42 research outputs found

    A mechatronic leg replica to benchmark human-exoskeleton physical interactions

    Get PDF
    : Evaluating human-exoskeleton interaction typically requires experiments with human subjects, which raises safety issues and entails time-consuming testing procedures. This paper presents a mechatronic replica of a human leg, which was designed to quantify physical interaction dynamics between exoskeletons and human limbs without the need for human testing. In the first part of this work, we present the mechanical, electronic, sensory system and software solutions integrated in our leg replica prototype. In the second part, we used the leg replica to test its interaction with two types of commercially available wearable devices, i.e. an active full leg exoskeleton and a passive knee orthosis. We ran basic test examples to demonstrate the functioning and benchmarking potential of the leg replica to assess the effects of joint misalignments on force transmission. The integrated force sensors embedded in the leg replica detected higher interaction forces in the misaligned scenario in comparison to the aligned one, in both active and passive modalities. The small standard deviation of force measurements across cycles demonstrates the potential of the leg replica as a standard test method for reproducible studies of human-exoskeleton physical interaction

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 349)

    Get PDF
    This bibliography lists 149 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during April, 1991. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    Endoscopic and magnetic actuation for miniature lifesaving devices

    Get PDF

    Towards a Somatosensory Neuroprosthesis: Characterizing Microstimulation of the DRG and Spinal Cord for Sensory Restoration

    Get PDF
    Restoring sensation is key to making prostheses more functional. While there have been important advances in the design and actuation of prosthetic limbs, these devices lack a means for providing direct sensory feedback. As such, users must infer information about limb state from cues like pressure on the residual limb, resulting in diminished control of prostheses, and reduced adoption and use of these technologies. The dorsal root ganglia (DRG) are an attractive target for a somatosensory neural interface. The DRG are enlargements of the spinal nerve that house the cell bodies of primary sensory neurons and provide access to a heterogenous population of somatosensory fibers. Importantly, the separation of motor and sensory pathways at the spinal roots allows recruitment of sensory afferents without coactivating motor efferents which may otherwise contaminate a myoelectric control interface. This dissertation examines a novel way of interfacing with the DRG and dorsal roots using epineural electrodes, that takes us a step closer towards developing a somatosensory neuroprosthesis. I begin with an animal model to compare the recruitment properties of epineural and penetrating electrodes when stimulating afferents in the lumbar DRG. In the next section, I develop a computational model to explain the mechanism of recruitment of afferents. Finally, I describe a series of experiments in human upper-limb amputees to characterize the modality and utility of sensations evoked when the cervical spinal cord and spinal roots were stimulated

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 384)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 372 through 383 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 358)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 346 through 357 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes seven indexes: subject, personal author, corporate source, foreign technology, contract number, report number and accession number

    Aerospace Medicine and Biology: A cumulative index to the 1974 issues of a continuing bibliography

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 125 through 136 of Aerospace Medicine and Biology: A Continuing Bibliography. It includes three indexes--subject, personal author, and corporate source

    Fifth Annual Workshop on Space Operations Applications and Research (SOAR 1991), volume 2

    Get PDF
    Papers given at the Space Operations and Applications Symposium, host by the NASA Johnson Space Center on July 9-11, 1991 are given. The technical areas covered included intelligent systems, automation and robotics, human factors and life sciences, and environmental interactions
    corecore