
 

 

 

 

ABSTRACT 

 

Title of Thesis: FAULT DETECTION FRAMEWORK FOR 

IMBALANCED AND SPARSELY-LABELED 

DATA SETS USING SELF-ORGANIZING 

MAPS 

  

 Rushit N. Shah, Master of Science, 2018 

  

Thesis Directed By: Professor Michael G. Pecht, Department of 

Mechanical Engineering 

 

While machine learning techniques developed for fault detection usually assume that 

the classes in the training data are balanced, in real-world applications, this is seldom 

the case. These techniques also usually require labeled training data, obtaining which 

is a costly and time-consuming task. In this context, a data-driven framework is 

developed to detect faults in systems where the condition monitoring data is either 

imbalanced or consists of mostly unlabeled observations. To mitigate the problem of 

class imbalance, self-organizing maps (SOMs) are trained in a supervised manner, 

using the same map size for both classes of data, prior to performing classification. The 

optimal SOM size for balancing the classes in the data, the size of the neighborhood 



 

 

 

function, and the learning rate, are determined by performing multiobjective 

optimization on SOM quality measures such as quantization error and information 

entropy; and performance measures such as training time and classification error. For 

training data sets which contain a majority of unlabeled observations, the transductive 

semi-supervised approach is used to label the neurons of an unsupervised SOM, before 

performing supervised SOM classification on the test data set. The developed 

framework is validated using artificial and real-world fault detection data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

FAULT DETECTION FRAMEWORK FOR IMBALANCED AND SPARSELY-

LABELED DATA SETS USING SELF-ORGANIZING MAPS   

 

by 

 

Rushit N. Shah 

 

 

Thesis submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Master of Science 

2018 

 

Advisory Committee: 

Professor Michael G. Pecht, Chair 

Dr. Michael H. Azarian  

Professor Peter Sandborn  

Professor Patrick McCluskey  

 



 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Rushit N. Shah 

2018  



 

ii 

 

 

Dedication 

 

 

 

 

 

 

 

To my parents Neeta & Nishad Shah for their continued support & encouragement.   



 

iii 

 

Acknowledgements 

First, I would like to thank my advisors Dr. Michael H. Azarian, and Prof. Michael G. 

Pecht for having provided me the opportunity to study and to conduct research at the 

University of Maryland, College Park, and at the Center for Advanced Life Cycle 

Engineering (CALCE). Their guidance and support throughout my two and a half years 

of education have helped me grow into a better researcher. I will forever be grateful to 

Dr. Azarian for the innumerable hours he spent discussing finer, technical aspects of 

projects with me, and challenging my thinking at every step along the way which has 

engrained in me the value of critical thinking.  

 

Additionally, thank you to Prof. Patrick McCluskey and Prof. Hugh Bruck for serving 

on my committee and providing invaluable insights. I would like to extend a special 

thank you to the late Dr. Myeongsu Kang, without whose invaluable feedback this work 

would not have been possible.  

 

I would also like to thank the many graduate students (Anto Peter, Jordan Jameson, 

Jing Tian, Guru Pandian, Varun Khemani, Nripendra Patel, Jose Romero and others) 

and research scientists at CALCE that I have had an opportunity to share my time with 

and learn from. Working with such a diverse and intelligent group has been an honor. 

Spending time with each of you in technical and, perhaps more importantly, non-



 

iv 

 

technical discussions provided me with support, guidance, or even simply a break 

which was instrumental to the completion of this work.  

 

To my parents, who have fully supporting my choices and decisions and have helped 

me believe in all my dreams and aspirations, I am forever grateful. To my grandma, 

who unfortunately passed away a few months before the completion of this degree 

program, you would have been proud.  

 

Finally, I’d like to thank the many companies that provide financial support to 

the research efforts at the University of Maryland and CALCE, making this work 

possible. 

  



 

v 

 

Table of Contents 

Dedication .................................................................................................................ii 

Acknowledgements ................................................................................................. iii 

Table of Contents ...................................................................................................... v 

List of Figures ........................................................................................................viii 

List of Tables............................................................................................................ xi 

Chapter 1: Introduction .............................................................................................. 1 

Chapter 2: Related Work ........................................................................................... 7 

2.1. Imbalanced Data Sets ................................................................................. 7 

2.2. Sparsely-Labeled Data Sets ...................................................................... 10 

Chapter 3: Self-Organizing Maps............................................................................. 13 

3.1. Overview ................................................................................................. 13 

3.2. Use of SOM for Fault Detection ............................................................... 16 

Chapter 4: cSOM – A Supervised Fault Detection Methodology .............................. 17 

4.1. Overview of cSOM .................................................................................. 17 

4.2. Formulating a Binary Classifier ................................................................ 22 

4.3. Formulating a Multiclass Classifier .......................................................... 24 

4.4. Binary Classification Experimental Results .............................................. 24 

4.4.1. Experiments Using Benchmark Data Sets ......................................... 25 

4.4.2. Experiments Using Artificial Data Sets ............................................. 28 

4.4.3. Comparison of 2SOM and SVM-RBF .............................................. 30 



 

vi 

 

4.5. Multiclass Classification .......................................................................... 34 

Chapter 5:  The cSOM Methodology for Dealing with Imbalanced Data Sets .......... 36 

5.1. Hyperparameter Considerations for SOM ................................................. 38 

5.2. Choosing SOM Hyperparameters ............................................................. 41 

5.2.1. SOM Quality Metrics ....................................................................... 42 

5.2.2. Multiobjective Optimization Strategy for Choosing SOM 

Hyperparameters .............................................................................................. 46 

5.2.3. Statistical Significance of Metrics ..................................................... 49 

5.3. Experimental Setup and Results ............................................................... 55 

5.3.1. Data and Design of Experiments ....................................................... 55 

5.3.2. Genetic Algorithm Setup .................................................................. 59 

5.3.3. Results.............................................................................................. 59 

5.3.4. Repeatability of Optimization and Sensitivity Analysis..................... 61 

5.3.5. Comparison with Other Classifiers ................................................... 65 

5.3.6. Experiments Using Benchmark Data Sets ......................................... 71 

Chapter 6:  The Semi-Supervised cSOM Methodology for Dealing With Sparsely-

Labeled Data Sets .................................................................................................... 75 

6.1. Introduction to Semi-Supervised Learning ............................................... 76 

6.2. Developed Semi-Supervised cSOM Methodology .................................... 77 

6.2.1. Clustering ......................................................................................... 78 

6.2.2. Labeling ........................................................................................... 79 

6.2.3. Classification .................................................................................... 80 



 

vii 

 

6.3. Experimental Setup and Results ............................................................... 82 

6.4. Experiments Using Benchmark Data Sets ................................................. 85 

Chapter 7: Contributions .......................................................................................... 90 

Chapter 8: Conclusions and Future Work ................................................................. 92 

Appendix A ............................................................................................................. 96 

Appendix B ............................................................................................................. 99 

Appendix C ........................................................................................................... 102 

Appendix D ........................................................................................................... 104 

Appendix E ........................................................................................................... 109 

References ............................................................................................................. 113 

 

  



 

viii 

 

List of Figures 

Figure 1: The MQE-based fault detection concept, where 𝑑 represents the 

dimensionality of the input vector of the data set and is the same as that of the weight 

vector of the SOM neurons. ..................................................................................... 17 

Figure 2: The training procedure of the cSOM methodology. ................................... 19 

Figure 3: An example of decision-making of a test observation using Dhealthiness. ...... 20 

Figure 4: Visualization of the two-dimensional artificial data sets generated to test the 

sensitivity of the developed classifier, the two classes are denoted with ‘o’ and ‘x’. . 29 

Figure 5: Comparison of (a) test accuracy, (b) training time for 2SOM and SVM-RBF 

classifiers as functions of increasing size of training data set (M-2SPIRAL). ........... 32 

Figure 6: Performance factor computed for 2SOM and SVM-RBF as a function of 

increasing size of training data set (M-2SPIRAL). ................................................... 33 

Figure 7: In the case of 2SOM, the BMUs for each test observation behave like 

support vectors in an SVM. In the case of SVM-RBF, fixed support vectors are 

discovered by solving the dual optimization problem. .............................................. 34 

Figure 8: Scatter plot for the Iris data. Red = Setosa (Class 1), Green = Versicolor 

(Class 2), Blue = Virginica (Class 3). ....................................................................... 35 

Figure 9:  Illustration of how 2SOM can alleviate the imbalance problem. Training a 

SOM on each imbalanced class using the same number of neurons yields a balanced 

data set of neurons representing each class of data. .................................................. 38 



 

ix 

 

Figure 10: Test accuracy of 2SOM and SVM-RBF at different levels of imbalance of 

the training data set. ................................................................................................. 39 

Figure 11: Multiobjective optimization strategy to determine SOM hyperparameters.

 ................................................................................................................................ 47 

Figure 12: Profile plot of the responses as function of the predictors. ....................... 51 

Figure 13: Correlation plots between for the two pairs of responses (a) dH1 and QE1 

(b) dH2 and QE2. The numbers in the corners of the scatter plot denote the Spearman 

rank correlation coefficient between the corresponding responses. ........................... 54 

Figure 14:Various versions of the 2SPIRAL data set (a) Original data set (b) With 

noise introduced (c) With noise and imbalance introduced. ...................................... 57 

Figure 15: Data sets generated for experiments by adding noise and imbalance to the 

2SPIRAL data set. ................................................................................................... 58 

Figure 16: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 1:1. ............................. 68 

Figure 17: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 10:1. ........................... 69 

Figure 18: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 100:1. ......................... 70 

Figure 19: Test errors of cSOM, Neural Network, and SVM-RBF for the CMSC data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. ............................................................ 72 

Figure 20: Test errors of cSOM, Neural Network, and SVM-RBF for the Iris data set, 

at 1:1, 10:1, and 100:1 imbalance ratios. .................................................................. 73 



 

x 

 

Figure 21: Test errors of cSOM, Neural Network, and SVM-RBF for the Wine data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. ............................................................ 73 

Figure 22: Test errors of cSOM, Neural Network, and SVM-RBF for the BCW data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. ............................................................ 74 

Figure 23: Issues with learning from only few labeled observations, as compared to 

learning from both labeled and unlabeled observations. ........................................... 75 

Figure 24: Three different levels of difficulty in the data sets used, obtained by 

varying percentage of training observations which are labeled. ................................ 83 

Figure 25: Comparative results of the three methods on sparsely-labeled data sets 

with different percentage of observations labeled. .................................................... 84 

Figure 26: Comparative results of the three methods on sparsely-labeled CMSC data 

set with different percentage of observations labeled. .............................................. 86 

Figure 27: Comparative results of the three methods on sparsely-labeled Iris data set 

with different percentage of observations labeled. .................................................... 87 

Figure 28: Comparative results of the three methods on sparsely-labeled Wine data 

set with different percentage of observations labeled. .............................................. 87 

Figure 29: Comparative results of the three methods on sparsely-labeled BCW data 

set with different percentage of observations labeled. .............................................. 88 

 

  



 

xi 

 

List of Tables 

Table 1: Details of benchmark data sets used for experimental study. ...................... 26 

Table 2: Summary of classification results on benchmark data sets, where the top 

three classifiers for each data set are highlighted in bold. ......................................... 27 

Table 3: Comparison of percentage classification accuracy of 2SOM and other 

classifiers, on the artificially generated data sets. ..................................................... 30 

Table 4: List of independent variables and objective functions considered for solving 

the optimization problem. ........................................................................................ 46 

Table 5: Values of hyperparameters used for statistical analysis. .............................. 50 

Table 6: Summary of fit for the computed objective functions. ................................ 50 

Table 7: Summary of effects of predictors on responses. .......................................... 52 

Table 8: List of hyperparameters and objective functions used to obtain experimental 

results via optimization using Genetic Algorithm (GA). ........................................... 55 

Table 9: Values of Imbalance Ratio (IR) and ds chosen to setup experiments........... 57 

Table 10: Parameter setting for multiobjective optimization using the Genetic 

Algorithm (GA). ...................................................................................................... 59 

Table 11: Summary of experimental results cSOM (N – Map Size, NF – Size of 

Neighborhood Function, QE – Quantization Error). ................................................. 61 

Table 12: Lower and upper bounds on the independent variables provided as input to 

the GA. .................................................................................................................... 62 



 

xii 

 

Table 13: Results obtained on artificial data sets using manual and random 

initializations of GA. ............................................................................................... 64 

Table 14: Example of soft k-nearest neighbors classification for a two class problem.

 ................................................................................................................................ 81 



 

1 

 

Chapter 1: Introduction 

With the rapid growth of technology, systems are more complex than ever before. 

High-value assets cost much more to operate and maintain than to manufacture and 

install. The difference in these costs is significant enough for businesses to adopt and 

to invest in preventative maintenance strategies [1]. Condition-based maintenance 

(CBM) involves monitoring the health of a system and scheduling maintenance 

activities accordingly [2]. Because system health is continuously monitored, 

organizations can reduce the cost of unplanned downtime and take maintenance action 

well before the occurrence of failure. When the monitored system is relatively simple 

and isolated, it may suffice to use a single sensor to monitor its health, even on a 

continuous basis. Vibration monitoring for bearings is an example of this kind of CBM. 

The system health can be monitored online, and any problem that may occur can be 

detected almost immediately. However, in the case of more complex systems, a single 

sensor is incapable of collecting adequate information to ascertain system health 

entirely. In such cases, multiple sensors are installed within the system and information 

from these different sensors is fused in an intelligent way to deduce system health and 

to detect incipient faults. This process is known as “fault detection”.  

 

Fault detection approaches can be classified into two main categories viz. model-based, 

and data-driven. The model-based approach exploits knowledge of the mathematical 

representation of the system to detect incipient faults. This approach, however, requires 



 

2 

 

incorporating domain knowledge and a physical understanding of the target system [3] 

[4]. However, one does not always have such pre-requisite knowledge at one’s disposal 

when developing a fault detection methodology for a target system. In some cases this 

may be due to the manufacturer’s reluctance to share system models due to competitive 

reasons. It may also be because due to difficulty in explicitly modeling complex 

systems such as aircraft where the behavior of the system is an aggregation of hundreds 

of interdependent components. However, in such cases system monitoring data, 

collected from a variety of sensors installed on the system, may be available and can 

be used to develop data-driven fault detection methodologies. In the domain of data-

driven fault detection methodologies, machine learning techniques have been widely 

employed in recent years. Some examples of machine learning techniques for fault 

detection include support vector machine (SVM) and its variants in rotating machinery, 

pumps, and HVAC systems [5] [6]; Bayesian inference-based Gaussian mixture 

models (GMMs) for non-Gaussian processes [7] [8]; artificial neural networks (ANNs) 

for transmission lines [9]; and deep neural networks (DNNs) [10]- [11] for drivetrains, 

microgrids and propellant loading systems. The previous examples do not imply that 

these techniques have only been applied to the application domains mentioned here—

the application of these machine learning techniques is widespread across all domains 

of fault detection. A survey of machine learning techniques studied in mechanical 

systems research is provided in [12]. 

 



 

3 

 

An imbalanced data set is one where one or more classes of data (called the majority classes) are 

represented by a much larger number of observations in the training data set than the other classes (called 

the minority classes). Most of the aforementioned machine learning techniques in [5] [6] [7] [8] [9] [10] 

[11] [12] function under the assumption that the data used to train the model is balanced. In the absence 

of balanced data sets, these techniques provide suboptimal results [13]. The learning process of these 

classifiers involves adjusting model parameters such that performance metrics, such as the prediction 

accuracy on the training data set, are minimized. The imbalance problem induces a bias in the model 

towards the majority class, while patterns in the minority class do not get learnt, even though the model 

yields a high overall accuracy [14] [15].  Classifiers which do not account for the class imbalance in the 

training data set can achieve a high prediction accuracy by learning incorrect decision rules which carry 

no practical value [14]. As an example, assume a training data set contains 990 observations from the 

positive class, and 10 observations from the negative class. A binary classifier trained on such a data set 

would achieve a 99% prediction accuracy by merely predicting every input observation to belong to the 

positive class. However, such a classifier would yield ~50% accuracy on a test data set  which contains 

an equal number of observations from both the positive and negative classes, effectively rendering it 

useless for any practical deployment. Minority instances being incorrectly treated as noise and vice-versa 

[16]; low density of observations; and small sample size with high dimensional data [17], are some of 

the other challenges faced by traditional classifiers in the presence of imbalanced data sets. Fault 

detection frameworks developed using traditional machine learning classifiers are also prone to such 

issues since imbalanced data sets are encountered frequently in this application domain. This is because 

any system is expected to mostly operate in its healthy state, and consequently the volume of condition 

monitoring data collected from the healthy state of the system is larger than that collected from the 

system operating in a faulty state. Thus, when a machine learning model is trained, the condition 

monitoring training data set is inherently imbalanced [18]. In such cases, a model’s inability to account 

for this imbalance while training to predict future occurrences of the fault pose a risk to not only the 

financial standing of an organization, but also human life. In other words, the rare events comprising the 



 

4 

 

minority class of data occur infrequently, but the cost of misclassifying them can be heavy. For example, 

the inability to detect a rare fault in a subsystem in a manufacturing plant can have catastrophic 

consequences such as the propagation of damage to other systems in the plant (if systems are 

interdependent), to more financial consequences such as unplanned downtime. 

 

Another assumption which is central to the success of the methodologies in [5] [6] [7] 

[8] [9] [10] [11] [12] for detecting faults is the availability of labeled training data. 

These approaches constitute a class of machine learning methods based on supervised 

learning, where sets of observations representing both healthy and faulty modes of 

operation of the system are available. However, condition monitoring data, in its raw 

form, is unlabeled. Labeling this data for use in supervised fault detection 

methodologies requires manual annotation of observations by subject matter experts. 

The task of manually labeling observations by these experts is time-consuming and 

expensive [19] [20]. In situations where the amount of labeled observations available 

is limited but unlabeled observations are available in abundance, semi-supervised 

learning techniques provide an economical alternative to supervised learning 

techniques for fault detection. Semi-supervised learning techniques are a class of 

machine learning techniques which utilize both labeled, and unlabeled samples to 

perform classification. These techniques aim to extract information associated with 

healthy and faulty system conditions which is contained in the spatial structure of 

unlabeled observations in the condition monitoring data [21].  

 



 

5 

 

In light of these issues, this study proposes a methodology based on self-organizing 

maps (SOMs), which can be used to detect faults in scenarios where the available 

condition monitoring data  is either imbalanced or has only a few observations labeled. 

To deal with imbalanced data sets, SOMs are trained in a supervised manner on every 

available class of data, before performing classification using the cSOM approach [22]. 

The SOMs trained on each class of data are chosen to have the same map size, such 

that the neurons of the trained SOMs represent a balanced training data set. This map 

size of the SOMs is determined by solving a multiobjective optimization problem to 

minimize the information loss; the training time; and the prediction accuracy on a test 

set. For data sets containing mostly unlabeled samples, SOM-based, semi-supervised 

approach is adopted. First, SOM is used as a clustering technique to capture the patterns 

in the training data of both, labeled and unlabeled samples. Then, using the labeled 

samples as training data, and the neurons of the trained SOMs as test data, the SOM 

neurons are assigned class labels. This process of transductive learning is also referred 

to as pseudo-labeling. Note, the unlabeled samples are only used to capture the 

distribution of data, and are not labeled. Then, the labeled SOM neurons are used for 

classification using the cSOM. 

 

The rest of the study is divided as follows. Chapter 2 discusses work done previously 

on imbalanced and sparsely-labeled data sets in the context of fault detection. Chapter 

3 is dedicated to providing a brief overview of SOMs. Chapter 4 details the supervised 

SOM-based fault detection methodology, cSOM, developed in [22]. In Chapter 5 the 



 

6 

 

cSOM methodology is developed for alleviating the imbalance problem. 

Hyperparameter considerations for the cSOM are discussed, and a Genetic Algorithm 

(GA) –based multiobjective optimization strategy is discussed to achieve class balance 

by minimizing cSOM’s fault prediction accuracy, training time, and other SOM quality 

metrics. Experiments are conducted using artificial data and results presented along 

with comparisons with other classifiers. In Chapter 6 the cSOM methodology is 

developed for fault detection in cases where training data sets contain mostly unlabeled 

observations. Issues related to sparsely-labeled data are discussed, the developed 

methodology is explained, and experimental results are presented along with a 

comparison with other classifiers.  

  



 

7 

 

Chapter 2: Related Work 

This chapter discusses work done by other authors on the issues of imbalanced and 

sparsely-labeled data sets in the context of fault detection. Previously proposed 

techniques, and their benefits and drawbacks are discussed. How our developed 

methodology helps overcome those drawbacks is also pointed out. 

2.1. Imbalanced Data Sets 

Recently, approaches to fault detection have been proposed to deal with imbalanced 

condition monitoring training data sets. These approaches can be broadly divided into 

two categories – classifier-based, and preprocessing approaches. Among classifier-

based techniques, a technique which integrates one-class support vector machines and 

binary tree was introduced to deal with imbalanced data sets in [23]. The separability 

measure used to construct the binary tree in this study was Mahalanobis distance. 

However, the performance of this technique, was shown to be heavily dependent on the 

specific separability measure used to build the binary tree. Also, training one-class 

SVMs on underrepresented classes of data leads to severe overfitting. Another fault 

detection technique based on Extreme Learning Machine (ELM) was presented in [24]. 

The strategy was developed to reduce the information loss incurred when dealing with 

imbalanced data sets. However, the addition of new, previously unseen classes of data 

required training a large number of classifiers to be trained on the new data, which 

added to the complexity of the ensemble used for classification [25]. 

 



 

8 

 

Preprocessing techniques are more widely-used to deal with imbalanced data sets. The 

approaches include feature selection and extraction methods, and resampling methods. 

Among feature selection/construction methods, methodologies based on the 

unsupervised manifold learning methods were employed in [26] [27]. Firstly, by using 

the unsupervised manifold learning techniques, these methods failed to fully utilize the 

value of the labeled data available. Secondly, since the techniques in [26] [27] were 

based on extraction of time- and frequency-domain signals from vibration data 

collected from rotating machinery, their application was found not to be generalizable 

to other types of complex systems where it may not be possible to characterize the 

behavior of components or subassemblies, as it is in the case of rotating machinery 

where fault frequencies are deterministic. A resampling technique called Similarity-

based Undersampling and Normal Distribution-based Oversampling (SUNDO), which 

combined oversampling the minority class and undersampling the majority class, was 

introduced in [28]. Although the study has been widely cited, the performance of the 

technique, as claimed, could not be validated since the computation of classification 

accuracy was incorrect across experimental results. Also, the method is restricted to 

binary classification problems, and thus cannot be utilized to detect multiple faults, or 

new, previously unseen faults that may arise in a system.  

 

The methodology developed in this study aims to account for the imbalance in the 

training data set using our previously-developed supervised SOM methodology. In this 

methodology, a SOM is trained, individually, on each class of observations in the 



 

9 

 

training data set. At the end of the training, the neurons of each SOM are prototypes of 

the observations of the class of data on which the SOM, to which the neurons belong, 

was trained. Classification is then performed by computing the relative distance of an 

unlabeled test observation to the closest neuron in each class of data. Balance is 

achieved by using the same number of neurons to train each class-specific SOM. Since 

only the SOM neurons are used for classification, their equal number ensures a 

balanced data set, while preserving the patterns in the original training data. The SOM 

map size to be used for the class-specific SOMs is determined by solving a 

multiobjective optimization problem. The size of the class-specific SOMs, and the size 

of the neighborhood function are used as the independent variables. The difference in 

the information entropy of a trained SOM and the class of data on which it was trained; 

the training time; and the classification error on a test data set; are used as objective 

functions to be minimized for this optimization problem. The solution to the 

optimization problem yields a map size which balances the training data set; minimizes 

the information loss during SOM training; minimizes the training time for 

computational efficiency; and yields the lowest classification error. Like the approach 

in [28], our method involves both, oversampling the majority class, and undersampling 

the minority class. However, unlike their approach, our developed method is not 

restricted to binary fault detection problems. In other words, our method can not only 

be used to determine if a system is in the healthy or faulty state, but can also be used to 

determine which specific type of fault has occurred, provided there is at least some 

training data available associated with all healthy and faulty states of the system. 



 

10 

 

2.2. Sparsely-Labeled Data Sets 

While the issue of exploiting sparsely-labeled training data sets to build classifiers has 

been studied widely in general machine learning literature [29]- [30], it has received 

less attention in the context of fault detection applications [31]. A Gaussian Mixture 

Model (GMM)-based semi-supervised learning technique was introduced in [32]. In 

this study GMM was used to cluster the labeled and unlabeled data. A semi-supervised 

coefficient 𝛽 was introduced to weight observations during while estimating clustering 

parameters, to account for most observations being unlabeled. The unlabeled samples 

were probabilistically classified into different classes during the parameter update step 

of the clustering. While novel in its approach, the method was shown to suffer from 

two major drawbacks. Since the clustering method chosen was parametric, a drift in the 

mean and covariance of the incoming unlabeled data or future test data could lead to 

deterioration in performance. More importantly, the use of GMM as the clustering 

algorithm restricted the application of this technique to near-Gaussian distributions of 

healthy and faulty data [33]. SOM is a clustering technique which is not restricted by 

the underlying distribution of the training data. It can achieve good clustering results 

with simple Gaussian data, and highly nonlinear, non-Gaussian data, too. SOM is a 

type of artificial neural network whose weights are adjusted during training in a manner 

such that the neurons develop into prototypes of the training observations. However, in 

its native form, SOM is an unsupervised learning technique. The method proposed in 

[34] was specifically for prediction of faults in software. However, its application was 

not found to be restricted to just software fault prediction. The authors used SOM due 



 

11 

 

to its advantages over other clustering algorithms. A hybrid SOM for semi-supervised 

learning was developed. The method involved first training the SOM in an 

unsupervised fashion using the labeled and unlabeled training data. ‘Dead neurons’ 

which were never activated during the training procedure were then eliminated to 

reduce noise. The neurons of the SOM, which, after training, were representative of the 

training data were assigned class labels. The labeling was performed by setting pre-

determined thresholds on the individual features of the neurons. For example, if the 

training data consisted of 𝐷-dimensional observations, 𝐷 threshold values were 

obtained from previous studies and expert knowledge. The neurons of the SOM, which 

retain the dimensionality of the training data, were then compared with these pre-

determined thresholds. If the values of more than 𝐷/2 features of a neuron was found 

to exceed their respective thresholds, the neuron was labeled faulty. The labeled SOM 

neurons, and their respective labels, were used as inputs to train a multilayer perceptron 

(artificial neural network), which could then be used as a model for predicting the 

health state of future test observations. The methodology, although simple in its 

formulation, was found to have multiple drawbacks. Firstly, the threshold required to 

label SOM neurons as into different classes must be pre-determined which, without 

exception, requires expert knowledge. In cases where thresholds may already be 

available for one type of system, the model thus developed would be applicable only 

to that system, leading to poor generalization. Also, the use of thresholds to classify 

neurons, and not the labeled training observations, completely bypasses the latter. The 

authors failed to take advantage of the class label information available from labeled 



 

12 

 

observations. The hybrid SOM approach developed in [34] was found to be more 

unsupervised than semi-supervised since the training observations were used only for 

clustering.  

 

In this study, the methodology developed to deal with sparsely-labeled condition 

monitoring data sets is similar to the hybrid SOM approach in [34]. A SOM is first 

trained in an unsupervised manner using both labeled and unlabeled observations, for 

clustering. Once training is complete and the SOM neurons resemble prototypes of the 

training observations, the labeled observations are used as the training data to train a 1-

nearest neighbor (1NN) classifier [35]. The trained neurons are used as test 

observations and assigned labels using the trained 1NN classifier. While the authors in 

[34] used the labeled SOM neurons to train an artificial neural network for 

classification, in this study, the supervised cSOM approach for classification using the 

labeled neurons is used. The developed approach proves to be significantly cheaper 

computationally, since no further training is required. Future test observations are 

classified merely based on their relative distance to the nearest-neuron in each class. 

 

  



 

13 

 

Chapter 3: Self-Organizing Maps  

3.1. Overview 

A self-organizing map (SOM), also known as a Kohonen neural network, is a type of 

unsupervised machine learning technique based on competitive, instance-based 

learning [36]. In its native form, the SOM creates a neural network that retains 

information associated with the topological relationships within the training data set. A 

SOM is composed of several artificial neurons, each associated with a weight vector of 

the same dimension as that of the training data set. The neurons are grouped based on 

the similarity of their weights such that neurons with similar weights are neighbors. 

The topological relationships in the training data set are reflected in the neighborhood 

relationships of the neurons.  

 

To create a SOM, the input data is first normalized by calculating the z-score of each 

observation on a per-variable basis. There is no theoretical basis for determining the 

size of the SOM, and it varies depending on the input data set. The size is thus 

empirically determined by calculating the number of neurons as 

 

𝑀 ≈ 5√𝑛 (1) 

  

where 𝑀 is the number of neurons and 𝑛 is the number of observations in the training 

data set. The neurons are organized on a two-dimensional map such that the ratio of the 



 

14 

 

lengths of sides of the maps is approximately equal to the ratio of the two largest 

eigenvectors of the covariance matrix of the training data set. There is no consensus on 

a single initialization strategy for SOM neurons that provides optimal performance. 

Valova et al. [37] found that initializing the neurons on a self-similar curve such as 

Hilbert, provided the satisfactory coverage of the topology of the training data set. 

Similarly, random initialization has provided satisfactory performance. Accordingly, 

this study employs a random initialization strategy due to its simplicity. The weights 

of all neurons wij are initialized to random numbers in the range (0,1), 𝑖, 𝑗 are the row 

and column of the SOM lattice, respectively. In a SOM, a measure of similarity can be 

defined as the Euclidean distance d between the input vector x and the weight vector w 

of the given neuron, which is computed as follows: 

 

𝑑(𝑥, 𝑤) = ‖𝑥(𝑡) − 𝑤(𝑡)‖ (2) 

 

where 𝑡 is the number of a current iteration. Then, the neuron on the map that is closest 

to the input vector in the Euclidean space is referred to as the best matching unit 

(BMU), also known as a winning neuron. That is, the BMU is the neuron with the 

weight such that: 

 

𝐵𝑀𝑈 = argmin
𝑖,𝑗

‖𝑥(𝑡) − 𝑤𝑖𝑗(𝑡)‖ (3) 

 



 

15 

 

During the training process, the neuron’s weights are updated to increase the similarity 

with the input neuron: 

 

𝑤𝑖𝑗(𝑡 + 1) = 𝑤𝑖𝑗(𝑡) + ℎ𝑖𝑗
𝑐 (𝑡)[𝑥(𝑡) − 𝑤𝑖𝑗(𝑡)] (4) 

 

where ℎ𝑖𝑗
𝑐 (𝑡) is the neighborhood function for the BMU c. In fact, a SOM introduces 

the neighborhood function to preserve the topological properties of the input space. The 

neighborhood function depends on the lattice distance between the BMU 

(neuron c) and the other neurons on the map. In the simplest form, it is 1 for all neurons 

close enough to the BMU and 0 for others. However, a Gaussian function is a common 

choice for the neighborhood function, defined as: 

 

ℎ𝑖𝑗
𝑐 (𝑡) = 𝑎(𝑡)𝑒

(
‖𝑤𝑐(𝑡)−𝑤𝑖𝑗(𝑡)‖

2

2𝜎2(𝑡)
)

 
(5) 

 

where 𝛼(𝑡) = 𝛼(0)
1

𝑡
 is a learning rate at iteration 𝑡, 𝛼(0) is an initial learning rate, 

𝑤𝑐(𝑡) is the weight vector associated with the BMU c, 𝑤𝑖𝑗(𝑡) are the weight vectors of 

the neurons on the map, 𝜎 is the radius around the BMU c. According to (5), the 

neighborhood function shrinks as the iteration increases. At the beginning when the 

neighborhood is broad, the SOM takes place on a global scale. When the neighborhood 

has shrunk to a couple of neurons, the weights are converging to local estimates. The 

SOM is trained iteratively until all neurons are grouped into clusters. 

https://en.wikipedia.org/wiki/Topology
https://en.wikipedia.org/wiki/Gaussian_function


 

16 

 

3.2.Use of SOM for Fault Detection 

As described in the previous subsection, SOM, in its traditional form, is an 

unsupervised learning technique. It can learn the structure of the training data without 

considering the labels of the training observations. However, even in its unsupervised 

form, SOMs have successfully been implemented in fault detection applications. [38] 

[39] [40] [41] [42] [43]. Fault detection was performed on a cooling fan in [44], and a 

wireless sensor network in [45]by utilizing the distance of a test observation from the 

closest-neuron of a SOM trained on only the healthy class of training data. SOMs were 

implemented for detecting process faults in [46] [47] by operators visually inspecting 

whether a healthy or a faulty region of the SOM was activated by a test observation. In 

[48] a shallow neural network was used to estimate the remaining useful life (RUL) of 

bearings, using the distance of test observations from the closest-neuron as the input to 

the network. 

There are multiple benefits of using SOMs. Firstly, since SOM is a non-parametric 

learning technique, it does not make any assumption about the underlying distribution 

of the training data. This allows SOMs to be used for clustering nonlinear data sets, 

unlike methods like GMMs. Secondly, SOM can be used to generate a specified 

number of prototypes of the training observations. Additionally, it is possible to modify 

the unsupervised learning procedure of SOM to one of supervised nature. These 

benefits, together, can be used to harness the power of SOMs to alleviate the problems 

of imbalanced and sparsely-labeled data sets in fault detection.  

  



 

17 

 

Chapter 4: cSOM – A Supervised Fault Detection Methodology 

This chapter first provides an illustrative overview of the developed fault detection 

methodology. Then, the method is formulated as a general binary classifier followed 

by its formulation as a generalized classifier for multiclass data sets. Experimental 

results, using artificial and benchmark data sets, are then presented for both the two-

class and multi-class classifier.  

4.1. Overview of cSOM 

 

Figure 1: The MQE-based fault detection concept, where 𝑑 represents the 

dimensionality of the input vector of the data set and is the same as that of the weight 

vector of the SOM neurons. 

 

Conventionally, the minimum quantization error (MQE) has been used to indicate 

whether a target system or component is in a faulty/healthy state [49]. More 



 

18 

 

specifically, the MQE is defined as the distance between the input vector of a test 

observation and the weight vector of the BMUs in the trained SOM: 

 

𝑀𝑄𝐸 =  min
𝑘

‖𝑣 − 𝑤𝐵𝑀𝑈𝑘
‖ (6) 

 

where 𝑣 is the input vector and 𝑤𝐵𝑀𝑈𝑘
 is the weight vector of the 𝑘𝑡ℎ BMU. For fault 

detection, the SOM is first trained using only healthy observations. As test observations 

are collected from a system or component being monitored, the MQE is calculated for 

each of those test observations. The MQE-based fault detection method operates on the 

hypothesis that a large value of the MQE indicates that the associated test observation 

belongs to a part of the Euclidean space that is not represented by the training data, i.e., 

the test observation belongs to the fault class. This idea is illustrated in Figure 1. Based 

on the assumption that any deviation from the space covered by the healthy training 

data is regarded as the system being faulty, the MQE can be used to indicate the severity 

of the system’s deviation from normal. 

 

Unlike the conventional use of the SOM in fault detection, the developed cSOM 

method employs multiple SOMs; one SOM is trained individually, on observations 

from each class of data. A data set consisting of a healthy and faulty class would thus 

have two SOMs – one trained on the healthy data, and the other on faulty data. For such 

a data set, at the end of the training phase, the developed method outputs two sets of 

neurons; one represents the healthy class, whereas the other represents the faulty class. 



 

19 

 

This is illustrated in Figure 2. This is the reason the method is referred to as cSOM. For 

a c-class problem, the method requires training c different SOMs, one on each class of 

data. Thus, for a two class problem, the algorithm is referred to as 2SOM. 

 

 

Figure 2: The training procedure of the cSOM methodology. 

 

Further, the developed method stores the z-score parameters 𝜃H and 𝜃F, where 𝜃H and 

𝜃F include the mean and standard deviation of the healthy and faulty training data set, 

respectively, and are used later to preprocess test observations. After the training phase 

is complete, the training data sets can essentially be discarded since the trained SOM 

neurons adequately represent the patterns in them. Unlike the conventional fault 



 

20 

 

detection approach using the MQE between a test observation and trained BMUs, the 

developed method introduces a variant of the MQE-based metric that represents the 

degree of healthiness, i.e., Dhealthiness, using a ratio of the healthy MQE (dh in Figure 3) 

to the faulty MQE (df in Figure 3) for a given test observation. 

 

 

Figure 3: An example of decision-making of a test observation using Dhealthiness. 

 

Accordingly, Dhealthiness is used to determine which of the two states (i.e., faulty or 

healthy) of the system it represents, as illustrated in Fig. 4. The two terms MQEhealthy 

and MQEfaulty must be combined in a logical way so as to describe the state of the given 

test observation. As briefly mentioned above, these terms are used to compute a new 

metric Dhealthiness for making a decision on the given test observation. The metric is the 

normalized ratio of the two MQEs. Although simple, the metric provides a good handle 

on the similarity of the test observation to both the faulty and healthy states of the 

system. It is mathematically formulated as:  



 

21 

 

 

𝐷healthiness =  
𝑀𝑄𝐸healthy

𝑀𝑄𝐸healthy + 𝑀𝑄𝐸faulty

 (7) 

 

As illustrated in Figure 3, for a test observation that is collected from a healthy state of 

the system, a small value of MQEhealthy may be expected owing to its similarity to that 

set of BMUs. In contrast, a much larger value of MQEfaulty may be expected from such 

a test observation. Thus, computing Dhealthiness for such a test observation would yield a 

number that is close to zero. Conversely, for a test observation collected from a faulty 

state of the system, larger values of MQEhealthy and smaller values of MQEfaulty may be 

expected, which consequently yield a value closer to one for such a test observation. 

Thus, informally stated, Dhealthiness is a metric of the “healthiness” of the system. The 

Dhealthiness value can also be thought of as the probability that the system is in a healthy 

state, given that the test observation was recorded: 

 

𝑃(𝑓𝑎𝑢𝑙𝑡 𝑠𝑡𝑎𝑡𝑒|𝑇) ≅ 𝐷healthiness (8) 

 

where 𝑇 is the test observation. This metric may be used for fault detection by setting 

a threshold on 𝐷healthiness . Since the metric is a normalized ratio of MQEs, a simple 

threshold of 0.5 may be considered. That is, a 𝐷healthiness  less than 0.5 would imply 

that the test observation is closer to the healthy class than to the faulty class.  



 

22 

 

4.2. Formulating a Binary Classifier 

The generalized procedure of the developed supervised fault detection method can be 

summarized as follows. Given a set of training observations  

 

(�̅�𝑖 , 𝑦𝑖) ∀ 𝑖 = 1, … , 𝑛 (9) 

�̅�𝑖 ∈ ℝ𝑑  (10) 

𝑦𝑖 ∈ {𝜔1, 𝜔2} (11) 

 

where 𝑛 is the number of training observations, �̅�𝑖 are the d-dimensional training 

observations, and 𝑦𝑖  is the label of the training vector �̅�𝑖, and 𝜔1 and 𝜔2 are the labels 

for the two classes of data. One SOM is trained on all �̅�𝑖 ∈ 𝜔1, and another SOM on 

all �̅�𝑖 ∈ 𝜔2. The training procedure is as illustrated in Figure 2. The training yields two 

sets of SOM neurons with weight vectors 

 

𝑤𝑗
1̅̅ ̅̅ , 𝑤𝑗

2̅̅ ̅̅ ∈ ℝ𝑑  ∀ 𝑗 = 1, … , 𝑚 (12) 

 

where 𝑚 is the number of neurons used for training each SOM, 𝑤𝑗
1̅̅ ̅̅  are the weight 

vectors of the neurons associated with class 𝜔1, and 𝑤𝑗
2̅̅ ̅̅  are the weight vectors of the 

neurons associated with class 𝜔2. After training, given a set of test observations 

 

𝑡�̅� ∀ 𝑖 = 1, … , 𝑧 (13) 

𝑡𝑖  ̅ ∈ ℝ𝑑 (14) 



 

23 

 

where 𝑧 is the number of test observations, compute the MQE of each test observation 

from both SOMs as 

𝑀𝑄𝐸𝜔1
= min

𝑗
‖𝑡�̅� − 𝑤𝑗

1̅̅ ̅̅ ‖ (15) 

𝑀𝑄𝐸𝜔2
= min

𝑗
‖𝑡�̅� − 𝑤𝑗

2̅̅ ̅̅ ‖ (16) 

where 𝑀𝑄𝐸𝜔1 is the MQE to the SOM representing class 𝜔1 (e.g., healthy class), and 

𝑀𝑄𝐸𝜔2 is the MQE to the SOM representing class 𝜔2 (e.g., faulty class). Then, the 

probability that the given test observation belongs to either 𝜔1 or 𝜔2 can be computed 

as follows: 

𝑃𝑖(𝜔1|𝑡�̅�) =  
𝑀𝑄𝐸𝜔1

𝑀𝑄𝐸𝜔1
+ 𝑀𝑄𝐸𝜔2

  
(17) 

 

 

𝑃𝑖(𝜔2|𝑡�̅�) =  
𝑀𝑄𝐸𝜔2

𝑀𝑄𝐸𝜔1
+ 𝑀𝑄𝐸𝜔2

  
(18) 

 

Then, a decision rule can be formulated as: 

𝑃𝑖 ≤ 0.5 ∀ 𝑡�̅� ∈ 𝜔1  (19) 

𝑃𝑖 > 0.5 ∀ 𝑡�̅� ∈ 𝜔2  (20) 

The threshold of 0.5 is the simplest case for this classifier. Geometrically, this 

classification rule may be interpreted as follows – the test observation is assigned class 

label 𝜔1 if it lies less than halfway between its BMU in either SOM, and class label 𝜔2 

otherwise. 



 

24 

 

4.3. Formulating a Multiclass Classifier 

The metric derived in the previous subsection can be obtained under simplifying 

assumptions for a more general case. In the case of multiclass data sets, a SOM must 

be trained on each class of data available. Thus, for a c-class problem, 𝑐 different SOMs 

must be trained. The generalized metric can then be formulated as  

 

𝑃𝑖(𝜔𝑗|𝑡�̅�) =  1 −
𝑀𝑄𝐸𝜔𝑗

∑ 𝑀𝑄𝐸𝜔𝑗

𝑐
𝑗=1

  (21) 

 

where 𝜔𝑗 is class 𝑗, 𝑗 ∈ {1, … , 𝑐}; 𝑐 is the number of classes; and 𝑀𝑄𝐸𝜔𝑗
 is the MQE 

from the 𝑗𝑡ℎ  class. The class for the test point 𝑡𝑖 is predicted as 

𝜔𝑖 = argmax
𝑗

𝑃𝑖(𝜔𝑗|𝑡�̅�) (22) 

 

where 𝜔𝑖 is the predicted class of the test observation. For the case of binary 

classification (i.e., 𝑐 = 2), the metric in equation 21 is the same as the metrics in 

equations 17 and 18. 

4.4. Binary Classification Experimental Results 

Experiments were performed using real-world and artificially generated data sets. 

While the real-world data sets were benchmarked and thus allowed the comparison 

with other classifiers to be benchmarked too, the artificial data sets allowed us to 

include specific artifacts within the data and then compare the response of various 



 

25 

 

classifiers to those artifacts. Based on results from these experiments, the developed 

method and kernel SVM technique are compared in terms of their operation. It is shown 

how the two methods can yield comparable results and how their computational costs 

vary with increasing size of the training data set. The performance of the developed 

method is compared with that of the kernel SVM technique. 

4.4.1. Experiments Using Benchmark Data Sets 

An experimental study was conducted to gauge the relative performance of the 

developed supervised classifier against other widely used ones. The classifiers used for 

comparison include linear discriminant analysis (LDA) classifiers, quadratic 

discriminant analysis (QDA) classifiers, k-nearest neighbors (k-NNs), a kernel version 

of SVM using the Gaussian radial basis function (SVM-RBF), and decision trees 

(DTs), and neutral networks (NNs). These classifiers were chosen to add diversity to 

the study in terms of how they find the decision boundary between two classes.  

 

The data used for this study was obtained from the publicly available UCI Machine 

Learning Repository [50]. The data sets used for this study were Iris, Wine, Breast 

Cancer Wisconsin (BCW), and Climate Model Simulation Crashes (CMSC). These 

data sets were chosen because of their varying levels of data complexity. Iris is one of 

the most popular data sets in pattern recognition literature and contains 3 classes of 50 

instances each, where each class refers to a type of iris plant. The wine data set is the 

result of a chemical analysis of wines grown in the same region in Italy, derived from 



 

26 

 

3 different cultivars. The analysis determined the quantities of 13 constituents found in 

each of the 3 types of wines. The CMSC data set contains records of simulation crashes 

encountered when quantifying the uncertainties of 18 model parameters within the 

Parallel Ocean Program (POP2) component of the Community Climate System Model 

(CCSM4). Out of the 540 simulations, 46 failed for numerical reasons at certain 

combinations of parameter values. The objective of this data set is to use classification 

to predict simulation outcomes (fail or succeed) from input parameter values. The 

Breast Cancer Wisconsin (BCW) data set contains features that are computed from a 

digitized image of a fine needle aspirate (FNA) of a breast mass. Each observation in 

this data set may be classified as either ‘malignant’ or ‘benign’. Table 1 provides some 

relevant details about each of these data sets. For data sets containing more than two 

classes of data, two classes were randomly chosen to evaluate performance since the 

classifier developed so far is binary and thus compatible with only two classes of data. 

Table 1: Details of benchmark data sets used for experimental study. 

Data 

Set 

Number of 

Features 

Number of 

Observations 

Iris 4 150 

Wine 13 178 

CMSC 18 540 

BCW 32 569 

 

For each data set, 1000 observations were randomly sampled from each class and used 

for training each classifier. Owing to the fact that not all data sets contain an adequate 

number of observations, the training data set was obtained as a result of uniform 

oversampling. Similarly, 250 observations were randomly sampled from each class and 



 

27 

 

used for testing. The performance of each classifier was reported as the percentage 

classification accuracy of that classifier on the test set of each of the four data sets.  

 

Table 2: Summary of classification results on benchmark data sets, where the top 

three classifiers for each data set are highlighted in bold. 

Classifier Iris (%) Wine (%) CMSC (%) BCW (%) 

2SOM 100.00 99.80 99.60 96.80 

LDA 100.00 99.60 96.80 89.40 

QDA 100.00 99.20 97.60 92.80 

2NN 100.00 99.40 97.80 90.40 

5NN  100.00 99.20 98.00 88.80 

SVM-RBF 100.00 100.00 98.00 97.80 

DT 100.00 100.00 97.40 96.20 

NN 99.80 99.80 99.80 99.60 

 

 summarizes the results of this study. The Iris data set is known to be linearly separable, 

and thus even a simple linear classifier such as LDA provided 100% test accuracy. In 

two of the other three data sets (Wine and BCW), SVM-RBM yielded better 

performance than 2SOM and the six other classifiers being compared. In the case of 

the CMSC data set, the developed classifier outperformed other classifiers. The 

performance of the developed classifier was consistently found to be close to that of 

the SVM-RBF. It was encouraging to find that despite the developed classifier being 



 

28 

 

similar in its operation to the nearest neighbors, it performed significantly better than 

both 2-NN and 5-NN. This observation is discussed in detail in Chapter VIII. 

4.4.2. Experiments Using Artificial Data Sets 

It is known that the SOM training procedure can capture nonlinearities in the data. This 

is also evident in the performance of the developed classifier on the more complex data 

sets, such as CMSC and BCW in the previous section. However, to understand which 

type of nonlinearities the developed classifier can handle, and how well it performs the 

task of classification in their presence, a simulation study was conducted. Two-

dimensional artificial data was used for this study for easy visualization. The data was 

seeded with complexities that are known to be detrimental to classification results. The 

following four cases of increasing complexity were used to generate artificial two-class 

data sets: unimodal Gaussian data with overlap (U-GAUSS), multimodal Gaussian data 

(M-GAUSS), nonlinear data with spiral classes (2SPIRAL), and multimodal nonlinear 

data with spiral classes (M-2SPIRAL). These artificially generated data sets are 

visualized in Figure 4. The unimodal Gaussian case is representative of noise in the 

training data. The overlap region renders classification difficult for any classifier. The 

other three cases are meant to represent various multimodalities and nonlinearities in 

the data that may arise.  

 



 

29 

 

 

Figure 4: Visualization of the two-dimensional artificial data sets generated to test the 

sensitivity of the developed classifier, the two classes are denoted with ‘o’ and ‘x’.  

 

The methodology used to test the performance of the developed classifier in this study 

was the same as that of the experimental study with benchmark data sets. For each data 

set, 1000 observations and 250 observations were sampled from both classes for 

training and testing, respectively. The test performance of the developed classifier and 

that of the six other classifiers used in the previous section in each case are presented 

in Table 3. In the seemingly simple case of unimodal Gaussian class distributions with 

overlap, the performance of the developed classifier suffered the most. This result was 

expected because overlapping data proves challenging for most classification 

algorithms, with the possible exception of kernel methods which operate in potentially 

infinite-dimensional space. In the region of overlap between the two classes of data, 

several neurons from both classes may coexist. Thus, within that dense region of 



 

30 

 

neurons, it is more likely that a test observation that was actually obtained from one 

class is closer to the BMU of the other, thus causing it to be misclassified. The 

performance of classifiers generating linear and quadratic decision boundaries (LDA 

and QDA) suffered when bimodalities and nonlinearities were introduced in the data, 

as was expected from such classifiers. In every case, SVM-RBF yielded classification 

accuracies greater than ~89%, thus establishing its value as a consistently reliable 

classifier on even complex data sets. 

Table 3: Comparison of percentage classification accuracy of 2SOM and other 

classifiers, on the artificially generated data sets. 

Classifier 
U-GAUSS 

(%) 

M-GAUSS 

(%) 

2SPIRAL 

(%) 

M-2SPIRAL 

(%) 

2SOM 89.20 92.20 97.80 90.80 

LDA 90.20 51.60 68.00 56.80 

QDA 89.60 52.20 68.00 56.40 

2NN 86.80 91.40 97.80 90.40 

5NN 87.20 93.60 98.00 88.80 

SVM-

RBF 

89.00 93.00 98.00 97.80 

DT 89.00 92.20 97.40 96.20 

4.4.3. Comparison of 2SOM and SVM-RBF 

The results for the benchmark and artificial data sets provided valuable insight into the 

operation of the 2SOM classifier. The algorithm classified test observations based on 

their relative distance to the nearest prototype in each class of training data by 



 

31 

 

computing the normalized ratio of the minimum distance from every class of data. 

Since the first nearest-neighbor distance was used to compute the ratio, one might 

expect that this algorithm would yield performance close to that of a kNN classifier, 

specifically 1NN. However, the fundamental difference between 2SOM and the 

nearest-neighbor family of algorithms is that while the nearest-neighbor algorithm 

chooses the 𝑘 closest neighbors to a test point regardless of their class labels, 2SOM 

picks the nearest neighbor from each class, individually. In fact, 2SOM’s performance 

was found to match the performance of kernel SVM-RBF more closely than that of k-

NN. By choosing a nearest neighbor from each class of data for a given test observation, 

2SOM forces those BMUs to essentially behave as support vectors for that test 

observation. Indeed, this interpretation of 2SOM is in agreement with the geometric 

convex hull interpretation of SVM [51]. Herein lies the similarity between 2SOM and 

SVM. To investigate the differences between the two algorithms, another simulation 

study was conducted. While the performance of the two algorithms on the artificial data 

sets used so far was comparable, the size of the training data had not been taken into 

account. The M-2SPIRAL data set used in the previous section was also used for this 

study. The training time for both 2SOM and SVM-RBF was recorded with an 

increasing number of observations used for training. The size of the training set was 

varied from 2,000,000 observations to 180,000,000 observations. The test accuracy 

was recorded on a test set of 1000 observations, which consisted of observations not 

present in the training data. Figure 5 and Figure 6 show the results from this study. The 



 

32 

 

test accuracy of SVM-RBF was found to be consistently between ~96–100%, whereas 

that of 2SOM varied between ~90–96%.  

 

Figure 5: Comparison of (a) test accuracy, (b) training time for 2SOM and SVM-RBF 

classifiers as functions of increasing size of training data set (M-2SPIRAL). 

 

However, the training time of the 2SOM was found to be significantly lower than that 

of SVM-RBF as the size of the training data set increased. In the case of the largest 

data sets, 2SOM training was completed nearly twice as quickly as SVM-RBF. Thus, 

while SVM-RBF yields a higher test accuracy compared to 2SOM, the latter tends to 

be computationally inexpensive. To get a better sense of the performance of these 

classifiers, the metrics reported in Figure 5 and Figure 6 were rolled into a single 

performance factor which was computed as the ratio of the test accuracy to the training 

time. Thus, a higher test accuracy and lower training time would yield a higher 

performance factor. The performance factor for both classifiers is shown in Figure 6. 

For training data sets with up to ~20,000 observations the SVM-RBF yields a better 

performance factor than 2SOM. However, as data sets get larger, despite yielding lower 



 

33 

 

test accuracies, 2SOM yields better performance factor values due to significantly 

shorter training times. 

 

Figure 6: Performance factor computed for 2SOM and SVM-RBF as a function of 

increasing size of training data set (M-2SPIRAL). 

 

This result is expected because it is known that SVMs do not scale well with increasing 

size of training data sets [52]. While SVMs solve the dual optimization problem to find 

fixed support vectors that never change after training, 2SOM seeks the equivalent of 

support vectors for each test point in a dynamic fashion by merely computing the 

nearest neighbor in each class. This idea is illustrated in Figure 7. In the case of binary 

classification, for every test observation, two support vectors are dynamically chosen 

which provide the maximum-margin for classification of that test point, thus allowing 

highly nonlinear decision boundaries to be constructed. The specific support vectors 

that provide maximum-margin must be computed for each test observation and may 

vary from one test observation to the next. 



 

34 

 

 

Figure 7: In the case of 2SOM, the BMUs for each test observation behave like 

support vectors in an SVM. In the case of SVM-RBF, fixed support vectors are 

discovered by solving the dual optimization problem. 

 

However, since 2SOM requires that the distance of the test point from every prototype 

be computed, its algorithmic complexity varies linearly with the number of neurons 

used to train the SOMs. The algorithmic complexity of SVM increases quadratically as 

a function of the number of training observations [53]. Thus, the choice between 2SOM 

and SVM-RBF is a trade-off between testing accuracy and computational efficiency. 

4.5. Multiclass Classification 

To test the performance of cSOM on actual multiclass data sets, the almost linearly 

separable Iris data set was chosen. As noted in Table 1, the Iris data set consists of 4 

features and 150 observations per class. This data set contains three classes, each 

representing a species of the iris flower. Figure 8 shows a scatter plot for this data set. 

In the previous section on 2SOM, two classes were randomly chosen to evaluate 

performance, whereas in this experimental study all three classes of data were 

simultaneously used for classification. 



 

35 

 

 

Figure 8: Scatter plot for the Iris data. Red = Setosa (Class 1), Green = Versicolor 

(Class 2), Blue = Virginica (Class 3). 

 

1000 observations and 250 observations were sampled from each class for training and 

testing, respectively.  After training one SOM for each of the Setosa, Versicolor, and 

Virginica classes, a test performance of ~99% was obtained. The highlight of this result 

was not the test accuracy, which tends to be high with even a simple linear classifier 

owing to the inherent separability between the classes in the data. Rather, the takeaway 

from this demonstration was the versatility of the developed method as a multiclass 

classifier. Further experiments with nonlinear, multiclass data sets are required to 

evaluate performance in more severe cases.  

  



 

36 

 

Chapter 5:  The cSOM Methodology for Dealing with 

Imbalanced Data Sets 

The imbalanced learning problem pertains to the performance of classification 

algorithms in the presence of underrepresented data. Most classification algorithms 

assume that the training data, provided as input, is balanced with regards to the classes 

comprising the data. When this requirement is not met, such classifiers yield 

unfavorable results that may be severely biased. In the context of fault detection 

applications, healthy data is more abundant than faulty data, resulting in naturally 

imbalanced data sets. Machine learning models trained on such data sets, without 

taking into account the class imbalance, are almost always biased towards the majority 

class, i.e., the healthy data. This inevitably results in a large number of type II errors, 

also known as false negative errors, where fault observations are incorrectly classified 

as healthy [54]. In the context of popular machine learning algorithms used for fault 

detection, SVMs are inherently sensitive to imbalance in data sets. Although solutions 

have been proposed as data preprocessing methods which can alleviate the class 

imbalance in the data before training, in their raw form, SVMs have extensively been 

shown to produce sub-optimal results when presented with imbalanced training data 

[55] [56] [57]. 

The cSOM methodology, provides an opportunity to alleviate class imbalance within 

its frameworks without having to preprocess the data. To recap, observations from each 

class of training data provided to cSOM are represented as neurons of a separate SOM 



 

37 

 

before classification is performed. However, before a SOM is trained, its size (the 

number of neurons) must be determined, and there is considerable flexibility in this 

regard, and this number can be arrived at experimentally. Since the trained SOM 

neurons substitute the training data during the actual process of classification, it is the 

ratio of the number of neurons in each SOM that determines the extent of imbalance 

prior to classification, and not the ratio of the number of original training observations. 

Choosing the SOM sizes prudently can alleviate the problems of a data set that was 

originally imbalanced. In other words, starting with an imbalanced training data set, if 

the SOMs are trained on the imbalanced classes using the same number of neurons, 

what is obtained eventually is a balanced data set, consisting of multiple SOMs (each 

representing a class of data) with the same number of neurons, i.e., a balanced data set 

for classification. This concept is first illustrated in Figure 9. A two-class problem is 

considered, with 1000 and 10 observations being sampled from each class of data. 

Then, a SOM, consisting of 100 neurons each, is trained on the two classes of data 

separately. A balanced data set of SOM neurons is achieved, whose patterns closely 

match that of the original training data set.  

Performing classification, as formulated in Chapter IV, now yields better classification 

results. This methodology is similar to that of the undersampling and oversampling 

techniques used to alleviate class imbalance. In the example above, while the majority 

class (with 100 samples) is undersampled (to 100 neurons), the minority class (with 10 

samples) is oversampled (to 100 neurons). 



 

38 

 

 

Figure 9:  Illustration of how 2SOM can alleviate the imbalance problem. Training a 

SOM on each imbalanced class using the same number of neurons yields a balanced 

data set of neurons representing each class of data. 

 

Depending on the data sets, the extent of imbalance, and the choice of the map sizes, 

the classes of data may be represented by more or fewer neurons than the number of 

observations of those classes in the original training data. 

5.1. Hyperparameter Considerations for SOM 

In this section, the importance of choosing the right hyperparameters for training SOMs 

is demonstrated with the help of an experimental study. Following from the comparison 

made throughout this study, the performance of 2SOM and SVM-RBF was compared 

on artificially generated imbalanced data sets. The 2SPIRAL data set was once again 

used to generate the two-class data sets. The two models were studied at different levels 

of imbalance ratio, starting at 1:1 (the balanced case), up to 100,000:1. The size of the 

majority class was fixed at 100,0000 observations. Based on the imbalance ratio, the 

size of the minority class was varied from 1000,000 osbervations (1:1), down to 1 

observation (100:1). For each level of imbalance between 1:1 and 100:1, the 2SOM 

and SVM-RBF were used for classification, and the test data set was fixed at 500 



 

39 

 

observations (250 from each class) to obtain unbiased classification accuracies. Ten 

simulations were run at each level of imbalance to understand the deviations in the 

classification accuracy. In the case of 2SOM, 100 neurons were arbitrarily chosen to 

train the SOMs on each class of data in each case, resulting in a balanced data set for 

classification in every case. 

 

Figure 10: Test accuracy of 2SOM and SVM-RBF at different levels of imbalance of 

the training data set. 

 

The results of this study are shown in Figure 10. Test accuracies for the 2SOM and 

SVM-RBF are shown at different levels of imbalance. Multiple experiments conducted 

at each imbalance ratio aid in judging the variations in the results. At low imbalance 

levels (1:1), the results from 2SOM and SVM-RBF are almost exactly overlapping. 



 

40 

 

This result is expected since a 1:1 imbalance ratio denotes a balanced data set. 

However, at the next imbalance ratio considered (6:1), the results of SVM-RBF decline, 

while those of 2SOM do not. Beyond an imbalance of ratio of 100:1, the results of even 

2SOM start showing a decline. However, across the entire range of imbalance ratios 

considered for this study, the 2SOM consistently yields better test accuracies until 

100,000:1, where only 1 training observation is present in the minority class. Almost 

none of the 10 experiments of SVM-RBF at each imbalance level yield test accuracies 

higher than those of the 2SOM.  

It is interesting that 2SOM, despite alleviating the imbalance problem, does show a 

significant drop in test accuracy at the highest imbalance ratios. This drop can be 

attributed to the fact that at higher imbalance ratios, fewer training observations are 

available for training the SOM on the minority class of training data. This leads to 

inadequate training of the SOM and yields larger number of stray, untrained neurons at 

these high imbalance ratios which, in turn, lead to misclassifications. Thus, it is worth 

noting that the decline in performance of the two algorithms can be attributed to two 

completely different factors—the drop in SVM-RBF due to its inability to deal with 

imbalanced data sets, and the drop in 2SOM due to inadequate SOM training. 

 

This problem can be alleviated by adjusting SOM hyperparameters such as the SOM 

map size, neighborhood function, learning rate, and number of training epochs. The 

values of these hyperparameters are important considerations to be made for a SOM to 

be trained well. The SOM map size, for instance, determines how many neurons must 



 

41 

 

be trained. An underestimated map size prevents the patterns in the training data to be 

adequately captured by the neurons. An overestimated map size on the other hand leads 

to several neurons to never get selected as BMUs during training, and consequently 

their positions remain relatively unchanged. Such a situation leads to neurons 

representing additional patterns, resembling noise, which may not actually exist within 

the training data. An underestimated value of the learning rate on the other hand leads 

to slow updates to the neuron positions, and does not give the neurons sufficient time 

to represent the training data, within the specified number of epochs. 

For the experiment above, an arbitrary map size was chosen, and the default values of 

the other hyperparameters were used. However, a more prudent choice of these 

hyperparameters can improve the performance of the SOM-based methodology. 

5.2. Choosing SOM Hyperparameters 

This subsection discusses how the SOM hyperparameters must be chosen, in the 

context of the cSOM methodology, to alleviate the imbalance problem. This 

methodology essentially involves training several SOMs of different sizes, and using 

metrics that measure the SOM quality and computational efficiency to compare the 

various combinations of hyperparameters, and then choosing that combination of 

hyperparameters which yields the best combination of those metrics. The selection of 

the optimal map size is performed using multiobjective optimization techniques. 

 



 

42 

 

Discussed in this subsection are various metrics which determine the quality of the 

trained SOM; a multiobjective optimization strategy to empirically determine the best 

combination of SOM hyperparameters; and the dependence of those metrics on the 

SOM hyperparameters. 

5.2.1.  SOM Quality Metrics 

As mentioned in the previous subsection, hyperparameters play an important role in 

how well a SOM is trained. However, there is no theoretical rule which can be used to 

predetermine the values of these hyperparameters. In the absence of a well-established 

rule based on theoretical foundations which can be used to determine an optimal map 

size of SOM apriori, the decision must be arrived at empirically [58]. Within the 

domain of empirical decisions, one can potentially use several different methods of 

achieving the same goal. For example, in the simplest case, one could train SOMs of 

several different map sizes and pick one size that represents the training data well even 

just visually. However, such a choice would be subjective. To arrive at a more robust, 

and quantitative decision, metrics are needed. The metrics used must be reflective of 

the quality of the trained SOM. In this study, two metrics based on which an optimal 

map size can be chosen, are considered. These metrics are – the quantization error of 

the trained SOM; and the difference in the information entropy of the trained SOM and 

the training data. These metrics are now described. 

 



 

43 

 

The first metric is the quantization error (QE) which is obtained by computing the 

average distance of the training observations to their respective BMU. The larger the 

value of QE, the further observations are from their BMUs, on average. The 

quantization error is computed as 

𝑄𝐸 =
1

𝑁
∑‖𝑥𝑖 − 𝐵𝑀𝑈𝑖‖

𝑁

𝑖=1

 (23) 

where 𝑥𝑖 is the 𝑖𝑡ℎ training observation (𝑖 = 1, … , 𝑁), and 𝐵𝑀𝑈𝑖 is the BMU 

corresponding to the training observation 𝑥𝑖. Thus, a lower QE is desirable since it 

suggests that the BMUs represent the training data more closely. For any data set, QE 

can be reduced by simply increasing the map size, thereby distributing the training 

samples more sparsely over the map. However, increasing the map size arbitrarily not 

only leads to higher training times, but may also lead to an increase in the number of 

stray neurons as seen in previous sections.  

 

The second metric is the difference in information entropy of trained SOM and the 

training data. Information entropy (H) is defined as the average amount of information 

produced by a stochastic variable of data. The measure of information entropy 

associated with each possible value of data that the variable can take is computed as 

 

𝐻 ≡ − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑁

𝑖=1

 (24) 

 



 

44 

 

where 𝑥𝑖 is the 𝑖𝑡ℎ training observation (𝑖 = 1, … , 𝑁), and 𝑝(𝑥) is the probability 

distribution over the random variable 𝑥. Entropy is used to obtain bounds on the 

performance of the strongest possible lossless compression possible. This idea is very 

relevant in case of SOM since the representation of the training data set using a fewer 

number of neurons than the number of training observations, can be considered a type 

of data compression. Thus, comparing the information entropy of the training data set 

with that of the trained SOM can provide a useful metric of the information contained 

in the SOM. An entropy value of SOM that is closest to that of the training data set is 

desired. Thus, the goal must be to minimize the difference between the entropies of the 

trained SOM and the training data on which the SOM has been trained. Based on this 

the second metric is defined as 

 

𝑑𝐻 = 𝐻𝑆𝑂𝑀 − 𝐻𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎  (25) 

 

where 𝐻𝑆𝑂𝑀  is the information entropy of a trained SOM, and 𝐻𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎  is the 

information entropy of the training data set on which the SOM has been trained, and 

the metric 𝑑𝐻 is the difference between 𝐻𝑆𝑂𝑀  and 𝐻𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐷𝑎𝑡𝑎 . Choosing 

hyperparameters such that the two metrics in (24) and (25) are minimized, can ensure 

that the SOM represents the training data well. However, both QE and dH are 

minimized as the map size approaches the size of the training data set i.e. a higher 

number of neurons is desired to arrive at a set of neurons which best represent the 

training data.  



 

45 

 

 

There may arise cases where a small loss in the above metrics may be acceptable. For 

instance, while performing fault detection using the cSOM methodology, a small loss 

in the metrics may be acceptable if the resulting SOMs yield good prediction 

accuracies. It is not necessary to have the best-trained SOM, if the end goal of good 

fault prediction accuracy can be met with a compromise in these metrics. Thus, two 

metrics which account for practical considerations which must be made while training 

SOMs for fault detection using cSOM, are considered. These metrics are the training 

time, and the classification accuracy on a test set. In this study it is proposed that while 

choosing the best combination of hyperparameters for SOM to perform fault detection 

using the cSOM methodology, not only the metrics in (24) and (25), but also the 

training time and the classification accuracy on a test set be minimized.  

 

The classification accuracy on previously unseen test observations is a good indicator 

of the generalization power of a classifier. It is for this reason that this metric is 

considered. The aim is to choose that combination of parameters which can maximize 

cSOM’s classification accuracy on a test set, since that is the ultimate goal of a fault 

detection algorithm. Minimizing the training time on the other hand can help ensure 

that if an acceptable classification accuracy, QE, and dH, can be achieved while saving 

computational resources, then that combination of hyperparameters be chosen. For 

instance, minimization of training time ensures that if a small map size may yield 

classification accuracies comparable to those of a large map, while yielding higher QE 



 

46 

 

and dH, then the hyperparameter values for the smaller map are chosen. The training 

time was computed as the total time (in seconds) required to train all c SOMs of cSOM. 

5.2.2.  Multiobjective Optimization Strategy for Choosing SOM Hyperparameters 

In the absence of any theoretical or empirical rule to determine SOM hyperparameters, 

an optimization approach was deemed appropriate to determine the SOM 

hyperparameters. The SOM hyperparameters were used as the independent variables 

of the optimization problem who optimal values needed to be determined. The metrics 

described in the previous subsection were considered as potential objective functions, 

whose values were required to be minimized. A list of the independent variables and 

objective functions considered is shown in Table 4.  

Table 4: List of independent variables and objective functions considered for solving 

the optimization problem. 

Independent Variables 

 (SOM Hyperparameters) 

Objective Functions (SOM Quality 

Metrics and Practical Considerations) 

SOM Map Size (N) Difference in Entropies (dH) 

Size of the Neighborhood 

Function (NF) 
Average Quantization Error (QE) 

Learning Rate (LR) cSOM Training Time (tSOM) 

- cSOM Test Error (errSOM) 

 

The optimization process is illustrated in Figure 11. Starting with a random 

combination of the hyperparameters (within the specified upper and lower bounds), the 

cSOM is trained. The same map size is used to train SOMs on each class of data in the 

training data set. This yields a balanced number of class-specific SOM neurons for 

further classification. The training time required to train cSOM is computed during 

training. After training, the entropies of the SOM neurons are compared with that of 



 

47 

 

the training data on which they were trained to obtain the value of the objective function 

dH. Similarly, the average quantization error QE is computed for each SOM trained. It 

must be noted that dH and QE are computed individually for each SOM trained. 

 

 

Figure 11: Multiobjective optimization strategy to determine SOM hyperparameters. 

 

For instance, for two class problem, four values corresponding to dH and QE are 

computed. dH1 and QE1 corresponding to the SOM trained on one class of data, and 



 

48 

 

dH2 and QE2 corresponding to the SOM trained on second class of data. The test data 

set is then used to compute the classification error of the particular iteration of cSOM. 

Different combinations of hyperparameters are chosen, and the process repeated until 

minimum values of all objective functions are obtained.  

 

The multiobjective optimization was performed using the Genetic Algorithm (GA) 

[59]. Genetic algorithms, are search algorithms which are based on the mechanics of 

natural selection. GAs determine the best individuals in a group and combine their 

genetic make-up to produce a new generation of individuals. In the context of selection 

of hyperparameters for cSOM, the individuals of a population are potential cSOM 

models, and the genes of each individual comprise the SOM hyperparameters used to 

train that individual cSOM model. The values of the objective functions (dH, QE, 

tSOM, and errSOM) are used to determine the best performing individuals of any 

generation. Then, the best individuals of a generation “reproduce’ to create new 

individuals (cSOM models) with superior genes (hyperparameters). Random 

“mutation” of genes changes hyperparameters of some individuals randomly, without 

the influence of the “parent” individuals, allowing the optimization algorithm to 

stochastically search regions of the hyperparameter space, which may not have 

necessarily been explored by only reproduction. 



 

49 

 

5.2.3. Statistical Significance of Metrics 

Before performing the experiments, it needed to be determined if the hypothesis that 

the chosen objective functions (dH, QE, tSOM, errSOM) affect the selection of 

hyperparameters, was indeed true and significant. The 2SPIRAL data set introduced in 

Chapter IV was to be used for the imbalanced data analysis. Thus, a Design of 

Experiment (DOE) was performed on the hyperparameters and the objective functions 

using the 2SPIRAL data set. The methodology involved training the cSOM using 

different combinations of hyperparameters and computing the objective functions for 

each case. The values of the hyperparameters used are shown in Table 5. A full factorial 

design was used for the hyperparameters to train different cSOMs. The full factorial 

design of the 7 map sizes, 5 neighborhood function sizes, and 3 learning rates, 

comprised 105 combinations, in total. The full-factorial DOE is presented in Appendix 

A. For each combination of these hyperparameters, 10 cSOMs were trained and tested 

to obtain the values of the six objective functions - dH1 and QE1 corresponding to the 

SOM trained on one class of data; dH2 and QE2 corresponding to the SOM trained on 

second class of data; the training time tSOM; and the classification error errSOM. In 

total, 1050 simulations were performed, to obtain a data set large enough to account for 

the variabilities in SOM training. For each cSOM, 1000 observations and 250 

observations were sampled from both classes of data for training and testing, 

respectively.  



 

50 

 

Table 5: Values of hyperparameters used for statistical analysis. 

SOM Map Size 

(N) 

Size of Neighborhood Function 

(NF) 

Learning Rate 

(LR) 

5 x 5 (N=25) 1 0.01 

10 x 10 (N=100) 2 0.05 

15 x 15 (N=225) 3 0.1 

20 x 20 (N=400) 4 - 

25 x 25 (N=625) 5 - 

30 x 30 (N=900) - - 

35 x 35 (N=1225) - - 

 

Having collected the data, a response surface model (second order polynomial with 

interactions) was fit to the data to determine the relationship between the predictors 

(hyperparameters), and the responses (the objective functions). The summary of fit for 

each response is presented in  

Table 6. Further, the values of the responses as predicted by the fitted response surface 

model are shown in Figure 12, which provides a visual illustration of how the responses 

vary with the change in predictors. For instance, from Figure 12, one can see that all 

responses vary significantly with the predictor map size. Responses dH1, dH2, QE1, QE2, 

and errSOM are convex functions of the predictor map size. tSOM on the other hand 

monotonically increases with increase in the same predictor. The learning rate on the 

other hand, does not seem to have any effect on the responses, at least visually. 

Table 6: Summary of fit for the computed objective functions. 

Response R-Square R-Square Adjusted 

dH1 0.9518 0.9514 

dH2 0.9482 0.9477 

QE1 0.6470 0.6439 

QE2 0.7553 0.7532 

tSOM 0.9977 0.9977 

errSOM 0.5204 0.5163 



 

51 

 

 

 

Figure 12: Profile plot of the responses as function of the predictors. 
 

The effect of the predictors on the responses is quantified in Table 7. The source column 

lists different term in the response surface model, whose effects are quantified by their 

LogWorth. The LogWorth is the scaled version of a term’s p value. It is computed as  

 

𝐿𝑜𝑔𝑊𝑜𝑟𝑡ℎ = − log10(𝑝 𝑣𝑎𝑙𝑢𝑒) (26) 

 

When transformed to the LogWorth scale, highly significant p-values have large 

LogWorths, whereas insignificant p values correspond to low LogWorths. Any 



 

52 

 

LogWorth above 2 corresponds to a p value below 0.01, and can be considered 

significant at the 0.01 level.  

Table 7: Summary of effects of predictors on responses. 

Source p Value LogWorth 

Map Size 0.00 1264.92 

Map Size*Map Size 0.00 451.327 

Size of Neighborhood Function 0.00 40.116 

Size of Neighborhood Function*Size of 

Neighborhood Function 
0.00 23.465 

Map Size*Size of Neighborhood Function 0.00 19.454 

Size of Neighborhood Function*Learning Rate 0.48 0.317 

Learning Rate 0.67 0.17 

Learning Rate*Learning Rate 0.73 0.133 

Map Size*Size of Neighborhood Function*Learning 

Rate 
0.74 0.127 

Map Size*Learning Rate 0.81 0.09 
 

From Table 7, it was concluded that the map size was an important predictor, with a 

LogWorth of 1264.919. The same could also be concluded about the size of the 

neighborhood function, which had a LogWorth of 40.116. The higher-order, and 

interaction terms consisting of the map size and learning rate were also found to be 

significant. However, the same cannot be concluded about the learning rate. None of 

the terms in the model which had learning rate in them, including higher-order terms 

and interaction terms, were found to be significant, since their LogWorths were found 

to be well below the threshold of 2. This effect has also been visually captured in Figure 

12. The values of the responses were found to not vary with the learning rate. Based on 

these observations, it was determined that the learning rate was not a significant 

hyperparameter consideration in the training of cSOM, while the map size and size of 

the neighborhood function were. Thus, the learning rate was not used as one of the 



 

53 

 

hyperparameters of cSOM to be optimized by the GA. The optimization would be 

performed on only two independent variable viz. the map size and the size of the 

neighborhood function.  

 

Further, from visual inspection of Figure 12, it was found that the pairs of responses 

dH1 and QE1, and dH2 and QE2 showed similar trends with respect to all the predictors. 

Based on this observation, the relationship between these two responses was analyzed 

further. The correlation analysis between these two response pairs is shown in Figure 

13. Figure 13 (a) depicts the response pair dh1 and QE1, corresponding to the SOM 

trained on one class of data, whereas Figure 13 (b) depicts the response pair dh2 and 

QE2, corresponding to the SOM trained on one class of data. The numbers 0.9 and 0.85 

represent Spearman’s rank correlation (𝑟𝑠)  coefficient between the corresponding 

responses. Spearman’s rank correlation coefficient assesses how well the relationship 

between two variables can be described using a monotonic function. It is computed as  

  

𝑟𝑠 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 (27) 

 

where 𝑟𝑠 is Spearman’s rank correlation coefficient, 𝑑𝑖 is the difference between the 

ranks of corresponding observations of the two variables, and 𝑛 is the number of 

observations. The coefficient takes a high value when corresponding observations of 

the variables have similar ranks, and a low value otherwise. The sign of Spearman’s 



 

54 

 

correlation coefficient indicates the direction of association between the two variables. 

A positive value indicates that one variable increases with an increase in the other, 

whereas a negative value indicates that one variables decreases with an increase in the 

other.  

 

 

Figure 13: Correlation plots between for the two pairs of responses (a) dH1 and QE1 

(b) dH2 and QE2. The numbers in the corners of the scatter plot denote the Spearman 

rank correlation coefficient between the corresponding responses. 

 

𝑟𝑠 = 0.9 (for dH1 and QE1), and 𝑟𝑠 = 0.85 (for dH2 and QE2) are large positive values, 

which indicates that the two responses dH and QE are strongly correlated. In other 

words, the values of dH increase with an increase in values of QE, and vice-versa. 

However, a high value of 𝑟𝑠 does not imply a linear relationship between the two 

variables, as is evidenced by the scatter plots in Figure 13. Based on these observations, 

it was determined that using both dH and QE as objective functions was redundant, 

since the combination of hyperparameters that minimizes one would also minimize the 

other. Consequently, dH was eliminated from the set of objective functions to be 



 

55 

 

minimized using GA optimization. Including both would result not only in higher 

training times, but also in increased weights on redundant objective functions. The final 

list of hyperparameters and objective functions used to obtain the experimental results 

via GA optimization is listed in Table 8. 

Table 8: List of hyperparameters and objective functions used to obtain experimental 

results via optimization using Genetic Algorithm (GA). 

Independent Variables 

(SOM Hyperparameters) 

Objective Functions (SOM Quality 

Metrics and Practical 

Considerations) 

SOM Map Size (N) Quantization Errors (QE1 and QE2) 

Size of the Neighborhood 

Function (NF) 
cSOM Training Time (tSOM) 

- cSOM Test Error (errSOM) 

5.3. Experimental Setup and Results 

In this subsection the data used to obtain the experimental results is described. How the 

various were designed, and how imbalance was introduced in the data is also described. 

Finally, the results are presented, and implications discussed. The general MATLAB 

code used to execute the cSOM methodology to alleviate class imbalance is presented 

in Appendix B. 

5.3.1.  Data and Design of Experiments 

The 2SPIRAL data set introduced in Chapter IV was used to determine the performance 

of cSOM with imbalanced data. The data set consists of two classes of data, each 

represented by observations in one of two intertwined spirals. The data set in its original 

form is shown in Figure 14 (a). This data set was used as the foundation for building 

the different experiments. Figure 14 (b) and (c) show what the data set looks like when 



 

56 

 

complexities such as noise and imbalance are introduced to the original data set, make 

it more challenging to classification. For instance, noise is added to the 2SPIRAl in 

Figure 14 (b) which leads to more diffuse class boundaries, and increases overlap 

between classes as more noise is introduced. The addition of this noise was 

characterized by the following metric 

 

𝑑𝑠 =
𝜎

𝑑
  (28) 

 

where 𝑑 is the distance between the two arms of the spiral representing the two classes, 

and 𝜎 is the average width of the arm of each spiral. 𝑑𝑠 represents the increase in 

complexity of the 2SPIRAL with the addition of noise i.e., 𝑑_𝑠 is positively correlated 

with the increase in noise in the data set. An increase in 𝑑𝑠 is characterized by an 

increase in the thickness of the arms of the 2SPIRAL, and a decrease in the distance 

between the arms of the spirals representing different classes. Figure 14 (c) represents 

the imbalanced case. The blue observations represent the 1000 observations of the 

majority class, and the red observations represent the 10 observations of the minority 

class. The imbalanced number of observations from the minority class fail to capture 

the original distribution of that class of data posing challenge to correct classification. 

 



 

57 

 

 

Figure 14:Various versions of the 2SPIRAL data set (a) Original data set (b) With 

noise introduced (c) With noise and imbalance introduced. 

 

Based on the addition of complexities above, a set of experiments was designed to 

perform balancing using cSOM on 3 different levels of imbalance ratio (IR) and 3 

different values of 𝑑𝑠 were chosen to set up the experiment. These values are shown in 

Table 9.  

Table 9: Values of Imbalance Ratio (IR) and ds chosen to setup experiments. 

Imbalance Ratio (IR) 𝒅𝒔 

1:1 0.2 

10:1 0.1 

100:1 0.05 

 

Each combination of these two parameters was considered, resulting in a total of nine 

experiments. In case of IR, 100:1 is the worst-case scenario, whereas in case of 𝑑𝑠 a 

value of 0.2 indicates the worst-case scenario. The training data sets resulting from 

these nine combinations are shown in Figure 15. The worst-case scenario is represented 

by the case where 𝑑𝑠 = 0.2 and 𝐼𝑅 = 100: 1, due the amount of overlap between the 

classes, and the sparsity of data from the minority class. To prepare these data sets, the 



 

58 

 

size of the majority class was fixed at 1000 observations. Based on the imbalance ratio, 

the size of the minority class was varied from 1000 samples (1:1) to 10 samples (100:1). 

The test data set was fixed at 500 observations (250 observations from each class) to 

obtain unbiased classification accuracies. 

 

Figure 15: Data sets generated for experiments by adding noise and imbalance to the 

2SPIRAL data set. 

 

 

 

 



 

59 

 

Table 10: Parameter setting for multiobjective optimization using the Genetic 

Algorithm (GA). 

Parameter Description Value 

Population Size 
Number of individuals in 

a generation 
50 

Selection Function 

The selection function 

chooses parents for the 

next generation based on 

their scaled values from 

the fitness functions. 

‘Tournament’ (Selects each 

parent by choosing 2 

individuals at random, and 

choosing the best individual 

out of that set to be a parent) 

Crossover Fraction 

The fraction individuals 

of the next generation 

that crossover produces. 
0.8 

Mutation Fraction 

The fraction individuals 

of the next generation 

that mutation produces. 

= 1 − 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

= 0.2 

Number of Generations Stopping criteria 200 

 

5.3.2.  Genetic Algorithm Setup 

For each case shown in Figure 15 i.e., for every combination of parameters in Table 9, 

multiobjective optimization was performed using the Genetic Algorithm (GA). The 

GA, based on the four objective functions, was used to provide the best combination 

of the SOM hyperparameters to use to train cSOM to achieve a high test accuracy, 

while choosing the smallest map size to balance the two classes of data. This section 

provides descriptions of the parameters used to tune GA, along with their values chosen 

for to obtain the experimental results. These parameters, their description, and the value 

chosen are listed in Table 10.   

5.3.3. Results 

To recap, the cSOM was used on each of the cases shown in Figure 15, to balance the 

data and then perform classification. The 3 levels of 𝑑𝑠 and IR constituted a total of 9 



 

60 

 

different data sets, with varying levels of noise and imbalance. The size of the majority 

class was fixed at 1000 observations. Based on the imbalance ratio, the size of the 

minority class was varied from 1000 samples (IR = 1:1) to 10 samples (IR = 100:1). 

The test data set was fixed at 500 observations (250 observations from each class) to 

obtain unbiased classification accuracies. The Genetic Algorithm optimization was 

used to determine the optimal number of neurons to be used to obtain a balanced data 

set for classification. A summary of these results in provided in Table 11.  

In each of the 9 cases, regardless of the level of noise or imbalance, the optimization 

algorithm opted for the largest or the second largest map size possible. This can be 

attributed to the fact that the optimization algorithm prioritizes the three objective 

functions (QE1, QE2, and errSOM) which require large map sizes to be minimized, over 

the other objective function (tSOM) which requires as small a map size as possible to 

be minimized.  

Further, the increase in classification error with an increase in imbalance ratio was 

found to be greater than the increase in classification error with an increase in 𝑑𝑠. It 

was interesting to find that for imbalance ratios 1:1 and 10:1, the classification error 

increased by a factor ~2 with increasing values of 𝑑𝑠, but in the case of imbalance ratio 

of 100:1 the classification error first decreased and then increased with increasing 

values of 𝑑𝑠. This may be due to the fact that at very high levels of imbalance ratios, 

where only 10 observations are available from the minority class, the effect of addition 

of noise is negligible. In other words, when the number of observations available is as  



 

61 

 

Table 11: Summary of experimental results cSOM (N – Map Size, NF – Size of 

Neighborhood Function, QE – Quantization Error). 

 ds=0.05, IR=1:1 ds=0.05, IR=10:1 ds=0.05, IR=100:1 

N 289 289 225 

NF 2 2 2 

QE1 0.294 0.253 0.306 

QE2 0.303 0.303 1.79 

tSOM (s) 155.30 86.57 60.24 

errSOM (%) 1.95 3.76 25.18 

 ds=0.1, IR=1:1 ds=0.1, IR=10:1 ds=0.1, IR=100:1 

N 225 25 25 

NF 3 2 5 

QE1 0.238 0.154 0.155 

QE2 0.211 0.396 1.600 

tSOM (s) 113.73 8.08 7.25 

errSOM (%) 4.55 5.31 23.11 

 ds=0.2, IR=1:1 ds=0.2, IR=1:1 ds=0.2, IR=100:1 

N 289 196 196 

NF 3 3 4 

QE1 0.185 0.207 0.213 

QE2 0.198 0.407 0.171 

tSOM (s) 155.12 54.49 49.54 

errSOM (%) 5.62 11.79 27.86 

 

small as 10, the representation of the original class of data is so poor that upon adding 

noise to such data, the original patterns are actually better represented. 

5.3.4.  Repeatability of Optimization and Sensitivity Analysis 

Reproducing results when using stochastic algorithms such as GA, is a known concern. 

In this context, the factors governing the repeatability of the results obtained using GA 

are discussed in this subsection. 



 

62 

 

Table 12: Lower and upper bounds on the independent variables provided as input to 

the GA. 

Independent Variables 

(SOM Hyperparameters) 
Lower Bound Upper Bound 

SOM Map Size (N) 5x5 35x35 

Size of the Neighborhood 

Function (NF) 
1 5 

 

Given that the training data remains same, there are two main factors which may lead 

to difference in the final optimized hyperparameters, across different GA simulations. 

The first of these two factors is the upper and lower bounds on the hyperparameters. 

The GA takes as input the upper and lower bounds for each of the independent variables 

(the hyperparameters). The bounds used in this analysis are shown in Table 12. The 

lower bound on the SOM map size was chosen as 5x5 to yield a total of 25 neurons. 

This selection allows the minority class to be represented by more neurons than the 

number of training observations in the worst-case scenario (100:1 imbalance). The 

upper bound of 35x35 yields 1225 neurons, which allows the majority to be represented 

by only 225 more neurons than training observations. The rationale is that it does not 

make sense that the SOM representation of training data contain more prototypes than 

the number of training observations. Setting the upper bound on the neighborhood 

function as 5 ensures that even for the smallest map size (5x5), the size of the 

neighborhood function does not exceed the size of the SOM in either direction. The 

lower bound on the neighborhood function is just the minimum possible value of 1. 

Since these bounds define the search space for the GA, providing a different range of 



 

63 

 

bounds may lead to different ‘optimal’ values of the independent variables across 

different GA simulations.  

The other, more important factor, which governs the reproducibility of results of GA is 

the GA initialization. The GA initialization determines how the individuals of the first 

generation are created. To recap, the individuals of a generation are the potential cSOM 

models generated by different hyperparameter combinations. The choice of 

hyperparameters in the first generation has significant influence on the final optimal 

combination of hyperparameters, since the subsequent generation models are majorly 

comprised of some combination of individuals from the previous generation. Thus, the 

region of the hyperparameter space in which the GA is initialized influences the final 

choice of hyperparameters. By default, the GA uses random initialization of the first 

generation of individuals i.e. the first generation consists of models with random 

hyperparameter combinations, chosen within the region of the hyperparameter space 

defined by their upper and lower bounds. Alternately, the individuals of the first 

generation can be specified manually, as input to the GA i.e. a set of fifty, user-defined 

hyperparameter combinations to serve as the starting points for the GA.  

The results in the previous section were arrived at by manually specifying the first 

generation individuals for the GA. The fifty hyperparameter combinations used to 

initialize the GA manually are listed in Appendix C. 

A set of analysis was also performed using the random initialization, on the artificial 

data sets shown in the previous subsection. All the data and settings were retained, only 

the initialization was changed to random, as against specifying manually. The results 



 

64 

 

obtained using these two different initialization methods are compared in Table 13. The 

results show that the most important objective function for fault detection, the test error, 

is not adversely affected by the change in initialization strategy. While in some cases, 

the manual initialization yields lower error rates than random initialization, in some 

cases it does not. In either case, the difference in the test errors from both initializations 

does not differ by more than a ~3-4%. This suggests that the surface of the objective 

function ‘errSOM’ with respect to the hyperparameters is relatively flat, and riddled 

Table 13: Results obtained on artificial data sets using manual and random 

initializations of GA. 

 ds=0.05, IR=1:1 ds=0.05, IR=10:1 ds=0.05, IR=100:1 

 Manual Random Manual Random Manual Random 

N 289 1089 289 676 225 1089 

NF 2 2 2 4 2 3 

QE1 0.294 0.200 0.253 0.233 0.306 0.21 

QE2 0.303 0.210 0.303 0.130 1.79 2.610 

tSOM (s) 155.30 750 86.57 300 60.24 450 

errSOM (%) 1.95 4.05 3.76 3.16 25.18 23.54 

 ds=0.1, IR=1:1 ds=0.1, IR=10:1 ds=0.1, IR=100:1 

 Manual Random Manual Random Manual Random 

N 225 529 25 25 25 676 

NF 3 2 2 2 5 2 

QE1 0.238 0.180 0.154 0.160 0.155 0.180 

QE2 0.211 0.190 0.396 0.410 1.600 3.760 

tSOM (s) 113.73 350 8.08 7.5 7.25 250 

errSOM (%) 4.55 2.5 5.31 1.5 23.11 18.36 

 ds=0.2, IR=1:1 ds=0.2, IR=1:1 ds=0.2, IR=100:1 

 Manual Random Manual Random Manual Random 

N 289 400 196 400 196 400 

NF 3 3 3 2 4 3 

QE1 0.185 0.160 0.207 0.160 0.213 0.170 

QE2 0.198 0.160 0.407 0.55 0.171 2.72 

tSOM (s) 155.12 225.78 54.49 125.93 49.54 90.26 

errSOM (%) 5.62 4.48 11.79 13.67 27.86 25.24 



 

65 

 

with local minima. The other objective functions are, however, significantly impacted 

by the choice of initialization. For instance, QE2 (the quantization error of the SOM 

trained on the minority class of training data), at higher imbalance ratios, takes lower 

values with the manual initialization than the random. This can be attributed to the fact 

that the manual initialization, which yields smaller map sizes than random 

initialization, allows fewer ill-trained neurons to be present in the SOM, leading to a 

reduction in the average quantization error. Similarly, tSOM (the training time of 

SOM), is also lower for the manual initialization due to the smaller map sizes.   

5.3.5.  Comparison with Other Classifiers 

To validate the effectiveness of cSOM, its performance on the imbalanced and noisy 

2SPIRAL data set was compared with that of two other classifiers. Following from the 

comparison throughout this study, SVM-RBF was used as one of the classifiers. The 

other classifier chosen for comparison was a neural network (NN) with one hidden 

layer. The three classifiers were tested on the nine data sets used in the previous 

subsection. The nine data sets comprised different levels of noise and imbalance in the 

2SPIRAL data set. As in the previous subsection, based on the imbalance ratio, the size 

of the minority class was varied from 1000 samples (IR = 1:1) to 10 samples (IR = 

100:1). The test data set was fixed at 500 observations (250 observations from each 

class) to obtain unbiased classification accuracies. 

The hyperparameters of SVM-RBF were optimized using a built-in MATLAB library 

which attempts to minimize the cross-validation error by varying SVM’s 



 

66 

 

hyperparameters. For the neural network to achieve best performance, the size of its 

hidden layer was varied from 10 neurons to 100 neurons, and the classification error 

recorded for each. For each data set, the result corresponding to the hidden layer size 

yielding the lowest classification error was reported. Additionally, in each case, the 

reported test error for these classifiers was the mean test error obtained by training and 

testing each classifier ten times. For cSOM, the reported test errors were the same as 

the ones reported in Table 11. The comparative results from these experiments is shown 

in Figure 16, Figure 17, and Figure 18. In each of these plots, the x-axis represent 

different levels of complexity achieved by the addition of noise, as measured by 𝑑𝑠. 

Figure 16, Figure 17, Figure 18 correspond to the three levels of imbalance (1:1, 10:1, 

and 100:1 respectively) at which the classifiers were evaluated. 

 

At low levels of imbalance i.e., when the data set was perfectly balanced (Figure 16), 

NN yielded the lowest test errors (compared to cSOM and SVM-RBF) at all three levels 

of 𝑑𝑠. For the simplest case where 𝑑𝑠 = 0.05, NN achieved 0% classification error on 

the test data set while using 80 neurons in the hidden layer. This is understandable, 

since NNs are known to be powerful classifiers when the training data is balanced and 

nonlinearly separable, and can achieve good generalization on a previously unseen test 

data set. The performance of cSOM was marginally poorer than that of SVM-RBF for 

𝑑𝑠 = 0.05 𝑎𝑛𝑑 0.1. However, for the classification accuracy of cSOM for the case 

where 𝑑𝑠 = 0.2 was better than cSOM by ~3%. All three classifiers yielded comparable 

results for this case. Even at an imbalance ratio of 10:1 (Figure 17), for low levels of 



 

67 

 

noise (𝑑𝑠 = 0.05), NN yielded 0% error on the test data set, however, this time using 

70 neurons in its hidden layer, as compared to the balanced case where it used 20 

neurons in the hidden layer. With the addition of the additional complexity of an 

imbalanced training data set, the performance of all three classifiers suffered. The 

trends however were found to be different from the balanced case. While NN was still 

the best-performing classifier amongst the three, cSOM yielded, on an average, ~17% 

lower classification errors than SVM-RBF, across the three levels of noise. The 

performance of SVM-RBF was found to suffer the most with the increase in imbalance, 

but NN stood out as the best classifier even though its classification error increased 

marginally upon increasing the imbalance ratio.  At the highest level of imbalance ratio 

considered (IR=100:1 in Figure 18), however, the trend in performance on the three 

classifiers changed significantly from previous levels of imbalance considered. The 

performance of all three classifiers suffered at an imbalance ratio of 100:1. Across all 

three levels of 𝑑𝑆, the classification errors of NN and SVM-RBF increased by an 

average of ~26% and ~20% respectively, from the case of 10:1 imbalance. The 

classification error of cSOM, however, increased by ~10%. cSOM was also found to 

be the best-performing classifier across all three levels of 𝑑𝑠. It achieved classification 

errors lower than that of NN and SVM-RBF by ~12% and ~26% respectively. Also, 

NN yielded classification errors of 33% and 35% for 𝑑𝑠 = 0.1 𝑎𝑛𝑑 0.2 respectively, 

despite having used 100 neurons in its hidden layer. 



 

68 

 

 

Figure 16: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 1:1. 

 



 

69 

 

 

Figure 17: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 10:1. 

 



 

70 

 

 

Figure 18: Test errors of cSOM, Neural Network, and SVM-RBF at different levels 

of noise on the 2SPIRAL data, with an imbalance ratio IR = 100:1. 

 
 

The performance of all three classifiers was found to be sensitive to the addition of 

noise to the data set. This was expected since the addition of noise leads to an increase 

in the overlap between distributions of the two classes. However, the change in the 

classification errors of all three classifiers with a change in the imbalance ratio (across 

all three levels of 𝑑𝑠) was found to be greater than the change in their classification 

errors with a change in 𝑑𝑠 (across all three levels of imbalance ratio). In other words, 

it was found that the imbalance ratio affected the performance of cSOM, NN and SVM-



 

71 

 

RBF on an average by ~11%, ~20% and ~28% respectively, while the addition of noise 

affected their performance, on an average by ~5%, ~6% and ~8% respectively. 

The fact that the performance of cSOM is altered by ~11% by the imbalance ratio 

(nearly half as that of NN, and third as that of SVM-RBF) is proof that the developed 

cSOM methodology is robust when it comes to tackling imbalanced data sets for 

classification. 

5.3.6. Experiments Using Benchmark Data Sets 

To validate the effectiveness of cSOM using benchmark data sets, its performance was 

compared with that of two other classifiers. Following from the comparison throughout 

this study, SVM-RBF was used as one of the classifiers. The other classifier chosen for 

comparison was a neural network (NN) with one hidden layer. The three classifiers 

were tested on the four benchmark data sets used in Section 4.4.1 As in the previous 

subsection, based on the imbalance ratio, the size of the minority class was varied from 

1000 samples (IR = 1:1) to 10 samples (IR = 100:1). The test data set was fixed at 500 

observations (250 observations from each class) to obtain unbiased classification 

accuracies. 

The hyperparameters of SVM-RBF were optimized using a built-in MATLAB library 

which attempts to minimize the cross-validation error by varying SVM’s 

hyperparameters. For the neural network to achieve best performance, the size of its 

hidden layer was varied from 10 neurons to 100 neurons, and the classification error 

recorded for each. For each data set, the result corresponding to the hidden layer size 



 

72 

 

yielding the lowest classification error was reported. Additionally, in each case, the 

reported test error for these classifiers was the mean test error obtained by training and 

testing each classifier ten times. . The comparative results from these experiments is 

shown in Figure 19, Figure 20, Figure 21, and Figure 22. 

 

Figure 19: Test errors of cSOM, Neural Network, and SVM-RBF for the CMSC data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. 

As in the case of experiments with artificial data sets, at lower imbalance ratios, the 

performance of NN and SVM-RBF on the benchmark data sets were comparable to, or 

better than that of cSOM. However, at higher imbalance ratios, the performance of 

cSOM was found to be better than that of NN and SVM-RBF. This was true for the 

CMSC and Iris data sets, but not for the Wine and BCW data sets, where at 100:1 

imbalance, the performance of neural networks was found to better, even if by only a 

few percentage points. 



 

73 

 

 

Figure 20: Test errors of cSOM, Neural Network, and SVM-RBF for the Iris data set, 

at 1:1, 10:1, and 100:1 imbalance ratios. 

 

Figure 21: Test errors of cSOM, Neural Network, and SVM-RBF for the Wine data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. 



 

74 

 

 

Figure 22: Test errors of cSOM, Neural Network, and SVM-RBF for the BCW data 

set, at 1:1, 10:1, and 100:1 imbalance ratios. 

 

Confusion matrices depicting the performance of all three classifiers, on artificial and 

benchmark data sets are provided in Appendix D. 

 

  



 

75 

 

Chapter 6:  The Semi-Supervised cSOM Methodology for 

Dealing With Sparsely-Labeled Data Sets 

Supervised learning methods require large amounts of labeled data to train meaningful 

models. However, labeled condition monitoring data is often difficult and expensive to 

acquire in large quantities, due to the costs involved, and the manual input from experts 

required. Thus, supervised learning techniques are not useful in such scenarios.  

 

 

Figure 23: Issues with learning from only few labeled observations, as compared to 

learning from both labeled and unlabeled observations. 

 

Unlabeled observations, on the other hand, are available in much larger quantities than 

labeled observations. Despite lacking class labels, large volumes of unlabeled data can 

contain significant information about the healthy and faulty operating states of a 

system, which cannot be explored by supervised learning techniques. Consider the 

simple situation in Figure 23. When only a few labeled observations are available, they 

do not provide adequate information regarding the underlying distribution of the data. 

Building a supervised classifier on few labeled observations lead to incorrect decision 



 

76 

 

rules being learnt. Upon looking at the unlabeled observations, however, provides a 

clearer picture of the class distributions, despite lacking label information. When only 

a small number of labeled observations but considerably larger number of unlabeled 

observations are available, the semi-supervised learning methods can be considered 

cost-effective alternatives to supervised and unsupervised learning methods. 

6.1. Introduction to Semi-Supervised Learning 

Semi-supervised learning techniques are machine learning algorithms which lie at the 

confluence of supervised and unsupervised learning techniques. These techniques use 

both, labeled and unlabeled data in conjunction to develop classifiers, to perform an 

otherwise supervised learning task. The goal of semi-supervised learning is to build a 

classifier which has better prediction accuracy on previously unseen test observations 

than a supervised learning technique would have achieved using just the limited 

number of labeled observations. A mapping: 𝑋 ↦ 𝑌 , where 𝑋 is the set of training 

observations, and 𝑌 the set of labels corresponding to those observations, is required to 

be learnt from the labeled and unlabeled data. The mapping 𝑓 can be learnt from 

unlabeled observations by making certain assumptions about the relationship between 

the marginal distribution of the unlabeled data 𝑃(𝑋) and the conditional distribution 

𝑃(𝑌|𝑋) which determines the class labels 𝑌. 

 

There exist two different semi-supervised learning settings – inductive and transductive 

semi-supervised learning. The goal of both settings is slightly different.  



 

77 

 

Inductive Semi-Supervised Learning: The goal of inductive semi-supervised learning 

is to predict the labels of future test observations. Given a training data set containing 

𝑙 labeled observations {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑙 , and 𝑢 unlabeled observations {𝑥𝑗}

𝑗=𝑙+1

𝑙+𝑢
 , inductive 

semi-supervised learning aims to learn a function 𝑓: 𝑋 ↦ 𝑌 such that 𝑓 can be a good 

predictor for future test observations.  

 

Transductive Semi-Supervised Learning: The goal of transductive semi-supervised 

learning is to predict the labels of the unlabeled observations in the training data. Given 

a training data set containing 𝑙 labeled observations {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑙 , and 𝑢 unlabeled 

observations {𝑥𝑗}
𝑗=𝑙+1

𝑙+𝑢
 , transductive semi-supervised learning aims to learn a function 

𝑓: 𝑋𝑙+𝑢 ↦ 𝑌𝑙+𝑢 such that 𝑓 can be good predictor for the unlabeled observations 

{𝑥𝑗}
𝑗=𝑙+1

𝑙+𝑢
. 

6.2. Developed Semi-Supervised cSOM Methodology 

The semi-supervised methodology developed in this study is transductive in nature. 

The goal is to utilize the information available from the labeled training observations 

to first characterize the class distributions in the training data. Then, with the class 

membership information available for the entire training data set, classification is 

performed on a set of previously unseen test observations. However, even prior to 

labeling, the distribution of the training data, including unlabeled data, must be 

characterized. Thus, the developed methodology is divided into three parts. First, the 



 

78 

 

clustering is performed on the training data set to characterize its distribution by 

generating prototypes of all training observations. Then, the labeled observations are 

used to predict the class membership of all prototypes. Finally, based on the similarity 

of unseen test observations and the labeled prototypes, the class membership of the test 

observations is inferred. Each of these steps is described in detail in the subsection that 

follow.  

6.2.1. Clustering 

As stated before, certain assumptions must be made about the relationship between the 

marginal distribution of the training data 𝑃(𝑋), and the conditional distribution 𝑃(𝑌|𝑋) 

of the class labels. A common assumption in the semi-supervised learning paradigm is 

that observations closer to each other, or those that belong to the same cluster of data, 

are likely to be similar and thus share the same class label [60] [61] [62]. Following 

from this assumption, self-organizing maps are used for the clustering step in this study. 

The SOM-based classifier developed in Chapter 4, and the SOM-based methodology 

to alleviate class imbalance problems developed in Chapter 5 used SOMs in a 

supervised manner i.e., in those methods SOMs were trained on specific classes in the 

training data. However, for the semi-supervised methodology, the SOM is used in its 

traditional, unsupervised form for clustering. The hyperparameters of the SOM can still 

be determined using the optimization strategy developed in Chapter 5. However, the 

training must be done in an unsupervised manner, and metrics such as the difference in 

entropy of training data set and SOM neurons (dH) and the average quantization error 



 

79 

 

(QE) can be used as the objective functions to be minimized. The test error, however, 

cannot be used as one of the objective functions here, while the training time can still 

be used if it is a concern.  

6.2.2. Labeling 

Once the SOM has been adequately trained, its neurons are prototypes of the training 

data on which it was trained. The neurons however, unlike in the case of the supervised 

cSOM, do not have labels assigned to them i.e., their class membership is unknown. 

To be able to perform classification on test observations, the class membership of the 

neurons must be known. This labeling can be usually be performed using traditional 

supervised classification using the labeled observations as the training data, and the 

SOM neurons as the test data. However, traditional classifiers (which perform ‘hard’ 

classification) result in assignment of a single class label to every neuron, without 

regard for their proximity to the labeled observation. There is a degree of uncertainty 

involved in the labeling neurons since the training observations are scarce, and in such 

cases class memberships cannot be predicted with absolute certainty. Thus, it is more 

prudent to assign a degree of class membership to each neuron, rather than single class 

labels i.e. soft classification. In the developed methodology, class memberships of 

neurons are computed based on the distance of each neuron from its nearest labeled 

training observation of each class. In fact, this is the same metric that is computed to 

perform multiclass classification using cSOM. Thus, for a c-class problem, each neuron 

is assigned c membership values, each representing the degree of similarity of a neuron 



 

80 

 

to each class of data. This class membership value, which is referred to as its ‘weight’ 

for each class is computed as  

𝑊𝑗
𝑖 = 1 −

𝑑𝑗

∑𝑑𝑗
  (29) 

where 𝑊𝑗
𝑖 is the weight of the ith neuron for the jth class, 𝑑𝑗 is its Euclidean distance 

from the nearest labeled training observation in class j, and denominator is the sum of 

its Euclidean distances from the nearest neighbor in each of the j classes. Thus, if a 

neuron that is closest to class j, its weight value 𝑊𝑗
𝑖 is the highest for class j, and lowest 

for the class from which it is farthest. Thus, computing class memberships this way 

allows each neuron to have a ‘degree’ of membership to each class. For neurons which 

lie far from labeled training observations in the Euclidean space, the weight values are 

nearly equal for every class and thus naturally represent an uncertainty of them 

belonging to any class of data. 

It must be noted that the developed method requires at least one labeled training 

observation from each class of training data to be implemented. Without this 

requirement being met, weights cannot be assigned to the neurons for the class of 

training data which does not have any labeled training observation.  

6.2.3. Classification 

Once class membership weights have been assigned to the neurons, classification can 

be performed on previously unseen test observations. However, since the neurons are 

assigned class membership weights, and not class labels, traditional classifiers cannot 



 

81 

 

be used. Instead, a variant of the k-nearest neighbors algorithm is used for classification 

of test observations.  In the classic k-nearest neighbors algorithm, the k-closest training 

observations to the test observation are selected, and the class to which majority of 

those training observations belong is also assigned to the test observation. In this study 

however, the class membership weights of the k-nearest neighbors of a test observation 

are summed, and the test observation is assigned to that class which has the maximum 

sum of weights for the k-nearest neighbors. Also, the k-nearest neighbors of the test 

observation are the neurons of the trained SOM, rather than the training observations 

themselves. An example of how a test observation is classified is provided in Table 14. 

If for a test observation 𝑡�̅�, the k-nearest neurons are chosen as �̅�1 … �̅�𝑘 .  

Table 14: Example of soft k-nearest neighbors classification for a two class problem. 

k-Nearest 

Neurons 
𝑾𝟏

𝒊  𝑾𝟐
𝒊  

�̅�1 0.7543 0.2457 

�̅�2 0.8311 0.1689 

… … … 

… 0.1392 0.8608 

�̅�𝑘  0.7543 0.2457 

∑  𝑊𝑐
𝑗

𝒌

𝒋=𝟏

 4.5213 1.4787 

 

The class membership weights of the k neurons are summed. Say the sum of weights 

is 4.5213 for class 1, and 1.4787 for class 2. The test observation 𝑡�̅� is then assigned to 

class 1. Thus, each neuron provides a test observation its likelihood of belonging to a 

class of observations, and the sum of the weights provides the test observation an 

estimate of its likelihood of belonging to each class. 



 

82 

 

6.3. Experimental Setup and Results 

In this section, the data used to obtain the experimental results is first described. The 

complexities added to the data set are also explained. The setup of the various methods 

used for comparison are then explained, and the experimental results presented and 

discussed. 

In continuation with previous experiments in this study, the 2SPIRAL data set was used 

to obtain the experimental results using the developed semi-supervised methodology. 

1000 training observations were sampled from the two classes of data. To mimic the 

scenario where a data set contains only a few labeled observations, 3 different cases 

were chosen. These three cases represent scenarios where 0.5%, 1%, and 2% of the 

observations in the training data set are labeled. Thus, for each case, the class labels of 

99.5%, 99%, and 98% of the training observations were stripped away. The 3 scenarios 

thus obtained are shown in Figure 24, with decreasing level of difficulty from left to 

right. The most difficult scenario is when there are fewest number of training 

observations are available, making it more difficult for soft labels to be assigned to the 

unlabeled SOM neurons. The test data set was fixed at 500 observations (250 

observations from each class) to obtain unbiased classification accuracies. 

 



 

83 

 

 

Figure 24: Three different levels of difficulty in the data sets used, obtained by 

varying percentage of training observations which are labeled. 

 
 

To validate the effectiveness of the semi-supervised SOM methodology, its 

performance on the sparsely-labeled 2SPIRAL data set was compared with that of two 

other classifiers. Following from the comparison throughout this study, SVM-RBF was 

used as one of the classifiers. The other classifier chosen for comparison was a neural 

network (NN) with one hidden layer.  

 

The hyperparameters of SVM-RBF were optimized using a built-in MATLAB library 

which attempts to minimize the cross-validation error by varying SVM’s 

hyperparameters. For the neural network to achieve best performance, the size of its 

hidden layer was varied from 10 neurons to 100 neurons, and the classification error 

recorded for each. For each data set, the result corresponding to the hidden layer size 

yielding the lowest classification error was reported. Additionally, in each case, the 



 

84 

 

reported test error for these classifiers was the mean test error obtained by training and 

testing each classifier ten times. The results of this analysis are shown in Figure 25. 

 

 

Figure 25: Comparative results of the three methods on sparsely-labeled data sets 

with different percentage of observations labeled. 

 

In each of the three cases, NN yielded the highest test errors, which was always ~50%. 

This is the worst performance a classifier can yield since a 50% accuracy is equivalent 

to a random guess. Interestingly, the performance of NN did not improve as the number 

of labeled observations in the training data set were increased. It yielded the same test 

error when 0.5% training observations were labeled as it did when 2% of the training 

observations were labeled. The performance of SVM-RBF, on the other hand was 

found to improve as the number of labeled observations in the training data set were 

increased. While the developed semi-supervised SOM methodology showed the same 



 

85 

 

trend, its performance was found to be better than that of SVM-RBF by ~3-4% in each 

case.  

6.4. Experiments Using Benchmark Data Sets 

In continuation with previous experiments in this study, the four benchmark data sets 

(CMSC, Iris, Wine, and BCW) were used to obtain the experimental results using the 

developed semi-supervised methodology. For each data set, 1000 training observations 

were sampled from the two classes of data. To mimic the scenario where a data set 

contains only a few labeled observations, 3 different cases were chosen, as in the 

previous subsection. These three cases represent scenarios where 0.5%, 1%, and 2% of 

the observations in the training data set are labeled. Thus, for each case, the class labels 

of 99.5%, 99%, and 98% of the training observations were stripped away. The most 

difficult scenario is when there are fewest number of training observations are 

available, making it more difficult for soft labels to be assigned to the unlabeled SOM 

neurons. The test data set was fixed at 500 observations (250 observations from each 

class) to obtain unbiased classification accuracies. 

 

To validate the effectiveness of the semi-supervised SOM methodology, its 

performance on the sparsely-labeled benchmark data sets was compared with that of 

two other classifiers. Following from the comparison throughout this study, SVM-RBF 

was used as one of the classifiers. The other classifier chosen for comparison was a 

neural network (NN) with one hidden layer.  



 

86 

 

 

The hyperparameters of SVM-RBF were optimized using a built-in MATLAB library 

which attempts to minimize the cross-validation error by varying SVM’s 

hyperparameters. For the neural network to achieve best performance, the size of its 

hidden layer was varied from 10 neurons to 100 neurons, and the classification error 

recorded for each. For each data set, the result corresponding to the hidden layer size 

yielding the lowest classification error was reported. Additionally, in each case, the 

reported test error for these classifiers was the mean test error obtained by training and 

testing each classifier ten times. The results of this analysis are shown in Figure 26, 

Figure 27, Figure 28, and Figure 29. 

 

Figure 26: Comparative results of the three methods on sparsely-labeled CMSC data 

set with different percentage of observations labeled. 



 

87 

 

 

Figure 27: Comparative results of the three methods on sparsely-labeled Iris data set 

with different percentage of observations labeled. 

 

Figure 28: Comparative results of the three methods on sparsely-labeled Wine data 

set with different percentage of observations labeled. 



 

88 

 

 

Figure 29: Comparative results of the three methods on sparsely-labeled BCW data 

set with different percentage of observations labeled. 

 

In case of each of the four benchmark data sets, NN yielded the highest test error, which 

was always ~50%, regardless of the number of labeled training observations available. 

As in the case of artificial data sets, the performance of NN did not improve as the 

number of labeled observations in the training data set were increased. It yielded the 

same test error when 0.5% training observations were labeled as it did when 2% of the 

training observations were labeled. The performance of and SVM-RBF, on the other 

hand was found to improve as the number of labeled observations in the training data 

set were increased. While the developed semi-supervised SOM methodology showed 

the same trend, its performance was found to be better than that of SVM-RBF by ~3-



 

89 

 

4% in case of CMSC and Iris data sets, and ~20-30% in case of Wine and BCW data 

sets.  

The fact that the SOM methodology performs better than the other two algorithms can 

be attributed to the additional benefit afforded by semi-supervised learning. The 

labeling of the SOM neurons using the labeled training data helps the algorithm 

characterize the class distributions in the data which makes the subsequent 

classification performance better. What is interesting to note across the results in this 

section on sparsely-labeled data sets, and the results in the previous section on 

imbalanced training data sets is the difference in performance of the two algorithms 

compared. The optimization of hyperparameters for NN and SVM-RBF is the same in 

both cases. However, in case of imbalanced data, the performance of SVM-RBF was 

the worst amongst the three methods, indicating that SVM-RBF was prone to poor 

performance when using imbalanced training data. The performance on NN in that case 

was better the even the developed cSOM methodology in some cases. In case of 

sparsely-labeled data, the performance of NN was the worst among the three methods, 

while SVM –RBF performed better. In both cases, when the level complexity added 

was the highest, the developed SOM-based methodologies had the best performance. 

While the performance of different classifiers are prone to different complexities in the 

training data set, the developed SOM-based methodologies consistently yield good 

results. This indicates the robustness of the developed methodologies in the face of 

various complexities encountered in the training data set.  



 

90 

 

Chapter 7: Contributions 

The primary contribution of this work was the development of two types of fault 

detection methodologies, based on self-organizing maps (SOMs) to specifically tackle 

condition monitoring data sets riddled with two types of complexities. The first type of 

complexity, which is frequently encountered in condition monitoring data sets, was 

class-imbalance. Since systems operate longer in a healthy, rather than faulty state, the 

volume of healthy condition monitoring data collected from such systems is larger in 

volume than faulty data. The second type of complexity was that of sparsely-labeled 

data sets. Since the labeling of raw condition monitoring turns out to be a manual and 

expensive task, fault detection methodologies must sometimes be developed using only 

partially-labeled data sets.  

Before developing the methodologies to tackle both types of complexities, first, a 

supervised SOM classifier, called cSOM, was developed. SOM has traditionally been 

used only in an unsupervised fashion. In this study, a separate SOM was trained on 

each class of data in the training data set to capture patterns in the training data. Then, 

the neurons of the trained SOMs were used as prototypes to characterize the relative 

similarity of test observations from each class of data, based on their Euclidean distance 

from the nearest neuron in each class-specific SOM.  

To deal with the issue of class-imbalance in condition monitoring data sets, the 

developed cSOM methodology was used. SOMs of equal sizes were trained on the 



 

91 

 

observations of the imbalanced classes of data in a supervised manner. Since 

classification using the cSOM methodology only required the prototypical neurons of 

the training data, the equal-sized SOMs achieved the class balance required to perform 

correct classification. The size of the SOM required to balance the classes was 

determined using the genetic algorithm using the classification error, training time, and 

quantization error as the objective functions. While several methods have been 

proposed in the literature to deal with class-imbalance, these methods only evaluate the 

classification error after-the-fact. However, since the end goal of any fault detection 

methodology is to minimize misclassifications, the classification error was deemed to 

be an important consideration which must be taken into account while alleviating the 

imbalance.   

To deal with the issue of sparsely-labeled condition monitoring data sets, a two-step 

transductive semi-supervised methodology was developed. First, a SOM was trained 

in an unsupervised manner on the entire training data set consisting of both, labeled 

and unlabeled samples. Based on the proximity of the neurons, to the labeled 

observations, each neuron was assigned class-membership weights. Finally, to classify 

previously unseen test observations, the class membership weights of the k neurons 

closest to the test observations were summed, and the test observation assigned to the 

class with the highest total weight. Unlike methods presented in the literature, the 

developed semi-supervised methodology did not require the manual tuning of 

parameters which can otherwise induce biases in the results.   



 

92 

 

Chapter 8: Conclusions and Future Work 

A novel fault detection methodology, called cSOM, based on supervised self-

organizing maps (SOM) was developed, and its use as an efficient algorithm for fault 

detection was demonstrated. A new health metric, 𝐷ℎ𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠 , which was calculated 

based on the relative distance of test observations from the patterns in data representing 

different classes, was introduced. It was shown how this metric can be used to quantify 

the extent to which a system is in a fault state, and how the developed approach helps 

overcome pitfalls of the previous SOM-based fault detection method. cSOM’s 

performance was compared with that of six, widely used classifiers. In every case 

cSOM yielded comparable or better results than the classifiers being compared. The 

similarities in the operation of 2SOM and SVM-RBF were highlighted, explaining why 

the two methods consistently yielded comparable classification results. The two 

methods were also contrasted in the context of their training times and computational 

complexity. It was shown that 2SOM yields comparable classification performance 

while saving significant computational resources. These savings were shown to be even 

more pronounced with increasing sizes of data sets. In general, the following 

recommendation was made – the decision to use either 2SOM or SVM-RBF for an 

application is a trade-off between classification accuracy and training time. For large 

data sets (greater than ~107 observations), 2SOM accrued significant savings in 

training time while losing a few percentage points of classification accuracy over SVM-

RBF. The developed method was further generalized to include classification on 



 

93 

 

multiclass data sets and its effectiveness in performing multiclass classification was 

demonstrated with its use on the Iris data set.  

In case of imbalanced data sets, an optimization-based strategy for cSOM was 

developed. The genetic algorithm-based optimization made use of classification error, 

training time and quantization error as the objective functions to be minimized during 

the process of balancing the data set. While minimizing the quantization error ensured 

the SOMs trained on each class were most representative of the training data, 

minimizing the training time ensured that computational resources could be saved in 

the process. However, the important factor was the use of the classification error as an 

objective function to be minimized while trying to achieve the balance in the data set. 

The end goal of any fault detection methodology is always accurate prediction of a 

fault, and thus using the classification error as an objective function ensured that the 

end goal was taken into account during the process of balancing, and not after the fact. 

The developed cSOM methodology was compared against SVM-RBF and shallow 

neural networks on a variety of data sets with extreme levels of imbalance. The 

performance of cSOM was found to be the best at the highest levels of imbalance where 

as few as 10 training observations were available from the minority class of data. It was 

concluded that even with few training observations, the SOM was able to capture the 

patterns in the training data efficiently.  

In case of sparsely-labeled data sets, a semi-supervised approach was implemented 

using SOMs. After training a single SOM on all training observations in an 



 

94 

 

unsupervised manner, the labeled training observations were used to perform soft 

classification on the prototypical SOM neurons, to assign class-membership weights to 

them. Classification on test observations was performed using a k-nearest neighbors 

style approach, classifying test observations to the class with maximum total weight 

among the k nearest neurons of the test observation. The developed methodology was 

compared with SVM-RBF and shallow neural networks for data sets with different 

number of training observations. In every case, the developed methodology yielded the 

best results. It was concluded that the developed method was efficient at detecting 

faults even in the face of very sparsely-labeled data sets where only 0.5% of the training 

observations were labeled.  

Future Work 

With regards to the developed supervised-SOM classifier, the use of distance metrics 

(other than Euclidean distance) to compute the metric 𝐷ℎ𝑒𝑎𝑙𝑡ℎ𝑖𝑛𝑒𝑠𝑠  needs to be tested. 

Specifically, whether the use of a specific distance metric is associated with specific 

patterns in the training data needs to be investigated.  

The imbalance ratio is used to test and compare different classifiers at various levels of 

class imbalance complexity. However, it was found in this study that given sufficient 

number of training observations, even at extreme imbalance ratios e.g. 1000:1, 

classifiers can yield good performance. Whether the parameter imbalance ratio is 

appropriate to compare classifiers needs to be investigated. A different parameter, 



 

95 

 

which amalgamates not only the imbalance ratio, but also the number of observations 

in the imbalanced classes, needs to be developed so that the performance of classifiers 

can be benchmarked based on this parameter.  



 

96 

 

Appendix A 

SOM Map Size (N) Size of Neighborhood 

Function (NF) 

Learning Rate (LR) 

10x10 (N=100) 1 0.01 

10x10 (N=100) 1 0.05 

10x10 (N=100) 1 0.1 

10x10 (N=100) 2 0.01 

10x10 (N=100) 2 0.05 

10x10 (N=100) 2 0.1 

10x10 (N=100) 3 0.01 

10x10 (N=100) 3 0.05 

10x10 (N=100) 3 0.1 

10x10 (N=100) 4 0.01 

10x10 (N=100) 4 0.05 

10x10 (N=100) 4 0.1 

10x10 (N=100) 5 0.01 

10x10 (N=100) 5 0.05 

10x10 (N=100) 5 0.1 

35x35 (N=1225) 1 0.01 

35x35 (N=1225) 1 0.05 

35x35 (N=1225) 1 0.1 

35x35 (N=1225) 2 0.01 

35x35 (N=1225) 2 0.05 

35x35 (N=1225) 2 0.1 

35x35 (N=1225) 3 0.01 

35x35 (N=1225) 3 0.05 

35x35 (N=1225) 3 0.1 

35x35 (N=1225) 4 0.01 

35x35 (N=1225) 4 0.05 

35x35 (N=1225) 4 0.1 

35x35 (N=1225) 5 0.01 

35x35 (N=1225) 5 0.05 

35x35 (N=1225) 5 0.1 

15x15 (N=225) 1 0.01 

15x15 (N=225) 1 0.05 

15x15 (N=225) 1 0.1 

15x15 (N=225) 2 0.01 

15x15 (N=225) 2 0.05 

15x15 (N=225) 2 0.1 

15x15 (N=225) 3 0.01 

15x15 (N=225) 3 0.05 

15x15 (N=225) 3 0.1 

15x15 (N=225) 4 0.01 



 

97 

 

15x15 (N=225) 4 0.05 

15x15 (N=225) 4 0.1 

15x15 (N=225) 5 0.01 

15x15 (N=225) 5 0.05 

15x15 (N=225) 5 0.1 

5x5 (N=25) 1 0.01 

5x5 (N=25) 1 0.05 

5x5 (N=25) 1 0.1 

5x5 (N=25) 2 0.01 

5x5 (N=25) 2 0.05 

5x5 (N=25) 2 0.1 

5x5 (N=25) 3 0.01 

5x5 (N=25) 3 0.05 

5x5 (N=25) 3 0.1 

5x5 (N=25) 4 0.01 

5x5 (N=25) 4 0.05 

5x5 (N=25) 4 0.1 

5x5 (N=25) 5 0.01 

5x5 (N=25) 5 0.05 

5x5 (N=25) 5 0.1 

20x20 (N=400) 1 0.01 

20x20 (N=400) 1 0.05 

20x20 (N=400) 1 0.1 

20x20 (N=400) 2 0.01 

20x20 (N=400) 2 0.05 

20x20 (N=400) 2 0.1 

20x20 (N=400) 3 0.01 

20x20 (N=400) 3 0.05 

20x20 (N=400) 3 0.1 

20x20 (N=400) 4 0.01 

20x20 (N=400) 4 0.05 

20x20 (N=400) 4 0.1 

20x20 (N=400) 5 0.01 

20x20 (N=400) 5 0.05 

20x20 (N=400) 5 0.1 

25x25 (N=625) 1 0.01 

25x25 (N=625) 1 0.05 

25x25 (N=625) 1 0.1 

25x25 (N=625) 2 0.01 

25x25 (N=625) 2 0.05 

25x25 (N=625) 2 0.1 

25x25 (N=625) 3 0.01 

25x25 (N=625) 3 0.05 

25x25 (N=625) 3 0.1 

25x25 (N=625) 4 0.01 



 

98 

 

25x25 (N=625) 4 0.05 

25x25 (N=625) 4 0.1 

25x25 (N=625) 5 0.01 

25x25 (N=625) 5 0.05 

25x25 (N=625) 5 0.1 

30x30 (N=900) 1 0.01 

30x30 (N=900) 1 0.05 

30x30 (N=900) 1 0.1 

30x30 (N=900) 2 0.01 

30x30 (N=900) 2 0.05 

30x30 (N=900) 2 0.1 

30x30 (N=900) 3 0.01 

30x30 (N=900) 3 0.05 

30x30 (N=900) 3 0.1 

30x30 (N=900) 4 0.01 

30x30 (N=900) 4 0.05 

30x30 (N=900) 4 0.1 

30x30 (N=900) 5 0.01 

30x30 (N=900) 5 0.05 

30x30 (N=900) 5 0.1 

 

 

 

 

 

 

 

 

 

 

  



 

99 

 

Appendix B 

%% Import training data 
c = () % c contains the training data with columns as variables and 

rows as observations. The last column of c contains labels 

  
%% Define imbalance ratio 
ir = (); 

  
%% Partitioning training data into different classes 
ind1 = find(c(:,end)==0); %find rows corresponding to class 1 
ind2 = find(c(:,end)==1); %find rows corresponding to class 2   

  
c1 = c(ind1,1:end-1);%c1 contains class 0 data (without labels)    
c2 = c(ind2,1:end-1);%c2 contains class 1 data (without labels) 

                    
train1 = datasample(c1,1000);%sample 1000 observations from class 0 

as training data 
l1 = zeros(length(train1(:,1)),1);%prepare class 0 training labels 
test1  = datasample(c1,250);%sample 250 observations from class 0 as 

test data 
label1 = zeros(length(test1(:,1)),1);%prepare class 0 test labels 

  
train2 = datasample(c2,round(1000/ir)); %sample observations from 

class 1 as training data 
%number of observations is determined by the imbalance ratio 
l2 = ones(length(train2(:,1)),1); %prepare class 1 training labels 
test2  = datasample(c2,250);%sample 250 observations from class 1 as 

test data 
label2 = ones(length(test2(:,1)),1);%prepare class 1 test labels 

  
%Combining all training data 
train = [train1;train2]; 
label = [l1;l2]; 
test = [test1;test2]; 
l_actual = [label1;label2]; 

  
%% SOM Training 
%Define SOM hyperparameters 
neurons      = ();%Specify number of neurons 
epochs       = ();%Specify number 
neighSize    = ();%Specify neighborhood size 
learningRate = ();%Specify learning rate 

  
%Training SOM individually on each class of data 
w1 = custom_som(train1,neurons,epochs,neighSize,learningRate); 
w2 = custom_som(train2,neurons,epochs,neighSize,learningRate); 
%NOTE: same number of neurons are used to train both the majority 

and minority class of data thereby achieving balance. 



 

100 

 

  
%% SOM Testing  
[dh] = BMUcalculator(test, w1);%computing minimum distance of test 

data from class 0 SOM. 
[df] = BMUcalculator(test, w2);%computing minimum distance of test 

data from class 1 SOM. 

 
ind = find((dh./(dh+df))>0.5);%findinging test observations for 

which computed  
%normalized distance metric is >0.5 

 

l_predict_som = zeros(length(l_actual),1); 
l_predict_som(ind) = 1;%assigning labels to those test observations 

  
%Computing accuracy 
True    = length(find(l_actual==l_predict_som)); 
Total   = length(l_actual); 
accSOM = (True/(Total)); 

  
%% SOM Training Function 
function [weights]=custom_som(data,m,epochs,neighSize,learningRate) 
% This function performs SOM training for a given data set and 

hyperparameter combination. 
% [weights]=custom_som(data,m,epochs,neighSize,learningRate) 
% Input: 
%     data is the training data without labels data. Every column is 

a dimension. 
%     m is the number of neurons to use to train the SOM 
%     epochs is the number of epochs for which training is performed 
%     neighSize is the size of the SOM neighborhood function 
%     learningRate is the SOM learning rate 
% Output: 
%     weights gives the weights of each of the m SOM neurons. The 

number of 
%     columns in weights is the same as the number of columns in the 
%     training data i.e. the dimensionality of the SOM neurons is 

the same 
%     as that of the training data. 
% 
%   Rushit Shah, CALCE, University of Maryland, July, 2018. 

  

  
% Determine the length of each side of the map. A square map is used 

by 
% default. 
lx=sqrt(m); 
ly=sqrt(m); 

  
% Train the map 
net = selforgmap([lx ly],250,neighSize,'hextop','linkdist'); 

%default value of coverSteps=100 



 

101 

 

net.trainParam.showWindow = 0; % Suppress the training window pop up 
net.trainParam.epochs     = epochs; %Set number of epochs 
net.trainParam.lr         = learningRate; %Set learning rate. 

  
[net,tr] = train(net,data'); 
% Calcualte the neuron in the original input data space 
neuron=net.iw{1}; 
weights=neuron; 
end 
  

 

%% BMU Calculator function 
function [dist] = BMUcalculator(data,wts) 
%Given a set of test observations and SOM neuron weights, this 

function 
%computes the minimum distance of each test observation from its 

closest 
%neuron. 
% 
% [dist]=BMUcalculator(data,wts) 
% Input: 
%     data is the test data without labels data. Every column is a 

dimension. 
%     wts contains the weights of each SOM neuron. Every column is a 
%     dimension. 
%Note: The data and wts must contain the same number of columns. 
% Output: 
%     dist contains the distance of each observation in data from 

its 
%     closest neuron in wts. 
% 
%   Rushit Shah, CALCE, University of Maryland, July, 2018. 

  

    dist  = zeros(length(data(:,1)),1); 
    for i=1:length(data(:,1)) 
        test_vec = data(i,:); 
        distance = zeros(length(wts(:,1)),1); 
        for j=1:length(wts(:,1)) 
            distance(j) = sqrt(sum((test_vec - wts(j,:)) .^ 2)); 
        end 
        [dist(i)] = min(distance); 
    end 
end 

 

 

 

  



 

102 

 

Appendix C 

SOM Map Size (N) Size of Neighborhood 

Function (NF) 

5x5 (N=25) 1 

5x5 (N=25) 2 

5x5 (N=25) 3 

5x5 (N=25) 4 

5x5 (N=25) 5 

6x6 (N=36) 1 

6x6 (N=36) 2 

6x6 (N=36) 3 

6x6 (N=36) 4 

6x6 (N=36) 5 

7x7 (N=49) 1 

7x7 (N=49) 2 

7x7 (N=49) 3 

7x7 (N=49) 4 

7x7 (N=49) 5 

8x8 (N=64) 1 

8x8 (N=64) 2 

8x8 (N=64) 3 

8x8 (N=64) 4 

8x8 (N=64) 5 

9x9 (N=81) 1 

9x9 (N=81) 2 

9x9 (N=81) 3 

9x9 (N=81) 4 

9x9 (N=81) 5 

10x10 (N=100) 1 

10x10 (N=100) 2 

10x10 (N=100) 3 

10x10 (N=100) 4 

10x10 (N=100) 5 

11x11 (N=121) 1 

11x11 (N=121) 2 

11x11 (N=121) 3 

11x11 (N=121) 4 

11x11 (N=121) 5 

12x12 (N=144) 1 

12x12 (N=144) 2 



 

103 

 

12x12 (N=144) 3 

12x12 (N=144) 4 

12x12 (N=144) 5 

13x13 (N=169) 1 

13x13 (N=169) 2 

13x13 (N=169) 3 

13x13 (N=169) 4 

13x13 (N=169) 5 

14x14 (N=196) 1 

14x14 (N=196) 2 

14x14 (N=196) 3 

14x14 (N=196) 4 

14x14 (N=196) 5 

 

  



 

104 

 

Appendix D 

Sample confusion matrix 

 Actual Class 

Predicted Class 

 0 1 

0 True Negative False Negative 

1 False Positive True Positive 

 

Confusion Matrices for Results Using Artificial Data Sets 

1. 𝒅𝒔 = 𝟎. 𝟎𝟓, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 244 4  243 18  244 5 

1 6 246  7 232  6 245 

 

2. 𝒅𝒔 = 𝟎. 𝟎𝟓, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 242 11  250 23  250 44 

1 8 239  0 227  0 206 

 

3. 𝒅𝒔 = 𝟎. 𝟎𝟓, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 185 61  250 250  250 250 

1 65 189  0 0  0 0 

 

 

4. 𝒅𝒔 = 𝟎. 𝟏, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 236 9  240 11  241 8 

1 14 241  10 239  9 242 

 



 

105 

 

5. 𝒅𝒔 = 𝟎. 𝟏, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 235 12  250 34  250 112 

1 15 238  0 216  0 238 

 

6. 𝒅𝒔 = 𝟎. 𝟏, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 191 57  250 239  250 219 

1 59 193  0 11  0 33 

 

7. 𝒅𝒔 = 𝟎. 𝟐, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 235 13  224 35  223 24 

1 15 237  23 215  27 226 

 

8. 𝒅𝒔 = 𝟎. 𝟐, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 219 28  249 163  250 170 

1 31 222  1 87  0 80 

 

9. 𝒅𝒔 = 𝟎. 𝟐, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 181 70  250 250  250 250 

1 69 180  0 0  0 0 

 

 

 

 



 

106 

 

Confusion Matrices for Results Using Benchmark Data Sets 

1. 𝑪𝑴𝑺𝑪, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 249 4  248 0  250 0 

1 1 246  2 250  0 250 

 

2. 𝑪𝑴𝑺𝑪, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 248 7  249 12  250 25 

1 2 243  1 238  0 225 

 

3. 𝑪𝑴𝑺𝑪, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 180 66  250 161  250 187 

1 70 184  0 89  0 63 

 

 

4. 𝑰𝒓𝒊𝒔, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 249 0  250 0  226 9 

1 1 250  0 250  24 241 

 

5. 𝑰𝒓𝒊𝒔, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 240 2  250 30  250 59 

1 10 248  0 220  0 191 

 

 

 

 

 



 

107 

 

6. 𝑰𝒓𝒊𝒔, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 220 28  250 115  250 197 

1 30 222  0 135  0 53 

 

7. 𝑾𝒊𝒏𝒆, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 250 0  250 0  250 0 

1 0 250  0 250  0 250 

 

8. 𝑾𝒊𝒏𝒆, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 250 0  250 0  250 31 

1 0 250  0 250  0 219 

 

9. 𝑾𝒊𝒏𝒆, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 232 22  250 0  250 182 

1 18 228  0 250  0 68 

 

10. 𝑩𝑪𝑾, 𝑰𝑹 = 𝟏: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 250 0  250 0  249 0 

1 0 250  0 250  1 250 

 

 

 

 

 

 

 



 

108 

 

11. 𝑩𝑪𝑾, 𝑰𝑹 = 𝟏𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 239 11  248 27  247 1 

1 11 239  2 223  3 249 

 

12. 𝑩𝑪𝑾, 𝑰𝑹 = 𝟏𝟎𝟎: 𝟏 

 2SOM  NN  SVM-RBF 

Actual Class  Actual Class  Actual Class 

0 1  0 1  0 1 

Predicted 

Class 

0 210 37  248 60  250 237 

1 40 213  2 190  0 13 

  



 

109 

 

Appendix E 

cSOM Code for Multiclass Classification 

%% Import training data 
c = () % c contains the c-class training data with columns as 

variables and rows as observations. The last column of c contains 

labels 

 
%% Partitioning training data into different classes 
ind1 = find(c(:,end)==0); %find rows corresponding to class 1 
ind2 = find(c(:,end)==1); %find rows corresponding to class 2   

. 

. 

. 

indc = find(c(:,end)==c); %find rows corresponding to class c 

  
c1 = c(ind1,1:end-1);%c1 contains class 0 data (without labels)    
c2 = c(ind2,1:end-1);%c2 contains class 1 data (without labels) 

. 

. 

. 

cc = c(indc,1:end-1);%cc contains class c data (without labels) 

                    
train1 = datasample(c1,1000);%sample 1000 observations from class 0 

as training data 
l1 = zeros(length(train1(:,1)),1);%prepare class 0 training labels 
test1  = datasample(c1,250);%sample 250 observations from class 0 as 

test data 
label1 = zeros(length(test1(:,1)),1);%prepare class 0 test labels 

  

train2 = datasample(c2,1000); %sample observations from class 1 as 

training data 
l2 = ones(length(train2(:,1)),1); %prepare class 1 training labels 
test2  = datasample(c2,250);%sample 250 observations from class 1 as 

test data 
label2 = ones(length(test2(:,1)),1);%prepare class 1 test labels 

. 

. 

. 

trainc = datasample(cc,1000); %sample observations from class 1 as 

training data 
lc = c*ones(length(train2(:,1)),1); %prepare class c training labels 
testc  = datasample(c2,250);%sample 250 observations from class 1 as 

test data 
labelc = c*ones(length(test2(:,1)),1);%prepare class c test labels 

 
  

 



 

110 

 

%Combining all training data 
train = [train1;train2;…;trainc]; 
label = [l1;l2;…,lc]; 
test = [test1;test2;…;testc]; 
l_actual = [label1;label2;…;labelc]; 

  
%% SOM Training 
%Define SOM hyperparameters 
neurons      = ();%Specify number of neurons 
epochs       = ();%Specify number 
neighSize    = ();%Specify neighborhood size 
learningRate = ();%Specify learning rate 

  
%Training SOM individually on each class of data 
w1 = custom_som(train1,neurons,epochs,neighSize,learningRate); 
w2 = custom_som(train2,neurons,epochs,neighSize,learningRate); 

. 

. 

. 

wc = custom_som(trainc,neurons,epochs,neighSize,learningRate); 

 

 
%% SOM Testing  
[d0] = BMUcalculator(test, w1);%computing minimum distance of test 

data from class 0 SOM. 
[d1] = BMUcalculator(test, w2);%computing minimum distance of test 

data from class 1 SOM. 

. 

. 

. 
[dc] = BMUcalculator(test, wc);%computing minimum distance of test 

data from class c SOM. 

 
%Computing metrics for classification 

P1=d1./(d1+d2+…+dc); 

P2=d2./(d1+d2+…+dc); 

. 

. 

. 

Pc=dc./(d1+d2+…+dc); 

 

 

l_predict_som = zeros(length(l_actual),1); 

 

[max argmax] = max(P1,P2,…,Pc); 
l_predict_som = argmax-1;%assigning labels  

 
%Computing accuracy 
True    = length(find(l_actual==l_predict_som)); 
Total   = length(l_actual); 
accSOM = (True/(Total)); 



 

111 

 

  
%% SOM Training Function 
function [weights]=custom_som(data,m,epochs,neighSize,learningRate) 
% This function performs SOM training for a given data set and 

hyperparameter combination. 
% [weights]=custom_som(data,m,epochs,neighSize,learningRate) 
% Input: 
%     data is the training data without labels data. Every column is 

a dimension. 
%     m is the number of neurons to use to train the SOM 
%     epochs is the number of epochs for which training is performed 
%     neighSize is the size of the SOM neighborhood function 
%     learningRate is the SOM learning rate 
% Output: 
%     weights gives the weights of each of the m SOM neurons. The 

number of 
%     columns in weights is the same as the number of columns in the 
%     training data i.e. the dimensionality of the SOM neurons is 

the same 
%     as that of the training data. 
% 
%   Rushit Shah, CALCE, University of Maryland, July, 2018. 

  

  
% Determine the length of each side of the map. A square map is used 

by 
% default. 
lx=sqrt(m); 
ly=sqrt(m); 

  
% Train the map 
net = selforgmap([lx ly],250,neighSize,'hextop','linkdist'); 

%default value of coverSteps=100 
net.trainParam.showWindow = 0; % Suppress the training window pop up 
net.trainParam.epochs     = epochs; %Set number of epochs 
net.trainParam.lr         = learningRate; %Set learning rate. 

  
[net,tr] = train(net,data'); 
% Calcualte the neuron in the original input data space 
neuron=net.iw{1}; 
weights=neuron; 
end 
  

 
%% BMU Calculator function 
function [dist] = BMUcalculator(data,wts) 
%Given a set of test observations and SOM neuron weights, this 

function 
%computes the minimum distance of each test observation from its 

closest 
%neuron. 



 

112 

 

% 
% [dist]=BMUcalculator(data,wts) 
% Input: 
%     data is the test data without labels data. Every column is a 

dimension. 
%     wts contains the weights of each SOM neuron. Every column is a 
%     dimension. 
%Note: The data and wts must contain the same number of columns. 
% Output: 
%     dist contains the distance of each observation in data from 

its 
%     closest neuron in wts. 
% 
%   Rushit Shah, CALCE, University of Maryland, July, 2018. 

  
    dist  = zeros(length(data(:,1)),1); 
    for i=1:length(data(:,1)) 
        test_vec = data(i,:); 
        distance = zeros(length(wts(:,1)),1); 
        for j=1:length(wts(:,1)) 
            distance(j) = sqrt(sum((test_vec - wts(j,:)) .^ 2)); 
        end 
        [dist(i)] = min(distance); 
    end 
end 

 

  



 

113 

 

References 

[1]  A. K. Jardine, L. Daming and B. Dragan, "A review on machinery diagnostics 

and prognostics implementing condition-based maintenance.," Mechanical 

Systems and Signal Processing, vol. 20, no. 7, pp. 1483-1510, 2006.  

[2]  J.-H. Shin and H.-B. Jun, "On condition based maintenance policy," Journal of 

Computational Design and Engineering 2, vol. 2, pp. 119-127, 2015.  

[3]  C. Chen and M. Pecht, "Prognostics of lithium-ion batteries using model-based 

and data-driven methods.," in IEEE Conference on Prognostics and Systems 

Health Management (PHM), 2012.  

[4]  C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, S. Kumar and M. 

Pecht, "Model-based and data-driven prognosis of automotive and electronic 

systems.," in IEEE International Conference on Automation Science and 

Engineering (CASE), 2009.  

[5]  H. Qiao, Z. He, Z. Zhang and Y. Zi, "Fault diagnosis of rotating machinery based 

on improved wavelet package transform and SVMs ensemble.," Mechanical 

Systems and Signal Processing, vol. 21, no. 2, pp. 688-705, 2007.  

[6]  V. Every, P. Michael, M. Rodriguez, B. C. Jones, A. A. Mammoli and M. 

Martinez-Ramon, "Advanced detection of HVAC faults using unsupervised SVM 

novelty detection and Gaussian process models.," Energy and Buildings, vol. 147, 

pp. 216-224, 2017.  

[7]  Y. Jie and J. S. Qin, "Multimode process monitoring with Bayesian inference-

based finite Gaussian mixture models.," AlChE Journal, vol. 54, no. 7, pp. 1811-

1829, 2008.  

[8]  Y. Jie and J. S. Qin, "Multiway Gaussian mixture model based multiphase batch 

process monitoring.," Industrial & Engineering Chemistry Research, vol. 48, no. 

18, pp. 8585-8594, 2009.  

[9]  B. Y. Vyas, B. Das and R. Prakash, "Improved fault classification in series 

compensated trasnmission line: comparative evaluation of Chebyshev neural 

network training algorithms.," IEEE Transactions on Neural Networks and 

Learning Systems, vol. 27, no. 8, pp. 1631-1642, 2016.  

[10]  M. Bach-Andersen, B. Romer-Odgaard and O. Winther, "Deep learning for 

automated drivetrain fault detection.," Wind Energy, vol. 21, no. 1, pp. 29-41, 

2018.  

[11]  R. Hao, Y. Chai, J. Qu, X. Ye and Q. Tang, "A novel adaptive fault detection 

methodology for complex system using deep belief networks and multiple 

models: A case study on cryogenic propellant loading system.," Neurocomputing, 

vol. 275, pp. 2111-2125, 2018.  



 

114 

 

[12]  K. Worden, W. J. Staszewski and J. J. Hensman, "Natual computing for 

mechanical systems research: A tutorial overview.," Mechanical Systems and 

Signal Processing, vol. 25, pp. 4-111, 2011.  

[13]  V. Lopez, A. Fernandez, S. Garcia, V. Palade and F. Herrera, "An insight into 

classification with imbalanced data: Empirical results and current rends on using 

data intrinsic characteristics.," Information Sciences, vol. 250, pp. 113-141, 2013.  

[14]  O. Loyola-Gonzalez, J. F. Martinez-Trinidad, J. A. Carrasco-Ochoa and M. 

Garcia-Borroto, "Study of the impact of resampling methods for contrast pattern 

based classifiers in imbalanced databases.," Neurocomputing, vol. 175, pp. 9355-

947, 2016.  

[15]  G. M. Weiss, "Mining with rarity: A unifying framework.," ACM SIGKDD 

Explorations Newsletter, vol. 6, no. 1, pp. 7-19, 2004.  

[16]  B. Cigdem and R. Fisher, "Classifying imbalanced data sets using similarity 

based hierarchical decomposition.," Pattern Recognition, vol. 48, no. 5, pp. 1653-

1672, 2015.  

[17]  M. Wasikowski and X. W. Chen, "Combating the small sample class imbalance 

problem using feature selection.," IEEE Transactions on Knowledge and Data 

Engineering, vol. 22, no. 10, pp. 1388-1400, 2010.  

[18]  I. Marti-Diaz, D. Morinigo-Sotelo, O. Duque-Perez and R. d. J. Romero-

Troncoso, "Early fault detection in induction motors using AdaBoost with 

imbalanced small data and optimized sampling.," IEEE Transaction on Industry 

Applications, vol. 53, no. 3, pp. 3066-3075, 2017.  

[19]  P. Potocnik and E. Govekar, "Semi-supervised vibration-based classification and 

condition monitoring of compressors.," Mechanical Systems and Signal 

Processing, vol. 93, pp. 51-65, 2017.  

[20]  A. Stanescu, K. Tangirala and D. Caragea, "Study of transductive learning and 

unsupervised feature construction methods for biological sequence 

classification.," in Proceedinngs of the 2016 IEEE/ACM International 

Conference on Advances in Social Network Analysis and Mining, 2016.  

[21]  J. Yuan and X. Liu, "Semi-supervised learning and condition fusion for fault 

diagnosis.," Mechanical Systems and Signal Processing, vol. 38, no. 2, pp. 615-

627, 2013.  

[22]  R. N. Shah, M. H. Azarian, J. E. Wedgwood, M. Krein and M. Pecht, "Fault 

detection using a multiple self-organizing map methodology.," Mechanical 

Systems and Signal Processing (Submitted), 2018.  

[23]  L. Duan, M. Xie, T. Bai and J. Wang, "A new support vector data description 

method for machinery fault diagnosis with unbalanced data sets.," Expert Systems 

with Applications, vol. 64, pp. 239-246, 2016.  



 

115 

 

[24]  M. Wentao, L. He, Y. Yan and J. Wang, "Online sequential prediction of bearings 

imbalanced fault diagnosis by extreme learning machine.," Mechanical Systems 

and Signal Processing, vol. 83, pp. 450-473, 2017.  

[25]  R. Razavi-Far, P. Baraldi and E. Zio, "Dynamic weighting ensembles for 

incremental learning and diagnosing new concept class faults in nuclear power 

systems.," IEEE Transactions on Nuclear Science, vol. 59, no. 5, pp. 2520-2530, 

2012.  

[26]  X. Jin, F. Yuan, T. W. S. Chow and M. Zhao, "Weighted local and global 

regressive mapping; A new manifold learning method for machine fault 

classification.," Engineering Applications of Artificial Intelligence, vol. 30, pp. 

118-128, 2014.  

[27]  X. Xhang, B. Wang and X. Chen, "Intelligent fault diagnosis of roller bearings 

with multivariable ensemble-based incremental support vector machine.," 

Knowledge-Based Systems, vol. 89, pp. 56-85, 2015.  

[28]  S. Cateni, V. Colla and M. Vannucci, "A method for resampling imbalanced data 

sets in binary classification tasks for real-world problems.," Neurocomputing, 

vol. 135, pp. 32-41, 2014.  

[29]  F. De Morsier, D. Tuia, M. Borgeaud, V. Gass and J.-P. Thiran, "Semi-supervised 

novelty detection using SVM entire solution path.," IEEE Transactions on 

Geoscience and Remote Sensing, vol. 51, no. 4, pp. 1939-1950, 2013.  

[30]  Z.-J. Zha, T. Mei, J. Wang, Z. Wang and X.-S. Hua, "Graph-based semi-

supervised learning with multiple labels.," Journal of Visual Communication and 

Image Representation, vol. 20, no. 2, pp. 97-103, 2009.  

[31]  X. Wang, H. Feng and Y. Fan, "Fault detection and classification for complex 

processes using semi-supervised learning algorithm.," Chemometrics and 

Intelligent Laboratory Systems, vol. 149, pp. 24-32, 2015.  

[32]  H.-C. Yan, J.-H. Zhou and C. K. Pang, "Gaussian mixture model using 

semisupervised learning for probabilistic fault diagnosis under new data 

categories.," IEEE Transactions on Instrumentation and Measurement, vol. 66, 

no. 4, pp. 723-733, 2017.  

[33]  J. Chen, X. Zhang, N. Zhang and K. Guo, "Fault detection for turbine engine disk 

using adaptive Gaussian mixture model.," Proceedings of the Institution of 

Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 

231, no. 10, pp. 827-835, 2017.  

[34]  G. Albaei, A. Selamat and H. Fujita, "An emipirical study based on semi-

supervised hybrid self-organizing map for software fault prediction.," 

Knowledge-Based Systems, vol. 74, pp. 28-39, 2015.  

[35]  E. Fix and J. L. Hodges Jr., "Discriminatory analysis - nonparametric 

discrimination: Consistency properties.," USAF School of Aviation Medicine, 

Randolph Field, Texas, 1951. 



 

116 

 

[36]  T. Kohonen, "The self-organizing map," Neurocomputing, vol. 21, no. 1, pp. 1-

6, 1998.  

[37]  I. Valova, G. Georgiev and N. Gueorguieva, "Initialization issues in self-

organizing maps," Procedia Computer Science, vol. 20, pp. 52-57, 2013.  

[38]  H. Qiu, Lee, Jay, J. Lin and G. Yu, "Robust performance degradation assessment 

methods for enhanced rolling element bearing prognostics.," Advanced 

Engineering Informatics, vol. 17, no. 3, pp. 127-140, 2003.  

[39]  M. Lichman, UCI Machine Learning Repository, University of California, Irvine, 

School of Information and Computer Sciences, 2013.  

[40]  K. P. Bennett and E. J. Bredensteiner, "Duality and geometry in SVM 

classifiers.," in International Conference on Machine Learning, San 

Francisco,CA, USA, 2000.  

[41]  H. Yu, J. Yang and J. Han, "Classifying large data sets using SVMs with 

hierarchical clusters.," in Proceedings of the Ninth ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining. , 2003.  

[42]  P. Liang, W. Li, D. Liu and J. Hu, "Large-scale image classification using fast 

SVM with deep quasi-linear kernel.," in 2017 International Joint Conference on 

Neural Networks (IJCNN), 2017.  

[43]  T. Lee, K. B. Lee and C. O. Kim, "Performance of machine learning algorithms 

for class-imblanced process fault detection problems.," IEEE Transactions on 

Semiconductor Manufacturing, vol. 29, no. 4, pp. 436-445, 2016.  

[44]  A. Rehan, S. Kwek and N. Japkowicz, "Applying support vector machines to 

imbalanced datasets.," in European Conference on Machine Learning, 

Beidelberg, 2004.  

[45]  W. Gang and E. Y. Chang, "Adaptive feature-space conformal transformation for 

imbalanced-data learning," in Proceedings of the 20th International Conference 

on Machine Learning (ICML-03), 2003.  

[46]  K. Veropoulos, C. Campbell and N. Cristianini, "Controlling the sensitivity of 

support vector machines.," in Proceedings of the International Joint Conference 

on AI, 1999.  

[47]  T. Kohonen, MATLAB implementations and applications of the self-organizing 

map., Helsinki, Finland: Unigrafia Oy, 2014.  

[48]  J. H. Holland, "Genetic algorithms.," Scientific American, vol. 267, no. 1, pp. 66-

73, 1992.  

[49]  X. Zhu, Z. Ghahramani and J. D. Lafferty, "Semi-supervised learning using 

gaussian fields and harmonic functions.," in Proceedings of the 20th 

International Conference on Machine Learning (ICML-03), 2003.  

[50]  D. Zhou, O. Bousquet, T. N. Lal, J. Weston and B. Scholkopf, "Learning with 

local and global consistency.," in Advances in Neural Information Processing 

Systems, 2004.  



 

117 

 

[51]  M. Zhao, B. Li, J. Qi and Y. Ding, "Semi-supervised classification for rolling 

fault diagnosis via robust sparse and low-rank model.," in IEEE 15th 

International Conference on Industrial Informatics (INDIN) 2017, 2017.  

 


	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Introduction
	Chapter 2: Related Work
	2.1. Imbalanced Data Sets
	2.2. Sparsely-Labeled Data Sets

	Chapter 3: Self-Organizing Maps
	3.1.  Overview
	3.2. Use of SOM for Fault Detection

	Chapter 4: cSOM – A Supervised Fault Detection Methodology
	4.1. Overview of cSOM
	4.2. Formulating a Binary Classifier
	4.3. Formulating a Multiclass Classifier
	4.4. Binary Classification Experimental Results
	4.4.1. Experiments Using Benchmark Data Sets
	4.4.2. Experiments Using Artificial Data Sets
	4.4.3. Comparison of 2SOM and SVM-RBF

	4.5. Multiclass Classification

	Chapter 5:  The cSOM Methodology for Dealing with Imbalanced Data Sets
	5.1. Hyperparameter Considerations for SOM
	5.2. Choosing SOM Hyperparameters
	5.2.1.  SOM Quality Metrics
	5.2.2.  Multiobjective Optimization Strategy for Choosing SOM Hyperparameters
	5.2.3. Statistical Significance of Metrics

	5.3. Experimental Setup and Results
	5.3.1.  Data and Design of Experiments
	5.3.2.  Genetic Algorithm Setup
	5.3.3. Results
	5.3.4.  Repeatability of Optimization and Sensitivity Analysis
	5.3.5.  Comparison with Other Classifiers
	1.
	2.
	3.
	4.
	5.
	5.1.
	5.2.
	5.3.
	5.3.1.
	5.3.2.
	5.3.3.
	5.3.4.
	5.3.5.
	5.3.6. Experiments Using Benchmark Data Sets


	Chapter 6:  The Semi-Supervised cSOM Methodology for Dealing With Sparsely-Labeled Data Sets
	6.1. Introduction to Semi-Supervised Learning
	6.2. Developed Semi-Supervised cSOM Methodology
	6.2.1. Clustering
	6.2.2. Labeling
	6.2.3. Classification

	6.3. Experimental Setup and Results
	6.4. Experiments Using Benchmark Data Sets

	Chapter 7: Contributions
	Chapter 8: Conclusions and Future Work
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	References

