358,985 research outputs found

    Evolutionary optimization within an intelligent hybrid system for design integration

    Get PDF
    An intelligent hybrid approach has been developed to integrate various stages in total design, including formulation of product design specifications, conceptual design, detail design, and manufacture. The integration is achieved by blending multiple artificial intelligence (AI) techniques and CAD/CAE/CAM into a single environment. It has been applied into power transmission system design. In addition to knowledge-based systems and artificial neural networks, another AI technique, genetic algorithms (GAs), are involved in the approach. The GA is used to conduct optimization tasks: (1) searching the best combination of design parameters to obtain optimum design of gears, and (2) optimization of the architecture of the artificial neural networks used in the hybrid system. In this paper, after a brief overview of the intelligent hybrid system, the GA applications are described in detail

    Intelligent perturbation algorithms to space scheduling optimization

    Get PDF
    The limited availability and high cost of crew time and scarce resources make optimization of space operations critical. Advances in computer technology coupled with new iterative search techniques permit the near optimization of complex scheduling problems that were previously considered computationally intractable. Described here is a class of search techniques called Intelligent Perturbation Algorithms. Several scheduling systems which use these algorithms to optimize the scheduling of space crew, payload, and resource operations are also discussed

    Reinforcement Learning for UAV Attitude Control

    Full text link
    Autopilot systems are typically composed of an "inner loop" providing stability and control, while an "outer loop" is responsible for mission-level objectives, e.g. way-point navigation. Autopilot systems for UAVs are predominately implemented using Proportional, Integral Derivative (PID) control systems, which have demonstrated exceptional performance in stable environments. However more sophisticated control is required to operate in unpredictable, and harsh environments. Intelligent flight control systems is an active area of research addressing limitations of PID control most recently through the use of reinforcement learning (RL) which has had success in other applications such as robotics. However previous work has focused primarily on using RL at the mission-level controller. In this work, we investigate the performance and accuracy of the inner control loop providing attitude control when using intelligent flight control systems trained with the state-of-the-art RL algorithms, Deep Deterministic Gradient Policy (DDGP), Trust Region Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). To investigate these unknowns we first developed an open-source high-fidelity simulation environment to train a flight controller attitude control of a quadrotor through RL. We then use our environment to compare their performance to that of a PID controller to identify if using RL is appropriate in high-precision, time-critical flight control.Comment: 13 pages, 9 figure

    The World of Combinatorial Fuzzy Problems and the Efficiency of Fuzzy Approximation Algorithms

    Full text link
    We re-examine a practical aspect of combinatorial fuzzy problems of various types, including search, counting, optimization, and decision problems. We are focused only on those fuzzy problems that take series of fuzzy input objects and produce fuzzy values. To solve such problems efficiently, we design fast fuzzy algorithms, which are modeled by polynomial-time deterministic fuzzy Turing machines equipped with read-only auxiliary tapes and write-only output tapes and also modeled by polynomial-size fuzzy circuits composed of fuzzy gates. We also introduce fuzzy proof verification systems to model the fuzzification of nondeterminism. Those models help us identify four complexity classes: Fuzzy-FPA of fuzzy functions, Fuzzy-PA and Fuzzy-NPA of fuzzy decision problems, and Fuzzy-NPAO of fuzzy optimization problems. Based on a relative approximation scheme targeting fuzzy membership degree, we formulate two notions of "reducibility" in order to compare the computational complexity of two fuzzy problems. These reducibility notions make it possible to locate the most difficult fuzzy problems in Fuzzy-NPA and in Fuzzy-NPAO.Comment: A4, 10pt, 10 pages. This extended abstract already appeared in the Proceedings of the Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS 2014) and 15th International Symposium on Advanced Intelligent Systems (ISIS 2014), December 3-6, 2014, Institute of Electrical and Electronics Engineers (IEEE), pp. 29-35, 201

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques

    Objectives, stimulus and feedback in signal control of road traffic

    Get PDF
    This article identifies the prospective role of a range of intelligent transport systems technologies for the signal control of road traffic. We discuss signal control within the context of traffic management and control in urban road networks and then present a control-theoretic formulation for it that distinguishes the various roles of detector data, objectives of optimization, and control feedback. By reference to this, we discuss the importance of different kinds of variability in traffic flows and review the state of knowledge in respect of control in the presence of different combinations of them. In light of this formulation and review, we identify a range of important possibilities for contributions to traffic management and control through traffic measurement and detection technology, and contemporary flexible optimization techniques that use various kinds of automated learning

    Multi-agent system for dynamic manufacturing system optimization

    Get PDF
    This paper deals with the application of multi-agent system concept for optimization of dynamic uncertain process. These problems are known to have a computationally demanding objective function, which could turn to be infeasible when large problems are considered. Therefore, fast approximations to the objective function are required. This paper employs bundle of intelligent systems algorithms tied together in a multi-agent system. In order to demonstrate the system, a metal reheat furnace scheduling problem is adopted for highly demanded optimization problem. The proposed multi-agent approach has been evaluated for different settings of the reheat furnace scheduling problem. Particle Swarm Optimization, Genetic Algorithm with different classic and advanced versions: GA with chromosome differentiation, Age GA, and Sexual GA, and finally a Mimetic GA, which is based on combining the GA as a global optimizer and the PSO as a local optimizer. Experimentation has been performed to validate the multi-agent system on the reheat furnace scheduling problem

    A high level e-maintenance architecture to support on-site teams

    Get PDF
    Emergent architectures and paradigms targeting reconfigurable manufacturing systems increasingly rely on intelligent modules to maximize the robustness and responsiveness of modern installations. Although intelligent behaviour significantly minimizes the occurrence of faults and breakdowns it does not exclude them nor can prevent equipment’s normal wear. Adequate maintenance is fundamental to extend equipments’ life cycle. It is of major importance the ability of each intelligent device to take an active role in maintenance support. Further this paradigm shift towards “embedded intelligence”, supported by cross platform technologies, induces relevant organizational and functional changes on local maintenance teams. On the one hand, the possibility of outsourcing maintenance activities, with the warranty of a timely response, through the use of pervasive networking technologies and, on the other hand, the optimization of local maintenance staff are some examples of how IT is changing the scenario in maintenance. The concept of e-maintenance is, in this context, emerging as a new discipline with defined socio-economic challenges. This paper proposes a high level maintenance architecture supporting maintenance teams’ management and offering contextualized operational support. All the functionalities hosted by the architecture are offered to the remaining system as network services. Any intelligent module, implementing the services’ interface, can report diagnostic, prognostic and maintenance recommendations that enable the core of the platform to decide on the best course of action.manufacturing systems, platform technologies, maintenance
    corecore