45 research outputs found

    Sharing HOL4 and HOL Light proof knowledge

    Full text link
    New proof assistant developments often involve concepts similar to already formalized ones. When proving their properties, a human can often take inspiration from the existing formalized proofs available in other provers or libraries. In this paper we propose and evaluate a number of methods, which strengthen proof automation by learning from proof libraries of different provers. Certain conjectures can be proved directly from the dependencies induced by similar proofs in the other library. Even if exact correspondences are not found, learning-reasoning systems can make use of the association between proved theorems and their characteristics to predict the relevant premises. Such external help can be further combined with internal advice. We evaluate the proposed knowledge-sharing methods by reproving the HOL Light and HOL4 standard libraries. The learning-reasoning system HOL(y)Hammer, whose single best strategy could automatically find proofs for 30% of the HOL Light problems, can prove 40% with the knowledge from HOL4

    Syntactic-Semantic Form of Mizar Articles

    Get PDF
    Mizar Mathematical Library is most appreciated for the wealth of mathematical knowledge it contains. However, accessing this publicly available huge corpus of formalized data is not straightforward due to the complexity of the underlying Mizar language, which has been designed to resemble informal mathematical papers. For this reason, most systems exploring the library are based on an internal XML representation format used by semantic modules of Mizar. This representation is easily accessible, but it lacks certain syntactic information available only in the original human-readable Mizar source files. In this paper we propose a new XML-based format which combines both syntactic and semantic data. It is intended to facilitate various applications of the Mizar library requiring fullest possible information to be retrieved from the formalization files

    MizAR 60 for Mizar 50

    Get PDF
    As a present to Mizar on its 50th anniversary, we develop an AI/TP system that automatically proves about 60% of the Mizar theorems in the hammer setting. We also automatically prove 75% of the Mizar theorems when the automated provers are helped by using only the premises used in the human-written Mizar proofs. We describe the methods and large-scale experiments leading to these results. This includes in particular the E and Vampire provers, their ENIGMA and Deepire learning modifications, a number of learning-based premise selection methods, and the incremental loop that interleaves growing a corpus of millions of ATP proofs with training increasingly strong AI/TP systems on them. We also present a selection of Mizar problems that were proved automatically

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book

    Goal Translation for a Hammer for Coq (Extended Abstract)

    Full text link
    Hammers are tools that provide general purpose automation for formal proof assistants. Despite the gaining popularity of the more advanced versions of type theory, there are no hammers for such systems. We present an extension of the various hammer components to type theory: (i) a translation of a significant part of the Coq logic into the format of automated proof systems; (ii) a proof reconstruction mechanism based on a Ben-Yelles-type algorithm combined with limited rewriting, congruence closure and a first-order generalization of the left rules of Dyckhoff's system LJT.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Making Presentation Math Computable

    Get PDF
    This Open-Access-book addresses the issue of translating mathematical expressions from LaTeX to the syntax of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Sciences, Technology, Engineering, and Mathematics (STEM), LaTeX has become the de-facto standard to typeset mathematical formulae in publications. Since scientists are generally required to publish their work, LaTeX has become an integral part of today's publishing workflow. On the other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and visualize mathematics. However, existing LaTeX import functions in CAS are limited to simple arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the workflow of experimenting and publishing in the Sciences often includes time-consuming and error-prone manual conversions between presentational LaTeX and computational CAS formats. To address the lack of a reliable and comprehensive translation tool between LaTeX and CAS, this thesis makes the following three contributions. First, it provides an approach to semantically enhance LaTeX expressions with sufficient semantic information for translations into CAS syntaxes. Second, it demonstrates the first context-aware LaTeX to CAS translation framework LaCASt. Third, the thesis provides a novel approach to evaluate the performance for LaTeX to CAS translations on large-scaled datasets with an automatic verification of equations in digital mathematical libraries. This is an open access book
    corecore