9,239 research outputs found

    A Multi-Gene Genetic Programming Application for Predicting Students Failure at School

    Full text link
    Several efforts to predict student failure rate (SFR) at school accurately still remains a core problem area faced by many in the educational sector. The procedure for forecasting SFR are rigid and most often times require data scaling or conversion into binary form such as is the case of the logistic model which may lead to lose of information and effect size attenuation. Also, the high number of factors, incomplete and unbalanced dataset, and black boxing issues as in Artificial Neural Networks and Fuzzy logic systems exposes the need for more efficient tools. Currently the application of Genetic Programming (GP) holds great promises and has produced tremendous positive results in different sectors. In this regard, this study developed GPSFARPS, a software application to provide a robust solution to the prediction of SFR using an evolutionary algorithm known as multi-gene genetic programming. The approach is validated by feeding a testing data set to the evolved GP models. Result obtained from GPSFARPS simulations show its unique ability to evolve a suitable failure rate expression with a fast convergence at 30 generations from a maximum specified generation of 500. The multi-gene system was also able to minimize the evolved model expression and accurately predict student failure rate using a subset of the original expressionComment: 14 pages, 9 figures, Journal paper. arXiv admin note: text overlap with arXiv:1403.0623 by other author

    Comprendiendo el potencial y los desafíos del Big Data en las escuelas y la educación

    Full text link
    In recent years, the world has experienced a huge revolution centered around the gathering and application of big data in various fields. This has affected many aspects of our daily life, including government, manufacturing, commerce, health, communication, entertainment, and many more. So far, education has benefited only a little from the big data revolution. In this article, we review the potential of big data in the context of education systems. Such data may include log files drawn from online learning environments, messages on online discussion forums, answers to open-ended questions, grades on various tasks, demographic and administrative information, speech, handwritten notes, illustrations, gestures and movements, neurophysiologic signals, eye movements, and many more. Analyzing this data, it is possible to calculate a wide range of measurements of the learning process and to support various educational stakeholders with informed decision-making. We offer a framework for better understanding of how big data can be used in education. The framework comprises several elements that need to be addressed in this context: defining the data; formulating data-collecting and storage apparatuses; data analysis and the application of analysis products. We further review some key opportunities and some important challenges of using big data in educationEn los últimos años, el mundo ha experimentado una gran revolución centrada en la recopilación y aplicación de big data en varios campos. Esto ha afectado muchos aspectos de nuestra vida diaria, incluidos el gobierno, la manufactura, el comercio, la salud, la comunicación, el entretenimiento y muchos más. Hasta ahora, la educación se ha beneficiado muy poco de la revolución del big data. En este artículo revisamos el potencial de los macrodatos en el contexto de los sistemas educativos. Dichos datos pueden incluir archivos de registro extraídos de entornos de aprendizaje en línea, mensajes en foros de discusión en línea, respuestas a preguntas abiertas, calificaciones en diversas tareas, información demográfica y administrativa, discurso, notas escritas a mano, ilustraciones, gestos y movimientos, señales neurofisiológicas, movimientos oculares y muchos más. Analizando estos datos es posible calcular una amplia gama de mediciones del proceso de aprendizaje y apoyar a diversos interesados educativos con una toma de decisiones informada. Ofrecemos un marco para una mejor comprensión de cómo se puede utilizar el big data en la educación. El marco comprende varios elementos que deben abordarse en este contexto: definición de los datos; formulación de aparatos de recolección y almacenamiento de datos; análisis de datos y aplicación de productos de análisis. Además, revisamos algunas oportunidades clave y algunos desafíos importantes del uso de big data en la educació

    Predicting student performance using data mining and learning analysis technique in Libyan Higher Education

    Get PDF
    The Technology has an increasing impact on all areas of life, including the education sector, and requires developing countries to emulate developed countries and integrate technology into their education systems. Recently schools in Libya are facing an issue trying to figure out why students perform poorly in certain subjects and how can they know how they will perform next in the future in coming semesters in perspective subject. There are several methods proposed to predict the student’s performance, using data mining techniques. In this paper, there are plans to create Data Mining Techniques in Education (i.e., DME) prediction model clustering, classification and association rule mining in many universities and schools in order to provide students and teachers with the most advanced platform. Although relatively late, the Libyan government finally responded to this challenge by investing heavily in rebuilding the education system and launching a national plan to presented method in terms of predicting students’ performance based on their grades in Math and English. The results are divided in to three main sections clustering analysis using k-mean algorithm, classification analysis was done using two rounds first using Gain Ratio Evaluations to find out the top attributes that used by J84 algorithm in second round of classification, and rule association analysis using A priori algorithm. Rule association analysis is applied for the clusters generate by clustering analysis to generate the rules associated with each cluster. For each section, a list of inputs is presented with the scale used for the values followed by the results of the algorithm and explanation for the finding

    Systematic mapping review on student’s performance analysis using big data predictive model

    Get PDF
    This paper classify the various existing predicting models that are used for monitoring andimproving students’ performance at schools and higher learning institutions. It analyses all theareas within the educational data mining methodology. Two databases were chosen for thisstudy and a systematic mapping study was performed. Due to the very infant stage of thisresearch area, only 114 articles published from 2012 till 2016 were identified. Within this, atotal of 59 articles were reviewed and classified. There is an increased interest and research inthe area of educational data mining, particularly in improving students’ performance withvarious predictive and prescriptive models. Most of the models are devised for pedagogicalimprovements ultimately. It is a huge scarcity in producing portable predictive models that fitsinto any educational environment. There is more research needed in the educational big data.Keywords: predictive analysis; student’s performance; big data; big data analytics; datamining; systematic mapping study

    Personalised trails and learner profiling within e-learning environments

    Get PDF
    This deliverable focuses on personalisation and personalised trails. We begin by introducing and defining the concepts of personalisation and personalised trails. Personalisation requires that a user profile be stored, and so we assess currently available standard profile schemas and discuss the requirements for a profile to support personalised learning. We then review techniques for providing personalisation and some systems that implement these techniques, and discuss some of the issues around evaluating personalisation systems. We look especially at the use of learning and cognitive styles to support personalised learning, and also consider personalisation in the field of mobile learning, which has a slightly different take on the subject, and in commercially available systems, where personalisation support is found to currently be only at quite a low level. We conclude with a summary of the lessons to be learned from our review of personalisation and personalised trails

    ANN for Predicting Temperature and Humidity in the Surrounding Environment

    Get PDF
    Abstract: In this research, an Artificial Neural Network (ANN) model was developed and tested to predict temperature in the surrounding environment. A number of factors were identified that may affect temperature or humidity. Factors such as the nature of the surrounding place, proximity or distance from water surfaces, the influence of vegetation, and the level of rise or fall below sea level, among others, as input variables for the ANN model. A model based on multi-layer concept topology was developed and trained using data from several regions in the surrounding environment. The evaluation of testing the dataset shows that the ANN model is capable of correctly predicting the temperature with 100% accuracy

    IMPROVING PERFORMANCE OF STUDENTS’ GRADE CLASSIFICATION MODEL USES NAÏVE BAYES GAUSSIAN TUNING MODEL AND FEATURE SELECTION

    Get PDF
    Student grades are a relevant variable for predicting student academic performance. In achieving good and quality student performance, it is necessary to analyze or evaluate the factors that influence student performance. When a educator can predict students' academic performance from the start, the educator can adjust the way of learning so that learning can run effectively. The purpose of this research is to study how it is applied to determine the interrelationships between variables and find out which variables have an effect, then use it as a feature selection technique. Then, researchers review the most popular classifier, Gaussian Naïve Bayes (GNB). Next, we survey the feature selection models and discuss the feature selection approach. In this study, researchers will classify student grades based on existing features to evaluate student performance, so it can guide educators in selecting learning methods and assist students in planning the learning process. The result is that applying Gaussian Naïve Bayes (GNB) without feature selection has a lower accuracy of 10.12% while using feature selection the accuracy increases to 10.12%

    Predicting Academic Performance: A Systematic Literature Review

    Get PDF
    The ability to predict student performance in a course or program creates opportunities to improve educational outcomes. With effective performance prediction approaches, instructors can allocate resources and instruction more accurately. Research in this area seeks to identify features that can be used to make predictions, to identify algorithms that can improve predictions, and to quantify aspects of student performance. Moreover, research in predicting student performance seeks to determine interrelated features and to identify the underlying reasons why certain features work better than others. This working group report presents a systematic literature review of work in the area of predicting student performance. Our analysis shows a clearly increasing amount of research in this area, as well as an increasing variety of techniques used. At the same time, the review uncovered a number of issues with research quality that drives a need for the community to provide more detailed reporting of methods and results and to increase efforts to validate and replicate work.Peer reviewe
    corecore