1,248 research outputs found

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Investigando Natural User Interfaces (NUIs) : tecnologias e interação em contexto de acessibilidade

    Get PDF
    Orientador: Maria CecĂ­lia Calani BaranauskasTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Natural User Interfaces (NUIs) representam um novo paradigma de interação, com a promessa de ser mais intuitivo e fĂĄcil de usar do que seu antecessor, que utiliza mouse e teclado. Em um contexto no qual as tecnologias estĂŁo cada vez mais invisĂ­veis e pervasivas, nĂŁo sĂł a quantidade mas tambĂ©m a diversidade de pessoas que participam deste contexto Ă© crescente. Nesse caso, Ă© preciso estudar como esse novo paradigma de interação de fato consegue ser acessĂ­vel a todas as pessoas que podem utilizĂĄ-lo no dia-a-dia. Ademais, Ă© preciso tambĂ©m caracterizar o paradigma em si, para entender o que o torna, de fato, natural. Portanto, nesta tese apresentamos o caminho que percorremos em busca dessas duas respostas: como caracterizar NUIs, no atual contexto tecnolĂłgico, e como tornar NUIs acessĂ­veis para todos. Para tanto, primeiro apresentamos uma revisĂŁo sistemĂĄtica de literatura com o estado da arte. Depois, mostramos um conjunto de heurĂ­sticas para o design e a avaliação de NUIs, que foram aplicadas em estudos de caso prĂĄticos. Em seguida, estruturamos as ideias desta pesquisa dentro dos artefatos da SemiĂłtica Organizacional, e obtivemos esclarecimentos sobre como fazer o design de NUIs com Acessibilidade, seja por meio de Design Universal, seja para propor Tecnologias Assistivas. Depois, apresentamos trĂȘs estudos de caso com sistemas NUI cujo design foi feito por nĂłs. A partir desses estudos de caso, expandimos nosso referencial teĂłrico e conseguimos, por fim, encontrar trĂȘs elementos que resumem a nossa caracterização de NUI: diferenças, affordances e enaçãoAbstract: Natural User Interfaces (NUIs) represent a new interaction paradigm, with the promise of being more intuitive and easy to use than its predecessor, that utilizes mouse and keyboard. In a context where technology is becoming each time more invisible and pervasive, not only the amount but also the diversity of people who participate in this context is increasing. In this case, it must be studied how this new interaction paradigm can, in fact, be accessible to all the people who may use it on their daily routine. Furthermore, it is also necessary to characterize the paradigm itself, to understand what makes it, in fact, natural. Therefore, in this thesis we present the path we took in search of these two answers: how to characterize NUIs in the current technological context, and how to make NUIs accessible to all. To do so, first we present a systematic literature review with the state of the art. Then, we show a set of heuristics for the design and evaluation of NUIs, which were applied in practical study cases. Afterwards, we structure the ideas of this research into the Organizational Semiotics artifacts, and we obtain insights into how to design NUIs with Accessibility, be it through Universal Design, be it to propose Assistive Technologies. Then, we present three case studies with NUI systems which we designed. From these case studies, we expanded our theoretical references were able to, finally, find three elements that sum up our characterization of NUI: differences, affordances and enactionDoutoradoCiĂȘncia da ComputaçãoDoutora em CiĂȘncia da Computação160911/2015-0CAPESCNP

    Multi-Sensory Interaction for Blind and Visually Impaired People

    Get PDF
    This book conveyed the visual elements of artwork to the visually impaired through various sensory elements to open a new perspective for appreciating visual artwork. In addition, the technique of expressing a color code by integrating patterns, temperatures, scents, music, and vibrations was explored, and future research topics were presented. A holistic experience using multi-sensory interaction acquired by people with visual impairment was provided to convey the meaning and contents of the work through rich multi-sensory appreciation. A method that allows people with visual impairments to engage in artwork using a variety of senses, including touch, temperature, tactile pattern, and sound, helps them to appreciate artwork at a deeper level than can be achieved with hearing or touch alone. The development of such art appreciation aids for the visually impaired will ultimately improve their cultural enjoyment and strengthen their access to culture and the arts. The development of this new concept aids ultimately expands opportunities for the non-visually impaired as well as the visually impaired to enjoy works of art and breaks down the boundaries between the disabled and the non-disabled in the field of culture and arts through continuous efforts to enhance accessibility. In addition, the developed multi-sensory expression and delivery tool can be used as an educational tool to increase product and artwork accessibility and usability through multi-modal interaction. Training the multi-sensory experiences introduced in this book may lead to more vivid visual imageries or seeing with the mind’s eye

    Multisensory Perception and Learning: Linking Pedagogy, Psychophysics, and Human–Computer Interaction

    Get PDF
    In this review, we discuss how specific sensory channels can mediate the learning of properties of the environment. In recent years, schools have increasingly been using multisensory technology for teaching. However, it still needs to be sufficiently grounded in neuroscientific and pedagogical evidence. Researchers have recently renewed understanding around the role of communication between sensory modalities during development. In the current review, we outline four principles that will aid technological development based on theoretical models of multisensory development and embodiment to foster in-depth, perceptual, and conceptual learning of mathematics. We also discuss how a multidisciplinary approach offers a unique contribution to development of new practical solutions for learning in school. Scientists, engineers, and pedagogical experts offer their interdisciplinary points of view on this topic. At the end of the review, we present our results, showing that one can use multiple sensory inputs and sensorimotor associations in multisensory technology to improve the discrimination of angles, but also possibly for educational purposes. Finally, we present an application, the ‘RobotAngle’ developed for primary (i.e., elementary) school children, which uses sounds and body movements to learn about angles

    Augmenting the Spatial Perception Capabilities of Users Who Are Blind

    Get PDF
    People who are blind face a series of challenges and limitations resulting from their lack of being able to see, forcing them to either seek the assistance of a sighted individual or work around the challenge by way of a inefficient adaptation (e.g. following the walls in a room in order to reach a door rather than walking in a straight line to the door). These challenges are directly related to blind users' lack of the spatial perception capabilities normally provided by the human vision system. In order to overcome these spatial perception related challenges, modern technologies can be used to convey spatial perception data through sensory substitution interfaces. This work is the culmination of several projects which address varying spatial perception problems for blind users. First we consider the development of non-visual natural user interfaces for interacting with large displays. This work explores the haptic interaction space in order to find useful and efficient haptic encodings for the spatial layout of items on large displays. Multiple interaction techniques are presented which build on prior research (Folmer et al. 2012), and the efficiency and usability of the most efficient of these encodings is evaluated with blind children. Next we evaluate the use of wearable technology in aiding navigation of blind individuals through large open spaces lacking tactile landmarks used during traditional white cane navigation. We explore the design of a computer vision application with an unobtrusive aural interface to minimize veering of the user while crossing a large open space. Together, these projects represent an exploration into the use of modern technology in augmenting the spatial perception capabilities of blind users

    Mobility aids for visually impaired persons: Journals reviewed

    Get PDF
    This paper reviews the literature on mobile assistive devices for visual impaired people, in order to have a clear understanding of the technology and technological progress of helping visual impaired people. In this way, it aims to obtain basic guidelines for analyzing the most relevant equipment to help people with impaired vision and highlight the improvements that can be achieved. The most common device is to integrate different sensors and electronic components into the walking stick to improve their obstacle detection ability. In addition, equipment with cameras, including computer vision algorithms and artificial intelligence technology, has been developed to improve the performance and efficiency of the equipment. Finally, the basic characteristics of the auxiliary system are introduced, and it is found that there is no equipment to meet the needs of users

    Making Spatial Information Accessible on Touchscreens for Users who are Blind and Visually Impaired

    Get PDF
    Touchscreens have become a de facto standard of input for mobile devices as they most optimally use the limited input and output space that is imposed by their form factor. In recent years, people who are blind and visually impaired have been increasing their usage of smartphones and touchscreens. Although basic access is available, there are still many accessibility issues left to deal with in order to bring full inclusion to this population. One of the important challenges lies in accessing and creating of spatial information on touchscreens. The work presented here provides three new techniques, using three different modalities, for accessing spatial information on touchscreens. The first system makes geometry and diagram creation accessible on a touchscreen through the use of text-to-speech and gestural input. This first study is informed by a qualitative study of how people who are blind and visually impaired currently access and create graphs and diagrams. The second system makes directions through maps accessible using multiple vibration sensors without any sound or visual output. The third system investigates the use of binaural sound on a touchscreen to make various types of applications accessible such as physics simulations, astronomy, and video games
    • 

    corecore