8 research outputs found

    Rolling bearing fault identification using multilayer deep learning convolutional neural network

    Get PDF
    The vibration signal of rolling bearing is usually complex and the useful fault information is hidden in the background noise, therefore, it is a challenge to identify rolling bearing faults from the complex vibration environment. In this paper, a novel multilayer deep learning convolutional neural network (CNN) method to identify rolling bearing fault is proposed. Firstly, in order to avoid the influence of different characteristics of the input data on the identification accuracy, a normalization preprocessing method is applied to preprocess the vibration signals of rolling bearings. Secondly, a multilayer CNN based on deep learning is designed in this paper to improve the fault identification accuracy of rolling bearing. Simulation data and experimental data analysis results show that the proposed method has better performance than SVM method and ANN method without any manual feature extractor design

    A Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach in an evolving environment

    Get PDF
    Fault diagnostic methods are challenged by their applications to industrial components operating in evolving environments of their working conditions. To overcome this problem, we propose a Systematic Semi-Supervised Self-adaptable Fault Diagnostics approach (4SFD), which allows dynamically selecting the features to be used for performing the diagnosis, detecting the necessity of updating the diagnostic model and automatically updating it. Within the proposed approach, the main novelty is the semi-supervised feature selection method developed to dynamically select the set of features in response to the evolving environment. An artificial Gaussian and a real world bearing dataset are considered for the verification of the proposed approach

    A Literature Review of Fault Diagnosis Based on Ensemble Learning

    Get PDF
    The accuracy of fault diagnosis is an important indicator to ensure the reliability of key equipment systems. Ensemble learning integrates different weak learning methods to obtain stronger learning and has achieved remarkable results in the field of fault diagnosis. This paper reviews the recent research on ensemble learning from both technical and field application perspectives. The paper summarizes 87 journals in recent web of science and other academic resources, with a total of 209 papers. It summarizes 78 different ensemble learning based fault diagnosis methods, involving 18 public datasets and more than 20 different equipment systems. In detail, the paper summarizes the accuracy rates, fault classification types, fault datasets, used data signals, learners (traditional machine learning or deep learning-based learners), ensemble learning methods (bagging, boosting, stacking and other ensemble models) of these fault diagnosis models. The paper uses accuracy of fault diagnosis as the main evaluation metrics supplemented by generalization and imbalanced data processing ability to evaluate the performance of those ensemble learning methods. The discussion and evaluation of these methods lead to valuable research references in identifying and developing appropriate intelligent fault diagnosis models for various equipment. This paper also discusses and explores the technical challenges, lessons learned from the review and future development directions in the field of ensemble learning based fault diagnosis and intelligent maintenance

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed

    FAULT DETECTION FRAMEWORK FOR IMBALANCED AND SPARSELY-LABELED DATA SETS USING SELF-ORGANIZING MAPS

    Get PDF
    While machine learning techniques developed for fault detection usually assume that the classes in the training data are balanced, in real-world applications, this is seldom the case. These techniques also usually require labeled training data, obtaining which is a costly and time-consuming task. In this context, a data-driven framework is developed to detect faults in systems where the condition monitoring data is either imbalanced or consists of mostly unlabeled observations. To mitigate the problem of class imbalance, self-organizing maps (SOMs) are trained in a supervised manner, using the same map size for both classes of data, prior to performing classification. The optimal SOM size for balancing the classes in the data, the size of the neighborhood function, and the learning rate, are determined by performing multiobjective optimization on SOM quality measures such as quantization error and information entropy; and performance measures such as training time and classification error. For training data sets which contain a majority of unlabeled observations, the transductive semi-supervised approach is used to label the neurons of an unsupervised SOM, before performing supervised SOM classification on the test data set. The developed framework is validated using artificial and real-world fault detection data sets

    Computing Intelligence Technique and Multiresolution Data Processing for Condition Monitoring

    Get PDF
    Condition monitoring (CM) of rotary machines has gained increasing importance and extensive research in recent years. Due to the rapid growth of data volume, automated data processing is necessary in order to deal with massive data efficiently to produce timely and accurate diagnostic results. Artificial intelligence (AI) and adaptive data processing approaches can be promising solutions to the challenge of large data volume. Unfortunately, the majority of AI-based techniques in CM have been developed for only the post-processing (classification) stage, whereas the critical tasks including feature extraction and selection are still manually processed, which often require considerable time and efforts but also yield a performance depending on prior knowledge and diagnostic expertise. To achieve an automatic data processing, the research of this PhD project provides an integrated framework with two main approaches. Firstly, it focuses on extending AI techniques in all phases, including feature extraction by applying Componential Coding Neural Network (CCNN) which has been found to have unique properties of being trained through unsupervised learning, capable of dealing with raw datasets, translation invariance and high computational efficiency. These advantages of CCNN make it particularly suitable for automated analyzing of the vibration data arisen from typical machine components such as the rolling element bearings which exhibit periodic phenomena with high non-stationary and strong noise contamination. Then, once an anomaly is detected, a further analysis technique to identify the fault is proposed using a multiresolution data analysis approach based on Double-Density Discrete Wavelet Transform (DD-DWT) which was grounded on over-sampled filter banks with smooth tight frames. This makes it nearly shift-invariant which is important for extracting non-stationary periodical peaks. Also, in order to denoise and enhance the diagnostic features, a novel level-dependant adaptive thresholding method based on harmonic to signal ratio (HSR) is developed and implemented on the selected wavelet coefficients. This method has been developed to be a semi-automated (adaptive) approach to facilitate the process of fault diagnosis. The developed framework has been evaluated using both simulated and measured datasets from typical healthy and defective tapered roller bearings which are critical parts of all rotating machines. The results have demonstrated that the CCNN is a robust technique for early fault detection, and also showed that adaptive DD-DWT is a robust technique for diagnosing the faults induced to test bearings. The developed framework has achieved multi-objectives of high detection sensitivity, reliable diagnosis and minimized computing complexity
    corecore