8,269 research outputs found

    Incremental Consistency Checking in Delta-oriented UML-Models for Automation Systems

    Full text link
    Automation systems exist in many variants and may evolve over time in order to deal with different environment contexts or to fulfill changing customer requirements. This induces an increased complexity during design-time as well as tedious maintenance efforts. We already proposed a multi-perspective modeling approach to improve the development of such systems. It operates on different levels of abstraction by using well-known UML-models with activity, composite structure and state chart models. Each perspective was enriched with delta modeling to manage variability and evolution. As an extension, we now focus on the development of an efficient consistency checking method at several levels to ensure valid variants of the automation system. Consistency checking must be provided for each perspective in isolation, in-between the perspectives as well as after the application of a delta.Comment: In Proceedings FMSPLE 2016, arXiv:1603.0857

    Intelligent agent simulator in massive crowd

    Get PDF
    Crowd simulations have many benefits over real-life research such as in computer games, architecture and entertainment. One of the key elements in this study is to include elements of decision-making into the crowd. The aim of this simulator is to simulate the features of an intelligent agent to escape from crowded environments especially in one-way corridor, two-way corridor and four-way intersection. The addition of the graphical user interface enables intuitive and fast handling in all settings and features of the Intelligent Agent Simulator and allows convenient research in the field of intelligent behaviour in massive crowd. This paper describes the development of a simulator by using the Open Graphics Library (OpenGL), starting from the production of training data, the simulation process, until the simulation results. The Social Force Model (SFM) is used to generate the motion of agents and the Support Vector Machine (SVM) is used to predict the next step for intelligent agent

    Modeling functional requirements using tacit knowledge: a design science research methodology informed approach

    Get PDF
    The research in this paper adds to the discussion linked to the challenge of capturing and modeling tacit knowledge throughout software development projects. The issue emerged when modeling functional requirements during a project for a client. However, using the design science research methodology at a particular point in the project helped to create an artifact, a functional requirements modeling technique, that resolved the issue with tacit knowledge. Accordingly, this paper includes research based upon the stages of the design science research methodology to design and test the artifact in an observable situation, empirically grounding the research undertaken. An integral component of the design science research methodology, the knowledge base, assimilated structuration and semiotic theories so that other researchers can test the validity of the artifact created. First, structuration theory helped to identify how tacit knowledge is communicated and can be understood when modeling functional requirements for new software. Second, structuration theory prescribed the application of semiotics which facilitated the development of the artifact. Additionally, following the stages of the design science research methodology and associated tasks allows the research to be reproduced in other software development contexts. As a positive outcome, using the functional requirements modeling technique created, specifically for obtaining tacit knowledge on the software development project, indicates that using such knowledge increases the likelihood of deploying software successfully

    Semantic verification of Behavior Conformance

    Get PDF
    This paper introduces a formal yet practical method to verify whether the behavior design of a distributed application conforms to the behavior design of the enterprise in which the application is embedded. The method allows both enterprise architects and application architects to talk about designs in their own terms, and introduces a common set of terms as the linking pin between enterprise and application designs. The formal semantics of these common terms allows us to verify the conformance between an enterprise and its applications formally and automatically

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system

    Analyzing Consistency of Behavioral REST Web Service Interfaces

    Full text link
    REST web services can offer complex operations that do more than just simply creating, retrieving, updating and deleting information from a database. We have proposed an approach to design the interfaces of behavioral REST web services by defining a resource and a behavioral model using UML. In this paper we discuss the consistency between the resource and behavioral models that represent service states using state invariants. The state invariants are defined as predicates over resources and describe what are the valid state configurations of a behavioral model. If a state invariant is unsatisfiable then there is no valid state configuration containing the state and there is no service that can implement the service interface. We also show how we can use reasoning tools to determine the consistency between these design models.Comment: In Proceedings WWV 2012, arXiv:1210.578

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements
    • 

    corecore