7 research outputs found

    A hybrid representation for modeling, interactive editing, and real-time visualization of terrains with volumetric features

    Get PDF
    Cataloged from PDF version of article.Terrain rendering is a crucial part of many real-time applications. The easiest way to process and visualize terrain data in real time is to constrain the terrain model in several ways. This decreases the amount of data to be processed and the amount of processing power needed, but at the cost of expressivity and the ability to create complex terrains. The most popular terrain representation is a regular 2D grid, where the vertices are displaced in a third dimension by a displacement map, called a heightmap. This is the simplest way to represent terrain, and although it allows fast processing, it cannot model terrains with volumetric features. Volumetric approaches sample the 3D space by subdividing it into a 3D grid and represent the terrain as occupied voxels. They can represent volumetric features but they require computationally intensive algorithms for rendering, and their memory requirements are high. We propose a novel representation that combines the voxel and heightmap approaches, and is expressive enough to allow creating terrains with caves, overhangs, cliffs, and arches, and efficient enough to allow terrain editing, deformations, and rendering in real time

    Virtual Reality Methods for Research in the Geosciences

    Get PDF
    In the presented work, I evaluate if and how Virtual Reality (VR) technologies can be used to support researchers working in the geosciences by providing immersive, collaborative visualization systems as well as virtual tools for data analysis. Technical challenges encountered in the development of theses systems are identified and solutions for these are provided. To enable geologists to explore large digital terrain models (DTMs) in an immersive, explorative fashion within a VR environment, a suitable terrain rendering algorithm is required. For realistic perception of planetary curvature at large viewer altitudes, spherical rendering of the surface is necessary. Furthermore, rendering must sustain interactive frame rates of about 30 frames per second to avoid sensory confusion of the user. At the same time, the data structures used for visualization should also be suitable for efficiently computing spatial properties such as height profiles or volumes in order to implement virtual analysis tools. To address these requirements, I have developed a novel terrain rendering algorithm based on tiled quadtree hierarchies using the HEALPix parametrization of a sphere. For evaluation purposes, the system is applied to a 500 GiB dataset representing the surface of Mars. Considering the current development of inexpensive remote surveillance equipment such as quadcopters, it seems inevitable that these devices will play a major role in future disaster management applications. Virtual reality installations in disaster management headquarters which provide an immersive visualization of near-live, three-dimensional situational data could then be a valuable asset for rapid, collaborative decision making. Most terrain visualization algorithms, however, require a computationally expensive pre-processing step to construct a terrain database. To address this problem, I present an on-the-fly pre-processing system for cartographic data. The system consists of a frontend for rendering and interaction as well as a distributed processing backend executing on a small cluster which produces tiled data in the format required by the frontend on demand. The backend employs a CUDA based algorithm on graphics cards to perform efficient conversion from cartographic standard projections to the HEALPix-based grid used by the frontend. Measurement of spatial properties is an important step in quantifying geological phenomena. When performing these tasks in a VR environment, a suitable input device and abstraction for the interaction (a “virtual tool”) must be provided. This tool should enable the user to precisely select the location of the measurement even under a perspective projection. Furthermore, the measurement process should be accurate to the resolution of the data available and should not have a large impact on the frame rate in order to not violate interactivity requirements. I have implemented virtual tools based on the HEALPix data structure for measurement of height profiles as well as volumes. For interaction, a ray-based picking metaphor was employed, using a virtual selection ray extending from the user’s hand holding a VR interaction device. To provide maximum accuracy, the algorithms access the quad-tree terrain database at the highest available resolution level while at the same time maintaining interactivity in rendering. Geological faults are cracks in the earth’s crust along which a differential movement of rock volumes can be observed. Quantifying the direction and magnitude of such translations is an essential requirement in understanding earth’s geological history. For this purpose, geologists traditionally use maps in top-down projection which are cut (e.g. using image editing software) along the suspected fault trace. The two resulting pieces of the map are then translated in parallel against each other until surface features which have been cut by the fault motion come back into alignment. The amount of translation applied is then used as a hypothesis for the magnitude of the fault action. In the scope of this work it is shown, however, that performing this study in a top-down perspective can lead to the acceptance of faulty reconstructions, since the three-dimensional structure of topography is not considered. To address this problem, I present a novel terrain deformation algorithm which allows the user to trace a fault line directly within a 3D terrain visualization system and interactively deform the terrain model while inspecting the resulting reconstruction from arbitrary perspectives. I demonstrate that the application of 3D visualization allows for a more informed interpretation of fault reconstruction hypotheses. The algorithm is implemented on graphics cards and performs real-time geometric deformation of the terrain model, guaranteeing interactivity with respect to all parameters. Paleoceanography is the study of the prehistoric evolution of the ocean. One of the key data sources used in this research are coring experiments which provide point samples of layered sediment depositions at the ocean floor. The samples obtained in these experiments document the time-varying sediment concentrations within the ocean water at the point of measurement. The task of recovering the ocean flow patterns based on these deposition records is a challenging inverse numerical problem, however. To support domain scientists working on this problem, I have developed a VR visualization tool to aid in the verification of model parameters by providing simultaneous visualization of experimental data from coring as well as the resulting predicted flow field obtained from numerical simulation. Earth is visualized as a globe in the VR environment with coring data being presented using a billboard rendering technique while the time-variant flow field is indicated using Line-Integral-Convolution (LIC). To study individual sediment transport pathways and their correlation with the depositional record, interactive particle injection and real-time advection is supported

    Multilayer representation for geological information systems

    Get PDF
    En esta tesis se propone el uso de la Representación de Terrenos Basada en Stacks (SBRT, de sus siglas en inglés) para datos geológicos volumétricos. Esta estructura de datos codifica estructuras geológicas representadas como stacks utilizando una compacta representación de datos. A continuación, hemos formalizado la SBRT con un esquema basado en la teoría de geo-átomos para proporcionar una definición precisa y determinar sus propiedades. Esta tesis también introduce una nueva estructura de datos llamada QuadStack, mejorando los resultados de compresión proporcionados por la SBRT al aprovechar la redundancia de información que a menudo se encuentra en los datos distribuidos por capas. También se han proporcionado métodos de visualización para estas representaciones basados en el conocido algoritmo de visualización raycasting. Al mantener los datos en todo momento en la memoria de la GPU de forma compacta, los métodos propuestos son lo suficientemente rápidos como para proporcionar velocidades de visualización interactivas.In this thesis we propose the use of the Stack-Based Representation of Terrains (SBRT) for volumetric geological data. This data structure encodes geological structures represented as stacks using a compact data representation. The SBRT is further formalized with a framework based on the geo-atom theory to provide a precise definition and determine its properties. Also, we introduce QuadStacks, a novel data structure that improves the compression results provided by the SBRT, by exploiting in its data arrangement the redundancy often found in layered dataset. This thesis also provides direct visualization methods for the SBR and QuadStacks based on the well-known raycasting algorithm. By keeping the whole dataset in the GPU in a compact way, the methods are fast enough to provide real-time frame rates.Tesis Univ. Jaén. Departamento de Informática. Leída el 19 de septiembre de 2019

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    A compilation of the summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number

    Following the instruments and users: the mutual shaping of digital sampling technologies

    Get PDF
    The socio-musical practice of sampling is closely associated with the re-use of pre-existing sound recordings and the technological processes of looping. These practices, based on appropriation and repetition, have been particularly common within the genres of hip-hop and Electronic Dance Music (EDM). Yet early digital sampling instruments such as the Fairlight Computer Musical Instrument (CMI) were not designed for these purposes. The technologists at Fairlight Instruments in Australia were primarily interested in the use of digital synthesis to imitate the sounds of acoustic instruments; sampling was a secondary concern. In the first half of the thesis, I follow digital sampling instruments like the Fairlight CMI and the E-mu Emulator by drawing on interviews with their designers and users to trace how they were used to sample the sounds of everyday life, loop sequenced patterns of sampled sounds, and sample extracts from pre-existing sound recordings. The second half of the thesis consists of case studies that follow the users of digital sampling technologies across a range of socio-musical worlds to examine the diversity of contemporary sampling practices. Using concepts from the field of Science and Technology Studies (STS), this thesis focuses on the ‘user-technology nexus’ and continues a shift in the writing of histories of technologies from a focus on the designers of technologies towards the contexts of use and ‘the co-construction’ or ‘mutual shaping’ of technologies and their users. As an example of the ‘interpretative flexibility’ of music technologies, digital sampling technologies were used in ways unimagined by their designers and sampling became synonymous with re-appropriation. My argument is that a history of digital sampling technologies needs to be a history of both the designers and the users of digital sampling technologies
    corecore