1,253 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Analysis and Observations from the First Amazon Picking Challenge

    Full text link
    This paper presents a overview of the inaugural Amazon Picking Challenge along with a summary of a survey conducted among the 26 participating teams. The challenge goal was to design an autonomous robot to pick items from a warehouse shelf. This task is currently performed by human workers, and there is hope that robots can someday help increase efficiency and throughput while lowering cost. We report on a 28-question survey posed to the teams to learn about each team's background, mechanism design, perception apparatus, planning and control approach. We identify trends in this data, correlate it with each team's success in the competition, and discuss observations and lessons learned based on survey results and the authors' personal experiences during the challenge

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    NASA space station automation: AI-based technology review. Executive summary

    Get PDF
    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics

    Soft manipulators and grippers: A review

    Get PDF
    Soft robotics is a growing area of research which utilizes the compliance and adaptability of soft structures to develop highly adaptive robotics for soft interactions. One area in which soft robotics has the ability to make significant impact is in the development of soft grippers and manipulators. With an increased requirement for automation, robotics systems are required to perform task in unstructured and not well defined environments; conditions which conventional rigid robotics are not best suited. This requires a paradigm shift in the methods and materials used to develop robots such that they can adapt to and work safely in human environments. One solution to this is soft robotics, which enables soft interactions with the surroundings while maintaining the ability to apply significant force. This review paper assesses the current materials and methods, actuation methods and sensors which are used in the development of soft manipulators. The achievements and shortcomings of recent technology in these key areas are evaluated, and this paper concludes with a discussion on the potential impacts of soft manipulators on industry and society

    Development of an Intelligent Robotic Manipulator

    Get PDF
    The presence of hazards to human health in chemical process plant and nuclear waste stores leads to the use of robots and more specifically manipulators in unmanned spaces. Rapid and accurate performance of robotic arm movement and positioning, coupled with a reliable manipulator gripping mechanism for variable orientation and a range of deformable and/or geometric and coloured products, will lead to smarter/intelligent operation of high precision equipment. The aim of the research is to design a more effective robot arm manipulator for use in a glovebox environment utilising control kinematics together with image processing / object recognition algorithms and in particular the work is aimed at improving the movement of the robot arm in the case of unresolved kinematics, seeking improved speed and performance of object recognition along with improved sensitivity of the manipulator gripper mechanism A virtual robot arm and associated workspace was designed within the LabView 2009 environment and prototype gripper arms were designed and analysed within the Solidworks 2009 environment. Visual information was acquired by barrel cameras. Field research determines the location of identically shaped objects, and the object recognition algorithms establish the difference between them. A touch/feel device installed within the gripper arm housing ensures that the applied force is adequate to securely grasp the object without damage, but also to adapt to any slippage whilst the manipulator moves within the robot workspace. The research demonstrates that complex operations can be achieved without the expense of specialised parts/components; and that implementation of control algorithms can compensate for any ambiguous signals or fault conditions that occur through the operation of the manipulator. The results show that system performance is determined by the trade-off between speed and accuracy. The designed system can be further utilised for control of multi-functional robots connected within a production line. The Graphic User Interface illustrated within the thesis can be customised by the supervisor to suit operational needs

    Advances in Intelligent Robotics and Collaborative Automation

    Get PDF
    This book provides an overview of a series of advanced research lines in robotics as well as of design and development methodologies for intelligent robots and their intelligent components. It represents a selection of extended versions of the best papers presented at the Seventh IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications IDAACS 2013 that were related to these topics. Its contents integrate state of the art computational intelligence based techniques for automatic robot control to novel distributed sensing and data integration methodologies that can be applied to intelligent robotics and automation systems. The objective of the text was to provide an overview of some of the problems in the field of robotic systems and intelligent automation and the approaches and techniques that relevant research groups within this area are employing to try to solve them.The contributions of the different authors have been grouped into four main sections:ā€¢ Robotsā€¢ Control and Intelligenceā€¢ Sensingā€¢ Collaborative automationThe chapters have been structured to provide an easy to follow introduction to the topics that are addressed, including the most relevant references, so that anyone interested in this field can get started in the area
    • ā€¦
    corecore