
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A proof-centric approach to mathematical assistants

Citation for published version:
Dixon, L & Fleuriot, J 2006, 'A proof-centric approach to mathematical assistants' Journal of applied logic,
vol. 4, no. 4, pp. 505-532. DOI: 10.1016/j.jal.2005.10.007

Digital Object Identifier (DOI):
10.1016/j.jal.2005.10.007

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of applied logic

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/43717297?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jal.2005.10.007
https://www.research.ed.ac.uk/portal/en/publications/a-proofcentric-approach-to-mathematical-assistants(eb2a1fbd-ed8d-43b7-bfee-3e2d455558e9).html


Journal of Applied Logic 4 (2006) 505–532

www.elsevier.com/locate/jal

A proof-centric approach to mathematical assistants

Lucas Dixon ∗, Jacques Fleuriot

School of Informatics, University of Edinburgh, Appleton Tower, Crighton Street, Edinburgh, EH8 9LE, UK

Available online 17 November 2005

Abstract

We present an approach to mathematical assistants which uses readable, executable proof scripts as
the central language for interaction. We examine an implementation that combines the Isar language,
the Isabelle theorem prover and the IsaPlanner proof planner. We argue that this synergy provides
a flexible environment for the exploration, certification, and presentation of mathematical proof.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Proof planning; Isabelle; Isar; IsaPlanner; Theorem proving; Proof assistant

1. Introduction

The central medium for a mathematician’s work is proof. Thus, it seems natural for
a tool aimed at helping mathematicians to focus on aiding the presentation, assisting the ex-
ploration, and certifying the correctness of proof. Typesetting software, such as Latex, has
long been popular for presenting proofs. In this article, we introduce and analyse a proof-
centred approach to mathematical assistants which tries to unify these different tasks.

Our approach is centred around a representation of proofs that is human-readable,
human-writable, and machine-checkable. We use a proof planning framework to provide
automation for proof construction but preserve the ability for users to write the proofs di-
rectly. The novel feature of this approach is the use of a high level proof language as the
central medium for interaction between the user and the mathematical assistant.

* Corresponding author.
E-mail addresses: lucas.dixon@ed.ac.uk (L. Dixon), jacques.fleuriot@de.ac.uk (J. Fleuriot).
1570-8683/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2005.10.007

http://www.elsevier.com/locate/jal
mailto:lucas.dixon@ed.ac.uk
mailto:jacques.fleuriot@de.ac.uk
http://dx.doi.org/10.1016/j.jal.2005.10.007


506 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
In this article, we introduce and analyse an embodiment of this proof-centred approach
which combines recent developments in interactive and automatic theorem proving. It uses
structured proof texts to present the proofs, interactive theorem provers to verify their
soundness, and proof planners to automate their generation and aid proof-exploration.
These are implemented in the Isar language [1], the Isabelle theorem prover [2], and the
IsaPlanner proof planner [3], respectively.

We argue that the central requirement of proof-centred mathematical assistants does not
lie in more powerful automation, but in automation that leaves the user with a readable
proof state while making some kind of ‘progress’. We cite the rippling strategy as one
such proof technique. We also argue that it may be better to have weaker proof tools that
facilitate the exploration of proof rather than more powerful ones that either succeed, or
fail without helping the user. This leads us to the main challenges and directions for future
work.

We first introduce the proof-centric approach highlighting the key challenges (Sec-
tion 2). We present Isabelle, Isar and IsaPlanner (Section 3) which provide an initial
implementation of our approach. We then consider the need for sufficient mathematical
vernacular (Section 4), modular mathematical development (Section 5), knowledge man-
agement (Section 6), and support for exploration of proof (Section 7). This leads us to the
pragmatic issues of user interface (Section 10) and proof presentation (Section 11), that
are essential to the adoption of such an assistant by mathematicians. Throughout, we il-
lustrate our ideas using our Isabelle/Isar/IsaPlanner combination, examining its suitability
as a mathematical assistant and identifying the areas for future work. Finally, we describe
related work (Section 12) and provide concluding remarks (Section 13).

2. Overview of the proof-centric approach

This approach aims to support the interaction with and development of declarative, in-
telligible, and machine checkable proof. Such a representation of proof was initiated by
the Mizar project [4] and several similar approaches to expressing proof have since been
developed [1,5–10]. The main additions to Mizar’s approach have been to make the proof
language:

• generic in the sense of being independent of the underlying logic, as implemented in
Isar [1] and Declare [7],

• extensible in order to support the theory level additions to the basic proof language, as
implemented in Isar [1] and SPL [5],

• support underspecification, such as missing steps in a proof. This has been described
by Wiedijk’s as a notion of proof-sketches [11], and by Autexier et al. as under speci-
fication [6].

In our approach, we express the state of a proof attempt explicitly within the proof
script by stating any unproved goals as statements justified by ‘gaps’. Our work extends
Wiedijk’s notion of proof sketches by allowing the gaps to be annotated with references
to proof techniques that can later be used in an attempt to complete the proof. We use



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 507
Fig. 1. An overview of the interactions within a proof-centred mathematical assistant. The boxes represent
processes and the circles data.

this representation of proof as the central object of interest in the interaction between the
user, the proof planning machinery, and the underlying theorem proving. An overview
that illustrates these interactions is shown in Fig. 1. The mathematician interacts with the
proof assistant by selecting proof planning commands and by manually writing parts of
the proofs. Writing Isar proof scripts by hand is currently the only means of expressing
proofs for users of Isabelle. The combination of automatic and interactive writing of the
proof scripts provides the user with a more automated but still flexible approach to guiding
the proof system. We believe that the encoding of techniques requires a more developed
knowledge of the underlying system, and thus we draw a line between the mathematician
and the technique developer.

In what follows, we will use a running example of the proof that the sum of odd numbers
up to n is equal to n2. This example is sufficiently small to be clear and complex enough
to illustrate the various characteristics of our approach. An Isar-style proof script showing
an attempted proof of this theorem is shown in Fig. 2. The gap statements are the holes
in the proof where the text in parenthesis suggests a technique that might be used to fill
the missing step. The goal of such a representation is to provide a flexible approach to
proof. In particular, proofs can be constructed in a top-down or bottom-up style, as well as
explored in a backward or forward direction, while maintaining a consistent and readable
presentation of the proof.



508 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
theorem sum_of_odds: (
∑

i<n 2 ∗ i + 1) = n2

proof (induct n)
show (

∑
i<0 2 ∗ i + 1) = 02

gap (simplification)
next

fix n

assume IH: (
∑

i<n 2 ∗ i + 1) = n2

show (
∑

i<(Suc n) 2 ∗ i + 1) = (Suc n)2

gap (rippling)
qed

Fig. 2. An example Isar proof script with ‘gaps’.

The annotation of gaps allows the partial application of proof technique. In particular,
they can be unfolded in a step by step manner, where each unfolding results in a sub-
proof script which can contain further gaps. The annotations on gaps are the names of
techniques with which to continue the technique’s application. By expressing the continu-
ation of a technique explicitly, we also allow user interaction with the proof attempt: they
can modify the proof script, including the continuation, or they can ask the system to con-
tinue. Being executed in an the underlying LCF-style theorem prover ensures that the proof
scripts are correct modulo the explicitly stated gaps.

A key feature of our approach is that proof scripts are equivalent to proof plans. This
allows systems such as IsaPlanner, which manipulate proof plans, to provide the tools
needed for manipulation of proof scripts. In particular, it allows techniques to express par-
tial or complete behaviour in terms of readable proof scripts. It also provides the needed
notion of techniques with continuations and lazy evaluation.

An interesting extension to traditional proof planning techniques arising from this work
is that they can now be used in a manner not designed to just prove a subgoal, but also to
explore just part of a possible proof attempt. Such techniques result in a modified proof
script rather than just a new subgoal.

Working at the level of proof scripts provides proof planning with more information than
is available to Isabelle’s tactics. This allows the encoding of techniques, such as Ireland’s
induction revision proof critic [12], that cannot be expressed as Isabelle tactics. It also
allows the interactive use of proof critics [13] to perform modifications to a proof plan,
and opens up the possibility for a notion of proof by analogy to another proof script. In
summary, this presents a novel approach to interactive proof planning which allows the
automatic manipulation and generation of proof scripts to be interleaved with their manual
construction.

A possible criticism of this approach is that it asks a lot from the representation of
proof. In particular, it requires a careful balance between providing the user with a fine
level of control over the way proofs are presented, and expressing them in a form that can
be manipulated and machine checked. The degree to which the Isar language suffices is
likely to be a question of personal taste, although its usage among mathematicians will in
the end answer this question.



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 509
3. The foundations of an implementation

In this section we introduce the main components of an implementation of our approach.
Firstly, we outline the Isabelle proof assistant which provides the logical underpinnings and
basic machinery for formal proof. We then describe the Isar language which allows proofs
to be expressed in an intelligible form while allowing them to be machine checked using
Isabelle. Lastly, we present proof planning in IsaPlanner, which manipulates and searches
for declarative descriptions of Isar proofs.

3.1. Theorem proving: Isabelle

Isabelle is a proof assistant written in ML which supports formal reasoning in a number
of object logics [2,14]. Examples of such object logics include Zermelo–Fraenkel set the-
ory (ZF), first order logic (FOL), higher order logic (HOL), and constructive type theory
(CTT). Object logics are formed and manipulated by Isabelle’s intuitionistic higher order
meta-logic, which supports polymorphic typing and performs type-inference.

Formalisation of mathematics in Isabelle involves defining constants and types about
which properties are then proved. Mixfix annotations are used to manage the parsing and
printing for the concrete syntax of the underlying lambda calculus. Syntax translations
support more complex relationships between the syntax and the underlying terms.

Soundness is treated by following the LCF design principle of having a fixed logical
kernel containing the primitive inference rules. Additional tactics to perform higher-level
proof steps are written in terms of these rules and previously proved theorems. The ML type
system is then used to force theorems to be constructed only in this manner, thus reducing
concerns about the soundness of new tools to the consistency of the logical kernel. This
provides a disciplined approach to ensuring soundness while providing flexibility for the
development of richer proof tools.

To ease and speed the proof process, Isabelle provides the user with a number of generic,
as well as logic-specific proof tools. These range from simple mechanisms for combining
theorems to fully automatic theorem provers. One of these is the generic simplification
package which supports higher order conditional rewriting using previously proved theo-
rems. The user can customise its behaviour by temporarily or permanently adding theorems
to the simplification set. Other generic automatic tactics provided by Isabelle include a clas-
sical reasoner [15,16] and the automatic tactic which attempts to prove all subgoals by
a combination of simplification and classical reasoning.

Another important requirement for practical theory development is the need for tools
to support new definitions. In the methodology of conservative extensions, adopted by Is-
abelle/HOL, these mechanisms should not assert new axioms. Isabelle/HOL hosts an array
of such conservative definitional mechanisms including support for inductively defined
sets, inductive datatypes, types as sets, extensible records as well as the usual mechanisms
for defining functions and types.

One important feature of proof planners such as Omega [17] is their use of external
tools to provide additional calculational and proof support. This raises the question of
how to integrate external systems into a proof-centred mathematical assistant. This is an
especially pertinent point if we wish to take advantage of the significant developments in



510 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
Goal "
∑

i<n 2 ∗ i + 1 = n2";
by (induct_tac "n" 1);
by (Simp_tac 1);
by (Simp_tac 1);
by (simp_tac (simpset () addsimps [power2_eq_square]) 1);
qed "sum_of_odds";

Fig. 3. An example ML procedural proof for the sum of n odd numbers in Peano arithmetic.

computer algebra systems. In Isabelle, interaction with other systems is supported through
an ‘oracle’ mechanism which allows Isabelle to treat conjectures as tagged theorems. The
dependencies on the oracle can then be tracked automatically. This provides a pragmatic
yet disciplined approach to soundness while supporting the use of external systems. The
main problem then becomes managing a translation between systems, which is dependent
on the exact systems being integrated.

To provide a further degree of belief in the correctness of a proof, Isabelle produces
proof terms that describe the theorem’s derivation in terms of the primitive logical in-
ferences. This supports the validation of proof using a small proof checker independent of
Isabelle. However, such proof terms provide far too much detail to be humanly checked, let
alone easily readable. Furthermore, as well as failing to capture the ‘idea’ behind a proof,
these do not provide a useful way of storing proofs. This is due to their verbose nature, the
difficulty of modifying them, and the difficulty in reusing them. It is thus normal for users
of Isabelle to store proof scripts in a file that contains the tactic commands to re-derive the
proofs.

Before the development of Isar, proof scripts were typically expressed ‘procedurally’ as
a sequence of ML proof commands. For example, a procedural-style proof that the sum of
odd numbers up to n is equal to n2, is shown Fig. 3. In this proof script, the by function
applies a tactic to the current goal and qed stores a proved theorem for later use. The tactic
induct_tac selects and applies an induction scheme, and Simp_tac and simp_tac
are tactics that simply the goal. The latter simplification tactic is given an explicit sim-
plification set, which in the above proof includes the lemma (power2_eq_square:
n∗n = n2 ). Although these proofs support reuse of tactics, they are generally not readable
off-line, that is without tracing through the goals resulting from each proof step.

3.2. Readable, executable proof scripts: Isar

Isar aims to provide a language which is both human-readable and machine-checkable
[1], following the style used by the Mizar system [4]. It provides a natural deduction style
of writing proofs for the Isabelle theorem prover and allows abbreviations using higher
order pattern matching. It is independent of the object logic and has been instantiated
for Isabelle’s HOL, ZF, and FOL, for instance. Furthermore, it has been designed in an
extensible fashion which supports defining additional domain specific elements.

A small example Isar script, proving that the sum of odd numbers up to n is equal to n2,
is shown in Fig. 4. This script shows a feature of Isabelle that allows “λ n.

∑
i<n 2 ∗ i + 1”

to be abbreviated to ?sumto by unifying the higher order pattern “?sumto n = _” with the
main goal, where ?sumto is a variable and “_” is a wildcard.



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 511
theorem sum_of_odds:
∑

i<n 2 ∗ i + 1 = n2 (is ?sumto n = _)
proof (induct n)

show ?sumto 0 = 02 by simp
next

fix n

assume IH: ?sumto n = n2

have ?sumto (Suc n) = ?sumto n + Suc(2 ∗ n) by simp
also have . . . = n2 + Suc(2 ∗ n) using IH by (simp)
also have . . . = (Suc n)2 by (simp add: power2_eq_square)
finally show ?sumto (Suc n) = (Suc n)2.

qed

Fig. 4. An example Isar proof for the sum of n odd numbers in Peano arithmetic.

theorem sum_of_odds:
∑

i<n 2 ∗ i + 1 = n2 (is ?sumto n = _)
proof (induct n, simp, simp)

fix n

show Suc(2 ∗ n + n) = (Suc n) by (simp add: power 2_eq_square)
qed

Fig. 5. An example Isar proof where the backward proof step is so large that it obscures the proof.

Another feature of Isar shown in this proof script is the support for a calculational style
of proof, in the sense of iterated chains of transitive reasoning. In Fig. 4, this is indicated by
the sequence of commands “have”, “also have” and “finally show”. The ability to name
assumptions, for example by the calling the induction hypothesis “IH” in Fig. 4, further
supports calculational and other forward styles of proof.

We remark that although backward proof is supported within the language, if backward
steps are too large or numerous the proofs are once more unreadable and procedural in
style. For example, the proof shown in Fig. 4 can be expressed in a briefer, but more pro-
cedural form, as shown in Fig. 5. In this example, we show a proof script in which the
backward proof step includes induction, simplification to solve the base case, and a sim-
plification that applies the induction hypothesis to the step case. The resulting goal is then
made explicit and proved by adding the lemma power2_eq_square to the simplifier.
However, because of the large backward proof step, it becomes unclear why showing this
subgoal proved the main theorem. Furthermore, the combination of proof steps in the proof
command, are essentially procedural as they hide the structure of the inductive proof. This
also shows that some discipline is needed to write Isar proof script that are readable.

Internally, Isar operates as a state machine with transitions that incrementally parse
elements in the proof language. This machinery has two main modes, one of which sup-
ports forward proof by allowing the user to express statements and one of which supports
backward proof by allowing the user to apply tactics. Fig. 6 shows basic elements of the
language and how they effect Isar’s mode. The transitions take arguments which are omit-
ted for the sake of clarity. As mentioned, the generic Isar machinery is designed in an
extensible fashion that supports domain specific additions. These include new transitions,
and extensions to the notion of context. Such additions allow new notations for proof, such
as the calculational style described earlier, to be added to the basic Isar language.



512 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
Fig. 6. The basic Isar state machine transitions for parsing a proof.

While the Isar language makes it easier to read proofs, supports abbreviations, and sim-
plifies forward reasoning, the language itself can be difficult to learn. Moreover, the lack
of proper support in exploring the application of tactics makes writing proofs slower and
more arduous. The reason for this difficulty in exploration is that to examine the effect of
applying a tactic, a user must take a backward, procedural proof step. If this solves the
goal, then the user will usually replace the backward step with a single tactic justifying
the proved statement. However, if the tactic fails to solve the goal, to maintain readability,
the user either needs to modify the tactic and try again, or remove the tactic application
then state and prove an intermediate result in a forward manner. Only if the user is able to
second guess the level of automation available can they directly express the intermediate
steps. As a result, it is common for users to explore and find a proof using a procedural
style, working backward from the goal, and then rewrite the proof in Isar’s structured for-
ward style. Solving these problems involves helping the user with the syntax of the proof
language and supporting their knowledge as to the coverage of existing proof-automation.
This lack of proper support for exploring Isar style proof is one of central issues that we
try to address using proof planning.

3.3. Proof planning: IsaPlanner

Proof planning is a paradigm for proof automation that focuses on providing mecha-
nisms for encoding heuristic and meta-level guidance [18,19]. It tries to capture common
patterns of reasoning for families of similar proofs in terms of objects that we shall call
reasoning techniques. Proof planning involves searching through the ways that these en-
coded techniques can be applied to a conjecture. This derives an abstract description of the
proof known as a proof plan which is typically a declarative representation of a tactic tree
that can be executed in a theorem prover to derive a fully formal proof.

IsaPlanner is a generic proof planner for Isabelle that expresses proof plans as Isar proof
scripts [3,20]. This allows the proof planning process to be interleaved with the proof plan’s
execution and supports use of the powerful tactics already available in Isabelle. This has



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 513
been used to develop an efficient implementation of the rippling technique [21,22]. This
version of rippling has been combined with induction, lemma calculation, and a generali-
sation critic. This combination provides Isabelle with a powerful tool for inductive theorem
proving that supports the automatic conjecturing and proof of lemmas.

The underlying approach in IsaPlanner involves breaking proof planning into steps that
can be viewed as ‘snapshots’ of the process. Each snapshot is referred to as a reasoning
state and is a triple containing the current proof plan, contextual information such as the
annotations used during rippling, and an optional next reasoning technique. Steps in proof
planning are lazily unfolded by applying the continuation technique to the state in which it
is contained. Reasoning techniques are thus functions from a reasoning state to a collection
of new reasoning states, where the resulting states represent the possible ways that the
technique can be applied. This produces a space of possible ways of unfolding a technique
and to which a search strategy, such as depth-or best-first search, can be applied. One
feature of IsaPlanner’s approach to search is that strategies can be stacked, allowing for
example a best-first search to be applied within the context of depth-first one. Such stacking
of search allows additional heuristic knowledge to be used for parts of the search, where
applicable, without having to derive a more complex heuristic function that encompasses
multiple search strategies. One example where this can be used is the rippling technique,
where the rippling measure provides a natural heuristic for best-first search.

The basic language for encoding techniques in IsaPlanner resembles a tactic language.
It has operations such as THEN, OR and REPEAT, which can be used to combine existing
techniques. However, it also supports constructs that cannot be expressed within most tactic
languages, including that of Isabelle, or within other proof planners, such as λClam [23].
Such constructs include MAP and FOLD which apply functions over the lazily evaluated
search space. By using reference variables, these can also support the sharing of informa-
tion between both or and and branches within the search space. For example, they can be
used to express, in a concise manner, a generic mechanism for caching portions of search
space. This approach, being based on ML functions, allows the language to be extended.
This is done in a disciplined, domain-specific way by defining the basic language to be
independent of any object-logic. Further techniques can then be organised into Isabelle’s
theory hierarchy which allows them to be inherited.

Proof planning also aims to provide descriptions of proof at varying levels of detail.
IsaPlanner’s representation of proof plans as declarative descriptions of Isar proofs sup-
ports this by allowing a user to ‘unpack’ a proof planning command into a script which
may contain further proof planning commands. This allows proofs to be examined at vary-
ing levels of detail. Moreover, techniques can also be constructed this way, being designed
to leave ‘gaps’ in the proof which will be returned to at a later point, or changed into as-
sumptions of a modified conjecture. This allows IsaPlanner to be used to automatically
construct complete or partial Isar proof scripts.

4. A platform of formalised mathematical theories

Perhaps one of the most obvious requirements for practical formalised mathematics
is the existence of a sufficient mathematical vernacular. This is necessary even to state



514 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
a conjecture. In proof assistants with support for powerful customisable tactics, such as the
simplifier and classical reasoner in Isabelle, these tactics also require some configuration.

Isabelle’s higher order logic sports a large theory library of formalised mathematics
developed as conservative extensions of the object logic, which avoids introducing new
axioms that otherwise weaken the guarantees of consistency. It includes developments
within nonstandard analysis [24], a formalisation of Hilbert’s axioms for geometry [25],
and mechanisations of topology and vector spaces [26], among many other [27]. Recently,
Isabelle has also successfully imported all the theories from the HOL system. While the
theories of Isabelle/HOL are large with respect to most systems, and are still growing
quickly, the other logics within Isabelle have much smaller theory developments and are
growing at a slower pace. We are aware of only one system with significantly more math-
ematical theories than Isabelle, namely the Mizar system’s huge journal of formalised
mathematics.

However, even the mathematical libraries of these long established systems are not suf-
ficiently developed for research level mathematics. We note that these systems still lack
many important basic theories, for example Isabelle currently lacks a formalisation of lin-
ear algebra. Moreover, the existing theories do not contain many basic theorems, which
requires users to derive them as needed. This is because users tend to only prove the theo-
rems they need.

At present, formalisation is still a slow and difficult task. One approach to overcom-
ing the need for such fully developed theories is to introduce new axioms. This provides
a shortcut at the expense of the soundness guarantees. However, even if the user boldly
asserts new axioms for a theory, systems with powerful user configurable proof tools, such
as Isabelle, still involve the demanding task of configuring these tools appropriately.

We believe that a useful area of future research would be to investigate automatic config-
uration of proof tools, or alternatively to examine and implement other techniques which
require less attention to their configuration. An example of such a tool, currently imple-
mented in IsaPlanner, is a higher order version of rippling [21]. This allows any rule to be
supplied without damaging the behaviour of the proof method.

The existence of large formalisations of complex mathematics provides strong support
for the notion that the current formal systems are capable of expressing research level
mathematics, and indeed are capable of being used to verify the correctness of research
mathematics. However, to make this a practical affair requires significant support. In the
following sections we examine the needed support.

5. Modularity

Support for developing and using theories in a modular fashion is essential for math-
ematics as the subject thrives on combining and relating existing theories in novel ways.
Many areas of mathematics also reason about the theories themselves. For example, in
abstract algebra, it is common to talk about groups and to reason about them. For mathe-
matical reasoning about such theories, they must be treated as first class citizens.

Appropriate mechanisms for modularity can also be used to side-step the difficulties
of developing large mathematical theories. The user can simply specify their theory as



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 515
being dependent on a set of theorems that are assumed to have been proved earlier. Thus
the provision of a suitable mechanisms for modularity is an important characteristic of
a mathematical assistant.

In Isabelle, developments are organised into theories. These are the course-grained basic
objects for organising mathematical development as well as storing constants, types, sorts,
syntax information, theorems, and contextual information used by proof tools. Theories
are outside the logic, in the sense that Isabelle cannot reason about a theory as an object in
its own right.

Isabelle’s theories provide local name spaces and support inheritance. Inheriting from
several theories merges their contents, and merges the information used by the correspond-
ing proof tools. Isar and IsaPlanner fit any extensions into the theory hierarchy and provide
appropriate merging operations. This supports extending the Isar language and IsaPlanner
techniques in a domain specific way.

The simplest mechanism for theorem reuse in Isabelle comes from the polymorphism
in the logic. This allows types to be defined in terms of type variables which can then be
instantiated. For example, lists are defined in this manner. Higher order unification then
allows proof tools to match polymorphic theorems to any instance of the general type.

Modularity is also provided by Isabelle’s axiomatic type classes [28]. These allow
classes of types to be defined in terms of basic properties that hold for the class. From
these, theorems can be proved about the objects within the type-class. Isabelle’s unification
supports type-classes and thus the proof tools fit naturally. Unfortunately, type classes are
limited in their expressivity. For instance, they can only be dependent on a single type
variable.

Isabelle’s Locales provide another infrastructure for modular proof development [29]
that is more expressive than type classes. This supports modularity using Isabelle’s meta-
logic in terms of parameters, that correspond to abstract constants, which are fixed over
a collection of assumptions. For example, a semi-group can be specified as follows:

locale semigroup =

fixes prod :: "’a ⇒ ’a ⇒ ’a" (infixl "·" 70)

assumes assoc: (x · y) · z = x · (y · z)
Any theorem proved within this locale is implicitly assuming the statement assoc and
each occurrence of the constant “·” is in fact a variable quantified using Isabelle’s meta-
level universal quantifier. For example, the theorem (w · (x · y)) · z = (w · x) · (y · z) proved
within the semigroup locale, corresponds to the meta-logical theorem:

∀p.
(
p (p x y) z = p x (p y z) �⇒ p

(
p w (p x y)

)
z = p (p w x) (p y z)

)

An interesting feature of this kind of modularity is that Locales are expressions within
Isabelle’s meta-logic, and can thus be part of formulae. This allows a certain amount of
reasoning about the modules themselves, as was needed for instance in Kammuller’s for-
malisation of abstract algebra [30].

Although Locales provide a powerful tool for modularity and have been extensively
used in many formalisations, they are still limited by Isabelle’s inherent lack of support
for quantifying over types. Locales provide a mechanism for modularity without having



516 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
to assert new axioms. However, in Hindley/Milner style higher order logics as used in
Isabelle [31–33], proof from an axiom is not equivalent to proof from an assumption. This
is due to types implicitly being universally quantified over the whole statement. This means
that modularity using locales is not exactly equivalent to the use of axioms. One solution
to regain this equivalence is to extend higher order logic with quantification over types, as
described by Melham [34].

Recently, Johnsen and Luth have used Isabelle’s proof terms to provide a more expres-
sive form of modularity than Isabelle’s Locales and which effectively allows modularity
involving type variables [35]. This is a promising approach to modularity, although it re-
quires the generation of the full proof terms and is not currently integrated into Isabelle.

While these various mechanisms provide tools for modular development and combi-
nation of mathematical theories at the logical level, mathematical vernacular require also
great flexibility in terms of the syntax used. In particular, providing a language for theory
inheritance that allows modification of the syntax mechanisms would greatly improve the
practical modularity of Isabelle. As noted by Laumann [26], this is currently one the main
barriers to theory reuse.

Another difficult issue for modular proof development the integration and configura-
tion of proof tools. When different theories which each configure a proof tool are com-
bined, a merging operation must be provided to produce a new configuration for the
tool in the merged theory. Isabelle provides basic support for merging configurations of
its main proof tools. We believe that improved support for modular proof development
is an important area of future work that could significantly improve the usability of Is-
abelle/Isar/IsaPlanner.

6. Knowledge management and theorem navigation

In order to make formalisation a practical task it must be possible to refer to existing
theorems, proof tools, and other mathematical objects easily. While the number of proof
tools is usually not large enough to incur naming problems, theory libraries which contain
thousands of theorems can make the task of finding a previously proved result surprisingly
difficult. There are many concurrent approaches to tackling this problem:

Naming schemes provide a simple way to help users remember the name of previously
proved theorems. While sensible naming schemes are very useful, they provide
a somewhat adhoc approach and require significant discipline by and agreement
between theory developers.

Name spaces give a disciplined approach to the naming of theorems, by supporting the
overloading of theorem names. Isabelle provides local name spaces for its theo-
ries.

Search using syntactic properties provides a powerful tool for finding theorems, although
it can take some time to learn the query language. Isabelle provides support, using
higher order pattern matching, for finding previously proved results.

Theory browsing tools can provide a mechanisms to explore previously proved results.
This is useful for both gaining an understanding of a theory and for looking up



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 517
previously proved results. Isabelle provides a mixture of generated PDF docu-
ments as well as HTML files to support examining previously formalised theories.

Semantic markup adds additional information to mathematical objects which can then be
used for search and presentation [36]. A trivial example of such markup is the dis-
tinction between lemmas, theorems and corollaries. In general, semantic markup
provides the most sophisticated approach to mathematical knowledge manage-
ment, although it is still unclear what the actual semantic information should be.
This is an area of research which we believe could provide significant improve-
ments to theory management.

Although Isabelle provides several mechanisms to help navigate through theories, we
found that it is still often easier to re-prove relatively straightforward theorems than find
them in the large libraries. This indicates that further work in supporting theory navigation
and lookup is still needed.

Another issue of importance to the management of mathematical knowledge, especially
when modifying existing theories, is the tracking of dependencies. Autexier and Hutter [37]
describe an approach to the management of change in software verification. Such tools can
also be useful to the identification of dependencies that are otherwise hidden by proof tools.
We believe that such analysis will be useful to mathematical investigation as it provides
a meta-logical analysis of proofs and theories.

Isabelle currently tracks theory and theorem dependencies and can visualise them as
a graph. However, it does not provide any further tools to support the management of
change. At present, changes to a proof development must be made by hand and rerun to
observe where failure occurs. Further tool support could significantly benefit mathematical
formalisation which frequently involves correcting and modifying definitions.

7. Well-behaved exploratory tools

One of the central requirements for formalisation is the convenience of using the proof
tools. Powerful automation can prove many problems that a user might consider trivial.
Such tools are often so powerful that they leave the user unsure of steps within the proof.
This is partially because the automatic tools are capable of performing a huge number
of proof steps very quickly. A further reason why a mathematician might have difficulty
following automatic proof steps is because the proofs found by automatic methods, such
as resolution, are generally considered unnatural. Although there have been attempts at
dealing with such issues, such as Fiedler’s work [38], generally, it is not clear that such
proofs can be described in a concise and clear fashion.

Unfortunately, the same tools often still fail to solve problems that the user considers
trivial. This shows that there is a gap between proof systems and users, in terms of what
they can prove easily. Given that even mathematicians do not always agree with each other
over which theorems are trivial, it seems unlikely that this issue can be solved by providing
more automation.

We believe that while powerful, fully automatic tools can be extremely useful, the cen-
tral requirement for supporting formalised mathematics is not for further automation. We



518 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
propose that proof tools for mathematical assistants should focus on making ‘intelligent’
progress, giving helpful feedback, and providing robust behaviour. Although the notion
of progress is an abstract one, in particular contexts it can be well defined. For example,
rippling captures the abstract notion of getting closer to applying the induction hypothe-
sis using a concrete measure. Helpful feedback can be given by tools that automatically
analyse the proof state. For example, ripple analysis examines applying induction schemes
based on the available lemmas and uses this to suggest an induction scheme. For its part,
the robust behaviour of a technique is captured by the predictability of its application. For
example, a technique, such as rippling, that always terminates, decreases some measure,
and results in the same number of subgoals is considered more robust than one which may
not terminate and results in an unpredictable number of subgoals.

The importance of syntactic representations when dealing with formalised mathematics
highlights the significance of well-behaved tools. Making definitions and conjectures is
an error prone task. This leads to users conjecturing statements that they believe to be
trivially provable, but which turn out to involve subtle and complex proofs or even turn
out to be false. Thus, even the most powerful of sound automatic tools will not always
be able to meet the users’ expectations. However a weaker tool that makes some progress
can help the user understand why the conjecture is more difficult to prove than expected;
for example because a lemma is needed. When the conjecture is trivially false, our proof
assistant should be able to identify this. For example, Isabelle’s quickcheck tool [39] can
be employed by IsaPlanner to prune false conjectures.

7.1. A hierarchy for proof tools’ behaviour

Generally, we argue for focusing on making proof tools exhibit better behaviour, espe-
cially when it comes to the examination of failed proof attempts. To this end, we categorise
the result of a proof tool into the following levels:

(1) Non-termination:
The worst result for a user, short of being a bug in the proof system, is the non-
termination of a tool. This is an unfortunate but common occurrence for new users
of Isabelle who carelessly add rules to the simplifier.

(2) Uninformative result:
Failure without helping the user is marginally better than non-termination—at least
the user knows to try something else. Examples of tools that frequently act in this
way include Isabelle’s blast tactic and calls to first order theorem provers, although the
latter also often fail to terminate.
Some applications of techniques result in a proof state that is not humanly readable, for
instance it simply contains too many subgoal to understand what has happened. Such
a result is often uninformative, and gives the user no additional benefit over outright
failure.

(3) Intelligent progress:
While the above two results are considered ‘bad’ failure, a tactic that results in a new
proof state, which has made some progress although it has failed to prove the goal, is
considered ‘good’ failure.



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 519
Examples of this include some applications of Isabelle’s simplifier as well as the rip-
pling technique implemented in IsaPlanner. The latter typically preserves the structure
of the goal during rewriting the step case of an inductive proof, while making progress
towards applying the inductive hypothesis. Particularly successful applications of such
well behaved tools allow automated examination of the failure which can be used to
apply proof critics, as described by Ireland et al. [12,40].

(4) Proof or refutation:
Successfully proving a goal is, of course, the ideal result from a sound proof tool, and
symmetrically, although sometimes less welcome, is the refutation of a conjecture.

An orthogonal issue for proof tools is the ability to survey their effect: it is important that
a mathematical assistant can explain itself to the mathematician. For a proof this should be
a readable presentation. In terms of failure, this might be an explanation of the failure, or
even of the progress that was made despite the failure. As well as explaining a the behaviour
of a technique, we believe that the system should be able to give hints and observations to
the user, or attempt the proof in the background as suggested by Meng and Paulson [41].

Another desirable side effect that can occur from proof planning is the automatic de-
velopment of the user’s theory, for instance by deriving lemmas [21]. Such lemmas are
often useful in that they are automatically reused in other proof attempts within the theory
and are standard results in interactive developments. Automatic theory formation happens
when using proof critics that identify and prove useful lemmas, or refute false conjec-
tures. This use of proof critics is dependent on having a clear notion of failure that can be
analysed to develop a patch to the failed proof attempt.

Configuration also plays an important factor in the behaviour of many proof tools. For
example, Isabelle’s simplifier, which usually yields a simpler goal, will fail to terminate
if carelessly configured. Thus, an important characteristic of proof tools is the simplicity
of their configuration and the robustness of their behaviour upon misconfiguration. Most
interactive tools are set up by supplying proved theorems or assumptions. Ideally, providing
an additional theorem should not adversely effect the proof tool. If possible, the tool should
notify the user of potentially dangerous additions. In general this is undecidable although
in practice it is often still possible.

7.2. A well behaved technique: rippling

IsaPlanner focuses on providing tools that facilitate exploring the search space of proof
and that try to provide the user with more information by making some kind of clear
progress. In support of our approach and as an argument that such tools are not imagi-
nary, we describe how the rippling technique, implemented in IsaPlanner, provides such an
exploratory tool.

Rippling is a rewriting technique driven by a difference reduction heuristic. It has typi-
cally been used to automate inductive theorem proving by reducing the difference between
the induction hypothesis and the step case conclusion. We will use it in this way.

The measure of difference used to guide rippling ensures its termination and provides
a clear notion of progress and failure. Rippling also requires that part of the term’s structure,
referred to as the skeleton, is maintained throughout rewriting. This helps ensure that the



520 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
final proof state is readable. When rippling fails to allow the inductive hypothesis to be
used to rewrite the goal, the final proof state is the one with minimal difference to the
inductive hypothesis. This often highlights the need for a specific lemma and has been
used by Ireland et al to develop proof critics for rippling [12]. These try to patch the failed
proof attempt, often by conjecturing new rules that would allow rippling to succeed.

We note that configuring rippling simply involves providing it with previously proved
theorems. Furthermore, adding rules cannot significantly impair the techniques behaviour,
unlike simplification which given an inappropriate rule leads to non-terminating applica-
tions. In this regard, rippling meets the ideals of a technique for our approach.

7.3. An example interaction with rippling

We now present an example which shows user interaction with our proof centric
mathematical assistant. We examine using induction and rippling, in IsaPlanner, to prove
(
∑

i<n 2 ∗ i + 1) = n2. Initially users state the theorem they intend to prove with a gap
element in place of the proof.

theorem sum_of_odds: (
∑

i<n 2 ∗ i + 1) = n2 gap

The user can then select a proof planning technique with which to explore the proof,
automatically filling in the gap. This includes techniques not necessarily designed to solve
the goal completely. For example, in IsaPlanner, the induction technique examines the in-
ductively defined variables in the conjecture, and selects an appropriate induction scheme.
This is then applied using Isabelle’s induction tactic which results in the following auto-
matically modified proof script:

theorem sum_of_odds: (
∑

i<n 2 ∗ i + 1) = n2

proof (induct n)
show (

∑
i<0 2 ∗ i + 1) = 02 gap

next
fix n

assume IH: (
∑

i<n 2 ∗ i + 1) = n2

show (
∑

i<(Suc n) 2 ∗ i + 1) = (Suc n)2 gap
qed

This proof script contains further gaps indicating the open subgoals in the proof. The
intention is that these will be solved later. Because the induction technique is designed
only for exploration, it does not suggests techniques with which the gaps might be filled.
More generally, the idea is to provide user-customisable levels of interaction. Supporting
proof exploration is essentially the generation of proof scripts that reflect the capabilities
of the theorem prover. The above example adds to the proof script based on the effect of
the induction tactic. Such exploratory tools are analogous to computer algebra systems
provision of computational machinery.

The above proof script transformation uses the declarative style of Isar which expresses
the subgoals that need to be solved and the context in which they are to be proved, within



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 521
the proof script. For example, the step case takes an arbitrary but fixed n, and assumes the
inductive hypothesis. From this, the step case must be shown. As mentioned earlier, there is
no need for an explicit presentation of the proof state resulting from Isabelle as it is shown
by the context of the automatically generated Isar proof script.

As well as simply expanding an exploratory technique, proof planning can be used to
start the unfolding of a proof planning technique without fully expanding proof attempts
of the subgoals. This leaves an un-executed proof planning technique annotating the gap
statements for each open subgoal. For example, using induction and rippling to the point
where a proof critic will be applied, results in the following proof script:

theorem sum_of_odds: (
∑

i<n 2 ∗ i + 1) = n2

proof (induct n)
show (

∑
i<0 2 ∗ i + 1) = 02 by simp

next
fix n

assume IH: (
∑

i<n 2 ∗ i + 1) = n2

have (
∑

i<n 2 ∗ i + 1) + Suc(2 ∗ n) = (Suc n)2

gap (conjecture_lemma n2 + Suc(2 ∗ n) = (Suc n)2)
thus (

∑
i<(Suc n) 2 ∗ i + 1) = (Suc n)2 by rippling

qed

This has rippled the goal to the point where the induction hypothesis can be applied
from right to left. It has then used the proof critic machinery to conjecture a lemma. This
technique has been defined to stop at this point, presenting the state to the user who can
then ask the proof assistant to continue, or pursue a different approach, or manually prove
the lemma. We have found that it is useful define techniques that stop and request user
interaction at the point when lemmas are conjectured. This is because the automatic con-
jecturing of lemmas is a difficult and error prone task. It is common for such conjectures
to be overly specialised or over generalised. Another reason to stop, which is the case in
the above example, is that the correct conjecture is made but an automatic proof fails. If
the technique was completely automatic, then it would backtrack over the failure without
showing the user the correct suggested conjecture. More generally, the problem of man-
aging the user interaction with planning is examined by approaches to mixed initiative
planning [42].

Returning to the above example, if the needed lemma is manually proved and supplied
to rippling then the proof can be done fully automatically. By exploring the techniques
unfolding we have explored the problem and prove the goal but finally present the proof
minimally without showing the final proof they arrived at. For the above example, this can
be done as follows:

theorem sum_of_odds: (
∑

i<n 2 ∗ i + 1) = n2

by (induction_and_rippling)

Because the automatic tools search and find the proofs in terms of Isar proof script, they
can also be expanded out to the level of detail the user requests, up to the point where



522 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
Isabelle tactics are used. In Section 11, we describe how the user may maintain a full Isar
description of the proof, while only presenting selected steps.

7.3.1. Recording the proof process
Although the final proof can be presented in a readable form, the process that was un-

dergone to find the proof, including the proof planning expansions, is still hidden from
the reader. This places the responsibility of expressing the proof process and the intuitions
needed to find the proof, onto the mathematician.

The focus of our tool is on giving the mathematician flexibility in the expression of their
proof, while maintaining a fully formal, introspectable underlying description. An avenue
of future work might be to consider tools for recording the user’s interaction and presenting
the search process itself. This could lead to machine learning which attempts to mimic the
users interactions.

7.3.2. Power vs robustness
We remark that improving the automation of the induction and rippling technique is not

always beneficial to the user. In particular, if the added automation, while being able to
prove more theorems, also leads to non-termination on many problems then this can be
sufficiently frustrating for the user that they would rather do the proofs by hand.

If the proof technique can allow itself to be unfolded lazily, generating incremental proof
scripts, then this provides the best of both worlds: it allows the user to expand the proof
manually, stopping attempts that do not seem fruitful, while maintaining a high degree of
automation. IsaPlanner’s technique language supports writing techniques in a hierarchical
manner and subsequently stepping through them at a user-chosen level of detail. Tech-
niques can also be written to identify steps which they consider to require user interaction.
This provides a user-customisable level of interaction.

8. Support for writing reasoning techniques

One of our aims is to provide the user with a ‘scripting’ language for writing common
combinations of proof steps. Currently, IsaPlanner provides an extensible set of tools for
automatically constructing and manipulating Isar proofs. This is based on an extensible and
declarative representation the Isar language where proofs are tree structured. We provide
basic techniques for adding different elements of the language to a proof. For instance, one
of these primitive functions adds a “show...” statement to an Isar proof.

In addition to this basic machinery for manipulating declarative proof scripts, we also
provide tools that support higher-level notions for encoding techniques. Of particular im-
portance to the expression of rippling was the provision of contextual information for
holding the difference annotations and measures. To analyse proof planning failures, it is
important that such extra-logical information is in a table of contextual information asso-
ciated with a proof planning state, rather than as parameters to techniques. This is essential
in order to support the later development of proof critics which require analysis of this
non-logical information. The key feature of IsaPlanner’s management of contextual infor-



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 523
mation is that techniques to not need to know in advance what kinds of information other
techniques use.

8.1. Tracing proof attempts

Beyond the constructs in the technique language, we provide a tool to trace through
IsaPlanner’s reasoning states to aid the development and introspection of techniques [43].
This tool allows the user to manually explore the or-branches in the search space and
interact with the technique. Because the techniques are structured in a hierarchical manner,
the user can also change the level of detail as the proof attempt is performed traced.

We remark that this was particularly useful in the development of rippling as it allowed
us to examine in a step-by-step manner the unfolding of the rippling technique. We believe
that this will also help in the future development of proof critics, by allowing the user to
observe failure in a branch of the search space and explore applying different techniques.

We note that in tactic languages which execute the tactics in an eager fashion, this
style of introspection into a technique’s application is not possible. Thus, the ability to
trace a technique’s application represents a particular strength of IsaPlanner’s approach to
expressing patterns of reasoning. We are also unaware of a proof planner that provides this
level of support for the development and introspection into proof planning attempts.

8.2. Contextual information

A criticism of our use of contextual information within the proof planning state is that
it introduces a discord between the proof script and the proof planning. It is no longer the
case that proof planning can be stopped at an arbitrary point and continued again by only
examining the proof script.

When the contextual information is small, such as the measure used by rippling, it is
feasible to express it within the proof script. However, when the contextual information is
more complex, for example a cache of previously seen proof states, then it becomes un-
reasonable to store the information in this way. In general, it seems that although proof
planning can describe proof script translations, not every point during proof planning cor-
responds to a partial proof script. Moreover, given that this information may often be
considered mathematically irrelevant, it might be considered unnatural to store it within
proof script that are viewed by the mathematician. One approach is to allow proof plan-
ning information to be stored within proof scripts but hide them from the user. This is an
area for future work.

8.3. Stylistic choices in expressing proofs

Isar scripts provide the user with choices regarding the presentation of their proofs.
Using the Isar language as the mechanism for exploration then introduces stylistic choices
into the proof scripts generated by proof planning. For example, when should intermediate
results be included within the main proof and when should they be considered as separate
lemmas? The reason for such choices in encoding of techniques is that equality between



524 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
Isar proof scripts is strict: proofs are considered different even if they differ only in the
naming of variables.

A disadvantage of this strict representation is that techniques may not produce proof
scripts in the style that the user wants. In the worst cases, the script may be complex and
ugly. However, this approach also supports proof planning machinery that can transform
one style of proof into another. This represents a kind of proof by analogy.

Similarly, proof planning can be used to modify proof scripts by applying proof critics.
For example, an implementation of the induction critics described by Gow [44] might
change the variable on which induction is being applied. We have not yet implemented
techniques that construct analogous proofs as needed to modify the style of a proof script.
The main difficulty has been in adapting Isar’s parser to produce a suitable other parse tree.

9. Proof plans as a declarative description of the Isar language

Our approach to proof planning uses a declarative description of readable proof scripts
as the notion of proof plan. This is an essential component of our tools for supporting
exploration. Providing an efficient and extensible representation for such scripts is then an
essential tool to support proof planning.

The extensibility of the Isar language inhibits IsaPlanner from using a datatype to di-
rectly express proof scripts with constructors for the elements of the Isar language. Thus
the language of Isar scripts must be an interpreted object and manipulations of the proof
script must account for unexpected commands in the script. Isar’s notion of mode, as shown
in Fig. 6, simplifies this problem. It allows elements of the language to be treated in terms
of their manipulation of Isar’s state.

To represent proof plans we use a tree structure where the leaf nodes are polymorphic
elements of the Isar language. This allows new notations for proof to be added in a domain
specific manner, and support for their use in proof planning to be added without having
to modify any existing proof tools. We make use of Huet’s zippers for tree representation
and manipulation to provide an efficient tool for working with proof plans [45]. This is
particularly useful as the most common operation on proof plans is a modification to gaps,
expressed in leaf nodes of the proof plan.

In order to allow proof planning techniques to annotate gaps within the proof script, such
techniques also need to be expressible within the Isar language. Similarly, arguments to the
techniques also need to be represented. This highlights an important technical requirement
of the proof centric approach. Proof scripts printed by the proof planner must be parse-able
by proof checking machinery. This requires that pretty printed terms must be parseable, as
must elements of the Isar language, tactics, and proof planning techniques.

One of the characteristics of Isar, is that it allows modification to syntax and to the proof
tools within a proof attempt. This uses a rich notion of proof state for Isar that holds the
data for the syntax machinery as well as for proof tools. The local data used by proof tools
is essential in order to write some proofs in a suitably brief manner. In order for IsaPlanner
to work with this rich notion of proof script, it must execute the elements in the proof plan
as they are added. Without doing this it would no longer be a real representation of the



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 525
proof. In particular, IsaPlanner might produce proof scripts that were not executable by
Isar.

In order to delay part of a proof, but avoid having to re-execute large amounts of
unchanged proof plan, we take advantage of Isar’s notion of proof block in which the
modification to proof tools and local syntax is locally scoped. In this way, we allow Is-
aPlanner to have a notion of delayed execution and partial proof, despite maintaining an
executed proof script at all times.

9.1. Proof representation for replay

The ability to present the proofs at different levels of detail for the viewer brings into
question the representation of proof stored in a file for replay: should the user try to
minimise the size of the proofs by expressing them with a few powerful proof planning
techniques; or should they expand the techniques to fully fleshed-out Isar scripts?

We observe that the more verbose the user makes the proof, by explicitly stating in-
termediate results, the more likely the proofs are to break if the definitions are modified.
Being able to capture a proof using a proof planning technique allows the technique to find
a new proof when definitions are changed. However, many proofs cannot be proved using
a single proof planning technique. Most proofs require user interaction in selecting proof
techniques and in the selection of lemmas to be proved. Moreover, the purpose of proving
a theorem is often in order to present the proof. Thus we argue that tools for managing
change should be used to update proofs when definitions change and the proof techniques
should focus on helping the user find presentable proofs.

10. Interfaces

One of the essential challenges for a mathematical assistant and which may have the
most significant effect on its adoption by mathematicians is the user interface. This should
be integrated with the theorem database and other tools managing mathematical knowl-
edge, as well as the proof planning machinery in order to support exploration of proof.

The Proof General project aims to provide a common interface to different systems [46].
It is currently the main interface to Isabelle, Isar, and IsaPlanner, as well as a many other
systems, including Coq, Phox, and Lego. The typical interaction between a user and a proof
system involves the user writing a proof script and executing it within the proof system,
observing the result. Proof General provides mathematical symbols and maintains the syn-
chronisation between the interface and the underlying proof tools.

Our approach to proof exploration provides a novel opportunity for user interaction with
a proof checker. Rather than execute commands and observe the proof system’s response
in terms of subgoals, the subgoals can now be captured as part of the proof script. This
removes the need for the traditional second window showing the proof system’s open goals,
thus simplifying the interface.

The IsaWin system is a graphical interface for Isabelle that provides an abstract visual
presentation for theory development [47]. While it has helpful features such as proof by
pointing, it lacks the sophisticated management of proof scripts. Aspinall and Lüth have



526 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
recently proposed combining aspects of IsaWin with Proof general [48]. Our approach fits
in with such a development by providing a suitable scripting language for the automatic
formation and derivation of proof scripts.

Recently, the TeXmacs tool has been used to provide interfaces to computer algebra sys-
tems [49,50] as well as proof assistants such as Coq [51]. This is a particularly interesting
opportunity for mathematical assistants since TeXmacs provides a WYSIWYG typesetting
environment that can interact with proof systems. Future work includes examining how the
proof centric approach could be supported by such an interface.

11. Presentation

A proof centric mathematical assistant must provide tools for presenting the proofs.
Isabelle/Isar provides machinery for the generation of printable documents. This allows
sections of the proof to be hidden thus giving the user precise control over the presentation
while maintaining the fully formal nature of the proof.

To give the user the flexibility to present more than just the proofs, Isar theories support
including Latex typesetting commands. This results in a notion of a formal proof document,
which is an Isar proof script that can be parsed to produce a Latex document in which the
proofs have been formally verified.

Isabelle’s syntax mechanisms allow the use of Latex style mathematical symbols. Fur-
thermore, Isabelle’s underlying mixfix annotations provide a powerful mechanism for
expressing formulae in a rich syntax while maintaining the ability to parse them. How-
ever, complex mathematical layouts are still not representable within the proof state. For
example, the standard notations for matrices cannot be used within a proof. An approach
to providing a richer mechanism for expressing mathematical symbols is outlined by
Bertot [52].

Another problem with Isar’s formal document generation is that checking large docu-
ments is significantly slower than the ordinary Latex document preparation. This can make
it a slow and painful task to correct errors in the typesetting. This problem is exacerbated
by the lack of an interface for the errors generated during processing a proof document.
This makes it impractical at present to use complex Latex presentation within the formal
proof document. This is a technical but important issue if the system is to be used by
mathematicians.

12. Related work

12.1. Systems based on declarative proof-scripts

The Mizar project [4], which started in 1973, is an attempt to formally reconstruct math-
ematical vernacular through the use of a declarative, structured and readable representation.
However unlike Isabelle/Isar, which is designed to be generic and extensible, the Mizar sys-
tem is based on Tarski–Grothendieck set theory [53] and provides a fixed language. The



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 527
Declare system also expresses proofs in a fixed declarative language but unlike Mizar it
aims to be generic enough to be implemented for other proof systems [7].

A significant difference from most interactive theorem provers is that Mizar and Declare
do not provide the user with a selection of tactics to choose from. Instead, both of these
systems automatically prove the missing steps in a proof using an internal strategy. The
user explicitly expresses the intermediate goals, assumptions, and which results are needed
to show a goal. The proof assistant then processes these declarative proof scripts in a batch
mode and reports to the user points where it considers the gaps in the proof to be too large
or when it encounters errors in the syntax. Our approach can be seen as an extension of this
paradigm which tries to ease and automate the process of writing these declarative proof
scripts, as suggested by Syme [54].

12.2. Proof planners

Another closely related system is the Omega system which employs proof planning and
aims to assist main stream mathematicians [55,56]. As mentioned earlier, Omega focuses
on connecting and integrating external proof tools. It also provides a customised interface
for interacting with the system and tools to support using it as an educational teaching
assistant.

The central difference in the approach taken by Omega is that it does not use a proof
language that is designed to be human-readable and machine checkable. Instead, Omega
uses an internal representation for the construction of proof plans, a formalised natural
deduction calculus for their verification, and for presentation it can generate readable pre-
sentations at various levels of detail [38]. This represents an alternative approach to the one
we have presented: rather than having a single language that unifies the users representa-
tion of proof with that used by the system, user of Omega views a presentation of proof
that lacks information with respect to system’s underlying representation.

12.3. Tactic-script based proof assistants

Tactic based interactive proof assistants provide support for the development of proof-
checked mathematics. Systems such as Coq [57], HOL [58] and PVS [59], which employ
procedural proof scripts as the primary means for interaction, support the exploration of
proof through the application of tactics. However, the resulting proof scripts bear very little
resemblance to mathematical vernacular.

Tactics in these systems are designed to be applied to a subgoal and result in new sub-
goals. These systems lack representation for proofs with gaps as an object which can be
manipulated. This means that proof critics cannot be expressed in these systems. The par-
tial evaluation of techniques in a manner that stores and supports their later continuation
is also inexpressible. These limitations also apply to systems, such as Nuprl [60], which
provide an integrated environment for working with proof, but still lack a formal represen-
tation of the proofs as objects which can be manipulated rather than just added to.

The main difference between existing tactic based provers, which focus on refining
subgoals, and the approach that we have presented lies in our focus on tool support for



528 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
producing a representation of proof which is human-readable, while maintaining its ability
to be machine checked.

12.4. Computer algebra based systems

Computer algebra systems also aim to support mathematicians. Most of these systems
provide tools for computation rather than proof. However the Theorema system [61], based
on Mathematica, does aim to provide tools for writing proofs. An advantage of Theorema
over other proof systems is its provision of tools for syntax that support two-dimensional
layouts, as used for example in the presentation of matrices.

The Theorema system also focuses on providing tools for mathematical exploration.
Proofs in this system are written as Mathematica documents which combine informal text,
definitions, computations, and proof. This is similar in style to Isar proof scripts although
it provides a more powerful environment for presentation.

Theorema supports schemas that ease the users proof development by generating parts
of a document automatically. This bears similarity to our proof techniques in its ability
to automatically generate proof scripts. The main difference is that our representation
supports manipulation of proof scripts after they have been constructed. We also provide
a foundational approach to their verification based on an LCF kernel.

12.5. Proof-term based interactive proof assistants

The Agda system presents the user directly with the proof term which they incremen-
tally fill in to meet the specification [62]. This is similar in style to the approach we have
presented, in that the user is working directly with a representation of the proof. However,
large proof attempts in Agda can easily become unreadable as there is no tactic-level ab-
breviations for proof terms. Another difference is that of the proof language itself: Isar is
designed to be human-readable and in a natural deduction style whereas Agda presents
the proof term which reads more like a functional program than a traditional mathematical
text.

12.6. TPS

Another closely related approach is that taken by the TPS system. This uses Church’s
typed λ calculus as its underlying language for checking proofs but provides the user with
a natural deduction based presentation and interface to working with proofs [63,64]. This
makes the individual proof steps readable but does not allow a mathematical textbook-like
presentation. In particular, it hides the structure of the proof and gives little flexibility in
terms of its presentation.

The tactics of the TPS system are similar to our notion of techniques in that they con-
struct part of the natural deduction style proof, which is the central object being developed.
Furthermore, they provide tactics to perform the easy steps in the proof. However, their
proof language does not contain unevaluated references to tactics which means that it can-
not partially evaluate proof techniques.



L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 529
13. Conclusions

In this article we have presented a proof-centric approach to mathematical assistants and
described how the combination of the Isabelle proof assistant, the Isar language, and the
IsaPlanner poof planner provides a concrete implementation. The underlying goal of this
approach is to provide a mathematical assistant that unifies the tasks of proof exploration,
certification, and presentation.

We have shown how proof planning can be used to automate the generation and manip-
ulation of readable proof scripts. We have highlighted the need for exploratory tools that,
while weaker in terms of the number of theorems they can prove, provide a clear notion
of their intended behaviour and thus achieve a robust behaviour. We noted that improving
the power of these techniques does not always lead to better behaviour. We described and
illustrated this view using the rippling technique.

We also relate this work to issues of modularity, interface, and presentation. We note that
a central requirement of formalised mathematics that needs further work is modular man-
agement of syntax. The central requirement for continuing this work is the development
of a parser for the Isar language that produces parse trees that can be treated as IsaPlanner
proof plans. Other areas of further work include: further development of mathematical the-
ories, managing the dependencies between proofs to support the natural development and
modification of theories, and improved support for finding previously proved theorems.

Acknowledgements

This research was funded by the EPSRC grant A Generic Approach to Proof Planning—
GR/N37414/01. The authors would also like to thank Alan Bundy for his helpful comments
and the referees for their constructive feedback.

References

[1] M. Wenzel, Isar—a generic interpretative approach to readable formal proof documents, in: Theorem Prov-
ing in Higher Order Logics, in: Lecture Notes in Computer Science, vol. 1690, Springer, Berlin, 1999,
pp. 167–184, citeseer.nj.nec.com/wenzel99isar.html.

[2] L. Paulson, Isabelle: A Generic Theorem Prover, Springer, Berlin, 1994.
[3] L. Dixon, J.D. Fleuriot, IsaPlanner: A prototype proof planner in Isabelle, in: Conference on Automated

Deduction, in: Lecture Notes in Computer Science, vol. 2741, Springer, Berlin, 2003, pp. 279–283.
[4] P. Rudnicki, An overview of the Mizar project, in: 1992 Workshop on Types for Proofs and Programs,

Chalmers University of Technology, Bastad, 1992, pp. 311–332, http://www.mizar.org/.
[5] V. Zammit, On the readability of machine checkable formal proofs, Ph.D. thesis, University of Kent, March

1999, http://www.cs.ukc.ac.uk/pubs/1999/909.
[6] S. Autexier, C. Benzmüller, A. Fiedler, H. Horacek, B.Q. Vo, Assertion-level proof representation with

under-specification, Electronic in Theoret. Comput. Sci. 93 (2003) 5–23.
[7] D. Syme, Declarative theorem proving for operational semantics, Ph.D. thesis, University of Cambridge,

1999.
[8] A. Abel, B.-Y.E. Chang, F. Pfenning, Human-readable machine-verifiable proofs for teaching constructive

logic, Tech. rep., Università degli Studi Siena, Dipartimento di Ingegneria dell’Informazione, in: Proceed-

http://citeseer.nj.nec.com/wenzel99isar.html
http://www.mizar.org/
http://www.cs.ukc.ac.uk/pubs/1999/909


530 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
ings of the Workshop on Proof Transformation and Presentation and Proof Complexities (PTP’01), 2001,
http://www.tcs.informatik.uni-muenchen.de/~abel/ptp01.pdf.

[9] J. Harrison, A Mizar mode for HOL, in: J. von Wright, J. Grundy, J. Harrison (Eds.), Theorem Proving
in Higher Order Logics: 9th International Conference, TPHOLs’96, Turku, Finland, in: Lecture Notes in
Computer Science, vol. 1125, Springer, Berlin, 1996, pp. 203–220.

[10] F. Weidijk, Mizar light for HOL light, in: R.J. Boulton, P.B. Jackson (Eds.), 14th International Conference
on Theorem Proving in Higher Order Logics: TPHOLs 2001, Edinburgh, Scotland, in: Lecture Notes in
Computer Science, vol. 2152, Springer, Berlin, 2001, pp. 378–393, http://link.springer.de/link/service/series/
0558/tocs/t2152.htm.

[11] F. Wiedijk, Formal proof sketches, in: TYPES, 2003, pp. 378–393.
[12] A. Ireland, A. Bundy, Productive use of failure in inductive proof, J. Automat. Reason. 16 (1–2) (1996)

79–111.
[13] A. Ireland, M. Jackson, G. Reid, Interactive proof critics, Formal Asp. Comput. 11 (3) (1999) 302–325.
[14] L.C. Paulson, Isabelle’s Logics, Computer Laboratory, University of Cambridge, Cambridge, 2002.
[15] L.C. Paulson, Generic automatic proof tools, in: R. Veroff (Ed.), Automated Reasoning and Its Applications,

MIT Press, Cambridge, MA, 1997, pp. 23–47, citeseer.nj.nec.com/paulson97generic.html.
[16] L. Paulson, A generic tableau prover and its integration with Isabelle, J. Universal Comput. Sci. 5 (3) (1999)

73–87.
[17] E. Melis, A. Meier, Proof planning with multiple strategies, in: J. Loyd, V. Dahl, U. Furbach, M. Kerber,

K. Lau, C. Palamidessi, L. Pereira, Y.S.P. Stuckey (Eds.), First International Conference on Computational
Logic (CL-2000), London, UK, in: Lecture Notes in Artificial Intelligence, vol. 1861, Springer, Berlin, 2000,
pp. 644–659.

[18] A. Bundy, The use of explicit plans to guide inductive proofs, in: Conference on Automated Deduction,
1988, pp. 111–120, citeseer.nj.nec.com/bundy88use.html.

[19] A. Bundy, A science of reasoning, Computational Logic (Essays in Honor of Alan Robinson) 6 (1991)
178–198, citeseer.nj.nec.com/bundy91science.html.

[20] L. Dixon, A proof planning framework for Isabelle, Ph.D. thesis, School of Informatics, University of Edin-
burgh, January 2005.

[21] L. Dixon, J.D. Fleuriot, Higher order rippling in IsaPlanner, in: Theorem Proving in Higher Order Logics,
in: Lecture Notes in Computer Science, vol. 3223, Springer, Berlin, 2004, pp. 83–98.

[22] A. Bundy, D. Basin, D. Hutter, A. Ireland, Rippling: Meta-level Guidance for Mathematical Reasoning,
Springer, Berlin, 2005.

[23] J.D.C. Richardson, A. Smaill, I. Green, System description: proof planning in higher-order logic with
Lambda-Clam, in: Conference on Automated Deduction, in: Lecture Notes in Computer Science, vol. 1421,
Springer, Berlin, 1998, pp. 129–133.

[24] J.D. Fleuriot, A Combination of Geometry Theorem Proving and Nonstandard Analysis, with Application
to Newton’s Principia, Springer, Berlin, 2001.

[25] L.I. Meikle, J.D. Fleuriot, Formalizing Hilbert’s Grundlagen in Isabelle/Isar, in: Theorem Proving in Higher
Order Logics, 2003, pp. 319–334.

[26] C. Laumann, An idealistic formalization of Stokes’ theorem: Pedagogical math in Isabelle/Isar, Master’s
thesis, School of Informatics, University of Edinburgh, 2004.

[27] Isabelle archive of formal proof, http://afp.sourceforge.net/, 2004.
[28] M. Wenzel, Type classes and overloading in higher-order logic, in: Theorem Proving in Higher Order Logics,

1997, pp. 307–322.
[29] C. Ballarin, Locales and locale expressions in Isabelle/Isar, in: TYPES, 2003, pp. 34–50.
[30] F. Kammüller, Modular reasoning in Isabelle, Ph.D. thesis, University of Cambridge, August 1999.
[31] J.R. Hindley, The principal type-scheme of an object in combinatory logic, Trans. Amer. Math. Soc. 146

(1969) 29–60.
[32] R. Milner, A theory of type polymorphism in programming, J. Comput. Syst. Sci. 17 (3) (1978) 348–375.
[33] T. Nipkow, Order-sorted polymorphism in Isabelle, in: G. Huet, G. Plotkin (Eds.), Logical Environments,

Cambridge University Press, Cambridge, 1993, pp. 164–188.
[34] T.F. Melham, The HOL logic extended with quantification over type variables, in: L.J.M. Claesen, M.J.C.

Gordon (Eds.), International Workshop on Higher Order Logic Theorem Proving and its Applications, Leu-
ven, Belgium, North-Holland, Amsterdam, 1992, pp. 3–18, citeseer.ist.psu.edu/melham93hol.html.

http://www.tcs.informatik.uni-muenchen.de/~abel/ptp01.pdf
http://link.springer.de/link/service/series/0558/tocs/t2152.htm
http://link.springer.de/link/service/series/0558/tocs/t2152.htm
http://citeseer.nj.nec.com/paulson97generic.html
http://citeseer.nj.nec.com/bundy88use.html
http://citeseer.nj.nec.com/bundy91science.html
http://afp.sourceforge.net/
http://citeseer.ist.psu.edu/melham93hol.html


L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532 531
[35] E.B. Johnsen, C. Lüth, Theorem reuse by proof term transformation, in: K. Slind, A. Bunker, G. Gopalakr-
ishnan (Eds.), Theorem Proving in Higher Order Logics, in: Lecture Notes in Computer Science, vol. 3223,
Springer, Berlin, 2004, pp. 152–167.

[36] F. Guidi, I. Schena, A query language for a metadata framework about mathematical resources, in: MKM,
2003, pp. 105–118.

[37] S. Autexier, D. Hutter, H. Mantel, A. Schairer, Towards an evolutionary formal software-development us-
ing CASL, in: Workshop on Algebraic Development Techniques, 1999, pp. 73–88, citeseer.ist.psu.edu/
article/autexier99towards.html.

[38] A. Fiedler, User-adaptive proof explanation, Ph.D. thesis, Naturwissenschaftlich-Technische Fakultät I, Uni-
versität des Saarlandes, Saarbrücken, Germany, 2001.

[39] S.B.T. Nipkow, Random testing in Isabelle/HOL, in: J. Cuellar, Z. Liu (Eds.), Software Engineering and
Formal Methods (SEFM 2004), IEEE Computer Society, 2004, pp. 230–239.

[40] A. Ireland, The use of planning critics in mechanizing inductive proofs, in: Logic Programming and Auto-
mated Reasoning, 1992, pp. 178–189, citeseer.nj.nec.com/ireland92use.html.

[41] J. Meng, L.C. Paulson, Experiments on supporting interactive proof using resolution, in: D. Basin, M. Rusi-
nowitch (Eds.), Second International Joint Conference on Automated Reasoning, IJCAR 2004, Springer,
Berlin, 2004, pp. 372–384.

[42] M. Burstein, D. McDermott, Issues in the development of human-computer mixed-initiative planning, in:
Gorayska, Mey (Eds.), Cognitive Technology: In Search of a Humane Interface, North-Holland, Amsterdam,
1996, pp. 283–303.

[43] L. Dixon, Interactive hierarchical tracing of techniques in IsaPlanner, in: User Interfaces for Theorem
Provers (UITP’05), ENTCS, 2005.

[44] J. Gow, The dynamic creation of induction rules using proof planning, Ph.D. thesis, School of Informatics,
University of Edinburgh, 2004.

[45] G. Huet, The zipper, J. Funct. Programming 7 (5) (1997) 549–554.
[46] D. Aspinall, T. Kleymann, Proof General Manual, University of Edinburgh, 2004.
[47] C. Lüth, T.H. Kolyang, B. Krieg-Brückner, TAS and IsaWin: Tools for transformational program devel-

opment and theorem proving, in: J.-P. Finance (Ed.), Fundamental Approaches to Software Engineering
FASE’99, Joint European Conferences on Theory and Practice of Software ETAPS’99, in: Lecture Notes in
Computer Science, vol. 1577, Springer, Berlin, 1999, pp. 239–243.

[48] D. Aspinall, C. Lüth, Proof general meets isawin, in: User Interfaces for Theorem Provers (UITP’03),
ENTCS, 2003.

[49] J. van der Hoeven, Gnu texmacs: A free, structured, wysiwyg and technical text editor, in: D. Flipo (Ed.),
Le document au XXI-ième siècle, vols. 39–40, Actes du congrès Gutenberg, Metz, 2001, pp. 39–50.

[50] J. van der Hoeven, Gnu TeXmacs, http://www.texmacs.org, 1998–2002.
[51] P. Audebaud, L. Rideau, TexMacs as authoring tool for publication and diffusion of formal developments,

in: User Interfaces for Theorem Provers (UITP’03), ENTCS, 2003.
[52] A. Amerkad, Y. Bertot, L. Pottier, L. Rideau, Mathematics and proofpresentation in Pcoq, in: The Work-

shop on Proof Transformation and Presentation and Proof Complexities (PTP’01), 2001, pp. 1–15, http://
www.inria.fr/rrrt/rr-4313.html.

[53] A. Trybulec, Tarski Grothendieck set theory, J. Formal. Math. Axiom.
[54] D. Syme, Declare: A prototype declarative proof system for higher order logic tech report, comp lab, univ

of camb, 1997, citeseer.ist.psu.edu/syme97declare.html.
[55] C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber, M. Kohlhase, K. Konrad,

A. Meier, E. Melis, W. Schaarschmidt, J.H. Siekmann, V. Sorge, Omega: Towards a mathematical assistant,
in: Conference on Automated Deduction, 1997, pp. 252–255.

[56] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, M. Pollet, Proof development in OMEGA:
The irrationality of square root of 2, in: F. Kamareddine (Ed.), Thirty Five Years of Automating Mathematics,
in: Kluwer Applied Logic Series, vol. 28, Kluwer Academic Publishers, Dordrecht, ISBN 1-4020-1656-5,
2003, pp. 271–314.

[57] The Coq Development Team, The Coq Proof Assistant Reference Manual—Version V8.0, April 2004, http://
coq.inria.fr.

http://citeseer.ist.psu.edu/article/autexier99towards.html
http://citeseer.nj.nec.com/ireland92use.html
http://www.texmacs.org
http://www.inria.fr/rrrt/rr-4313.html
http://www.inria.fr/rrrt/rr-4313.html
http://citeseer.ist.psu.edu/syme97declare.html
http://coq.inria.fr
http://coq.inria.fr
http://citeseer.ist.psu.edu/article/autexier99towards.html


532 L. Dixon, J. Fleuriot / Journal of Applied Logic 4 (2006) 505–532
[58] M.J.C. Gordon, T.F. Melham (Eds.), Introduction to HOL: A Theorem Proving Environment for Higher
Order Logic, Cambridge University Press, Cambridge, 1993, http://www.dcs.glasgow.ac.uk/~tfm/HOLbook.
html.

[59] S. Owre, N. Shankar, J.M. Rushby, D.W.J. Stringer-Calvert, PVS System Guide, Computer Science Labo-
ratory, SRI International, Menlo Park, CA, 1999.

[60] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J. Howe,
T.B. Knoblock, N.P. Mendler, P. Panangaden, J.T. Sasaki, S.F. Smith, Implementing Mathematics
with the Nuprl Development System, Prentice-Hall, Englewood Cliffs, NJ, 1986, citeseer.ist.psu.edu/
constable86implementing.html.

[61] B. Buchberger, T. Jebelean, W. Windsteiger, T. Kutsia, K. Nakagawa, J. Robu, F. Piroi, A. Craciun, N. Popov,
G. Kusper, M. Rosenkranz, L. Kovacs, C. Kocsis, F 1302: THEOREMA: Proving, Solving and Computing
in General Domains, in: P. Paule, U. Langer (Eds.), Special Research Program (SFB) F 013, Numerical and
Symbolic Scientific Computing, Proposal for Continuation, Part I: Progress Report, April 2001–September
2003, Johannes Kepler University Linz, Austria, 2003, pp. 148–170.

[62] C. Coquand, The AGDA proof system homepage, http://www.cs.chalmers.se/~catarina/agda/, 1998.
[63] P.B. Andrews, M. Bishop, C.E. Brown, System description: Tps: A theorem proving system for type the-

ory, in: D. McAllester (Ed.), Proceedings of the 17th International Conference on Automated Deduction,
Pittsburgh, PA, in: Lecture Notes in Artificial Intelligence, vol. 1831, Springer, Berlin, 2000, pp. 164–169.

[64] P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, H. Xi, TPS: A theorem proving system for
classical type theory, J. Autom. Reason. 16 (1996) 321–353.

http://www.dcs.glasgow.ac.uk/~tfm/HOLbook.html
http://www.dcs.glasgow.ac.uk/~tfm/HOLbook.html
http://citeseer.ist.psu.edu/constable86implementing.html
http://www.cs.chalmers.se/~catarina/agda/
http://citeseer.ist.psu.edu/constable86implementing.html

	A proof-centric approach to mathematical assistants
	Introduction
	Overview of the proof-centric approach
	The foundations of an implementation
	Theorem proving: Isabelle
	Readable, executable proof scripts: Isar
	Proof planning: IsaPlanner

	A platform of formalised mathematical theories
	Modularity
	Knowledge management and theorem navigation
	Well-behaved exploratory tools
	A hierarchy for proof tools' behaviour
	A well behaved technique: rippling
	An example interaction with rippling
	Recording the proof process
	Power vs robustness


	Support for writing reasoning techniques
	Tracing proof attempts
	Contextual information
	Stylistic choices in expressing proofs

	Proof plans as a declarative description of the Isar language
	Proof representation for replay

	Interfaces
	Presentation
	Related work
	Systems based on declarative proof-scripts
	Proof planners
	Tactic-script based proof assistants
	Computer algebra based systems
	Proof-term based interactive proof assistants
	TPS

	Conclusions
	Acknowledgements
	References


