2,910 research outputs found

    A Survey on Communication Networks for Electric System Automation

    Get PDF
    Published in Computer Networks 50 (2006) 877–897, an Elsevier journal. The definitive version of this publication is available from Science Direct. Digital Object Identifier:10.1016/j.comnet.2006.01.005In today’s competitive electric utility marketplace, reliable and real-time information become the key factor for reliable delivery of power to the end-users, profitability of the electric utility and customer satisfaction. The operational and commercial demands of electric utilities require a high-performance data communication network that supports both existing functionalities and future operational requirements. In this respect, since such a communication network constitutes the core of the electric system automation applications, the design of a cost-effective and reliable network architecture is crucial. In this paper, the opportunities and challenges of a hybrid network architecture are discussed for electric system automation. More specifically, Internet based Virtual Private Networks, power line communications, satellite communications and wireless communications (wireless sensor networks, WiMAX and wireless mesh networks) are described in detail. The motivation of this paper is to provide a better understanding of the hybrid network architecture that can provide heterogeneous electric system automation application requirements. In this regard, our aim is to present a structured framework for electric utilities who plan to utilize new communication technologies for automation and hence, to make the decision making process more effective and direct.This work was supported by NEETRAC under Project #04-157

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Fast restoration of Connectivity for Wireless Sensor Networks

    Get PDF
    International audienceNode failures represent a fundamental problem in wireless sensor networks. Such failures may result in partitioned networks and lose of sensed information. A network recovery approach is thus necessary in order to ensure continuous network operations. In this paper, we propose CoMN2 a scalable and distributed approach for network recovery from node failures in wireless sensor networks. CoMN2 relies on a new concept called network mapping which consists in partitioning the network into several regions of increasing criticality. The criticality is set according to the energy, the traffic distribution and the deployment of nodes. Using this network mapping, our solution CoMN2 ensures the continuous network activity by efficiently swapping nodes from low critical area to highly critical area when required. Simulation results prove the effectiveness of our approach and show that the obtained improve-ment in terms of lifetime is in the order of 40%

    Performance Analysis of Discrete Wavelet Multitone Transceiver for Narrowband PLC in Smart Grid

    Get PDF
    Smart Grid is an abstract idea, which involves the utilization of powerlines for sensing, measurement, control and communication for efficient utilization and distribution of energy, as well as automation of meter reading, load management and capillary control of Green Energy resources connected to the grid. Powerline Communication (PLC) has assumed a new role in the Smart Grid scenario, adopting the narrowband PLC (NB-PLC) for a low cost and low data rate communication for applications such as, automatic meter reading, dynamic management of load, etc. In this paper, we have proposed and simulated a discrete wavelet multitone (DWMT) transceiver in the presence of impulse noise for the NB-PLC channel applications in Smart Grid. The simulation results show that a DWMT transceiver outperforms a DFT-DMT with reference to the bit error rate (BER) performance

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    An Effective Approach for Recovering From Simultaneous Node Failures in Wireless Sensor Networks

    Get PDF
    In wireless sensor - actor networks, sensors probe their surroundings and forward their data to actor nodes. Actors collaboratively respond to achieve predefined application mission. Since actors have to coordinate their operation, it is nec essary to maintain a stron gly connected network topology at all times. Failure of one or multiple actors may partition the inter - actor network into disjoint segments, and thus hinders the network operation. Autonomous detection and rapid recovery procedures ar e highly desirable in such a case . One of the effective recovery methodologies is to autonomously reposition a subset of the actor nodes to restore connectivity. Contemporary recovery schemes either impose high node relocation overhead or extend some of th e inter - actor data pat hs. This paper overcomes these shortcomings and presents extended version of DCR named RAM, to handle one possible case of a multi - actor failure with Least - Disruptive topology Repair (LeDiR) algorithm for minimal topological changes . Upon failure detection , the backup actor initiates a recovery process that relocates the least num ber of nodes

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Formalizing Mobile Ad Hoc and Sensor Networks Using VDM-SL

    Get PDF
    AbstractMobile ad hoc and sensor networks (MAHSNs) are expected to become the fabric of modern societies. Despite considerable advancements, these networks are yet unable to surmount many operational challenges especially in safety-critical large-scale applications. Most of the published research focused on performance analysis of nonfunctional properties and ignore correctness of the approach which is vital in large and complex systems. This paper investigates an alternative formal specification and analysis technique for MAHSNs. We model MAHSNs as dynamic graph and employ VDM-SL for formal specification and verification of LASCNN algorithm. Constraints are put on the data where required to support validation of the formal algorithm. Pre and post conditions are defined for correct operation of communication in terms of messages. VDM-SL is used because it is a formal specification language to describe detailed examination of the system. The specification is analyzed and validated using VDM-SL toolbox

    Unleash narrowband technologies for industrial Internet of Things services

    Get PDF
    As the industrial market grows, it is becoming noticeable that there are many industrial Internet of things (IIoT) use cases for which existing technology cannot meet the huge demand of machine connectivity. For example, in the utility market, there is a strong trend to adopt new technology that can support positive business use case scenarios for efficient system operation and elaborate the dramatic increase of the services demands. Apart from this, most utility grid applications required long-range, low-power, secure, and reliable communications, which means narrowband (NB) technology can be the dominant choice. To address these challenges, this article provides a new framework architecture to enable technical decision makers to plan for NB-IIoT. Moreover, we highlight the key aspects of NB technology by focusing on the challenges, standardization, and requirements to facilitate the IIoT connectivity for industry revolutions. The motivation behind employing NB is to provide a high level of reliability, and better quality of service, and coverage. In particular, the article addresses the main applications of utility use cases under the NB umbrella, which can perform as a good bridge between utility services and the fundamental communication infrastructure. The utility use cases based on emerging technology can support the full array of smart grid services that are required for both central and distributed operation systems. Finally, the article provides connectivity solutions for potential IIoT deployment aiming to define a new roadmap for NB technology on specific industrial use cases
    • …
    corecore