21 research outputs found

    Inter-Domain Path Computation using Improved Crankback Signaling in Label Switched Networks

    Full text link
    The paper deals with the problem of finding suboptimal routing paths in multi-domain Internet environment. The proposed solution can be used in traffic enginering with MPLS

    Multi-domain crankback operation for IP/MPLS & DWDM networks

    Get PDF
    Network carriers and operators have built and deployed a very wide range of networking technologies to meet their customers needs. These include ultra scalable fibre-optic backbone networks based upon dense wavelength division multiplexing (DWDM) solutions as well as advanced layer 2/3 IP multiprotocol label switching (MPLS) and Ethernet technologies as well. A range of networking control protocols has also been developed to implement service provisioning and management across these networks. As these infrastructures have been deployed, a range of new challenges have started to emerge. In particular, a major issue is that of provisioning connection services between networks running across different domain boundaries, e.g., administrative geographic, commercial, etc. As a result, many carriers are keenly interested in the design of multi-domain provisioning solutions and algorithms. Nevertheless, to date most such efforts have only looked at pre-configured, i.e., static, inter-domain route computation or more complex solutions based upon hierarchical routing. As such there is significant scope in developing more scalable and simplified multi-domain provisioning solutions. Moreover, it is here that crankback signaling offers much promise. Crankback makes use of active messaging techniques to compute routes in an iterative manner and avoid problematic resource-deficient links. However very few multi-domain crankback schemes have been proposed, leaving much room for further investigation. Along these lines, this thesis proposes crankback signaling solution for multi-domain IP/MPLS and DWDM network operation. The scheme uses a joint intra/inter-domain signaling strategy and is fully-compatible with the standardized resource reservation (RSVP-TE) protocol. Furthermore, the proposed solution also implements and advanced next-hop domain selection strategy to drive the overall crankback process. Finally the whole framework assumes realistic settings in which individual domains have full internal visibility via link-state routing protocols, e.g., open shortest path first traffic engineering (OSPF-TE), but limited \u27next-hop\u27 inter-domain visibility, e.g., as provided by inter-area or inter-autonomous system (AS) routing protocols. The performance of the proposed crankback solution is studied using software-based discrete event simulation. First, a range of multi-domain topologies are built and tested. Next, detailed simulation runs are conducted for a range of scenarios. Overall, the findings show that the proposed crankback solution is very competitive with hierarchical routing, in many cases even outperforming full mesh abstraction. Moreover the scheme maintains acceptable signaling overheads (owing to it dual inter/intra domain crankback design) and also outperforms existing multi-domain crankback algorithms.\u2

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Next Generation Network Routing and Control Plane

    Get PDF

    Some open issues in multi-domain/multi-operator/multi-granular ASON/GMPLS networks

    Get PDF
    Large optical backbone networks may be composed of several domains, each one controlled by different administrators/operators. Besides, the bandwidth granularity of these domains may be different. Label Switched Paths (LSPs) provisioning in multi-domain/multi-operators/multi-layer network scenarios is a challenging problem actually, which has to be properly faced. In this paper, some open issues related to end-to-end bandwidth provisioning are discussed. Among others, the grooming problem in multi-layer/multi-domain optical networks and the performance degradation of recovery mechanisms due to limited inter-domain knowledge are analyzed.Postprint (published version

    Improving resource management in multi-protocol label switched traffic engineered networks

    Get PDF
    Over the years, the Internet has emerged as an indispensable platform for information exchange. As availability increases, development of new applications generate enormous volumes of tra c. Such growth continually taxes service provider resources. A common and e ective resource management option deployed by several service providers is Multi-Protocol Label Switched (MPLS) based Tra c Engineering (TE).This dissertation proposes new MPLS based TE mechanisms capable of dealing with tra c changes, such as growth and shifts. Speci cally, new techniques for dynamic bandwidth allocation and routing are proposed and developed through simulations under failure and non-failure scenarios. Issues related to inter-domain deployment are also studied and nally, an experimental testbed setup is proposed and implemented for realistic small scale testing.A new tra c engineering technique involving the coupling of dynamic bandwidth allocation with rerouting to nd the best path for the current tra c is proposed. Realistic topologies and tra c pro les are used for detailed analysis and comparisons with existing techniques. Performance analysis is also undertaken in an International network scenario carrying a mix of voice and data tra c across several timezones. Several key issues are highlighted after studying underlying network dynamics such as signaling overhead, router load, tra c path quality, etc. Keeping these issues in mind, a new trend-based bandwidth reservation mechanism is proposed. The problem of inter-domain TE is analyzed next. Existing inter-domain path computation approaches, signaling and path setup issues are studied, quanti ed and compared. Lastly, the functional prototype of a testbed architecture consisting of Cisco routers and Linux boxes is presented. A new Java based API that has been developed to con gure the testbed and deploy new mechanisms is also discussed.Ph.D., Computer Engineering -- Drexel University, 200

    Strategies for internet route control: past, present and future

    Get PDF
    Uno de los problemas más complejos en redes de computadores es el de proporcionar garantías de calidad y confiabilidad a las comunicaciones de datos entre entidades que se encuentran en dominios distintos. Esto se debe a un amplio conjunto de razones -- las cuales serán analizadas en detalle en esta tesis -- pero de manera muy breve podemos destacar: i) la limitada flexibilidad que presenta el modelo actual de encaminamiento inter-dominio en materia de ingeniería de tráfico; ii) la naturaleza distribuida y potencialmente antagónica de las políticas de encaminamiento, las cuales son administradas individualmente y sin coordinación por cada dominio en Internet; y iii) las carencias del protocolo de encaminamiento inter-dominio utilizado en Internet, denominado BGP (Border Gateway Protocol).El objetivo de esta tesis, es precisamente el estudio y propuesta de soluciones que permitan mejorar drásticamente la calidad y confiabilidad de las comunicaciones de datos en redes conformadas por múltiples dominios.Una de las principales herramientas para lograr este fin, es tomar el control de las decisiones de encaminamiento y las posibles acciones de ingeniería de tráfico llevadas a cabo en cada dominio. Por este motivo, esta tesis explora distintas estrategias de como controlar en forma precisa y eficiente, tanto el encaminamiento como las decisiones de ingeniería de tráfico en Internet. En la actualidad este control reside principalmente en BGP, el cual como indicamos anteriormente, es uno de los principales responsables de las limitantes existentes. El paso natural sería reemplazar a BGP, pero su despliegue actual y su reconocida operatividad en muchos otros aspectos, resultan claros indicadores de que su sustitución (ó su posible evolución) será probablemente gradual. En este escenario, esta tesis propone analizar y contribuir con nuevas estrategias en materia de control de encaminamiento e ingeniería de tráfico inter-dominio en tres marcos temporales distintos: i) en la actualidad en redes IP; ii) en un futuro cercano en redes IP/MPLS (MultiProtocol Label Switching); y iii) a largo plazo en redes ópticas, modelando así una evolución progresiva y realista, facilitando el reemplazo gradual de BGP.Más concretamente, este trabajo analiza y contribuye mediante: - La propuesta de estrategias incrementales basadas en el Control Inteligente de Rutas (Intelligent Route Control, IRC) para redes IP en la actualidad. Las estrategias propuestas en este caso son de carácter incremental en el sentido de que interaccionan con BGP, solucionando varias de las carencias que éste presenta sin llegar a proponer aún su reemplazo. - La propuesta de estrategias concurrentes basadas en extender el concepto del PCE (Path Computation Element) proveniente del IETF (Internet Engineering Task Force) para redes IP/MPLS en un futuro cercano. Las estrategias propuestas en este caso son de carácter concurrente en el sentido de que no interaccionan con BGP y pueden ser desplegadas en forma paralela. En este caso, BGP continúa controlando el encaminamiento y las acciones de ingeniería de tráfico inter-dominio del tráfico IP, pero el control del tráfico IP/MPLS se efectúa en forma independiente de BGP mediante los PCEs.- La propuesta de estrategias que reemplazan completamente a BGP basadas en la incorporación de un nuevo agente de control, al cual denominamos IDRA (Inter-Domain Routing Agent). Estos agentes proporcionan un plano de control dedicado, físicamente independiente del plano de datos, y con gran capacidad computacional para las futuras redes ópticas multi-dominio.Los resultados expuestos aquí validan la efectividad de las estrategias propuestas, las cuales mejoran significativamente tanto la concepción como la performance de las actuales soluciones en el área de Control Inteligente de Rutas, del esperado PCE en un futuro cercano, y de las propuestas existentes para extender BGP al área de redes ópticas.One of the most complex problems in computer networks is how to provide guaranteed performance and reliability to the communications carried out between nodes located in different domains. This is due to several reasons -- which will be analyzed in detail in this thesis -- but in brief, this is mostly due to: i) the limited capabilities of the current inter-domain routing model in terms of Traffic Engineering (TE); ii) the distributed and potentially conflicting nature of policy-based routing, where routing policies are managed independently and without coordination among domains; and iii) the clear limitations of the inter-domain routing protocol, namely, the Border Gateway Protocol (BGP). The goal of this thesis is precisely to study and propose solutions allowing to drastically improve the performance and reliability of inter-domain communications. One of the most important tools to achieve this goal, is to control the routing and TE decisions performed by routing domains. Therefore, this thesis explores different strategies on how to control such decisions in a highly efficient and accurate way. At present, this control mostly resides in BGP, but as mentioned above, BGP is in fact one of the main causes of the existing limitations. The natural next-step would be to replace BGP, but the large installed base at present together with its recognized effectiveness in other aspects, are clear indicators that its replacement (or its possible evolution) will probably be gradually put into practice.In this framework, this thesis proposes to to study and contribute with novel strategies to control the routing and TE decisions of domains in three different time frames: i) at present in IP multi-domain networks; ii) in the near-future in IP/MPLS (MultiProtocol Label Switching) multi- domain networks; and iii) in the future optical Internet, modeling in this way a realistic and progressive evolution, facilitating the gradual replacement of BGP.More specifically, the contributions in this thesis can be summarized as follows. - We start by proposing incremental strategies based on Intelligent Route Control (IRC) solutions for IP networks. The strategies proposed in this case are incremental in the sense that they interact with BGP, and tackle several of its well-known limitations. - Then, we propose a set of concurrent route control strategies for MPLS networks, based on broadening the concept of the Path Computation Element (PCE) coming from the IETF (Internet Engineering Task Force). Our strategies are concurrent in the sense that they do not interact directly with BGP, and they can be deployed in parallel. In this case, BGP still controlls the routing and TE actions concerning regular IP-based traffic, but not how IP/MPLS paths are routed and controlled. These are handled independently by the PCEs.- We end with the proposal of a set of route control strategies for multi-domain optical networks, where BGP has been completely replaced. These strategies are supported by the introduction of a new route control element, which we named Inter-Domain Routing Agent (IDRA). These IDRAs provide a dedicated control plane, i.e., physically independent from the data plane, and with high computational capacity for future optical networks.The results obtained validate the effectiveness of the strategies proposed here, and confirm that our proposals significantly improve both the conception and performance of the current IRC solutions, the expected PCE in the near-future, as well as the existing proposals about the optical extension of BGP.Postprint (published version

    Design and optimization of optical grids and clouds

    Get PDF

    QoS routing granularity in MPLS networks

    Full text link
    corecore