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—— Abstract

Type-and-effect systems are a powerful tool for program construction and verification. We de-
scribe intensional effect polymorphism, a new foundation for effect systems that integrates static
and dynamic effect checking. Our system allows the effect of polymorphic code to be intensionally
inspected through a lightweight notion of dynamic typing. When coupled with parametric poly-
morphism, the powerful system utilizes runtime information to enable precise effect reasoning,
while at the same time retains strong type safety guarantees. We build our ideas on top of an
imperative core calculus with regions. The technical innovations of our design include a relational
notion of effect checking, the use of bounded existential types to capture the subtle interactions
between static typing and dynamic typing, and a differential alignment strategy to achieve effi-
ciency in dynamic typing. We demonstrate the applications of intensional effect polymorphism
in concurrent programming, security, graphical user interface access, and memoization.
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1 Introduction

In a type-and-effect system [27, 36], the type information of expression e encodes and
approximates the computational effects o of e, such as how memory locations are accessed in
e. Type-and-effect systems — or effect systems for short in this paper — have broad applications
(e.g., [2, 29, 24, 6]). Improving their expressiveness and precision through static approaches
is a thoroughly explored topic, where many classic language design (e.g., [22, 15, 35, 4, 26])
and program analysis (e.g., [33, 3]) techniques may be useful.

Purely static effect systems are a worthy direction, but looking forward, we believe that
a complementary foundation is also warranted, where the default is a system that can fully
account for and exploit runtime information, aided by static approaches for optimization.
Our belief is shaped by two insights. First, emerging software systems increasingly rely
on dynamic language features: reflection, dynamic linking/loading, native code interface,
flexible meta programming in script languages, to name a few. Second, traditional hurdles
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defying precise static reasoning — such as expression ordering, branching, recursion, and
object dynamic dispatch — are often amplified in the context of effect reasoning.

In this paper, we develop intensional effect polymorphism, a system that integrates static
and dynamic effect reasoning. The system relies on dynamic typing to compensate for the
conservativeness of traditional static approaches and account for emerging dynamic features,
while at the same time harvesting the power of static typing to vouchsafe for programs whose
type safety is fundamentally dependent on runtime decision making. Consider the following
example:

» Example 1 (Conservativeness of Static Typing for Race-Free Parallelism). Imagine we would
like to design a type system to guarantee race freedom of parallel programs. Let expression
e|le’ denote running e and €’ in parallel, whose typing rule requires that e and ¢’ have memory
access effects over disjoint regions. Further, let r1 and r2 be disjoint regions. The following
program is race-free, even though a purely static effect system is likely to reject it:

1 Ax. Ay, (x = 1) || 'y)
2 (if 1 > 0 then ref,; 0 else ref,; 0)
3 (if 0 > 1 then ref,; 0 else ref,5 0)

Observe that parametric polymorphism is not helpful here: x and y can certainly be
typed as region-polymorphic, but the program remains untypable. The root cause of this
problem is that race freedom only depends on the runtime behaviors of (x:=1) || !y, which
only depends on what x and y are at runtime.

Inspired by Harper and Morrisett [19], we propose an effect system where polymorphic
code may intensionally inspect effects at runtime. Specifically, expression assuming e R ¢’
do e; else ey inspects whether the runtime (effect) type of e and that of ¢’ satisfy binary
relation R, and evaluates e if so, or es otherwise. Our core calculus leaves predicate R
abstract, which under different instantiations can support a family of concrete type-and-
effect language systems. To illustrate the example of race freedom, let us consider R being
implemented as region disjointness relation #. The previous example can be written in our
calculus as follows.

» Example 2 (Intensional Effect Polymorphism for Race-Free Parallelism). The following
program type checks, with the static system and the dynamic system interacting in interesting
ways:

1 (Ax.Ay. assuming (x := 0) # !y do (x := 1) || y)
2 (if 1 > 0 then ref,; 0 else ref,» 0)
3 (if 0 > 1 then ref,; 0 else ref,5 0)

Static typing can guarantee that the lambda abstraction in the first line is well-typed
regardless of how it is applied, good news for modularity. Dynamic typing provides precise
typing for expression (x := 0) and expression !y — exploiting the runtime type information
of x and y — allowing for a more precise disjointness check. Observe that in our calculus,
the subexpression participating in the assuming check — x := 0 here — does not have to be
syntactically isomorphic to the expression in the do subexpression, x := 1. For simplicity,
we omit the else expression in this example.

Technical Innovations

On the highest level, our system shares the philosophy with a number of type system
designs hybridizing static checking and dynamic checking (e.g., [14, 34, 18]), and some in the
contexts of effect reasoning [5, 20]. To the best of our knowledge however, this is the first
time intensional type analysis is applied to effect reasoning. This combination is powerful,
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348 Intensional Effect Polymorphism

because not only effect reasoning can rely on runtime type information, but also parametric
polymorphism is fully retained. For example, observe that in the example above, the types
for x and y are parametric, not just “unknowns” or “dynamic”. Let us look at another
example:

» Example 3 (Parametric Polymorphism Preservation). For the following program, the parallel
execution in the second line is statically guaranteed to be type-safe in our system. Programs
written with intensional effect polymorphism do not have runtime type errors.

1 let s = Ax.)\y. assuming (x := 0) # !y do (x := 1) || !y in
2 (s ref,; 0 ref,o 0) || (s ref,3 0 ref,4 0)

In addition, intensional effect polymorphism goes beyond a mechanical adaptation of
Harper-Morrisett, with several technical innovations we now summarize. The most remarkable
difference is that the intensionality of our type system is enabled through dynamic typing. At
runtime, the evaluation of expression assuming e R ¢’ do e; leads to the dynamic typing of e
and €. In contrast, the classic intensional type analysis performs a typecase-like inspection
on the runtime instantiation of the polymorphic type. Our strategy is more general, in that it
not only subsumes the former — indeed, a type derivation conceptually constructed at runtime
must have leaf nodes as instances of value typing — but also allows (the effect of) arbitrary
expressions to be inspected at runtime. We believe this design is particularly relevant for
effect reasoning, because it has less to do with the effect of polymorphically-typed variables,
and more with where these variables appear in the program.

Second, we design the runtime type inspection through a relational check. In the
assuming expression, our system dynamically checks whether R holds, instead of computing
what the effect of e or ¢’ is. The relational design does not require programmers to explicitly
provide an “effect specification/pattern” of the runtime type — a task potentially daunting as
it may either involve enumerating region names, or expressing conditional specifications such
as “a region that some other expression does not touch.” Many safety properties reasoned
about by effect systems are relational in nature, such as thread interference.

Third, the subtle interaction between static typing and dynamic typing poses a unique
challenge on type soundness in the presence of effect subsumption. We elaborate on this
issue in Section 4.4. We introduce a notion of bounded existential types to differentiate but
relate the types assumed by the static system and those by the dynamic system.

Finally, a full-fledged construction of type derivations at runtime for dynamic typing
would incur significant overhead. We design a novel optimization to allow for efficient runtime
effect computation, eliminating the need for dynamic derivation construction while producing
the same result. The key insight is that we could align the static type derivation and the
(would-be-constructed) dynamic type derivation, and compute the effects of the latter simply
by substituting the difference of the two, a strategy we call differential alignment. We will
detail this design in Section 5.

We formalize intensional effect polymorphism in \;., an imperative call-by-value A-calculus
with regions. In summary, this paper makes the following contributions:

It describes a hybrid type system for effect reasoning centering on intensional polymorph-

ism.

It develops a sound type system and operational semantics where relational effect inspec-

tion is made abstract.

It illuminates the subtleties resulting from the difference between static effect reasoning and

dynamic effect reasoning, and proposes bounded existential types to preserve soundness,

and differential alignment to promote efficiency.

It demonstrates the impact of our design by extending the core calculus to the applications

of safe parallelism support, security, UI access, and memoization.
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class Pair {

int ft = 1, sd = 2; 14 interface 0Op { int op(int i); }

int applyTwice(Op £) { 16 class Pref implements 0p {

i = 07
assuming ft = f.op(0) # sd = f.op(5) 17 int sum 0;7
18 // effect: write sum
do ft = f.op(f.op(ft)) || sd = f.op(f.op(sd)); 1o int op(int i) { sum += i; }
else ft = f.op(f.op(ft)) ; sd = f.op(f.op(sd)); 20 } P ’
}
¥ 22 class Hash implements 0p {
. _ . 23 // effect: pure, no effect
Pair pr = nmew Pair(); 24 int op(int i) { hash(i); }
Op o = (0p) newInstance(readFile("filePath")); 25 } P ’

pr.applyTwice(o);

Figure 1 An application of intensional effects in enforcing safe parallelism.

2 Motivating Examples

In this section, we demonstrate the applicability of intensional effects in reasoning about safe
parallelism, information security, consistent Ul access, and program optimization. In each of
these applications, the refined notion of type safety is fundamentally dependent on runtime
decision making, i.e., whether the relation R is satisfied. We instantiate the effect relation
operator R with different concrete relations between effects of expressions.

As in previous work [17, 8], we optionally extend standard Java-like syntax with region
declarations when the client language deems them necessary. In that case, a variable
declaration may contain both type and region annotations, e.g., JLabel j in ui declares
a variable j in region ui. For client languages where regions are not explicitly annotated,
different abstract locations (such as different fields of an object) are treated as separate
regions.

2.1 Safe Parallelism

We demonstrate the application of intensional effects in supporting safe parallelism, where
safety in this context refers to the conventional notion of thread non-interference (race
freedom) [27]. Concretely, Figure 1 is a simplified example of “operation-agnostic” data
parallelism, where the programmer’s intention is to apply some statically unknown operation
(encapsulated in an Op object) — here implemented through reflection — to a data set, here
simplified as a pair of data ft and sd. The programmer wishes to “best effort” leverage
parallelism to process ft and sd in parallel, without sacrificing thread non-interference. The
tricky problem of this notion of safety is it depends on what Op object is. For instance,
parallel processing of the pair with the Hash object is safe, but not when the operation at
concern is the prefix sum operator [7], encapsulated as Pref.

Static reasoning about the correctness of the parallel composition could be challenging
in this example, because the Op object remains unknown until applyTwice is invoked at
runtime.

The assuming expression (line 5) helps the program retain strong type safety guarantees
for parallel composition (line 6), while utilizing the runtime information to enable precise
reasoning. At runtime, the assuming expression intensionally inspects the effects of the
expressions ft = f.op(0) and sd = f.op(5). If they satisfy the binary relation #, par-
allelism will be enabled. If f points to a Hash object, the # relation will be true and the
program enjoys safe concurrency (line 6). On the other hand, if £ points to a Pref object,
the program will be run sequentially, desirable for race freedom safety.
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1 class Page { 17 interface ThirdParty { String show(Page p); 1}

2 String searchBox = "";
) o s on.
i :ziigg ;ziatiozsi.f?r{l/search. ’ 19 class Good implements ThirdParty {
& ’ 20 String show(Page p) { "404"; }
21}

String load_adv (ThirdParty adv) {
assuming url ¢ adv.show(this)

6

7 AU .
s do exec url adv.show(this); 23 class Evil implements ThirdParty {
9

0

else "no advertisement"; 24 String show:(P:.age P),,{
25 p.url = evil.com";
1 }
26 }
. . 27}
12 int search(ThirdParty adv) {
13 load_adv (adv); . ;
14 location = url + searchBox; 29 ThirdParty adv = (ThlrdParty)
s } ’ 30 newInstance (readFile("filePath"));
6} 31 new Page () .render (adv);

Figure 2 An application of intensional effects in preventing security vulnerabilities.

2.2 Information Security

As another application of intensional effects, consider its usage in preventing security vulner-
abilities. Figure 2 presents an adapted (wsj.com) example of real-world security vulnerabilities
[11]. The Page class allows users to search information within the site. Once the search is
called, the page will redirect to a web page corresponding to the url and searchBox strings
(the redirection is represented as changing the location variable for simplicity). The page,
when created, inserts a third party advertisement (line 8).

The third party code can be malicious, e.g., it can modify the search url and redirects
the search to a malicious site, from which the whole system could be compromised, e.g., the
Evil third-party code. Ensuring the key security properties becomes challenging with the
dynamic features because the third party code is only available at runtime, loaded using
reflection. The expression exec e; ey (line 7) encodes a check-then-act programming pattern.
It executes e only if it does not read nor write any object accessible by e; and otherwise it
gets stuck.

With intensional effects, users can intensionally inspect a third party code e whenever e is
dynamically loaded. The intensional inspection, accompanied with a relational policy check,
ensures that e does not access any sensitive data (the url), specified using the relation ¢. It
also ensures that the exec expression does not get stuck.

2.3 Consistent Graphical User Interface (GUI) Access

We show how intensional effects can be used to reason about the correctness of a GUI usage
pattern, common in Subclipse, JDK, Eclipse and JFace [16]. Typically, GUI has a single UI
thread handling events in the “event loop”. This UI thread often spawns separate background
threads to handle time-consuming operations. Many frameworks enforce a single-threaded
GUI policy: only the UI thread can access the GUI objects [16]. If this policy is violated, the
whole application may abort or crash. Figure 3 shows a simplified example of a UI thread
that pulls an event from the eventloop and handles it. In the application, all UI elements
reside in the ui region (declared at line 14), e.g., the field j at line 23.

The safety here refers to no Ul access in any background thread. The tricky problem
here is that the events arrive at runtime with different event handlers. Some handlers may
access Ul objects while the others do not. Therefore, the correctness of spawning a thread to
handle a new event, depends heavily on what objects the corresponding event handler has.
For instance, the handler containing a NonUI object can be executed in a background thread,
while UIAccess should not. The expression spawn e; ez, executes ey in a background thread
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class UIThread {
JLabel global in ui = new JLabel();
void eventloop (Runnable closure) {
assuming global & closure.run()

do spawn global closure.run(); 18 class NonUI implements Runnable {
else closure.run();

3 19 String run() { "does nothing"; }
3 20 }

14 region uij;

16 interface Runnable { String run(); }

[~ RS N SO U U I

10 Runnable closure; 22 class UIAccess implements Runnable {

11 if (1 > 0) closure = new NonUI(); 2 JLa‘t‘)el J in ui = mew JL?‘bel,,();
24 String run() { j.val = "UI"; }
12 else closure = new UIAccess(); 25}

13 new UIThread().eventloop(closure);

Figure 3 An application of intensional effects in disciplining UTI access.

1 class Mem { 13 class Integer { int i = 0; }
2 Integer input = new Integer ();
15 class Mutate {
4 int comp(Mutate m, Integer x) { 16 int mutate(Integer input) {
5 int cache = heavy(input); 17 input.i = 101;
6 assuming m.mutate (x) f§ heavy(input) 18 }
7 do lookup m.mutate(x) heavy (input); cache 19 }
8 else m.mutate(x); heavy(input);
9 3 21 Memo mm = new Mem() ;
22 Mutate mu = new Mutate ();
11 int heavy(Integer i) { /x ... =%/} 23 if (1 > 0) mm.comp(mu, mm.input);
12} 24 else mm.comp(mu, new Integer ());

Figure 4 An application of intensional effects in providing effective memoization.

only if it does not allocate, read or write any object in the region accessed by e;. Otherwise
it gets stuck.

The assuming expression, used by the Ul thread, statically guarantees strong type safety
for the spawn expression, so it does not get stuck. It also utilizes precise runtime information
to distinguish handlers with no UT accesses from other handlers. If a handler satisfies relation
@, it can be safely executed by a background thread. The relation @ is satisfied if the RHS
expression does not allocate, read/write any region denoted by the LHS expression.

2.4 Program Optimization — Memoization

As another application, we utilize intensional effects to implement a proof-of-concept memo-
ization technique in a sequential program. Memoization is an optimization technique where
the results of expensive function calls are cached and these cached results are returned when
the inputs and the environment of the function are the same.

Figure 4 presents a simplified application where repeated tasks, here the heavy method
calls on line 5 and 8, are performed. These two tasks are separated by a small computation
mutate, forming a compute-mutate pattern [9]. We leave the body of the method heavy
intentionally unspecified, which could represent a set of computationally expensive operations.
It could, e.g., generate the power set ps of a set of input elements and return the size of ps
or do the Bogosort.

The second heavy task needs not be recomputed in full if the mutate invocation does
not modify the input nor the environment of heavy. If so, the cached result of the first call
can be reused and the repeated computation can be avoided. The expression lookup e; es
executes the expressions e; only if e; does not write to objects in the regions read by es.
Otherwise it gets stuck.

Ensuring that the lookup expression does not get stuck is challenging. This is because
the validity of the cached result depends on the runtime value of both the mutation m and
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v = b|Xx:Te value
= v|x|ee|let x=cine|if e then e else e expression
|refpTe |le|e:=¢
| assuming e R e do e else e | SAFE e e

o
|

T == a|Bool|T % T'|Ref, T type
p u=C region
¢ ==y region element
o =W effect
w = ¢|acc,T effect element
acc = init | rd | wr access right

Figure 5 \;c Abstract Syntax. (Throughout the paper, notation ® represents a set of e elements,
and notation . represents a sequence of e elements.)

its input x. For example, if the parameter x is a new object as the one created at line 24,
the cache is valid, while the one represented by mm. input (line 23) is not valid.

The assuming expression solves the problem: the safety of the lookup expression is
statically guaranteed. At runtime, with precise dynamic information, the intensional binary f
relational check ensures that the write accesses of the LHS do not affect the RHS expression.
If this relation is satisfied, the cache is valid and can be reused.

Other optimizations

Intensional effect polymorphism can be used for other similar optimizations, e.g., record-and-
reply style memoization, common sub-expression elimination, loop-invariant code motion
and redundant load elimination. In all these applications, if the mutation, similar to the
style of, for example, m.mutate(x), is infrequent or does not modify a large portion of the
heap, the cached results can avoid repeated expensive computations.

Summary

The essence of intensional effect polymorphism lies in the interesting interplay between
static typing and dynamic typing. Static typing guarantees that the potentially unsafe
expressions are only used under runtime “safe” contexts (i.e., those that pass the relational
effect inspection), in highly dynamic scenarios such as parallel composition, loading third
party code, handling I/O events, and data reuse. Dynamic typing exploits program runtime
type information to allow for more precise effect reasoning, in that “safe” contexts can be
dynamically decided upon based on runtime type/effect information.

3 ), Abstract Syntax

To highlight the foundational nature of intensional effect polymorphism, we build our ideas
on top of an imperative region-based lambda calculus. The abstract syntax of ;. is defined
in Figure 5. Expressions are standard for an imperative A\ calculus, except the last two
forms which we will soon elaborate. We do not model integers and unit values, even though
our examples may freely use them. Since if e then e else e plays a non-trivial role in our
examples, we choose to model it explicitly. As a result, boolean values b € {true, false} are
also explicitly modeled. Metavariable x represents variables.
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Our core syntax is expressive enough to encode the core program logic of the examples in
Section 2. However, it does not model objects for simplicity without the loss of generality.
An extension with objects and classes is mostly standard [30] and is included in our technical
report [25].

We introduced expression assuming e R ¢’ do e; else e, where from now on we call
e and e’ the condition expressions, ey the do expression, and e; the else expression. At
runtime, this expression retrieves the effects of e and ¢’ through dynamic typing, without
evaluating e or ¢’. The timing of gaining this knowledge is important: the conditions will
not be evaluated and the do expression is not evaluated yet. In other words, even though
our system relies on runtime information, it is not an a posteriori effect monitoring system.

A General Framework

As illustrated in Section 2, effect reasoning has diverse applications. We aimed to design
a general framework for effect reasoning, which can be concretized to different “client”
languages. To achieve this goal, we choose to (1) leave the definition of the binary relation
R abstract; (2) include an abstract SAFE e e’ expression, which is type-safe iff ¢ R ¢’
holds. The R relation and the SAFE expression can be concretized to different “client”
languages to capture different application domain goals. For example, when R is concretized
to thread non-interference, one possible concretization of SAFE e ¢’ is parallel composition
e|le’. The instantiations of R of the applications in Section 2 are shown in Figure 6. The only
requirement for R is that it must be monotone [28, 8], i.e., closed under effect subsetting.
Concretely, it says that if c R ¢/, 09 C o and o1 C ¢/, then o¢ R ;. All instantiations in
Section 2 satisfy this requirement.

Types, Regions, and Effects

Programmer types are either primitive types, reference types Ref, T for store values of type
T in region p, or function types T % T, from T to T’ with o as the effect of the function
body. Last but not least, as a framework with parametric polymorphism, types may be type
variables a.

Our notion of regions is standard [36, 27], an abstract collection of memory locations.
A region in our language can either be demarcated as a constant r, or parametrically as a
region variable 7.

An effect is a set of effect elements, either an effect variable ¢, or acc,T, representing an
access acc to region p whose stored values are of type T. Access rights init, rd, wr represent
allocation, read, and write, respectively.

As the grammar suggests, our framework is a flexible system where a type, a region, or
an effect may all be parametrically polymorphic.

4 The Type System

This section describes the static semantics to our type-and-effect system. Overall, the type
system associates each expression with effects, a goal shared by all effect systems. The
highlight is how to construct a precise and sound effect system to support dynamic-typing-
based intensionality. The precision of this type system is rooted at the R relation enforcement,
at assuming time, based on effects computed by dynamic typing over runtime values and
their types. Our static type system is designed so that any SAFE expression appearing in the
do branch does not need to resort to runtime enforcement and the R relation is guaranteed

353

ECOOP’15



354

Intensional Effect Polymorphism

‘ Safe Parallel Composition, Section 2.1

eRe def e#te “Two effects do not interfere.”
SAFEee & (el €) “Run the two expressions in parallel.”
‘ # is defined as: ‘
o#d" d#" o H#o ) p# p#p
0 # o - - . rd,T#rd,T y -
cUod # o ocH#Ho rd, T # wr,T wr,T # wr,T
‘Information Security, Section 2.2 ‘
eR e NN “Expression €' does not read/write regions accessible by e.”
SAFE e ¢! % exece e “Execute €' if it does not read/write the regions by e.”

‘ $ is defined as: ‘

o_<>o_// o_/<>0_/l 0_//<>0_ 0_//<>0_/ p#pl p#p/
cUd O o” o’ O oUdo’ acc, T O rdp/T/ acc, T ¢ er/T'

a0

‘UI Access, Section 2.3‘

def . . .
eR e = ewe “Expression €’ does not access regions accessible by e.”

SAFE e ¢/ %' spawn e ¢ “Execute ¢’ in another thread if it accesses no region by e.
‘ & is defined as: ‘

o' Bo o’ @ o o 2o’ o' oo p#p
oca

!
o' @douUd cUd @ o" acc,T @ accy T

‘ Memoization, Section 2.4‘

eR¢€ def efe’/ “RHS’s read has no dependcy on the LHS’s write”

SAFE ¢ ¢! & lookup e ¢/ “Execute e if e writes no region read by e’.”

b is defined as:

O'HO'// O'/hO'/I p#pl

0 rd,T wr,T TS —
h g " P h g o h P WI'pT h I‘dp/T/

ocUo' fo

Figure 6 Client Implementation of R and SAFE e e.
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r X—=1 type environment
T = VYg.3x.T type scheme
g == alv]|s generic variable
gs == T|pl|o generic structure
d = A relationship set
Y o= g=:gs subsumption set
A ocRo|VG.E relationship

Figure 7 \;c Type System Definitions.

to hold by the static type system. As we shall see, this leads to non-trivial challenges to
soundness, as static typing and dynamic typing make related — yet different — assumptions
on effects.

4.1 Definitions

Relevant structures of our type system are defined in Figure 7.

Type Environment and Type Scheme

Type environment I maps variables to type schemes, and we use notation I'(z) to refer to T
where the rightmost occurrence of x : T/ for any T' in I'is x : T.

A type scheme is similar to the standard notion where names may be bound through
quantification [13]. Our type scheme, in the form of V¢.3%.T, supports both universal
quantification and existential quantification. Our use of universal quantification is mundane:
the same is routinely used for parametric polymorphism systems. Observe that in our system,
type variables, region variables, and effect variables may all be quantified, and we use a
metavariable g for this general form, and call it a generic variable. Similarly, we use a unified
variable gs to represent either a type, a region, or an effect, and call it a generic structure for
convenience. Existential quantification is introduced to maintain soundness, a topic we will
elaborate in a later subsection. For now, only observe that existentially quantified variables
appear in the type scheme as a sequence of g =<: gs, each of which we call a subsumption
relationship. Here we also informally say g is existentially quantified, with bound gs. When
G is a sequence of 0 and X is empty, we also shorten the type scheme V¢.3%.T as T. Type
schemes are alpha-equivalent.

Relationship Set

Another crucial structure to construct our type system is the relationship set ®. On the
high level, this structure captures the relationships between generic structures. Concretely,
it is represented as a set whose element may either be an abstract effect relationship o R o’ —
denoting two effects o and ¢’ conform to the R relation — or a subsumption context relationship.
The latter is represented as V¢.X. Intuitively, a subsumption context relationship is a
collection of subsumption relationships, except some of its generic variables may be universally
quantified. Subsumption context relationships are alpha-equivalent.

As we shall see, the relationship set plays a pivotal role during type checking. At each
step of derivation, this structure represents what one can assume about effects. For example,
the interplay between assuming and SAFE is represented through whether the relationship
set constructed through typing assuming can entail the relationship that makes the SAFE
expression type-safe. Our relationship set may have a distinct structure, but effect system
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\Subtypmg: T =T \

(TYPE-TRAN) (TYPE-FUN)
OFT=<:Ty (TYPE-REF) ® - Ty =: Ty ®+Ty =T
(TYPE-REFL) g <./ B oy p =2 Ol o <0

O-TX:T

®FT =T  &FRef, T <:Ref, T <I>FT01>T15:T60—/>T/1

Effect Subsumption: ® kg o <: 0’

(EFF-TRAN) (EFF-suUB) (EFrF-CONS)
EI)EiF_REiL) P kg o =t 0 D tepr 09 S: 0’ ocCo c=:0 €d
oc=0
LA @bﬁajza' @Feﬁaj:ol @Feﬁaj:al
Vg.Xed o =: ¢’ €% for some 0
Dby p =i p dom(9) =7 ran(0) N ftu(X) = 0
(EFr-Acc) 9P =P (EFF-INST) 0) =9 ( )/ fiu(®)
O by {ace, T} <: {acc, T} Phyo=o

Region Subsumption: ® k., p <: p’

(REG-TRANS) (REG-SUB) (REG-CONS)
((DRiG'P;Ej)p Dhegp=ipo Phligg po =i pf pCp p=ped
e D breg p 21 D breg p < pf D breg p 2
Vg.Xed p =<:p' € 0% for some 0 dom(0) = ¢ ran(0) N fto(X) = 0
(REG-INST) y
P by p 2t p
‘Relationship Entailment: @ k. A‘
Acd dk,0cRo P bpog <io P bp oy <: 0’
(REL-IN) (REL-CLOSED)
o '_ar A ¢ bzr oo R 01

Figure 8 \;c Subsumption and Entailment.

designers should be able to find conceptual analogies in existing systems, such as privileges
in Marino et al. [28].

Notations and Convenience Functions

We use (overloaded) function ftv to compute the set of free (i.e., neither universally bound
nor existentially bound) variables in T, p and 0. We use fv(e) to compute the set of free
variables in expression e. We use dom and ran to compute the domain and the range of
a function. All definitions are standard. Substitution 6 is a mapping function from type
variables « to types T, region variables v to regions p and effect variables ¢ to effects o. The
composition of substitutions, written 66’ is defined as 66'(g) = (6’ (g)).

We use comma for sequence concatenation. For example, I', x — T denotes appending
sequence I' with an additional binding from x to .
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4.2 Subsumption and Entailment

Figure 8 defines subsumption relations for types, effects, and regions. All three forms of
subsumption are reflexive and transitive. For function types, both return types and effects
are covariant, whereas argument types are contra-variant. For Ref types, the regions are
covariant, whereas the types for what the store holds must be invariant [37].

(Err-InsT) and (REG-INST) capture the instantiation of universal variables in subsumption
context relationship. After all, the latter is a collection of “parameterized” subsumption
relationships which can be instantiated.

Finally, we define a simple relation ® k;,- A to denote that relationship set ® can entail
A. (REL-IN) says any relationship set may entail its element. (REL-CLOSED) intuitively says
that R is closed under taking subsetting. (REL-CLOSED) is a manifestation of the monotonic
requirement [28, 8] for R, introduced in Section 3.

4.3 Typing Judgment Overview

Typing judgment in our system takes the form of ®;I' e : T, o, which consists of a type
environment I', a relationship set ®, an expression e, its type T and effect o. When the
relationship set and the type environment are empty, we further shorten the judgment as
Fe: T, o for convenience. The judgment is defined in Figure 9, with auxiliary definitions
related to universal and existential quantification deferred to Figure 10.

The rules (T-LET) and (T-vaRr) follow the familiar let-polymorphism (or Damas-Milner
polymorphism [13]). Universal quantification is introduced at let boundaries, through the
function Gen(T',o)(T). Its elimination is performed at (T-var), via <. Both definitions are
standard, and appear in Figure 10. The let-polymorphism in let x = e in €’ expression
is sound because of the Gen function in the rule (T-LET). The Gen function enforces the
standard value restriction [36]. That is, if e is a value, its type could be generalized and thus
be polymorphic, otherwise its type will be monomorphic.

(T-suB) describes subtyping, where both (monomorphic) type subsumption and effect
subsumption may be applied. Rules (T-reF), (T-GET) and (T-seT) for store operations
produce the effects of access rights init, rd and wr, respectively. All other rules other than
(T-AssuME) and (T-SAFE) carry little surprise for an effect system.

4.4 Static Typing for Dynamic Intensional Analysis

To demonstrate how intensional effect analysis works, let us first consider an unsound but
intuitive notion of assuming typing in (T-AssuME-UNSOUND) (below).

¢ I'Fe:T,o o;TFe: T, o
b, oRo:TFey:T" a9 O:The : T, 04

(T-ASSUME-UNSOUND)
®;T' F assuming e R ¢ do ¢ else e; : T, 0q U oy

To type check the do expression ey, (T-ASSUME-UNSOUND) takes advantage of the fact
that expressions e and e’ satisfy the relation R, i.e., in the third condition of the rule, we
strengthen the current ® with o R ¢’. The (T-sarE) rule in Figure 9 says that the expression
type checks iff ® entails the abstract effect relationship R. As a result, a SAFE expression
whose safety happens to rely on o R ¢’ can be verified to be safe by the static system.

Albeit tempting, the rule above is unsound. To illustrate, consider the safe parallelism
discipline in the following example, i.e., we instantiate the R relation with noninterference
relation # and the SAFE expression with parallel expression ||.
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‘Typing: <I>;I‘|—e:T,U‘

T-Boo (T-vAR) (T-LET)
EIJ_FI—bL)B g _T=D@)  ®lke:To  ®Lxo Cen(lo)(D)kd T .o
; : Bool,
&:TFx:T,0 ®:TFletx=cine : T, cUd’
(T-suB) (T-aBS)
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O:TFe:T o O:THMx:Te: TS T,0
(T-app) (T-REF)
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(T-GET) (T-sET) ; ;
®;I'-le: T,0Urd,T O I'Fe:=¢ :T,cUo Uwr,T

®;I'+e:Bool,o O; T keg:T,o00 O;I'ke; T, 01
®;I'+ifethenegelsee; : T,cUogUoy

(T-1F-THEN-ELSE)

x=fole)Ufue) TE =7 @"FEGen(t)=7T TI'=Tx—>1v & =079"
& I"Fe:T,o O T'Fe T, o
O ocRo T Fey:T", oy SFT"4+T" Pt oy T op O:T ke : T, 0y

®;T' I assuming e R ¢’ do ¢ else e; : T”, 09 U oy

(T-ASSUME)

®:TFe: Ty, o0 &:TFe : Ty, 01 ® b, 00 R oy clientT(T, o, Ty, 00, T1,01)
& T+SAFEee : T,0

(T-SAFE)

Figure 9 )\, Typing Rules.

» Example 4 (Soundness Challenge). In the following example, the variables x and y have
the same static (but different dynamic) type. Thus, the expression x 3 and y 3 have the
same static effect. Should the parallel expression at line 5 typecheck with the assumption
expression at line 4, there would be a data race at runtime.

1 let buff = ref 0 in

2 let x = if 1 > 0 then Az. !'buff else Az. buff := z in
3 let y = if 0 > 1 then Az. !buff else Az. buff := z in
4 assuming !buff # x 3

5 do !'buff || y 3

6 else !buff ;X 2

In this example, we have an imperative reference buff, and two structurally similar but
distinct functions x and y. The code intends to perform parallelization, .e., buff || y 3,
line 5. Let us review the types of the variables:

buff : Ref, Int

% . Int {rd,Int,wr,Int} Tnt

{rd,Int,wr,Int}
L It

y : Int
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V Introduction: Gen‘ Gen(T,0)(T) =Vg.T where g = fto(T)\(ftv(T') U ftv(o))
vV Elimination: < ‘ T <Vvg.T if T' =0T for some 6

3 Introduction: EGen ‘

P = —|Refpr T|T = TSP pack context
PE := —|w,PE,& |accr T | acc, P
PR - | Zv PR»Z,
EGen(Vg.T) 2 V§.EGenM(T,0)
EGenM(PE|[o], 7) 2 3 < 0. EGenM(PE[s =: 0], 7 U{s}) ifo¢ ¢, ftv(oc) C ¢,s fresh
-\ A — . — —
EGenM(PRp], §) = 3y =2: p.EGenM(PR[y <: p], g U{~y}) ifp¢ g, ftv(p) C ¢, fresh
EGenM(T,q) 2 if o € ¢ for any T = PE[o]
p € ¢ for any T = PR[p]
3 Elimination: =>‘ Vg.(0%) FVg.IN.T = Vg.0T for some 0 A dom(§) C G

Lifting: 1
O FPlc <o) TPo] if VG.X € ¢=:0€bX forsome 0, dFo 1o’
SFPly=<:p] P[] if VGXed, v=:peby forsome 6, P p1p
SFTHT if VG.2 €, fio(T)N(VF.E) =0

® + PE[s <: 0] 1 PE[¢'] if V. € P, ¢ <:0 €0 for some 0, D+ o 1o
® - PE[y =: p] T PE[p/] if VG.X € ®, v =:p€ X forsome 0, dFptp
dFoto if VE.5 €S, fu(o)N(VE.E) =0

O - PRy <: p] T PR[p] if VG.X € P, v =<:p€bX forsome 6, Pt ptp
Sptp if VGXed, ftu(p)N(VG.X) =10

Figure 10 Definitions for V and 3 Introduction and Elimination.

and the effects of the expressions:

'buff : {rd,Int}
x 3 : {rd,Int,wr,Int}
y 3 : {rd,Int,wr,Int}

According to the static system, the types of x and y are exactly the same. Thus, by the
third condition of (T-sAFE), the expression buff || y 3 on line 5, is well-formed. This is
because the assuming expression has placed {rd,Int} # {rd,Int, wr,Int} as an element
of the relationship set, after typechecking buff # x 3 on line 4.

At runtime, the initialization expression of the let expressions will be first evaluated
before being assigned to the variables (call-by-value, details in Section 5). Therefore, x
becomes Az. !'buff and y becomes Az.buff:=z before the assuming expression. Informally,
we refer to the effect computed at runtime through dynamic typing (e.g., right before the
assuming expression) as dynamic effect, as opposed to the static effect computed at compile
time. The dynamic types of the variables are:
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{rd,Int}

x : Int Int

{wr,Int}

y : Int Int

and effects of the relevant expressions are:

'buff : {rd,Int}
x 3 : {rd,Int}
y 3 : {wr,Int}

Clearly, the dynamic effect computed for buff and that for x 3 on line 4 do not conflict.
Therefore, the do expression buff || y 3 will be evaluated. However, the effects of the
expressions buff and y 3 on line 5 do conflict, which causes unsafe parallelism.

The root cause of the problem is that the static and the dynamic system make decisions
based on two related but different effects: one with the static effect, and the other with the
dynamic effect. A sound type system must be able to differentiate the two.

A Sound Design with Bounded Existentials

The key insight from the discussion above is that the static system must be able to express
the dynamic effect that the assuming expression makes decision upon. Before we move on,
let us first state several simple observations:

(i) (Dynamic effect refines static effect) The static effect of an expression e is a conservative
approximation of the dynamic effect.

(ii) (Free variables determine effect difference) Improved precision of intensional effect
polymorphism is achieved by using the more precise types for the free variables, see e.g.,
dynamic and static type of the variable x in Example 4.

Observation (i) indicates the possibility of referring to the dynamic effect as “there exists
some effect that is subsumed by the static effect.” Observation (%) further suggests that
dynamic effect can be computed by treating all free variables existentially: “there exists
some type T which is a subtype of the static type T’ for each free variable, to help mimic
the type environment while dynamic effect is computed”. Bounded existential types provide
an ideal vehicle for expressing this intention.

(T-AssuME) captures the type checking of an assuming expression. We substitute the
type of each free variable with (an instance of) its existential counterpart. Let us revisit
Example 4, this time with (T-AssuME). The free variables of the assuming expression at
line 4, in Example 4 are x and buff. The original types of the free variables are:

{rd,Int,wr,Int} I
%

buff : Ref, Int and x : Int nt

The existential types used to type check the assuming expressions are:
buff : Ref, Int and x : 3¢ =<:{rd,Int},¢ <: {wr,Int}.Int ~2 Int
The relationship set is:
® =¢ <:rdyInt, ¢ <: wr,Int (1)
The effects of the condition expressions are:

'buff : rd,Int and x 3 : ¢ =:rdyInt, ¢ = wr,Int
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Parallelism: || clientT(T, 0, Ty, 00, T1,01) def (T=Tog=T1)A(c =09Uo0y)
clientT(T, 0, Ty, 00,T1,01) dof (T=T1)A(c=01)
clientT(T, 0, To, 00, T1,01) % (T = void) A (o = 0)

‘ Memoization: lookup ‘ clientT(T, 0, Ty, 00,T1,01) 3 (T=T1)A(c=00)

Figure 11 Client Implementation of Predicate clientT.

To type check the do expression, ® is strengthened as:
¢’ = {rd,Int # {¢ <:rd,Int,s; <: wr,Int}, ¢ <:rd,Int,¢; <: wr,Int} (2)

When type checking the expression on line 5, y 3 has effect {rd,Int, wr,Int}. We cannot
establish F,,. (as Figure 8). A type error is correctly induced against the potential unsafe
parallel expression.

Rule (T-assumE) first computes the free variables from the two condition expressions,
written X = fo(e) U fu(e¢’). With assumption I'(X) = 7, all free variables X are considered
for type environment strengthening. It then applies the existential introduction function
EGen to strengthen T, the bounded existential with the original type T as the bound. The
definition of EGen is in Figure 10. It then eliminates (or open) the existential quantification
using =. In a nutshell, this predicate ®” + EGen(T) = T introduces an existential type
and eliminates it right away (a common strategy in building abstract data types [30]).
Subsumption relationship information is placed into the relationship set, ® = ®, ®"”. The
new environment I has the new types T for the free variables, an instantiation of the
bounded existential type.

Function EGen uses the EGenM function to quantify effects and regions. Here, to produce
the existential type, function FGen maintains the structure of the original type, e.g., if the
original type is a function type, it produces a new function type with all covariant types/ef-
fects/regions quantified. Observe that contravariant types/effects/regions are harmless: their
dynamic counterpart (which also refines the static one) does not cause soundness problems.
To facilitate the quantification (also known as existential introduction or packed [30]), three
pack contexts, P, PE, PR, are defined, representing the contexts to contain a type, an effect,
or a region, respectively.

Finally, the type of the do expression needs to be [lifted, weakening types that may
potentially contain refreshed generic variables of existential types, through a self-explaining
7 definition in Figure 10. For example, the effect computed for the expression x 3 is
¢1 =:rd,Int,¢; <: wr,Int. The 1 function applies the substitution of {¢; — rd,Int, ¢, —
wr,Int} on the precomputed effect and produces static effect rd,Int, wr,Int.

The typing of (T-sArE) relies on the client function clientT. clientT(T,o,To, 00, T1,01)
defines the conditions where a safe expression should typecheck, as shown in Figure 11.

5 Dynamic Semantics

This section describes the dynamic semantics of A\;c. The highlight is to support a highly
precise notion of effect polymorphism via a lightweight notion of dynamic typing, which we
call differential alignment.
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Definitions:

s u= 1 —><p T) v store
foa= ace(l) trace
v on= L] (extended) values
E = —|Ee|vE|letx=Eine|letx=vinE |refpTE evaluation context
|['lE|E:=e|v:=E|if E then e else e
{l l—><p7T>U} €s
‘Dynamic Typing: ;&' e:T,o ‘ (DT-LoC)

5;0;T' k5 1 : Ref, T, 0

For all other (DT-*) rules, each is isomorphic to its counterpart (T-*) rule, except that every
occurrence of judgment ®;T" e : T, o in the latter rule should be substituted with
$;®; 'k e: T, o in the former.

‘Evaluation relation: s;e; f — s';¢'; f/

(cat) s;Ele]; f — s;E[e]; f, [/ if s;e=s'ses ff
(asm)  s;assuming e; R es = s;e; if 5;0:0 t et Ty, o4 fori =1, 2
do e else ¢’ and eg = { e/ it oy R,02
e’ otherwise
(safe) $;SAFE e ' = clientR(s,e,¢€’)
(set) sl =v=s{l H<p)T>v};v;wr(l) if {l '} Es
(ref) siref p T v = s,{l ’_><p,T>'U}3 l;init(l) if [ fresh
(get) s; 1= s;5(1);rd(1)
(app) s;Ax: Tie v = s;[x — v]e; 0
(let) s;let x =v in e = s; [x — v]e;
(ifT) s;if true then e else ¢’ = s;e;0
(ifF)s;if false then e else ¢’ = s;¢’;()

Figure 12 \;. Operational Semantics.

Operational Semantics Overview

The ;e runtime configuration consists of a store s, the to-be-evaluated expression e, and
a trace f, defined in Figure 12. The store maps references (or locations) [ to values v. In
addition to booleans and functions, locations themselves are values as well. Each store cell
also records the region p and type T information of the reference. A trace can informally be
viewed as “realized effects,” and it is defined as a sequence of accesses to references, with
init(l), rd(l), and wr(l), denoting the instantiation, read, and write to location [ respectively.
Traces are only needed to demonstrate the properties of our language. This structure and its
runtime maintenance are unnecessary in a \;. implementation.

The small-step semantics is defined by relation s;e; f — s';¢’; f/, which says that the
evaluation of an expression e with the store s and trace f results in the new expression €,
the new store s’, and the new trace f’. We use notation [x — v]e to define the substitution
of = with v of expression e. We use —* to represent the reflexive and transitive closure of —.
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Dynamic Effect Inspection

Most reduction rules are conventional, except (asm) and (safe). The (asm) rule captures
the essence of the assuming expression, which relies on dynamic typing to achieve dynamic
effect inspection. Dynamic typing is defined through type derivation s;®;I' i e : T, o,
defined in the same figure, which extends static typing with one additional rule for reference
value typing.

At runtime, the assuming expression retrieves the more precise dynamic effect of
expression e; and es, and checks whether relation R holds. Observe that at runtime, e; and
e, in the assuming expression are not identical to their respective forms when the program
is written. Now, the free variables in the static program have been substituted with values,
which carry more precise information on types, regions, and effects. This is the root cause
why intensional effect polymorphism can achieve higher precision than a purely static effect
system.

It should be noted that we evaluate neither e; nor e, at the evaluation of the assuming
expression. In other words, \;. is not an a posteriori effect monitoring system.

The reduction of (safe) relies on an abstract function clientR. clientR(s,e,e’) computes
the runtime configuration after the one-step evaluation of the SAFE expression. For example,
for the information security example (Figure 2), the configuration s; adv.show(this); ® will be
the result of the clientR function. The abstract treatment of this function allows \;. to be
defined in a highly modular fashion, similar to previous work [28]. We will come back to this
topic, especially its impact on soundness, in Sec. 6.

Optimization: Efficient Effect Inspection via Differential Alignment

The reduction system we have introduced so far may not be efficient: it requires full-fledged
dynamic typing, which may entail dynamic construction of type derivations to compute the
dynamic effects. In this section, we introduce one optimization.

As observed in Section 4.4, the (sub)expressions that do not have free variables will have
the same static effects (i.e., computed via static typing) and dynamic effects (i.e., computed
via dynamic typing). Our key insight is that, the only “difference” between the two forms of

effects for the same expression lies with those introduced by free variables in the expression.

As a result, we define a new dynamic effect computation strategy with two steps:

1. At compile time, we compute the static effects of the two expressions used for the effect
inspection of each assuming expression in the program. In the meantime, we record the
type (which contains free type/effect /region variables) of each free variable that appears
in these two expressions.

2. At runtime, we “align” the static type of each free variable with the dynamic type
associated with the corresponding value that substitutes for that free variable. The
alignment will compute a substitution of (static) type/effect/region variables to their
dynamic counterparts. The substitution will then be used to substitute the effect we
computed in Step 1 to produce the dynamic effect.

For Step 1, we define a transformation from expression e to an annotated expression d,
defined in Figure 13. The two forms are identical, except that the assuming expression in the
“annotated expression” now takes the form of assuming (X: ) e; : 01 R ey : 03 do e else ¢/,
which records the free variables of expressions e; and es and their corresponding static
types, denoted as X : . The same expression also records the statically computed effects o;
and oy for e; and e;. The free variable computation function fv and variable substitution
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‘Abstract Syntax in Optimized A;e

d = v|x|dd]|letx=dind|if d then d else d annotated expressions
| refpTd|!d|d:=d
| assuming (x:T)d: 0 Rd: o dodelsed|SAFE d d

. &I
Transformation: e ~~ d
oI
X ~ X
®,I e T 3,
ee ~ dd ife ~5 d,ef ~ d

assuming e; R ey ey assuming (x: 1) d; : 01 Rdy : 09 if X = fule)) U foleo), T'(X) =7
do e; else ey do dj else d4 & + EGen(T) = 7,
=P,
', x—~7tFd;:T;,0;for i=1,2

ei%}:di fori=1,2,3,4

‘ Operational Semantics in Optimized A;.: s;d; f —o s;d; f ‘
(Ocat) s;E[d; f —o SKE] S f if sidi f =0 s, d) S
(Oasm) s;assuming(v:1) =0 s;do;0 if 50,055 v:T,0
dy o1y Rdy: oo and 6T = Gen((),0)(T)
do d else d’ and do = { 4, it 601 K 0o
d"  otherwise

For all other = ¢ rules, each is isomorphic to its counterpart = rule, except that every
occurrence of metavariable e in the latter rule should be substituted with d in the former.

Figure 13 Optimized A;e with Differential Alignment.

function are defined for d elements in an analogous fashion as for e elements. We omit these
definitions.

Considering all the annotated information is readily available while we perform static
typing of the assuming expression— as in (T-Assume) — the transformation from expression

T
e to annotated expression d under ® and I', denoted as e ~~ d, is rather predictable, defined
in the same Figure.

The most interesting part of our optimized system is its dynamic semantics. Here we
define a reduction system —o, at the bottom of the same figure. We further use —, to
represent the reflexive and transitive closure of —o. Upon the evaluation of the annotated
assuming expression, the types associated with the free variables — now substituted with
values — are “aligned” with the types associated with the corresponding values. The latter is
computed by judgment s; ®;T"ty ) d : T, 0, defined as s; ®;I' i) e : T, 0 where e o d. In
other words, we only need to dynamically type values in the optimized A;e.. The alignment is
achieved through the computation of the substitution 6. As we shall see in the next section,
such a substitution always exists for well-typed programs.
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6 Meta-Theories

In this section, we establish formal properties of \;.. We first show our type system is
sound relative to sound customizations of the client effect systems (Section 6.1). We next
present important soundness results for intensional effect polymorphism in Section 6.2, and
a soundness and completeness result on differential alignment in Section 6.3. The proofs of
these theorems and lemmas can be found in the accompanying technical report [25]. Before
we proceed, let us first define two simple definitions that will be used for the rest of the
section.

» Definition 5. [Redex Configuration] We say < s;e; f > is a redex configuration of program
e/, written e'> <s, e, f>, iff 0;¢';0 —* s;Ele]; f.

Next, let us define relation st f: 0, which says that dynamic trace f realizes static effect
o under store s:

» Definition 6. [Effect-Trace Consistency] st f: o holds iff ace(l) € f implies acc,T € o
where {I = T)”} € s.

6.1 Type Soundness

Our type system leaves the definition of R and SAFE e e’ abstract, both in terms of syntax
and semantics. As a result, the soundness of our type system is conditioned upon how these
definitions are concretized. Now let us explicitly define the sound concretization condition:

» Definition 7 (Sound Client Concretization). We say a A;. client is sound if under that
concretization, the following condition holds: if s; ®;I" by eg : To, 00, s;P; 1" by e1 : Ty, 01,
clientT (T, o,

To, 00, T1,01) and (s', e, f) = clientR(s,eq,e1), then s'; &; Tk e: T,0 and s’ f:0.

All lemmas and theorems for the rest of this section are implicitly under the assumption
that Definition 7 holds, which we do not repeatedly state.
Our soundness proof is constructed through subject reduction and progress:

» Lemma 8 (Type Preservation). If s;®; ' e: T,0 and s; e f — s's¢/; f', then '3 ®;T I,
€:T, 0 and T <: Tand o' Co.

» Lemma 9 (Progress). If s;®;T' I, e: T, 0 then either e is a value, or s;e; f — s';¢; f' for
some s', €, f'.

» Theorem 10 (Type Soundness). Given an expression e, if 0;0 & e: T,o, then either the
evaluation of e diverges, or there exist some s, v, and f such that 0; e;() —* s;v; f.

6.2 Soundness of Intensional Effect Polymorphism

The essence of intensional effect polymorphism lies in the fact that through intensional
inspection (dynamic typing at the assuming expression), every instance of evaluation of the
SAFE e( e; expression in the reduction sequence must be “safe,” where “safety” is defined
through the R relation concretized by the client language. To be more concrete:

» Definition 11 (Effect-based Soundness of Intensional Effect Polymorphism). We say e is
effect-sound iff for any redex configuration such that e > <s,¢’, f> and ¢’ = SAFE ¢ ey, it
must hold that s;0;0 k5 eo : To, 00 and s;0;0 k) e : Ty, 01 and g R ;.
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Effect-based soundness is a corollary of type soundness:
» Corollary 12 ();. Effect-based Soundness). If ;0 F e: T, o, then e is effect-sound.

There remains a gap between this property and what one intuitively believes the execution
of SAFE eq e; is “safe”: ultimately, what we hope to enforce is at runtime, the “monitored
effect” — i.e., the trace through the evaluation of ey and that of e; — does not violate what
R represents. The definition above falls short because it relies on the dynamic typing of eg
and e;. To rigorously define the more intuitive notion of soundness, let us first introduce a
trace-based relation induced from R:

» Definition 13 (Induced Trace Relation). R™ is a binary relation defined over traces. We
say R™ is induced from R under store s iff R™ is the smallest relation such that if o1 R o,
then f; R™ f, where st fi:01 and sk fo: 09

One basic property of our reduction system is the trace sequence is monotonically
increasing:

» Lemma 14 (Monotone Traces). If s;e; f — s';¢s f/, then f' = f, f" for some f".
Given this, we can now define the more intuitive flavor of soundness over traces:

» Definition 15 (Trace-based Soundness of Intensional Effect Polymorphism). We say e is
trace-sound iff for any redex configuration such that e > <s,¢’, f> and ¢’ = SAFE ¢y ey, it
must hold that for any so, e, and fo where s;eq; f —* so;ep; f, fo and any s1, €], and f1
where s;e1; f —* s1;€); f, f1, then condition fy R™®f; holds.

To prove trace-based soundness, the crucial property we establish is:

» Lemma 16 (Effect-Trace Consistency Preservation). If s;®;T' I e: T,0, sk f:0 and
s;e f— s8¢ f thens':-f 0

Finally, we can prove the intuitive notion of soundness of intensional effect polymorphism:

» Theorem 17 ( \;. Trace-Based Soundness). If §;0 - e: T, o, then e is trace-sound.

6.3 Differential Alignment Optimization

In Section 5, we defined an alternative “optimized A;.” to avoid full-fledged dynamic typing,
centering on differential alignment. We now answer several important questions: (1) static
completeness: every typable program in \;. has a corresponding program in optimized A;e.
(2) dynamic completeness: for every typable program in A, its corresponding program
at runtime cannot get stuck due to the failure of finding a differential alignment. (3)
soundness: for every program in \;, its corresponding program in optimized \;. should
behave “predictably” at runtime. We will rigorously define this notion shortly; intuitively, it
means that “optimized \;.” is indeed an optimization of A, i.e., without altering the results
computed by the latter.

N . . . o,
Optimization static completeness is a simple property of ~%:

» Theorem 18 (Static Completeness of Optimization). For any e such that ®;T' Fe: T, o,

there exists d such that e 25 d.
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To correlate the dynamic behaviors of \;. and optimized A, first recall that the —
reduction system and — o reduction system are identical, except for how the assuming
expression is reduced. The progress of (Oasm) relies on the existence of substitution 6 that
aligns the dynamic type associated with values and the static type. Dynamic completeness
of differential alignment thus can be viewed as the “correspondence of progress” for the two
reduction systems to reduce the corresponding assuming expressions. This is indeed the
case, which can be generally captured by the following theorem:

» Theorem 19 (Dynamic Completeness of Optimization). If s;®;T' I, e: T,0 and e 20 d,
then given some s and f, the following two are equivalent:

there exists some s', € and f’ such that s;e; f — s'; ¢, f'.

there exists some s”, d and f" such that s;d; f —o s";d, f".

Finally, we wish to study soundness. The most important insight is that the transformation

. e, . . .
relation ~> can be preserved through the corresponding reductions of \;. and optimized A;e.
In other words, one can view the reduction of optimized ;. as a simulation of \:

. ., ®r . ;
» Lemma 20 (—¢ Simulates — with ~» Preservation). If s;®;I'l e: T,0 and e % 4 and
0,0
s;ef—sse, f and s;dy f —o 8" d, f", then s’ =", and f' = f", and € ~ d'.
Finally, let us state our soundness of differential alignment:

» Theorem 21 (Soundness of Optimization). Given some expression e such that 0;0 + e: T, 0,

and e e d then
there exists a reduction sequence such that 0; e;() —* s;v; f iff there exists a reduction
sequence such that 0; d; 0 —7%, s;v; f.
there exists a reduction sequence such that the evaluation of e diverges according to — iff
there exists a reduction sequence such that the evaluation of d diverges according to —¢.

Observe that we are careful by not stating the two reduction systems must diverge at the
same time, or reduce to the same value at the same time. That would be unrealistic if the
client instantiations of our calculus introduce non-determinism.

7 Related Work

Static type-and-effect systems are well-explored. Earlier work includes Lucassen [27], and
Talpin et al. [36], and more recent examples such as Marino et al. [28], Task Types [21],
Bocchino et al. [8] and Rytz et al. [32]. There are well-known language design ideas to
improve the precision and expressiveness of static type systems, and many may potentially be
applied to effect reasoning, such as flow-sensitive types [15], typestates [35] and conditional
types [4]. Classic program analysis techniques such as polymorphic type inference, nCFA [33],
CPA [3], context-sensitive, flow-sensitive, and path-sensitive analyses, are good candidates
for effect reasoning of programs written in existing languages. For example, effect systems
can gain more precision by incorporating control flow analysis (nCFA) [33] which provides
precise call-site information [23].

Baifiados et al. [5] developed a gradual effect (GE) type system based on gradual typing
[34], by extending Marino et al. [28] with ? (“unknown”) types. As a gradual typing system,
GE excels in scenarios such as prototyping. The system is also unique in its insight by
viewing ? type concretization as an abstract interpretation problem. Our work shares the
high-level philosophy of GE — mixing static typing and dynamic typing for effect reasoning —
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but the two systems are orthogonal in approaches. For example, GE programs may run into
runtime type errors, whereas our programs do not. Foundationally, the power of intensional
effect polymorphism lies upon how parametric polymorphism and intensional type analysis
interact — a System F framework on the famous lambda cube — whereas frameworks based on
gradual typing are not. Other than gradual typing, other solutions to mix static typing and
dynamic typing include the Dynamic type [1], soft typing [10] and Hybrid Type Checking [14].
From the perspective of the lambda cube, their expressiveness is on par with gradual typing.
Previous work, e.g., Heumann et al. [20] and Treichler et al. [38], relies on dynamic effects
for safe concurrency. Our system is more general: it can not only support safe concurrency
as shown in Section 2.1, but also other important application domains such as information
security, consistent Ul access and program optimization.

Intensional type analysis by Harper and Morrisett [19] is a framework with many extensions
(e.g., [12]). We apply it in the context of effect reasoning, and the intentionality in our system
is achieved through dynamic typing, instead of typecase-style inspection on polymorphic
types. To the best of our knowledge, our system is the first hybrid effect type system built
on top of the intensional type analysis.

Existential types are commonly used for type abstraction and information hiding. They
are also suggested [19, 31] to capture the notion of Dynamic type [1]. Our use of existential
types are closer to the latter application, except that we aim to differentiate (and connect)
the types at compile time and the types at runtime, instead of pessimistically viewing the
former as Dynamic. We are unaware of the use of bounded existential types to connect the
two type representations.

Effect systems are an important reasoning aid with many applications. For example,
beyond the application domains we described in Section 2, they are also known to be useful
for safe dynamic updating [29] and checked exceptions [24, 6].

8 Conclusion

In this paper, we develop a new foundation for type-and-effect systems, where static effect
reasoning is coupled with intensional effect analysis powered by dynamic typing. We
describe how a precise, sound, and efficient hybrid reasoning system can be constructed, and
demonstrate its applications in concurrent programming, information security, Ul access,
and memoization.
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