates the type

variable ?α to ?β list. The original term is now (h1 # h2)#l :: ?β list list. Subsequent

instantiations may cause further nesting of lists. The restriction we suggest would dis-

allow a type-variable, such as ?α above, to be instantiated to a new type containing

another variable.

We repeated the synthesis experiments on some of the list theories, with a spe-

cialised lists datatypes over natural numbers, rather than polymorphic lists. The same

theorems as before were still found, but the number of non-theorems decreased signif-

icantly as the search space was reduced. As run-times are proportional to the search-

space size, IsaCoSy ran considerably faster. The figures for precision and recall from

§8.4 was however not affected, as the same theorems are still discovered. The results

are summarised below:

Theory Run-time Non-theorems

polymorphic non-polymorphic polymorphic non-polymorphic

app-rev-len 15h 56 min 5h 8 min 601 405 229 104

app-rev-map 17h 21 min 4h 31 min 636 361 195 800

app-foldl-foldr 6h 8 min 17 min 249 404 14 503

In the future, we could achieve these cuts by implementing restrictions on type-

variable instantiations, as we often do want to use polymorphic datatypes.



8.8. Limitations 117

8.8 Limitations

8.8.1 Dealing with Commutativity

Commutative functions may cause synthesis to produce a large number of different

variants of the same theorem. For example, the natural number theory from our ex-

periments produced eight variants of distributivity of multiplication over addition with

variables commuted in different orders:

N9: (a ∗ b) + (c ∗ b) = (a + c) ∗ b

N10: (a ∗ b) + (c ∗ a) = (b + c) ∗ a

N11: (a ∗ b) + (c ∗ a) = (c + b) ∗ a

N12: (a ∗ b) + (c ∗ b) = (c + a) ∗ b

N13: (a ∗ b) + (a ∗ c) = (b + c) ∗ a

N14: (a ∗ b) + (a ∗ c) = (c + b) ∗ a

N15: (a ∗ b) + (b ∗ c) = (a + c) ∗ b

N16: (a ∗ b) + (b ∗ c) = (c + a) ∗ b

Using Isabelle’s library for reference, as we did for the precision and recall analysis,

theorems N9 and N13 are ‘interesting’. However, it is difficult to build a filter that

would decide which variant(s) should be kept, and IsaCoSy does not currently attempt

such filtering.

8.8.2 Term Ordering

IsaCoSy currently uses a very simple ordering on terms, based on their size. Synthe-

sised equations are required to have a left-hand side of larger or equal size than the

right-hand side. As this measure is not a total ordering, it is not sophisticated enough

to avoid the problems illustrated by the examples below.

8.8.2.1 Symmetries

An inefficiency arising when synthesising theorems with equal sized left- and right-

hand sides, is that IsaCoSy tends to produce two symmetric equations. This happens

in the theory about append, reverse and map, where the theorem map a (rev b) =

rev(map a b) is synthesised both ways around. This is not a problem when the the-

orems are supplied to rippling, but if made available to a rewriting system, such as

Isabelle’s simplifier, this would cause non-termination. Implementing a total ordering

on terms would solve the problem.
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8.8.2.2 Constraints from Invalid Rewrite-Rules

We tried to extend the theory about append, reverse and length to also include addition.

IsaCoSy did however not produce any new theorems other than those that had been

synthesised prior to including addition. We would have expected to get theorems such

as len(a @ b) = (len a) + (len b). This is not synthesised as we unintentionally

prematurely removed @ from the domain of len. This constraint has arisen from the

theorem stating that append is commutative under len: len(a @ b) = len(b @ a),

which is of smaller size and thus generated first. We note that this theorem is not

actually a valid rewrite rule, it is not measure decreasing in any meaningful way and

both sides are of the same size. However, it is still an interesting theorem, and we still

want to synthesise it. A solution to the problem would be to only allow constraints to

be generated if the theorem is a valid rewrite rule. This again requires a total ordering

on terms to detect which theorems are valid rewrite rules.

In the future, a more suitable constraint would be to observe that @ is commuta-

tive under len, and impose size restrictions in these situations. IsaCoSy can currently

identify commutativity theorems about a left-hand side top-level function, e.g. plus in

a + b = b + a, from which it generates size restrictions for the functions arguments.

As further work, we suggest extending this machinery to also detect commutativity

under additional term-context.

8.8.2.3 Low precision for Lists

IsaCoSy only achieved 38% precision in the list domain, as many additional theorems

involving append and reverse were synthesised. The reason these are synthesised is

that we do not disallow sub-terms of the form rev(?h1 @ ?h2). The single argument to

rev, is thus always allowed to be instantiated to append. We would expect the theorem

for distributing rev over append, (rev a)@(rev b) = rev(b @ a), to generate such a

constraint, but due to the current term ordering, based on size, it is oriented in the

opposite direction. Recall that constraints are only generated from the theorem’s left-

hand sides, as the algorithm never produces terms that can be rewritten by a previously

synthesised theorem. Another term-ordering might perform better, but this is left as

further work. However, note that if the distributivity of rev over append was oriented

in the opposite direction, IsaCoSy would not synthesise the theorem rev(a @ [b]) =

b # (rev a), which was shown to be a useful wave-rule for rippling in §8.5. There

is a perhaps a trade-off between the desire to synthesise a small ‘neat’ theory, and
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synthesising useful wave-rules.

8.8.3 Limitations of Isabelle’s Counter-Example Checker

We also experimented with an extension to the natural number theory, adding expo-

nentiation. This caused problems with Isabelle’s counter-example checker, which runs

out of memory on exponential terms such as ab(c ∗ a)
= a. It was therefore only possible

to run our program up to size 8. Thus, only two theorems were found3:

suc 0a = suc 0

0 a ∗ a = 0

IsaCoSy also found two theorems that passed counter-example checking, but IsaPlan-

ner was unable to prove:

0aa
= 0

0(suc a)b
= 0

8.9 Related Work in Theory Formation

There are two main approaches to theory formation, generative and deductive. Theory

formation following the generative approach produces conjectures according to some

set of heuristics, and then checks which of these are theorems by counter-examples

and/or proof. Our work falls into this category. Other systems, such as HR [18], also

follow this approach, but have not been applied to inductive theories.

Systems using a deductive approach attempt to produce new theorems as logical

consequences of known facts. This approach has the advantage of not having to use

counter-example checking to filter out non-theorems, but still has to apply filtering

to avoid trivial or uninteresting logical consequences. The MATHsAiD [58, 59] and

AGInT [68] systems used deductive methods for theorem generation. To our knowl-

edge, MATHsAiD is the only other system that has been applied to theorem synthesis

in inductive theories.

We also note that some systems, such as HR and the suggested scheme-based the-

ory exploration model [6], include the capabilities for forming new concepts. IsaCoSy

is not concerned with this side of theory formation. It is designed to produce conjec-

tures and theorems about existing functions and datatypes, not invent new ones. A
3Note that in our definition of exponentiation (see Appendix A) 00 = 1.
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follow-on project is however currently underway, combining IsaCoSy with a program

for inventing recursive functions and datatypes [16].

IsaCoSy’s pre-processing step, looking for associativity and commutativity prop-

erties is similar to how the scheme-based method discovers theorems of a certain form.

The scheme-based theory exploration model is being further studied and applied to

theory formation in an Isabelle setting in the ongoing PhD project of Omar Montano

Rivas [64]. Also related to the scheme-based approach, but not concerned with con-

cept formation, is the lemma discovery technique for the inductive prover built for

reasoning about dependent types in Coq [77]. It uses a similar technique to IsaCoSy’s

pre-processing step. The Coq-prover looks for a larger set of properties than IsaCoSy,

also including for example distributivity.

Comparison to MATHsAiD

We will here discuss and compare the way MATHsAiD and IsaCoSy produce inductive

theorems.

Unlike IsaCoSy, which generates whole terms at once and then discards most af-

ter counter-example checking, MATHsAiD first produces a set of potential left-hand

sides, called terms of interest. Smaller terms of interest can be used to build larger

ones. The generation of interesting terms is guided by heuristics, which include rules

for producing terms about associativity, commutativity and distributivity for relevant

functions. Our system implements a similar idea in the pre-processing step which

searches for AC-properties. However, we do not currently have built in heuristics to

look for distributivity, which might further decrease our search space.

After generating the terms of interest, MATHsAiD proceeds to generate theorems

by replacing a variable in the term with ‘TWO’ (corresponding to Suc(Suc 0) for natu-

ral numbers or [a, b] for lists) and reasoning forward to find an appropriate right hand

side of the equation (see §2.7.3). This forward reasoning may have a large search

space, which is why MATHsAiD imposes a size limit on potential right-hand sides,

computed as (number of function-symbols in LHS) + number of function symbols in

‘TWO’ + 2. Our system also imposes restrictions on size, requiring the left-hand side

to be larger than the right-hand side. However, IsaCoSy is perhaps inefficient in that it

will try to generate terms with big differences in LHS and RHS size, that are unlikely

to produce any theorems.

As IsaCoSy works on Isabelle-theories, properties such as well-definedness of
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functions are proved automatically by Isabelle’s function package. This makes it easy

to apply it to different theories. We have experimented with natural numbers, lists and

binary trees. MATHsAiD can not be extended to new domains so easily, as much of

the configuration has to be done by adding axioms by hand.

MATHsAiD has been applied to the domain of natural numbers with addition and

multiplication [59]. It generates the common associativity, commutativity and dis-

tributivity theorems our system finds (although fewer variants of distributivity). It also

produces the following three extra theorems:

a + (Suc 0) = Suc a, a * (Suc 0) = a, (Suc 0) * a = a

IsaCoSy does not generate these theorems as they are subsumed by more general ones.

MATHsAiD was designed to aid human mathematicians, and thus has a slightly differ-

ent heuristic for what an ‘interesting’ theorem is, which includes the above identities

about 1. We note that specialised theorems are sometimes useful for an automated

prover, for example, in the domain of lists, similar theorems about singleton lists are

sometimes useful for rippling. IsaCoSy does not synthesise the following special case

of associativity of append: (a @ [b]) @ c = a @ (b#c). This lemma was needed in

the proof of the rotate-length theorem in §8.5 (it could however be found by lemma

calculation), so IsaCoSy’s subsumption criteria may sometimes be too strong.

MATHsAiD is considerably faster than IsaCoSy, the theorems for the natural num-

ber theory were generated in just 84 seconds. This was expected as MATHsAiD has

more heuristics encoded, including a heuristic particularly looking for distributivity

theorems which our system lacks. MATHsAiD has, however, not been applied to any

higher-order theories (such as lists with map and fold). Our system can deal with these

without modifications. IsaPlanner is capable of automatically proving harder theo-

rems (including higher-order ones) than MATHsAiD. IsaPlanner can use its lemma

calculation critic and prove theorems that MATHsAiD has to return to later, when the

appropriate lemma has been generated.

8.10 Summary

IsaCoSy has been evaluated on several inductive theories about natural numbers, lists

and binary trees. We aimed to verify the hypothesis that IsaCoSy is more efficient

than a naive version of synthesis, which explores the whole search space, and that it
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produces good quality theorems, of the kind that are found in Isabelle’s libraries, and

that are useful as lemmas in later proof-attempts.

The first part of the hypothesis was verified by comparing IsaCoSy to a naive ver-

sion of synthesis on several different inductive theories, showing an exponential re-

duction in search space size. IsaCoSy is thus not only faster, but also able to explore

larger term-sizes before running out of memory. IsaCoSy’s run-time does however

still grow exponentially with the size of the terms synthesised. We also observed that

the run-time in most cases is proportional to the number of terms generated, as the

program spent most of its time performing counter-example checking. IsaCoSy works

most efficiently on highly structured theories, such as that of addition and multiplica-

tion, where many constraints are available from properties such as associativity and

commutativity.

To evaluate the quality of theorems found by IsaCoSy, we compared them with

those in the Isabelle’s libraries (when available). IsaCoSy produces many good theo-

rems, resulting in high recall of 83% for natural numbers and 100% for lists. It does

however produce a number of less interesting theorems too, so precision is lower, 63%

for natural numbers and 38% for lists. However, some of these extra theorems are

useful to IsaPlanner’s rippling machinery as wave-rules or generalisations. Using a

synthesised background theory, we also showed that IsaPlanner is able to prove harder

theorems, without having to rely on lemma discovery by complex techniques such as

lemma speculation.

In most cases, synthesis currently takes several hours. However, we observed that

most ‘interesting’ (according to Isabelle’s libraries) theorems are often quite small,

and could be found considerably quicker. Restrictions on instantiations of polymor-

phic types can further decrease the run-time by cutting out many non-theorems from

the search-space. In the theory about quick-reverse, where IsaPlanner has difficulty

proving many theorems, we showed that allowing un-proved conjectures to generate

constraints improves performance and does not appear to cause IsaCoSy to miss inter-

esting theorems.

IsaCoSy’s simple term-ordering based on size, will occasionally allow for sym-

metric versions of equations to be synthesised when both sides are of the same size.

Furthermore, there is currently no check on whether synthesised theorems are valid

rewrite rules, before being used to generate constraints. If constraints are generated

from an invalid rewrite rule, other expected theorems may not be synthesised.
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Further Work

9.1 Introduction

We will here address some limitations of our work, and propose directions for fur-

ther work improving IsaPlanner and IsaCoSy. In §9.2, we summarise some suggested

improvements, identified in §5.6, to IsaPlanner’s capabilities of reasoning about con-

ditional theorems and discovering conditional lemmas. We discuss a range of potential

improvements to the efficiency of IsaCoSy in §9.3. In §9.4, we suggest how critics

and synthesis can be combined. Different rewriting techniques require different sets of

rewrite rules. In §9.5 we propose exploring configurations for IsaCoSy to synthesise

sets of rewrite rules suitable for particular techniques, such as rippling or simplifica-

tion. Finally, in §9.6, we discuss some potential applications for IsaCoSy.

9.2 Proofs with Conditions

Although the case-analysis technique allowed a range of proofs involving conditional

statements to be proved automatically, IsaPlanner still has limitations that prevent it

proving many harder theorems. This was discussed in §5.6, and will be summarised

here.

IsaPlanner lacks the capability to produce conditional lemmas, in the form of im-

plications. This is needed in, for example, proofs about sorting. We suggested a modi-

fication to lemma calculation, allowing assumptions from the blocked goal to be lazily

carried through lemma calculation if they are needed in the proof of the lemma. As-

sumptions for a lemma should only be kept if they are needed in its proof, otherwise

we risk producing lemmas that are less general and thus less likely to be applicable in

123
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further proofs.

A further issue is fertilisation of conditional theorems, where the inductive hypoth-

esis itself will have an assumption. In these cases, a sub-goal will remain after strong

fertilisation, which IsaPlanner currently does not anticipate. The fertilisation tech-

nique should be extended to deal with possible new sub-goals arising, solving them by

forward reasoning and rippling.

Some proofs fail due to IsaPlanner’s default structural induction scheme not be-

ing sufficient. These proofs require simultaneous induction on several variables, or

otherwise, several case-splits. As discussed in chapter 5, it is often the case that one

sub-goal after a case-split is no longer rippling. If simplification is used to solve such

goals, additional case-splitting is not allowed (as it may cause non-termination) which

causes failure on proofs requiring several splits. A potential solution is to delay case-

splitting until no more rewrites are applicable, thus avoiding complicated non-rippling

goals. This does however require a modified ripple-measure which takes wave-front

sizes into account.

9.3 Improvements for Conjecture Synthesis

IsaCoSy is still often quite slow, taking a couple of hours to finish, and sometimes

fails to synthesise interesting theorems. A number of suggestions about how to further

decrease the search space and perhaps improve the quality of theorems are outlined

below.

9.3.1 Invalid Rewrite Rules and Term Orderings

The constraint mechanism in IsaCoSy currently ‘assumes’ that all theorems it is given

are valid rewrite rules, orientated in the direction we intend to apply them (with the

exception of simple commutativity theorems, which can be identified and are treated

differently). It then deduces constraints based on the left-hand side of the rule. How-

ever, this is not completely correct, as we saw in §8.8.2, where the theorem

len(a @ b) = len(b @ a) (9.1)

resulted in constraints excluding the theorem len(a @ b) = (len a) + (len b). The

offending theorem 9.1 is not a valid rewrite rule, as it can be applied infinitely many

times to a matching term. Theorems that are not valid rewrite rules are however still
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potentially interesting. We do not necessarily want to exclude them by, for example,

disallowing terms with equal size left- and right-hand sides, which would ensure all

synthesised terms were valid rewrite rules, under our simple size measure.

Ideally, the constraint generator should check if theorems given to it are valid

rewrite rules, before generating constraints. This is however a non-trivial problem,

many rewrite systems such as Isabelle’s simplifier, rely on the user to provide it only

with valid rules. A possible solution is to extend IsaCoSy with a total term order-

ing, such as a recursive path ordering [24]. Imposing a total order on terms would

also get rid of symmetric theorems, where equations are included both ways around.

Choosing a suitable order may also help orientating certain theorems in a direction that

will result in constraints cutting down the large number of theorems synthesised about

append and reverse in the list domain, as was discussed in §8.8.2.

As was mentioned in §8.8.2, theorems such as 9.1 above, should be identified as

commutativity theorems, from which size constraints can be derived. IsaCoSy can

currently only identify simple commutativity theorems, not ones where a function is

commutative under some particular term-context, as in theorem 9.1. We suggest ex-

tending IsaCoSy’s capabilities for identifying commutativity to cope with these kind

of theorems.

9.3.2 Restrictions on Hole Sizes

The search space could potentially be cut down quite drastically if we reconsidered

the assignment of allowed sizes for holes during synthesis. IsaCoSy will currently

consider all possibilities where the left-hand side of an equation is of larger or equal

size than the right. If we are to synthesise equational terms of size 10, this includes

considering terms where the LHS is of size 7 or 8, and the RHS much smaller, only size

2 or 1. In our experiments, we found no theorems that had extremely large differences

in size between left- and right-hand sides, suggesting that these extreme cases perhaps

could be excluded. The largest difference between sides found was 4, for the theorem

rev((rev a) @ [b]) = b # a. MATHsAiD has a heuristic formula for calculating the

possible sizes for the right-hand side of an equation (see §8.9), excluding extreme

cases.
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9.3.3 Optimising Term Generation

IsaCoSy is currently generating whole terms, of given sizes. A possible optimisation is

to cache sub-terms of each size, as they will be re-used in many term constructions. As

theorems are discovered and more constraints generated, the cached terms no longer

allowed must be filtered out. This way, sub-terms would only have to be synthesised

once.

Currently, terms of a specified size are generated as a batch, followed by counter-

example checking, proof and constraint generation for all of them. Individually check-

ing each one after it has been synthesised, and discarding the non-theorems, would use

less memory than the current approach.

9.3.4 Restricting Function Nesting

Currently, IsaCoSy produces a lot of silly terms, built from a large number of datatype

constructors. A heuristic, limiting the depth of function nesting or specifying a maxi-

mum number of occurrences of a single symbol, would cut out many of these terms, for

example, terms stacking up a large number of successor functions. This could be im-

plemented as a heuristic much like the current option on how many different variables

are allowed in one term (see §7.6).

9.3.5 Synthesis on Larger Theories

We have so far only applied synthesis to relatively small theories with just three or

four different functions. If applied to larger theories, with many different functions,

it would probably be beneficial to restrict the number of different function symbols

occurring in the same term. Most theorems only contain a small number of different

functions. Again, this could be implemented as a default heuristic value which the user

can configure should he/she wish to do so.

9.4 Combining Critics and Synthesis

Synthesis could be used for instantiating meta-variables in proof critics, instead of

middle-out reasoning. Critics for both lemma speculation and accumulator generalisa-

tion introduce meta-variables to stand for yet unknown terms structures [41].
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9.4.1 Synthesis for Lemma Speculation

Instead of applying further rippling and middle-out reasoning, which may often have

a large search space, an interesting alternative would be to let our synthesis algorithm

suggest possible instantiations. An advantage of using synthesis rather than middle-out

reasoning is that we no longer require intermediate ripple-steps between the application

of the schematic lemma and fertilisation to instantiate the meta-variables. This was a

major problem and caused failure in many of the examples in chapter 6.

The synthesis algorithm would need some modifications, for example, meta-variables

may, in the critics context, sometimes need to ‘disappear’ by being instantiated to the

identity function. Extra constraint machinery would also need to be built for restrict-

ing synthesis to only produce rules that decrease the ripple measure and preserve the

skeleton. We may also want to restrict synthesis to only use the function symbols and

datatypes occurring in the blocked goal. This avoids unrelated functions being intro-

duced, which is unlikely to produce a useful lemma but will increase the search space.

Other efficiency improvements, such as the ones described above, would perhaps also

be required as a human user is unlikely to want to wait for a long time for a proof.

9.4.2 Synthesis and Accumulator Generalisation

As well as experimenting with using synthesis to instantiate meta-variables in an ac-

cumulator generalisation critic, a technique for identifying known theorems as gener-

alisations would be useful. When a proof-attempt fails, a more general theorem might

perhaps already have been found by IsaCoSy. As an example consider the proof of the

theorem:

qrev a [ ] = rev a (9.2)

IsaPlanner cannot currently prove 9.2 as it requires accumulator generalisation. When

applied to a theory about qrev, IsaCoSy discovered and proved the correct generalisa-

tion (see table C.6):

qrev a b = (rev a) @ b (9.3)

A very simple generalisation critic could, after the failed proof-attempt of theorem

9.2, simply check if any other theorems could be used to rewrite the original goal.

In this case, 9.3 can rewrite 9.2 to (rev a) @[ ] = rev a, which can easily be proved

automatically.
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9.5 Configuring IsaCoSy for Different Proof Techniques

Different rewriting-based proof techniques require slightly different sets of rules. For

example, Isabelle’s simplifier relies on its rewrite rules being orientated in such a way

that rewriting terminates, while rippling terminates regardless of the directions of the

rules. However, rippling requires skeleton preservation, and will sometimes need lem-

mas that are more specific versions of some theorems that IsaCoSy produces. An

example of this was discussed in §8.5.

It would be interesting to experiment with different constraint configurations for

IsaCoSy, attempting to synthesise a set of rewrite rules suitable for a particular tech-

nique. For rippling, it may, for example, be beneficial to allow theorems involving

singleton lists even though more general theorems exist. For simplification, it would

be interesting to attempt to configure IsaCoSy to produce a confluent set of rewrite

rules, or perhaps combining it with Knuth-Bendix completion [50].

In addition to rippling and simplification, another area of further work is to con-

sider rewriting modulo associativity and commutativity. Recall that we already impose

constraints on the argument sizes of functions found to be commutative during synthe-

sis (see §7.5.4). With an AC-rewriting technique, IsaCoSy would not have to consider

synthesising commuted versions of theorems.

9.6 Future Applications

We believe the IsaCoSy program has the potential to be useful for assisting theory

development as well as for generating challenge problems to test automated inductive

theorem provers.

In the theory development setting, a synthesis tool could be applied to functions

and datatypes defined by a user. It could then either be left to run to some finite level

of completion (e.g. a specified maximum term size), or possibly left to run in the

background, finding and proving routine lemmas that may be of use for later proofs.

Alternatively, IsaCoSy could be called when the user is stuck in some proof. In this

scenario, synthesis can be further restricted to build lemmas from constants and func-

tion symbols in the goal, as waiting for a long time in the middle of an interactive proof

is not acceptable.

Secondly, a synthesis tool could be used to automatically generate test-sets for

inductive theorem provers, perhaps for inclusion in a library such as TPTP [71].
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9.7 Summary

The current implementation of IsaCoSy could potentially be improved and made more

efficient in several ways. We propose extending IsaCoSy with a total term-ordering,

to avoid accidentally generating constraints from invalid rewrite rules and to avoid

synthesising symmetric theorems. Further improvements include optimisations to term

generation, as well as restrictions on terms with large size differences between left- and

right-hand sides, and on the occurrence of datatype constructors.

Another interesting area for further research is to combine synthesis and proof-

critics. IsaCoSy could be used to find instantiations for meta-variables in schematic

lemmas, instead of middle-out reasoning. We also suggested a very simple critic for

accumulator generalisation, which applies a suitable generalisation from the previously

synthesised background theory.

We believe that IsaCoSy can be further developed into a useful tool to assist theory

development by finding routine lemmas. IsaCoSy could potentially be configured to

synthesise sets of rewrite rules suited for a particular technique, such as simplifica-

tion or rippling. Another possible application is automatic generation of test-sets for

inductive theorem provers.





Chapter 10

Conclusions

10.1 Introduction

The aim of this project was to improve automation of inductive proofs by automating

lemma discovery and case analysis. The hypothesis stated in chapter 1 is revisited

below:

1. Theory formation by conjecture synthesis can be implemented in a computa-

tionally tractable fashion, and can produce useful theorems and lemmas, while

lemma speculation is rarely applicable and produces few useful lemmas.

2. Automating case-analysis allows many theorems involving conditional state-

ments to be proved automatically.

We will here summarise our work and discuss whether the hypotheses above have been

verified.

10.2 Lemma Discovery

To explore techniques for lemma discovery we implemented both a lemma speculation

critic and a program for conjecture synthesis within IsaPlanner.

10.2.1 Lemma Speculation

IsaPlanner’s lemma speculation critic works in higher-order logic with dynamic rip-

pling, unlike an earlier version implemented in CLAM 3 [41]. Unlike previous work,
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it also guarantees termination of rippling in the presence of meta-variables by recom-

puting the ripple measures for the whole trace of middle-out steps as meta-variables

get instantiated. Lemma speculation is applicable when rippling is blocked but the in-

ductive hypothesis cannot yet be applied. It introduces meta-variables into the skeleton

of the blocked term to create a schematic lemma. Meta-variables are then instantiated

by further rippling-rewrites (and projections), until it is possible to apply the hypothe-

sis. During evaluation, we found few proofs where lemma speculation was applicable.

Furthermore, lemma speculation will fail, producing an underspecified lemma, in cases

where the missing lemma is the last step before fertilisation. In these cases, there are

no possible steps to help instantiate the meta-variables of the lemma.

Due to the negative results obtained, we do not suggest exploring the lemma spec-

ulation critic further, but rather focus on more commonly applicable techniques such

as improvements to lemma calculation. More could probably be gained by adding sup-

port for reasoning with conditionals and combining lemma calculation with additional

generalisation techniques, other than just common sub-term generalisation.

10.2.2 Conjecture Synthesis

The limitations of lemma speculation motivated the development of a conjecture syn-

thesis program, called IsaCoSy. To make synthesis computationally feasible, we turn

rewriting upside down, and only allow the synthesis of terms that do not match any

of the current rewrite rules. This is enforced by generating constraints from theorems.

The constraint limits further synthesis by restricting where functions and variables are

allowed to occur. IsaCoSy filters out false conjectures by counter-example checking

and passes the remaining conjectures to IsaPlanner for proof. As new theorems are

found, more constraints are generated from these.

IsaCoSy was evaluated on several inductive theories about natural numbers, lists

and binary trees. Compared to a naive version of synthesis, it manages an exponential

reduction of the search space size. We compared the theorems found by IsaCoSy

with those in the Isabelle’s libraries (when available). IsaCoSy produces many good

theorems, resulting in high recall of 83% for natural numbers and 100% for lists. It

does however produce a number of less interesting theorems too, so precision is lower:

63% for natural numbers and 38% for lists. Using a synthesised background theory,

we also showed that IsaPlanner is able to prove all but one of Ireland’s examples of

theorems previously requiring lemma speculation.
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10.2.3 Verification of the Hypothesis

We consider these results as a good verification of part 1 of the hypothesis in §10.1.

Our conjecture synthesis program does not produce nearly as many terms as a naive

version and is able to generate large terms before encountering any memory issues.

We showed that many useful theorems, occurring in libraries and useful in automated

proofs, can be synthesised in a tractable fashion. However, we believe IsaCoSy can be

made more efficient by considering the improvements suggested in chapter 9. Using a

synthesised background theory allowed IsaPlanner to prove more of the theorems from

the evaluation set for lemma speculation, than using the critic itself.

To conclude, theory formation by conjecture synthesis or extensions to lemma cal-

culation seem to be the more promising areas to further explore automating lemma

discovery for inductive theorem proving.

10.3 Case-Analysis

We implemented a case-analysis technique in IsaPlanner, capable of introducing splits

when encountering an if- or case-statement for which the condition cannot be proved.

The second part of the hypothesis §10.1 was verified by evaluating the critic on a

test set of 87 theorems, 47 of which were automatically proved. We compared this to

a simple proof technique based on Isabelle’s simplifier, which managed to prove 37

theorems. Our technique performed better on proofs requiring splits on a datatype. Is-

abelle’s simplifier cannot perform such splits, as they may lead to non-termination. Our

case-analysis technique is incorporated with rippling, and can thus retain termination.

We did not expect IsaPlanner’s new case-analysis technique to prove all of the 40

remaining theorems as these require more sophisticated reasoning about, for example,

side-conditions and the ability to construct conditional lemmas, which was suggested

as further work.

10.4 Summary

Our experimental results support the hypotheses, showing that conjecture synthesis is

capable of finding many useful theorems. Using a synthesised background theory al-

lows IsaPlanner to prove theorems that would otherwise require lemma speculation,

including some where the critic fails. As lemma speculation is rarely applicable, the-
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ory formation by conjecture synthesise is currently a more powerful technique for auto-

mated discovery of inductive lemmas. Given the wide range of possible improvements,

proposed in chapter 9, conjecture synthesis also seems to be the more promising direc-

tion for further work.

We also showed that our case-analysis technique allowed IsaPlanner to automati-

cally prove a number of theorems involving conditional statements. IsaPlanner’s ca-

pabilities for dealing with such theorems could be further improved by implementing

a mechanism for constructing conditional lemmas, as well as more sophisticated rea-

soning about side-conditions.



Appendix A

Function Definitions

A.1 Natural Numbers

A.1.1 Arithmetic

fun + :: nat ⇒ nat ⇒ nat

add-zero: 0 + y = y

add-suc: (Suc x) + y = Suc(x + y)

fun ∗ :: nat ⇒ nat ⇒ nat

mult-zero: 0 ∗ y = y

mult-suc: (Suc x) ∗ y = y + (x ∗ y)

fun exp :: nat ⇒ nat ⇒ nat

exp-zero: x0 = Suc 0

exp-suc: xSuc y = x ∗ xy

fun − :: nat ⇒ nat ⇒ nat

minus-zero: 0 − y = 0

minus-suc: (Suc x) − y = case y o f 0 ⇒ Suc x | Suc z ⇒ x − z

A.1.2 Orders and Max

fun < :: nat ⇒ nat ⇒ bool

less-zero: x < 0 = False

add-suc: x < Suc y = case x o f 0 ⇒ True | Suc z ⇒ z < y
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fun ≤ :: nat ⇒ nat ⇒ bool

lesseq-zero: 0 ≤ y = True

lesseq-suc: Suc x ≤ y = case y o f 0 ⇒ False | Suc z ⇒ x ≤ z

fun max :: nat ⇒ nat ⇒ nat

max-zero: max 0 y = y

max-suc: max (Suc x) y = case y o f 0 ⇒ (Suc x) | Suc z ⇒ Suc(max z y)

A.1.3 Even

fun even :: nat ⇒ bool

even-zero: even 0 = True

even-suc: even (Suc(Suc x)) = even x

A.2 Lists

A.2.1 Basics

fun @ :: α list ⇒ α list ⇒ α list

app-nil: [ ] @ l = l

app-cons: (h # t) @ l = h # (t @ l)

fun len :: α list ⇒ nat

len-nil: len [ ] = 0

len-cons: len (h # t) = Suc (len t)

fun rev :: α list ⇒ α list

rev-nil: rev [ ] = [ ]

rev-cons: rev(h # t) = (rev t) @ [h]

fun qrev :: α list ⇒ α list ⇒ α list

qrev-nil: qrev [ ] l = l

qrev-cons: qrev(h # t) l = qrev t (h # l)
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fun member :: α ⇒ α list ⇒ bool

mem-nil: x member [ ] = False

mem-cons: x member (h # t) = i f (x = h) then True else (x member t)

fun count :: α ⇒ α list ⇒ nat

count-nil: count x [ ] = 0

count-cons: count x (h # t) = i f (x = h) then (1 + (count x t)) else (count x t)

fun concat :: α list list ⇒ α list

concat-nil: concat [ ] = [ ]

concat-cons: concat (h # t) = h @ (concat t)

fun zip :: α list ⇒ β list ⇒ (α ∗ β) list

zip-nil: zip l [ ] = [ ]

zip-cons: zip l (h2 # t2) = case l o f [ ]⇒ [ ] | (h1 # t1)⇒ ((h1, h2) # (zip t1 t2))

A.2.2 Higher-Order Functions

fun map :: (α ⇒ β)⇒ α list ⇒ β list

map-nil: map f [ ] = [ ]

map-cons: map f (h # t) = ( f h) # t

fun maps :: (α ⇒ β list)⇒ α list ⇒ β list

maps-nil: maps f [ ] = [ ]

maps-cons: maps f (h # t) = ( f h) @ t

fun f ilter :: (α ⇒ bool)⇒ α list ⇒ α list

filter-nil: f ilter P [ ] = [ ]

filter-cons: f ilter P (h # t) = i f (P h) then (h # f ilter P t) else ( f ilter P t)

fun f oldl :: (α ⇒ β ⇒ α)⇒ α ⇒ β list ⇒ α

foldl-nil: f oldl f a [ ] = a

foldl-cons: f oldl f a (h # t) = f oldl f ( f a h) t
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fun f oldr :: (α ⇒ β ⇒ β)⇒ α list ⇒ β ⇒ β

foldr-nil: f oldr f [ ] a = a

foldr-cons: f oldr f (h # t) a = f h ( f oldr f t a)

A.2.3 Insertertion and Deletion

fun insert :: nat ⇒ (nat list)⇒ (nat list)

insert-nil: insert x [ ] = [x]

insert-cons: insert x (h # t) = i f (x < h) then (x # h # t) else (insert x t)

fun insert 1 :: nat ⇒ (nat list)⇒ (nat list)

insert 1-nil: insert 1 x [ ] = [x]

insert 1-cons: insert 1 x (h # t) = i f (x = h) then (x # t) else (h # (insert 1 x t))

fun delete :: α ⇒ α list ⇒ α list

del-nil: delete x [ ] = [ ]

del-cons: delete x (h # t) = i f (x = h) then (delete x t) else (h # delete x t)

A.2.4 Sorting

fun sort :: nat list ⇒ nat list

sort-nil: sort [ ] = [ ]

sort-cons: sort (h # t) = insert h (sort t)

fun sorted :: nat list ⇒ bool

sorted-nil: sorted [ ] = True

sorted-cons: sorted (h # t) = case t o f [ ]⇒ True | (h2 # t2)⇒ (h ≤ h2)∧ sorted (h2 # t2)

A.2.5 Last and Butlast

fun last :: α list ⇒ α

last-cons: last (h # t) = i f (t = [ ]) then h else (last t)

fun butlast :: α list ⇒ α list

butlast-nil: butlast [ ] = [ ]

butlast-cons: butlast (h # t) = i f (t = [ ]) then [ ] else (h # butlast t)
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A.2.6 Take and Drop

fun drop :: nat ⇒ α list ⇒ α list

drop-nil: drop n [ ] = [ ]

drop-cons: drop n (h # t) = case n o f 0 ⇒ (h # t) | (Suc m)⇒ drop m t

fun dropWhile :: (α ⇒ bool)⇒ α list ⇒ α list

dropWhile-nil: dropWhile P [ ] = [ ]

dropWhile-cons: dropWhile P (h # t) = i f (P h) then (dropWhile P t) else (h # t)

fun take :: nat ⇒ α list ⇒ α list

take-nil: take n [ ] = [ ]

take-cons: take n (h # t) = case n o f 0 ⇒ [ ] | (Suc m)⇒ h # take m t

fun takeWhile :: (α ⇒ bool)⇒ α list ⇒ α list

takeWhile-nil: takeWhile P [ ] = [ ]

takeWhile-cons: takeWhile P (h # t) = i f (P h) then (h # takeWhile P t) else [ ]

A.3 Binary Trees

datatype α Tree =

Leaf

| Node o f α Tree∗α ∗α Tree

fun mirror :: α Tree ⇒ α Tree

mirror-leaf: mirror Lea f = Lea f

mirror-node: mirror (Node l data r) = Node (mirror r) data (mirror l)

fun nodes :: α Tree ⇒ nat

nodes-leaf: nodes Lea f = 0

nodes-node: nodes (Node l data r) = (Suc 0) + (nodes l) + (nodes r)

fun height :: α Tree ⇒ nat

height-leaf: height Lea f = 0

height-node: height (Node l data r) = Suc(max (height l) (height r))





Appendix B

Experimental Results for Case

Analysis

The evaluation corpus consists of 87 theorems about function defined with if- and case-

statements. The 47 theorems in table B.1 can be proved by IsaPlanner by rippling with

our case-analysis technique, while table B.2 shows the remaining 40 theorems where

IsaPlanner fails. For the experiments, rippling (and simplification) was only supplied

with the definitions given in Appendix A, and no extra lemmas.

The run-times are given in seconds. The ’Src’ column indicates where the theorem

came from: ‘Isa’ is Isabelle’s library, ‘Ire’ is the paper about proof-critics by Ireland

and Bundy [41] and ‘Wil’ is the paper by Wilson and Fleuriot about inductive proofs

arising from dependent types [76]. Theorems with no such label have been added by

the author to evaluate additional properties.

No Theorem Time Cond Src

1 m - m = 0 0.068 case Isa

2 n - (n + m) = 0 0.174 case Isa

3 (n + m) - n = m 0.177 case Isa

4 (k + m) - (k + n) = m - n 0.079 case Isa

5* (i - j) - k = i - (j + k) 0.270 case Isa

6 n ≤ 0 ↔ (n = 0) 0.065 case Isa

7 n ≤ (n + m) 0.168 case Isa

8 i < Suc (i + m) 0.251 case Isa

9* max a b = max b a 0.254 case

10* max (max a b) c = max a (max b c) 0.632 case
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11* (max a b = a) = b ≤ a 0.262 case

12* max a b = b) = a ≤ b 0.270 case

13* min a b = min b a 0.259 case

14* min (min a b) c = min a (min b c) 0.646 case

15* (min a b = a) = a ≤ b 0.265 case

16* min a b = b) = b ≤ a 0.261 case

17 drop 0 xs = xs 0.068 case Isa

18 drop (Suc n) (x # xs) = drop n xs 0.073 case Isa

19* drop n (map f xs) = map f (drop n xs) 0.200 case Isa

20* len drop n xs = (len xs) - n 0.360 case Isa

21 take 0 xs = [] 0.068 case Isa

22 take (Suc n) (x # xs) = x # take n xs 0.072 case Isa

23* take n (map f xs) = map f (take n xs) 0.218 case Isa

24* take n xs @ drop n xs = xs 0.284 case Isa

25 zip [] ys = [] 0.078 case Isa

26 zip (x # xs) ys = case ys of [] ⇒ [] 0.222 case Isa

| (z # zs) ⇒ (x, z) # zip xs zs)

27 zip (x # xs) (y # ys) = (x, y) # zip xs ys 0.109 case Isa

28* height (mirror t) = height a 0.282 case

29 x member (l @ [x]) 0.023 if Isa

30 ¬ (x member (delete x l)) 0.028 if

31 x member l → x member (l @ t) 0.069 if Ire

32 x member t → x member (l @ t) 0.025 if Ire

33 x member (insert x l) 0.029 if Ire

34 x member (insert 1 x l) 0.027 if Ire

35 len insert x l = Suc (len l) 0.035 if Ire

36 len (sort l) = len l 0.047 if Ire

37 xs = [] =⇒ last (x # xs) = x 0.012 if Isa

38 (Suc 0) + (count n l) = count n (n # l) 0.086 if

39 n = x =⇒ (Suc 0) + count n l = count n (x # l) 0.132 if

40 count n l + count n m = count n (l @ m) 0.131 if

41 count n (x @ [n]) = Suc (count n x) 0.064 if Wil

42 count n [h] + count n t = count n (h # t) 0.144 if Wil

43 count n l ≤ count n (l @ m) 0.200 if

44 dropWhile (λ x. False) xs = xs 0.011 if
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45 takeWhile (λ x. True) xs = xs 0.009 if

46 takeWhile P xs @ dropWhile P xs = xs 0.500 if Isa

47 filter P (xs @ ys) = filter P xs @ filter P ys 0.069 if Isa

Table B.1: Theorems proved automatically by IsaPlanner using the case-analysis. Run-

times are given in seconds. The 14 theorems marked with * require a case-split on a

datatype, of the kind Isabelle’s simplifier cannot perform.

No Theorem Time Cond Src

48 (m + n) - n = m 0.184 case Isa

49 ((Suc m) - n) - (Suc k) = (m - n) - k 0.464 case Isa

50 i < Suc (m + i) 0.490 case Isa

51 n ≤ (m + n) 0.174 case Isa

52 m ≤ n =⇒ m ≤ Suc n 0.071 case

53 drop n (drop m xs) = drop (n + m) xs 0.294 case Isa

54 drop n (xs @ ys) = drop n xs @ drop (n - (len xs)) ys 1.968 case Isa

55 drop n (take m xs) = take (m - n) (drop n xs) 0.761 case Isa

56 drop n (zip xs ys) = zip (drop n xs) (drop n ys) 0.860 case Isa

57 rev (drop i xs) = take ((len xs) - i) (rev xs) 0.783 case Isa

58 rev (take i xs) = drop ((len xs) - i) (rev xs) 0.777 case Isa

59 rev (filter P xs) = filter P (rev xs) 0.096 if Isa

60 take n (xs @ ys) = take n xs @ take (n - (len xs)) ys 1.986 case Isa

61 take n (drop m xs) = drop m (take (n + m) xs) 0.691 case Isa

62 take n (zip xs ys) = zip (take n xs) (take n ys) 0.726 case Isa

63 (len filter P xs) ≤ (len xs) 0.336 if Isa

64 zip (xs @ ys) zs = zip xs (take (len xs) zs) @ 0.730 case Isa

zip ys (drop (len xs) zs)

65 zip xs (ys @ zs) = zip (take (length ys) xs) ys @ 9.439 case Isa

zip (drop (length ys) xs) zs

66 (len xs = len ys) =⇒ zip (rev xs) (rev ys) = 0.427 case Isa

rev (zip xs ys)

67 (len delete x l) ≤ (len l) 0.352 if

68 x < y =⇒ x member (insert y l) = x member l 0.03 if

69 x 6= y =⇒ x member (insert y l) = x member l 0.084 if Ire
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70 sorted l =⇒ sorted (insert x l) 0.023 if/case Ire

71 sorted (sort l) 0.005 if/case Ire

72 last (xs @ [x]) = x 0.029 if Isa

73 xs 6= [] =⇒ last (x # xs) = last xs 0.08 if Isa

74 ys = [] =⇒ last (xs @ ys) = last xs 0.07 if Isa

75 ys 6= [] =⇒ last (xs @ ys) = last ys 0.038 if Isa

76 last (xs @ ys) = if (ys = []) 0.249 if Isa

then (last xs) else (last ys)

77 n < (len xs) =⇒ last (drop n xs) = last xs 0.147 if/case Isa

78 butlast (xs @ [x]) = xs 0.026 if Isa

79 xs 6= [] =⇒ butlast xs @ [last xs] = xs 0.005 if Isa

80 butlast (xs @ ys) = if ys = [] 0.268 if Isa

then (butlast xs) else (xs @ butlast ys)

81 butlast xs = take ((len xs) - (Suc 0)) xs 2.410 if/case Isa

82 len butlast xs = (len xs) - (Suc 0) 0.756 if/case Isa

83 (len delete x l) ≤ (len l) 0.352 if

84 count n t + count n [h] = count n (h # t) 1.827 if Wil

85 count n l = count n (rev l) 0.075 if

86 count x l = count x (sort l) 0.075 if Ire

87 n 6= h =⇒ count n (x @ [h]) = count n x 0.216 if Wil

Table B.2: 40 theorems IsaPlanner fails to prove. Run-times (until failure) are given in

seconds.



Appendix C

Experimental Results for Conjecture

Synthesis

The tables below show the theorems synthesised by IsaCoSy for the six evaluation

theories from chapter 8, about natural numbers, lists and binary trees. The theorems

marked ‘Pre-Processing’ in the tables below have been discovered by IsaCoSy’s heuris-

tic which attempts to find associativity and commutativity properties prior to synthesis.

Label Size Theorem

T1 Pre-processing max a b = max b a

T2 Pre-processing max (max a b) c = max a (max b c)

T3 5 max a a = a

T4 5 mirror (mirror a) = a

T5 6 nodes (mirror a) = nodes a

T6 6 height (mirror a) = height a

Table C.1: Theorems found about binary trees with functions max, mirror, nodes and

height. Isabelle has no library for binary trees.
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Label Size Theorem

N1* Pre-processing a + 0 = a

N2* Pre-processing a + Suc b = Suc(a + b)

N3* Pre-processing a ∗ 0 = 0

N4* Pre-processing a ∗ Suc b = a+(a ∗ b)

N5* Pre-processing a + b = b + a

N6* Pre-processing a ∗ b = b ∗ a

N7* Pre-processing (a + b) + c = a + (b + c)

N8* Pre-processing (a ∗ b) ∗ c = a ∗ (b ∗ c)

N9* 13 (a ∗ b) + (c ∗ b) = (a + c) ∗ b

N10 13 (a ∗ b) + (c ∗ a) = (b + c) ∗ a

N11 13 (a ∗ b) + (c ∗ a) = (c + b) ∗ a

N12 13 (a ∗ b) + (c ∗ b) = (c + a) ∗ b

N13* 13 (a ∗ b) + (a ∗ c) = (b + c) ∗ a

N14 13 (a ∗ b) + (a ∗ c) = (c + b) ∗ a

N15 13 (a ∗ b) + (b ∗ c) = (a + c) ∗ b

N16 13 (a ∗ b) + (b ∗ c) = (c + a) ∗ b

Table C.2: Theorems discovered about addition and multiplication on the natural num-

bers. Theorems marked with * are included in Isabelle’s library for natural numbers.

Note that Isabelle has the equations orientated in the opposite direction for N9 and N13.

N13 is furthermore commuted over multiplication, e.g. the RHS of N13 is (b + c) ∗ a,

while in Isabelle it is a ∗ (b + c).
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Label Size Theorem

L1* Pre-processing (a @ b) @ c = a @ (b @ c)

L2* 5 rev(rev a) = a

L3* 5 a @ [ ] = a

L4* 6 len(rev a) = len a

L5 9 len(a @ b) = len(b @ a)

L6 10 rev(a @ (rev b)) = b @ (rev a)

L7* 10 (rev a) @ (rev b) = rev (b @ a)

L8 10 rev((rev a) @ (rev b)) = b @ a

L9 11 rev(a @ [b]) = b # (rev a)

L10 11 rev((rev a) @ [b]) = b # a

L11 14 rev(a @ (b @ (rev c))) = c @ (rev(a @ b))

L12 14 rev(a @ (b # (rev c))) = c @ (b # (rev a))

L13 14 rev((rev a) @ (b # c)) = (rev c) @ (b # a)

L14 14 (rev a) @ ((rev b) @ c) = (rev (b @ a)) @ c

L15 14 (rev a) @ (b # (rev c)) = rev(c @ (b # a))

L16 14 rev((rev a) @ b) @ c = (rev b) @ (a @ c)

L17 14 rev((rev a) @ (b # (rev c))) = c @ (b # a)

L18 14 a @ (rev(rev b) @ c) = a @ ((rev c) @ b)

Table C.3: Theorems discovered about append, reverse and length on lists. Theorems

marked with * are included in Isabelle’s list library. Note that L18 is allowed to be

synthesised as its simpler version, rev(rev b) @ c = (rev c) @ b, could not be proved

when it was first synthesised, and thus did not generate constraints. Its proof require

L7 as a lemma, which was not yet available. The lemma is however available when

attempting to prove L18, so this succeeds.

Label Size Theorem

L19 9 map a (rev b) = rev(map a b)

L20* 9 rev(map a b) = map a(rev b)

L21 9 rev(map a (rev b)) = map a b

L22* 13 (map a b) @ (map a c) = map a (b @ c)

Table C.4: Additional theorems discovered about append, reverse and map on lists.

The theorems about append and reverse from table C.3 (theorems L1 - L3 and L6 -

L18) were re-discovered. Theorems marked with * are included in Isabelle’s list library.
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Label Size Theorem

L42* 14 foldl a (foldl a b c) d = foldl a b (c @ d)

L43* 14 foldr a b (foldr a c d) = foldr a (b @ c) d

Table C.5: Additional theorems discovered about foldl and foldr. Both theorems are

included in Isabelle’s list library. The theorems about append and reverse from table

C.3 (theorems L1 - L3 and L6 - L18) were re-discovered.

Label Size Theorem

L23 8 qrev (rev a) b = a @ b

L24 8 (rev a) @ b = qrev a b

L25 9 qrev (qrev a b)[ ] = qrev b a

L26 11 qrev a (qrev b c) = qrev (b @ a) c

L27 11 qrev a (b @ c) = qrev (qrev b a) c

L28 11 qrev a (b @ c) = (qrev a b) @ c

L29 11 qrev (qrev a b) c = qrev b (a @ c)

L30 11 qrev (a @ b) c = qrev b (qrev a c)

L31 11 (qrev a b) @ c = qrev a (b @ c)

L32 12 rev (qrev a (b # c)) = qrev c (b # a)

L33 12 a @ (rev (qrev b [ ])) = rev (qrev b (rev a))

L34 13 rev (a @ (b @ c)) = qrev c (rev (a @ b))

L35 13 rev (a @ (b # c)) = qrev c (b # (rev a))

L36 13 qrev a (rev (b @ c)) = rev (b @ (c @ a))

L37 13 qrev a (b # (rev c)) = rev (c @ (b # a))

L38 13 rev (qrev a (rev (b @ c))) = b @ (c @ a)

L39 13 a @ (rev (b @ c)) = a @ qrev c (rev b)

L40 13 a @ qrev b (rev c) = a @ (rev (c @ b))

L41 13 a @ rev (qrev b (rev c)) = a @ (c @ b)

Table C.6: Additional theorems discovered about append, reverse and qrev on lists.

The theorems about append and reverse from table C.3 (theorems L1 - L3 and L6 -

L18) were re-discovered. The qrev-function is not defined in Isabelle’s list library, so no

comparison can be made. Note that theorems L39 - L41 are allowed to be synthesised

as their simpler versions (excluding the a @ . . . on both sides) could not be proved.

However, other proofs will later discover the required lemmas by lemma calculation.

These lemmas are stored, so IsaPlanner will be able to re-use them to prove L39 - L41.
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