1,811 research outputs found

    An empirical comparison of interaction styles for map interfaces in immersive virtual environments

    Get PDF
    Geographical Information Systems (GIS) can be visualized using immersive technologies like Virtual Reality (VR). Before using this kind of technologies it is required to explore which interactions are affordable, efficient and satisfactory from the users' point of view. The purpose of this work is to provide insight on how to design efficient and natural interaction on GIS VR interfaces. This study presents a within-subjects comparative study that assesses the usability and performance of two popular interaction strategies: body-based interaction and device based interaction. In body-based interaction, participants use their hands and head orientation to control the VR map. In the second case, users interact with the Oculus Touch controller. Thirty two users participated in an experiment whose results suggest that interacting with the controller improves performance of the selection task, in terms of time spent and error rate. Also, the results show a preference of users for the controller in terms of perceived usability.This work is supported by the project PACE funded by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2016-77690-R

    A new method for interacting with multi-window applications on large, high resolution displays

    Get PDF
    Physically large display walls can now be constructed using off-the-shelf computer hardware. The high resolution of these displays (e.g., 50 million pixels) means that a large quantity of data can be presented to users, so the displays are well suited to visualization applications. However, current methods of interacting with display walls are somewhat time consuming. We have analyzed how users solve real visualization problems using three desktop applications (XmdvTool, Iris Explorer and Arc View), and used a new taxonomy to classify users’ actions and illustrate the deficiencies of current display wall interaction methods. Following this we designed a novel methodfor interacting with display walls, which aims to let users interact as quickly as when a visualization application is used on a desktop system. Informal feedback gathered from our working prototype shows that interaction is both fast and fluid

    Spatial Interaction for Immersive Mixed-Reality Visualizations

    Get PDF
    Growing amounts of data, both in personal and professional settings, have caused an increased interest in data visualization and visual analytics. Especially for inherently three-dimensional data, immersive technologies such as virtual and augmented reality and advanced, natural interaction techniques have been shown to facilitate data analysis. Furthermore, in such use cases, the physical environment often plays an important role, both by directly influencing the data and by serving as context for the analysis. Therefore, there has been a trend to bring data visualization into new, immersive environments and to make use of the physical surroundings, leading to a surge in mixed-reality visualization research. One of the resulting challenges, however, is the design of user interaction for these often complex systems. In my thesis, I address this challenge by investigating interaction for immersive mixed-reality visualizations regarding three core research questions: 1) What are promising types of immersive mixed-reality visualizations, and how can advanced interaction concepts be applied to them? 2) How does spatial interaction benefit these visualizations and how should such interactions be designed? 3) How can spatial interaction in these immersive environments be analyzed and evaluated? To address the first question, I examine how various visualizations such as 3D node-link diagrams and volume visualizations can be adapted for immersive mixed-reality settings and how they stand to benefit from advanced interaction concepts. For the second question, I study how spatial interaction in particular can help to explore data in mixed reality. There, I look into spatial device interaction in comparison to touch input, the use of additional mobile devices as input controllers, and the potential of transparent interaction panels. Finally, to address the third question, I present my research on how user interaction in immersive mixed-reality environments can be analyzed directly in the original, real-world locations, and how this can provide new insights. Overall, with my research, I contribute interaction and visualization concepts, software prototypes, and findings from several user studies on how spatial interaction techniques can support the exploration of immersive mixed-reality visualizations.Zunehmende Datenmengen, sowohl im privaten als auch im beruflichen Umfeld, führen zu einem zunehmenden Interesse an Datenvisualisierung und visueller Analyse. Insbesondere bei inhärent dreidimensionalen Daten haben sich immersive Technologien wie Virtual und Augmented Reality sowie moderne, natürliche Interaktionstechniken als hilfreich für die Datenanalyse erwiesen. Darüber hinaus spielt in solchen Anwendungsfällen die physische Umgebung oft eine wichtige Rolle, da sie sowohl die Daten direkt beeinflusst als auch als Kontext für die Analyse dient. Daher gibt es einen Trend, die Datenvisualisierung in neue, immersive Umgebungen zu bringen und die physische Umgebung zu nutzen, was zu einem Anstieg der Forschung im Bereich Mixed-Reality-Visualisierung geführt hat. Eine der daraus resultierenden Herausforderungen ist jedoch die Gestaltung der Benutzerinteraktion für diese oft komplexen Systeme. In meiner Dissertation beschäftige ich mich mit dieser Herausforderung, indem ich die Interaktion für immersive Mixed-Reality-Visualisierungen im Hinblick auf drei zentrale Forschungsfragen untersuche: 1) Was sind vielversprechende Arten von immersiven Mixed-Reality-Visualisierungen, und wie können fortschrittliche Interaktionskonzepte auf sie angewendet werden? 2) Wie profitieren diese Visualisierungen von räumlicher Interaktion und wie sollten solche Interaktionen gestaltet werden? 3) Wie kann räumliche Interaktion in diesen immersiven Umgebungen analysiert und ausgewertet werden? Um die erste Frage zu beantworten, untersuche ich, wie verschiedene Visualisierungen wie 3D-Node-Link-Diagramme oder Volumenvisualisierungen für immersive Mixed-Reality-Umgebungen angepasst werden können und wie sie von fortgeschrittenen Interaktionskonzepten profitieren. Für die zweite Frage untersuche ich, wie insbesondere die räumliche Interaktion bei der Exploration von Daten in Mixed Reality helfen kann. Dabei betrachte ich die Interaktion mit räumlichen Geräten im Vergleich zur Touch-Eingabe, die Verwendung zusätzlicher mobiler Geräte als Controller und das Potenzial transparenter Interaktionspanels. Um die dritte Frage zu beantworten, stelle ich schließlich meine Forschung darüber vor, wie Benutzerinteraktion in immersiver Mixed-Reality direkt in der realen Umgebung analysiert werden kann und wie dies neue Erkenntnisse liefern kann. Insgesamt trage ich mit meiner Forschung durch Interaktions- und Visualisierungskonzepte, Software-Prototypen und Ergebnisse aus mehreren Nutzerstudien zu der Frage bei, wie räumliche Interaktionstechniken die Erkundung von immersiven Mixed-Reality-Visualisierungen unterstützen können

    AMMP-EXTN: A User Privacy and Collaboration Control Framework for a Multi-User Collaboratory Virtual Reality System

    Get PDF
    In this thesis, we propose a new design of privacy and session control for improving a collaborative molecular modeling CVR system AMMP-VIS [1]. The design mainly addresses the issue of competing user interests and privacy protection coordination. Based on our investigation of AMMP-VIS, we propose a four-level access control structure for collaborative sessions and dynamic action priority specification for manipulations on shared molecular models. Our design allows a single user to participate in multiple simultaneous sessions. Moreover, a messaging system with text chatting and system broadcasting functionality is included. A 2D user interface [2] for easy command invocation is developed in Python. Two other key aspects of system implementation, the collaboration Central deployment and the 2D GUI for control are also discussed. Finally, we describe our system evaluation plan which is based on an improved cognitive walkthrough and heuristic evaluation as well as statistical usage data

    Visualization and Analysis Tools for Neuronal Tissue

    Get PDF
    The complex nature of neuronal cellular and circuit structure poses challenges for understanding tissue organization. New techniques in electron microscopy allow for large datasets to be acquired from serial sections of neuronal tissue. These techniques reveal all cells in an unbiased fashion, so their segmentation produces complex structures that must be inspected and analyzed. Although several software packages provide 3D representations of these structures, they are limited to monoscopic projection, and are tailored to the visualization of generic 3D data. On the other hand, stereoscopic display has been shown to improve the immersive experience, with significant gains in understanding spatial relationships and identifying important features. To leverage those benefits, we have developed a 3D immersive virtual reality data display system that besides presenting data visually allows augmenting and interacting with them in a form that facilitates human analysis.;To achieve a useful system for neuroscientists, we have developed the BrainTrek system, which is a suite of software applications suited for the organization, rendering, visualization, and modification of neuron model scenes. A middle cost point CAVE system provides high vertex count rendering of an immersive 3D environment. A standard head- and wand-tracking allows movement control and modification of the scene via the on-screen, 3D menu, while a tablet touch screen provides multiple navigation modes and a 2D menu. Graphic optimization provides theoretically limitless volumes to be presented and an on-screen mini-map allows users to quickly orientate themselves. A custom voice note-taking mechanism has been installed, allowing scenes to be described and revisited. Finally, ray-casting support allows numerous analytical features, including 3D distance and volume measurements, computation and presentation of statistics, and point-and-click retrieval and presentation of raw electron microscopy data. The extension of this system to the Unity3D platform provides a low-cost alternative to the CAVE. This allows users to visualize, explore, and annotate 3D cellular data in multiple platforms and modalities, ranging from different operating systems, different hardware platforms (e.g., tablets, PCs, or stereo head-mounted displays), to operating in an online or off-line fashion. Such approach has the potential to not only address visualization and analysis needs of neuroscientists, but also to become a tool for educational purposes, as well as for crowdsourcing upcoming needs for sheer amounts of neuronal data annotation

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques
    • …
    corecore