145 research outputs found

    A Specification for Dependent Types in Haskell

    Get PDF
    We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler’s core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our results -- chiefly, type safety, along with theorems that relate these two languages -- have been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell’s term language does not correspond to a consistent logic

    A Specification for Dependent Types in Haskell

    Get PDF
    We propose a core semantics for Dependent Haskell, an extension of Haskell with full-spectrum dependent types. Our semantics consists of two related languages. The first is a Curry-style dependently-typed language with nontermination, irrelevant arguments, and equality abstraction. The second, inspired by the Glasgow Haskell Compiler’s core language FC, is its explicitly-typed analogue, suitable for implementation in GHC. All of our results -- chiefly, type safety, along with theorems that relate these two languages -- have been formalized using the Coq proof assistant. Because our work is backwards compatible with Haskell, our type safety proof holds in the presence of nonterminating computation. However, unlike other full-spectrum dependently-typed languages, such as Coq, Agda or Idris, because of this nontermination, Haskell’s term language does not correspond to a consistent logic

    On Irrelevance and Algorithmic Equality in Predicative Type Theory

    Full text link
    Dependently typed programs contain an excessive amount of static terms which are necessary to please the type checker but irrelevant for computation. To separate static and dynamic code, several static analyses and type systems have been put forward. We consider Pfenning's type theory with irrelevant quantification which is compatible with a type-based notion of equality that respects eta-laws. We extend Pfenning's theory to universes and large eliminations and develop its meta-theory. Subject reduction, normalization and consistency are obtained by a Kripke model over the typed equality judgement. Finally, a type-directed equality algorithm is described whose completeness is proven by a second Kripke model.Comment: 36 pages, superseds the FoSSaCS 2011 paper of the first author, titled "Irrelevance in Type Theory with a Heterogeneous Equality Judgement

    Strategic polymorphism requires just two combinators!

    Get PDF
    In previous work, we introduced the notion of functional strategies: first-class generic functions that can traverse terms of any type while mixing uniform and type-specific behaviour. Functional strategies transpose the notion of term rewriting strategies (with coverage of traversal) to the functional programming paradigm. Meanwhile, a number of Haskell-based models and combinator suites were proposed to support generic programming with functional strategies. In the present paper, we provide a compact and matured reconstruction of functional strategies. We capture strategic polymorphism by just two primitive combinators. This is done without commitment to a specific functional language. We analyse the design space for implementational models of functional strategies. For completeness, we also provide an operational reference model for implementing functional strategies (in Haskell). We demonstrate the generality of our approach by reconstructing representative fragments of the Strafunski library for functional strategies.Comment: A preliminary version of this paper was presented at IFL 2002, and included in the informal preproceedings of the worksho

    Dynamic opacity for abstract types

    Get PDF
    Existential types are the standard formalisation of abstract types. While this formulation is sufficient in entirely statically typed languages, it proves to be too weak for languages enriched with forms of dynamic typing: in the presence of operations performing type analysis, the abstraction barrier erected by the static typing rules for existential types is no longer impassable, because parametricity is violated. We present a light-weight calculus for polymorphic languages with abstract types that addresses this shortcoming. It features a variation of existential types that retains most of the simplicity of standard existentials. It relies on modified scoping rules and explicit coercions between the quantified variable and its witness type

    Intensional Effect Polymorphism

    Get PDF
    Type-and-effect systems are a powerful tool for program construction and verification. We describe intensional effect polymorphism, a new foundation for effect systems that integrates static and dynamic effect checking. Our system allows the effect of polymorphic code to be intensionally inspected through a lightweight notion of dynamic typing. When coupled with parametric polymorphism, the powerful system utilizes runtime information to enable precise effect reasoning, while at the same time retains strong type safety guarantees. We build our ideas on top of an imperative core calculus with regions. The technical innovations of our design include a relational notion of effect checking, the use of bounded existential types to capture the subtle interactions between static typing and dynamic typing, and a differential alignment strategy to achieve efficiency in dynamic typing. We demonstrate the applications of intensional effect polymorphism in concurrent programming, security, graphical user interface access, and memoization

    Program representation size in an intermediate language with intersection and union types

    Full text link
    The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.National Science Foundation (CCR-9417382, CISE/CCR ESS 9806747); Sun grant (EDUD-7826-990410-US); Faculty Fellowship of the Carroll School of Management, Boston College; U.K. Engineering and Physical Sciences Research Council (GR/L 36963, GR/L 15685
    • …
    corecore