3,098 research outputs found

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Agent-based asset administration shell approach for digitizing industrial assets

    Get PDF
    Modern manufacturing systems are facing new challenges related to the fast-changing market conditions, increased global competition and rapid technological developments, imposing strong requirements in terms of flexibility, robustness and reconfigurability. In this context, the Industry 4.0 (I4.0) paradigm relies on digitizing industrial assets to fulfil these requirements. The implementation of this digitization process is being promoted by the so-called Asset Administration Shell (AAS), a digital representation of an asset that complies with standardization and interoperability strategies. At this moment, a significant part of the AAS developments is more focused on the information management of the asset along its lifecycle and not concerned with aspects of intelligence and collaboration, which are fundamental aspects to develop I4.0 compliant solutions. In this sense, this paper presents an agent-based AAS approach for enhancing the digitization process of assets, considering agents to embed distributed intelligence and collaborative functions, service orientation to support interoperability, and holonic principles to provide the system organization. The proposed agent-based AAS was implemented in an industrial automation system aiming to analyze its applicability.info:eu-repo/semantics/publishedVersio

    Scalable fleet monitoring and visualization for smart machine maintenance and industrial IoT applications

    Get PDF
    The wide adoption of smart machine maintenance in manufacturing is blocked by open challenges in the Industrial Internet of Things (IIoT) with regard to robustness, scalability and security. Solving these challenges is of uttermost importance to mission-critical industrial operations. Furthermore, effective application of predictive maintenance requires well-trained machine learning algorithms which on their turn require high volumes of reliable data. This paper addresses both challenges and presents the Smart Maintenance Living Lab, an open test and research platform that consists of a fleet of drivetrain systems for accelerated lifetime tests of rolling-element bearings, a scalable IoT middleware cloud platform for reliable data ingestion and persistence, and a dynamic dashboard application for fleet monitoring and visualization. Each individual component within the presented system is discussed and validated, demonstrating the feasibility of IIoT applications for smart machine maintenance. The resulting platform provides benchmark data for the improvement of machine learning algorithms, gives insights into the design, implementation and validation of a complete architecture for IIoT applications with specific requirements concerning robustness, scalability and security and therefore reduces the reticence in the industry to widely adopt these technologies

    Cyber-physical manufacturing systems: An architecture for sensor integration, production line simulation and cloud services

    Get PDF
    none9noThe pillars of Industry 4.0 require the integration of a modern smart factory, data storage in the Cloud, access to the Cloud for data analytics, and information sharing at the software level for simulation and hardware-in-the-loop (HIL) capabilities. The resulting cyber-physical system (CPS) is often termed the cyber-physical manufacturing system, and it has become crucial to cope with this increased system complexity and to attain the desired performances. However, since a great number of old production systems are based on monolithic architectures with limited external communication ports and reduced local computational capabilities, it is difficult to ensure such production lines are compliant with the Industry 4.0 pillars. A wireless sensor network is one solution for the smart connection of a production line to a CPS elaborating data through cloud computing. The scope of this research work lies in developing a modular software architecture based on the open service gateway initiative framework, which is able to seamlessly integrate both hardware and software wireless sensors, send data into the Cloud for further data analysis and enable both HIL and cloud computing capabilities. The CPS architecture was initially tested using HIL tools before it was deployed within a real manufacturing line for data collection and analysis over a period of two months.openPrist Mariorosario; Monteriu' Andrea; Pallotta Emanuele; Cicconi Paolo; Freddi Alessandro; Giuggioloni Federico; Caizer Eduard; Verdini Carlo; Longhi SauroPrist, Mariorosario; Monteriu', Andrea; Pallotta, Emanuele; Cicconi, Paolo; Freddi, Alessandro; Giuggioloni, Federico; Caizer, Eduard; Verdini, Carlo; Longhi, Saur

    Combined automotive safety and security pattern engineering approach

    Get PDF
    Automotive systems will exhibit increased levels of automation as well as ever tighter integration with other vehicles, traffic infrastructure, and cloud services. From safety perspective, this can be perceived as boon or bane - it greatly increases complexity and uncertainty, but at the same time opens up new opportunities for realizing innovative safety functions. Moreover, cybersecurity becomes important as additional concern because attacks are now much more likely and severe. However, there is a lack of experience with security concerns in context of safety engineering in general and in automotive safety departments in particular. To address this problem, we propose a systematic pattern-based approach that interlinks safety and security patterns and provides guidance with respect to selection and combination of both types of patterns in context of system engineering. A combined safety and security pattern engineering workflow is proposed to provide systematic guidance to support non-expert engineers based on best practices. The application of the approach is shown and demonstrated by an automotive case study and different use case scenarios.EC/H2020/692474/EU/Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems/AMASSEC/H2020/737422/EU/Secure COnnected Trustable Things/SCOTTEC/H2020/732242/EU/Dependability Engineering Innovation for CPS - DEIS/DEISBMBF, 01IS16043, Collaborative Embedded Systems (CrESt

    Industrial agents in the era of service-oriented architectures and cloudbased industrial infrastructures

    Get PDF
    The umbrella paradigm underpinning novel collaborative industrial systems is to consider the set of intelligent system units as a conglomerate of distributed, autonomous, intelligent, proactive, fault-tolerant, and reusable units, which operate as a set of cooperating entities (Colombo and Karnouskos, 2009). These entities are forming an evolvable infrastructure, entering and/or going out (plug-in/plugout) in an asynchronous manner. Moreover, these entities, having each of them their own functionalities, data, and associated information are now connected and able to interact. They are capable of working in a proactive manner, initiating collaborative actions and dynamically interacting with each other in order to achieve both local and global objectives.info:eu-repo/semantics/publishedVersio
    corecore