1,412 research outputs found

    Interactive Behaviour Between the Dynamic Arrival Process of Complex Traffic Source and a Bottleneck Queue

    Get PDF
    This paper proposes a discrete-time heterogeneous model to represent the interaction between the dynamic arrival process of multiple TCP sources and a bottleneck queue. It utilises a novel time-variant calculation approach for transient queueing models, which modifies the conventional steady-state method by no longer requiring the equilibrium assumption. The main contributions are: (1) The limitation of the conventional queueing method is analysed and the benefits of the proposed modification is demonstrated; (2) The proposed dynamic arrival process of multiple sources is illustrated, which interacts with the queueing process and statistically responds to the positive and negative congestion feedback; (3) The fidelity of the proposed model is extensively validated by the closely matched results from MATLAB numerical solutions and NS-2 discrete-event simulation experiments

    Discrete-time queueing model for responsive network traffic and bottleneck queues

    Get PDF
    The Internet has been more and more intensively used in recent years. Although network infrastructure has been regularly upgraded, and the ability to manage heavy traffic greatly increased, especially on the core networks, congestion never ceases to appear, as the amount of traffic that flow on the Internet seems to be increasing at an even faster rate. Thus, congestion control mechanisms play a vital role in the functioning of the Internet. Active Queue Management (AQM) is a popular type of congestion control mechanism that is implemented on gateways (most notably routers), which can predict and avoid the congestion before it happens. When properly configured, AQMs can effectively reduce the congestion, and alleviate some of the problems such as global synchronisation and unfairness to bursty traffic. However, there are still many problems regarding AQMs. Most of the AQM schemes are quite sensitive to their parameters setting, and these parameters may be heavily dependent on the network traffic profile, which the administrator may not have intensive knowledge of, and is likely to change over time. When poorly configured, many AQMs perform no better than the basic drop-tail queue. There is currently no effective method to compare the performance of these AQM algorithms, caused by the parameter configuration problem. In this research, the aim is to propose a new analytical model, which mainly uses discrete-time queueing theory. A novel transient modification to the conventional equilibrium-based method is proposed, and it is utilised to further develop a dynamic interactive model of responsive traffic and bottleneck queues. Using step-by-step analysis, it represents the bursty traffic and oscillating queue length behaviour in practical network more accurately. It also provides an effective way of predicting the behaviour of a TCP-AQM system, allowing easier parameter optimisation for AQM schemes. Numerical solution using MATLAB and software simulation using NS-2 are used to extensively validate the proposed models, theories and conclusions

    Methods of Congestion Control for Adaptive Continuous Media

    Get PDF
    Since the first exchange of data between machines in different locations in early 1960s, computer networks have grown exponentially with millions of people now using the Internet. With this, there has also been a rapid increase in different kinds of services offered over the World Wide Web from simple e-mails to streaming video. It is generally accepted that the commonly used protocol suite TCP/IP alone is not adequate for a number of modern applications with high bandwidth and minimal delay requirements. Many technologies are emerging such as IPv6, Diffserv, Intserv etc, which aim to replace the onesize-fits-all approach of the current lPv4. There is a consensus that the networks will have to be capable of multi-service and will have to isolate different classes of traffic through bandwidth partitioning such that, for example, low priority best-effort traffic does not cause delay for high priority video traffic. However, this research identifies that even within a class there may be delays or losses due to congestion and the problem will require different solutions in different classes. The focus of this research is on the requirements of the adaptive continuous media class. These are traffic flows that require a good Quality of Service but are also able to adapt to the network conditions by accepting some degradation in quality. It is potentially the most flexible traffic class and therefore, one of the most useful types for an increasing number of applications. This thesis discusses the QoS requirements of adaptive continuous media and identifies an ideal feedback based control system that would be suitable for this class. A number of current methods of congestion control have been investigated and two methods that have been shown to be successful with data traffic have been evaluated to ascertain if they could be adapted for adaptive continuous media. A novel method of control based on percentile monitoring of the queue occupancy is then proposed and developed. Simulation results demonstrate that the percentile monitoring based method is more appropriate to this type of flow. The problem of congestion control at aggregating nodes of the network hierarchy, where thousands of adaptive flows may be aggregated to a single flow, is then considered. A unique method of pricing mean and variance is developed such that each individual flow is charged fairly for its contribution to the congestion

    Improving the Performance of Internet Data Transport

    Get PDF
    With the explosion of the World Wide Web, the Internet infrastructure faces new challenges in providing high performance for data traffic. First, it must be able to pro-vide a fair-share of congested link bandwidth to every flow. Second, since web traffic is inherently interactive, it must minimize the delay for data transfer. Recent studies have shown that queue management algorithms such as Tail Drop, RED and Blue are deficient in providing high throughput, low delay paths for a data flow. Two major shortcomings of the current algorithms are: they allow TCP flows to get synchronized and thus require large buffers during congestion to enable high throughput; and they allow unfair bandwidth usage for shorter round-trip time TCP flows. We propose algorithms using multiple queues and discard policies with hysteresis at bottleneck routers to address both these issues. Us-ing ns-2 simulations, we show that these algorithms can significantly outperform RED and Blue, especially at smaller buffer sizes. Using multiple queues raises two new concerns: scalability and excess memory bandwidth usage caused by dropping packets which have been queued. We propose and evaluate an architecture using Bloom filters to evenly distribute flows among queues to improve scalability. We have also developed new intelligent packet discard algorithms that discard packets on arrival and are able to achieve performance close to that of policies that may discard packets that have already been queued. Finally, we propose better methods for evaluating the performance of fair-queueing methods. In the current literature, fair-queueing methods are evaluated based on their worst-case performance. This can exaggerate the differences among algorithms, since the worst-case behavior is dependent on the the precise timing of packet arrivals. This work seeks to understand what happens under more typical circumstances

    Delay-oriented active queue management in TCP/IP networks

    Get PDF
    PhDInternet-based applications and services are pervading everyday life. Moreover, the growing popularity of real-time, time-critical and mission-critical applications set new challenges to the Internet community. The requirement for reducing response time, and therefore latency control is increasingly emphasized. This thesis seeks to reduce queueing delay through active queue management. While mathematical studies and research simulations reveal that complex trade-off relationships exist among performance indices such as throughput, packet loss ratio and delay, etc., this thesis intends to find an improved active queue management algorithm which emphasizes delay control without trading much on other performance indices such as throughput and packet loss ratio. The thesis observes that in TCP/IP network, packet loss ratio is a major reflection of congestion severity or load. With a properly functioning active queue management algorithm, traffic load will in general push the feedback system to an equilibrium point in terms of packet loss ratio and throughput. On the other hand, queue length is a determinant factor on system delay performance while has only a slight influence on the equilibrium. This observation suggests the possibility of reducing delay while maintaining throughput and packet loss ratio relatively unchanged. The thesis also observes that queue length fluctuation is a reflection of both load changes and natural fluctuation in arriving bit rate. Monitoring queue length fluctuation alone cannot distinguish the difference and identify congestion status; and yet identifying this difference is crucial in finding out situations where average queue size and hence queueing delay can be properly controlled and reasonably reduced. However, many existing active queue management algorithms only monitor queue length, and their control policies are solely based on this measurement. In our studies, our novel finding is that the arriving bit rate distribution of all sources contains information which can be a better indication of congestion status and has a correlation with traffic burstiness. And this thesis develops a simple and scalable way to measure its two most important characteristics, namely the mean ii and the variance of the arriving rate distribution. The measuring mechanism is based on a Zombie List mechanism originally proposed and deployed in Stabilized RED to estimate the number of flows and identify misbehaving flows. This thesis modifies the original zombie list measuring mechanism, makes it capable of measuring additional variables. Based on these additional measurements, this thesis proposes a novel modification to the RED algorithm. It utilizes a robust adaptive mechanism to ensure that the system reaches proper equilibrium operating points in terms of packet loss ratio and queueing delay under various loads. Furthermore, it identifies different congestion status where traffic is less bursty and adapts RED parameters in order to reduce average queue size and hence queueing delay accordingly. Using ns-2 simulation platform, this thesis runs simulations of a single bottleneck link scenario which represents an important and popular application scenario such as home access network or SoHo. Simulation results indicate that there are complex trade-off relationships among throughput, packet loss ratio and delay; and in these relationships delay can be substantially reduced whereas trade-offs on throughput and packet loss ratio are negligible. Simulation results show that our proposed active queue management algorithm can identify circumstances where traffic is less bursty and actively reduce queueing delay with hardly noticeable sacrifice on throughput and packet loss ratio performances. In conclusion, our novel approach enables the application of adaptive techniques to more RED parameters including those affecting queue occupancy and hence queueing delay. The new modification to RED algorithm is a scalable approach and does not introduce additional protocol overhead. In general it brings the benefit of substantially reduced delay at the cost of limited processing overhead and negligible degradation in throughput and packet loss ratio. However, our new algorithm is only tested on responsive flows and a single bottleneck scenario. Its effectiveness on a combination of responsive and non-responsive flows as well as in more complicated network topology scenarios is left for future work

    Quality-of-service management in IP networks

    Get PDF
    Quality of Service (QoS) in Internet Protocol (IF) Networks has been the subject of active research over the past two decades. Integrated Services (IntServ) and Differentiated Services (DiffServ) QoS architectures have emerged as proposed standards for resource allocation in IF Networks. These two QoS architectures support the need for multiple traffic queuing systems to allow for resource partitioning for heterogeneous applications making use of the networks. There have been a number of specifications or proposals for the number of traffic queuing classes (Class of Service (CoS)) that will support integrated services in IF Networks, but none has provided verification in the form of analytical or empirical investigation to prove that its specification or proposal will be optimum. Despite the existence of the two standard QoS architectures and the large volume of research work that has been carried out on IF QoS, its deployment still remains elusive in the Internet. This is not unconnected with the complexities associated with some aspects of the standard QoS architectures. [Continues.

    User-Centric Quality of Service Provisioning in IP Networks

    Get PDF
    The Internet has become the preferred transport medium for almost every type of communication, continuing to grow, both in terms of the number of users and delivered services. Efforts have been made to ensure that time sensitive applications receive sufficient resources and subsequently receive an acceptable Quality of Service (QoS). However, typical Internet users no longer use a single service at a given point in time, as they are instead engaged in a multimedia-rich experience, comprising of many different concurrent services. Given the scalability problems raised by the diversity of the users and traffic, in conjunction with their increasing expectations, the task of QoS provisioning can no longer be approached from the perspective of providing priority to specific traffic types over coexisting services; either through explicit resource reservation, or traffic classification using static policies, as is the case with the current approach to QoS provisioning, Differentiated Services (Diffserv). This current use of static resource allocation and traffic shaping methods reveals a distinct lack of synergy between current QoS practices and user activities, thus highlighting a need for a QoS solution reflecting the user services. The aim of this thesis is to investigate and propose a novel QoS architecture, which considers the activities of the user and manages resources from a user-centric perspective. The research begins with a comprehensive examination of existing QoS technologies and mechanisms, arguing that current QoS practises are too static in their configuration and typically give priority to specific individual services rather than considering the user experience. The analysis also reveals the potential threat that unresponsive application traffic presents to coexisting Internet services and QoS efforts, and introduces the requirement for a balance between application QoS and fairness. This thesis proposes a novel architecture, the Congestion Aware Packet Scheduler (CAPS), which manages and controls traffic at the point of service aggregation, in order to optimise the overall QoS of the user experience. The CAPS architecture, in contrast to traditional QoS alternatives, places no predetermined precedence on a specific traffic; instead, it adapts QoS policies to each individual’s Internet traffic profile and dynamically controls the ratio of user services to maintain an optimised QoS experience. The rationale behind this approach was to enable a QoS optimised experience to each Internet user and not just those using preferred services. Furthermore, unresponsive bandwidth intensive applications, such as Peer-to-Peer, are managed fairly while minimising their impact on coexisting services. The CAPS architecture has been validated through extensive simulations with the topologies used replicating the complexity and scale of real-network ISP infrastructures. The results show that for a number of different user-traffic profiles, the proposed approach achieves an improved aggregate QoS for each user when compared with Best effort Internet, Traditional Diffserv and Weighted-RED configurations. Furthermore, the results demonstrate that the proposed architecture not only provides an optimised QoS to the user, irrespective of their traffic profile, but through the avoidance of static resource allocation, can adapt with the Internet user as their use of services change.France Teleco

    Quality of service optimization of multimedia traffic in mobile networks

    Get PDF
    Mobile communication systems have continued to evolve beyond the currently deployed Third Generation (3G) systems with the main goal of providing higher capacity. Systems beyond 3G are expected to cater for a wide variety of services such as speech, data, image transmission, video, as well as multimedia services consisting of a combination of these. With the air interface being the bottleneck in mobile networks, recent enhancing technologies such as the High Speed Downlink Packet Access (HSDPA), incorporate major changes to the radio access segment of 3G Universal Mobile Telecommunications System (UMTS). HSDPA introduces new features such as fast link adaptation mechanisms, fast packet scheduling, and physical layer retransmissions in the base stations, necessitating buffering of data at the air interface which presents a bottleneck to end-to-end communication. Hence, in order to provide end-to-end Quality of Service (QoS) guarantees to multimedia services in wireless networks such as HSDPA, efficient buffer management schemes are required at the air interface. The main objective of this thesis is to propose and evaluate solutions that will address the QoS optimization of multimedia traffic at the radio link interface of HSDPA systems. In the thesis, a novel queuing system known as the Time-Space Priority (TSP) scheme is proposed for multimedia traffic QoS control. TSP provides customized preferential treatment to the constituent flows in the multimedia traffic to suit their diverse QoS requirements. With TSP queuing, the real-time component of the multimedia traffic, being delay sensitive and loss tolerant, is given transmission priority; while the non-real-time component, being loss sensitive and delay tolerant, enjoys space priority. Hence, based on the TSP queuing paradigm, new buffer managementalgorithms are designed for joint QoS control of the diverse components in a multimedia session of the same HSDPA user. In the thesis, a TSP based buffer management algorithm known as the Enhanced Time Space Priority (E-TSP) is proposed for HSDPA. E-TSP incorporates flow control mechanisms to mitigate congestion in the air interface buffer of a user with multimedia session comprising real-time and non-real-time flows. Thus, E-TSP is designed to provide efficient network and radio resource utilization to improve end-to-end multimedia traffic performance. In order to allow real-time optimization of the QoS control between the real-time and non-real-time flows of the HSDPA multimedia session, another TSP based buffer management algorithm known as the Dynamic Time Space Priority (D-TSP) is proposed. D-TSP incorporates dynamic priority switching between the real-time and non-real-time flows. D-TSP is designed to allow optimum QoS trade-off between the flows whilst still guaranteeing the stringent real-time component’s QoS requirements. The thesis presents results of extensive performance studies undertaken via analytical modelling and dynamic network-level HSDPA simulations demonstrating the effectiveness of the proposed TSP queuing system and the TSP based buffer management schemes
    corecore