
André Greiner-Petter

Making
Presentation
Math Computable
A Context-Sensitive Approach
for Translating LaTeX to Computer
Algebra Systems

Making Presentation Math Computable

André Greiner-Petter

Making Presentation
Math Computable
A Context-Sensitive Approach for
Translating LaTeX to Computer
Algebra Systems

ISBN 978-3-658-40472-7 ISBN 978-3-658-40473-4 (eBook)
https://doi.org/10.1007/978-3-658-40473-4

© The Editor(s) (if applicable) and The Author(s) 2023. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the
book’s Creative Commons license and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

This Springer Vieweg imprint is published by the registered company Springer Fachmedien
Wiesbaden GmbH, part of Springer Nature.
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

André Greiner-Petter
Berlin, Germany

https://orcid.org/0000-0002-5828-5497
https://doi.org/10.1007/978-3-658-40473-4
http://creativecommons.org/licenses/by/4.0/

Front Matter

Contents

FRONT MATTER .
List of Figures .
List of Tables .
Abstract .
Zusammenfassung .
Acknowledgements .

CHAPTER 1

Introduction . 1

1.1 Motivation & Problem . 1
1.2 Research Gap . 6
1.3 Research Objective . 7
1.4 Thesis Outline . 8

1.4.1 Publications . 8
1.4.2 Research Path . 9

CHAPTER 2

Mathematical Information Retrieval . 17

2.1 Background and Overview . 18
2.2 Mathematical Formats and Their Conversions . 19

2.2.1 Web Formats . 20
2.2.2 Word Processor Formats. 25
2.2.3 Computable Formats . 32
2.2.4 Images and Tree Representations . 34
2.2.5 Math Embeddings . 37

2.3 From Presentation to Content Languages . 38
2.3.1 Background . 39
2.3.2 Benchmarking MathML . 43
2.3.3 Evaluation of Context-Agnostic Conversion Tools . 48
2.3.4 Summary of MathML Converters . 51

2.4 Mathematical Information Retrieval for LaTeX Translations . 51

v

i

CHAPTER 3

Semantification of Mathematical LaTeX . 57

3.1 Semantification via Math-Word Embeddings . 59
3.1.1 Foundations and Related Work . 61
3.1.2 Semantic Knowledge Extraction . 63
3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches 68
3.1.4 The Future of Math Embeddings . 70

3.2 Semantification with Mathematical Objects of Interest . 70
3.2.1 Related Work . 72
3.2.2 Data Preparation . 72
3.2.3 Frequency Distributions of Mathematical Formulae . 76
3.2.4 Relevance Ranking for Formulae . 81
3.2.5 Applications . 87
3.2.6 Outlook . 91

3.3 Semantification with Textual Context Analysis . 91
3.3.1 Semantification, Translation & Evaluation Pipeline . 91

CHAPTER 4

From LaTeX to Computer Algebra Systems . 95

4.1 Context-Agnostic Neural Machine Translation . 96
4.1.1 Training Datasets & Preprocessing . 96
4.1.2 Methodology . 97
4.1.3 Evaluation of the Convolutional Network . 97

4.2 Context-Sensitive Translation . 101
4.2.1 Motivation . 101
4.2.2 Related Work . 104
4.2.3 Formal Mathematical Language Translations . 104
4.2.4 Document Pre-Processing . 108
4.2.5 Annotated Dependency Graph Construction. 108
4.2.6 Semantic Macro Replacement Patterns . 110

CHAPTER 5

Qualitative andQuantitative Evaluations . 113
5.1 Evaluations on the Digital Library of Mathematical Functions 114

5.1.1 The DLMF dataset . 116
5.1.2 Semantic LaTeX to CAS translation . 117
5.1.3 Evaluation of the DLMF using CAS . 123
5.1.4 Results . 128
5.1.5 Conclude Quantitative Evaluations on the DLMF . 131

5.2 Evaluations on Wikipedia . 132
5.2.1 Symbolic and Numeric Testing . 133
5.2.2 Benchmark Testing . 133
5.2.3 Results . 134
5.2.4 Error Analysis & Discussion . 137
5.2.5 Conclude Qualitative Evaluations on Wikipedia . 139

Contentsvi

CHAPTER 6

Conclusion and Future Work . 141
6.1 Summary . 141
6.2 Contributions and Impact of the Thesis . 150
6.3 Future Work . 153

6.3.1 Improved Translation Pipeline . 154
6.3.2 Improve LaTeX to MathML Converters . 155
6.3.3 Enhanced Formulae in Wikipedia . 156
6.3.4 Language Independence . 158

BACK MATTER . 161
Glossary . 161
Bibliography of Publications, Submissions & Talks . 171
Bibliography . 173

Contents vii

Front Matter

List of Figures

2.1 Reference map of mathematical formats and translations between them. . . . 20
2.2 The math template editor of Microsoft’s Word [395]. 32
2.3 An expression tree representation of the explicit Jacobi polynomial definition

in terms of the hypergeometric function. 35
2.4 GUI to support the creation of our gold standard MathMLben. 46
2.5 Overview of the MathML tree edit distances to the gold standard. 50
2.6 Runtime performances of LATEX to MathML conversion tools. 51
2.7 Four different layers of math objects in a single mathematical expression. . . . 53

3.1 t-SNE plot of top-1000 closest vectors of the identifier f 68
3.2 Unique subexpressions for each complexity in arXiv and zbMATH. 77
3.3 Frequency and Complexity Distributions of Math Expressions. 78
3.4 Most frequent math expressions in arXiv. 80
3.5 Comparison plot of most frequent expressions in arXiv and zbMATH. 82
3.6 Top-20 search results from topic-specific subsets. 85
3.7 Search results for the query ‘Jacobi polynomial.’ 90
3.8 Pipeline of the proposed context-sensitive conversion process. 92

4.1 Mathematical semantic annotation in Wikipedia. 102
4.2 The workflow of our context-sensitive translation pipeline. 106

5.1 Example argument identifications for sums. 121
5.2 The workflow of the evaluation engine and the overall results. 123
5.3 The numeric test values and global constraints. 126

6.1 Layers of a mathematical expression with mathematical objects (MOI). 143
6.2 The annotated defining formula of Jacobi polynomials in the English Wikipedia

article. 144
6.3 Translation information for equation (6.3). 149
6.4 Proposed pipeline to improve existing LATEX to MathML converters. 155
6.5 Semantic enhancement of the formula E = mc2. 157

ix

Front Matter

List of Tables

1.1 Different representations of a Jacobi polynomial. 2
1.2 Examples of Mathematica’s LATEX import function. 3
1.3 The results of importing π(x + y) in different CAS. 4
1.4 Different computation results for arccot(−1) (inspired by [84]). 5
1.5 Overview of the primary publications. 9
1.6 Overview of secondary publications. 9

2.1 Overview table of available mathematical format translations. 21
2.2 LATEX to CAS translation comparison. 28
2.3 Special content symbols added to LATExml. 44

3.1 Find the Term where Term is a word that is to X what Y is to Z. 65
3.2 The cosine distances of f regarding to the hits in Table 3.1. 66
3.3 Descriptive terms for f in a given context. 67
3.4 Mathematical Objects of Interests Dataset Overview. 77
3.5 Settings for the retrieval experiments. 84
3.6 Top s(t, D) scored expressions in zbMATH. 86
3.7 Most frequent expressions on topic-specific subsets of zbMATH. 88
3.8 Suggested autocompleted math expressions. 89

4.1 Results of our neural machine translations. 98
4.2 Comparison between Mathematica and our machine translation. 99
4.3 Machine translations on 100 random DLMF samples. 99
4.4 Examples of our machine translations from LATEX to Mathematica. 100
4.5 Mappings and likelihoods for a semantic LATEX macro. 111

5.1 Examples blueprints for subscripts of sums and products. 120
5.2 Translations for the prime derivative of the Hurwitz zeta function. 122
5.3 The symbolic and numeric evaluations on Wikipedia. 134
5.4 Performance of description extractions via MLP. 136
5.5 Performance of semantification from LATEX to semantic LATEX. 137
5.6 Performance comparison for translating LATEX to Mathematica. 138

xi

FRONT MATTER

Abstract

This thesis addresses the issue of translating mathematical expressions from LATEX to the syntax
of Computer Algebra Systems (CAS). Over the past decades, especially in the domain of Science,
Technology, Engineering, and Mathematics (STEM), LATEX has become the de-facto standard
to typeset mathematical formulae in publications. Since scientists are generally required to
publish their work, LATEX has become an integral part of today’s publishing workflow. On the
other hand, modern research increasingly relies on CAS to simplify, manipulate, compute, and
visualize mathematics. However, existing LATEX import functions in CAS are limited to simple
arithmetic expressions and are, therefore, insufficient for most use cases. Consequently, the
workflow of experimenting and publishing in the Sciences often includes time-consuming and
error-prone manual conversions between presentational LATEX and computational CAS formats.

To address the lack of a reliable and comprehensive translation tool between LATEX and CAS,
this thesis makes the following three contributions.

First, it provides an approach to semantically enhance LATEX expressions with sufficient semantic
information for translations into CAS syntaxes. This, so called, semantification process analyzes
the structure of the formula and its textual context to conclude semantic information. The
research for this semantification process additionally contributes towards related Mathematical
Information Retrieval (MathIR) tasks, such as mathematical education assistance, math recom-
mendation and question answering systems, search engines, automatic plagiarism detection,
and math type assistance systems.

Second, this thesis demonstrates the first context-aware LATEX to CAS translation framework
LACAST. LACAST uses the developed semantification approach to transform LATEX expressions
into an intermediate semantic LATEX format, which is then further translated to CAS based
on translation patterns. These patterns were manually crafted by mathematicians to assure
accurate and reliable translations. In comparison, this thesis additionally elaborates a non-
context aware neural machine translation approach trained on a mathematical library generated
by Mathematica.

Third, the thesis provides a novel approach to evaluate the performance for LATEX to CAS
translations on large-scaled datasets with an automatic verification of equations in digital math-
ematical libraries. This evaluation approach is based on the assumption that equations in digital
mathematical libraries can be computationally verified by CAS, if a translation between both
systems exists. In addition, the thesis provides an in-depth manual evaluation on mathematical
articles from the English Wikipedia.

The presented context-aware translation framework LACAST increases the efficiency and reliability
of translations to CAS. Via LACAST, we strengthened theDigital Library ofMathematical Functions
(DLMF) by identifying numerous of issues, from missing or wrong semantic annotations to sign
errors. Further, via LACAST, we were able to discover several issues with the commercial CAS
Maple and Mathematica. The fundamental approaches to semantically enhance mathematics
developed in this thesis additionally contributed towards several related MathIR tasks. For

xiii

instance, the large-scale analysis ofmathematical notations and the studies onmath-embeddings
motivated new approaches for math plagiarism detection systems, search engines, and allow
typing assistance for mathematical inputs. Finally, LACAST translations will have a direct real-
world impact, as they are scheduled to be integrated into upcoming versions of the DLMF and
Wikipedia.

xiv Abstract

FRONT MATTER

Zusammenfassung

Diese Dissertation befasst sich mit der Problematik von Übersetzungen mathematischer For-
meln zwischen LATEX und Computeralgebrasystemen (CAS). Im Laufe des digitalen Zeitalters
wurde LATEX zum Quasistandard für das Schreiben mathematischer Formeln auf dem Computer,
insbesondere in den Disziplinen Mathematik, Informatik, Naturwissenschaften und Technik
(MINT). Da Wissenschaftler gemeinhin ihre Arbeit publizieren, ist LATEX zu einem integralen
Bestandteil moderner Forschung geworden. Gleichermaßen verlassen sich Wissenschaftler
immer mehr auf die Möglichkeiten moderner CAS, um effektiv mit mathematischen Formeln
zu arbeiten, zum Beispiel, indem sie diese umformen, lösen oder auch visualisieren. Die mo-
mentanen Ansätze, welche eine Übersetzung von LATEX zu CAS erlauben, wie beispielsweise
interne Import-Funktionen einiger CAS, sind jedoch häufig auf einfache arithmetische Aus-
drücke beschränkt und daher nur wenig hilfreich im realen Arbeitsalltag. Infolgedessen ist die
Arbeit moderner Wissenschaftler in den MINT Disziplinen häufig geprägt von zeitraubenden
und fehleranfälligen manuellen Übersetzungen zwischen LATEX und CAS.

Die vorliegende Dissertation leistet die folgenden Beiträge, um das Problem des Übersetzens
von mathematischen Ausdrücken zwischen LATEX und CAS zu lösen.

Zunächst ist LATEX ein Format, welches lediglich die visuelle Präsentation mathematischer Aus-
drücke kodiert, nicht jedoch deren semantische Informationen. Die semantischen Informationen
sind jedoch notwendig für CAS, welche keine mehrdeutigen Eingaben erlauben. Daher führt
die vorliegende Arbeit als ersten Schritt für eine Übersetzung eine sogenannte Semantifizierung
mathematischer Ausdrücke ein. Diese Semantifizierung extrahiert semantische Informationen
aus dem Kontext und den Bestandteilen der Formel, um Rückschlüsse auf ihre Bedeutung zu
ziehen. Da die Semantifizierung eine klassische Aufgabe auf dem Gebiet der mathematischen
Informationsgewinnung darstellt, leistet dieser Teil der Dissertation auch Beiträge zu verwand-
ten Themengebieten. So sind die hier vorgestellten Ansätze auch nützlich für pädagogische
Programme, Frage-Antwort Systeme, Suchmaschinen und die digitale Plagiatserkennung.

Als zweiten Beitrag, stellt die vorliegende Dissertation das erste kontextbezogene LATEX zu
CAS Übersetzungsprogramm vor, genannt LACAST. LACAST nutzt die zuvor eingeführte Seman-
tifizierung, um LATEX in ein Zwischenformat zu transformieren, welches die semantischen
Informationen explizit darstellt. Dieses Format wird semantisches LATEX genannt, da es eine
technische Erweiterung von LATEX ist. Die weitere Übersetzung zu CAS wird durch heuristi-
sche Übersetzungsmuster für mathematische Funktionen realisiert. Diese Übersetzungsmuster
wurden in Zusammenarbeit mit Mathematikern definiert, um eine korrekte Übersetzung in
diesem letzten Schritt zu gewährleisten. Um die Vorzüge einer kontextbezogenen Übersetzung
besser zu verstehen, stellt diese Arbeit zum Vergleich auch eine Maschinenübersetzung auf
neuronalen Netzen vor, welche den Kontext einer Formel nicht berücksichtigt.

Der dritte Beitrag dieser Dissertation führt eine neue Methode zur Evaluierung von mathe-
matischen Übersetzungen ein, welche es erlaubt, auch eine große Anzahl an Übersetzungen
auf ihre Korrektheit hin zu überprüfen. Diese Methode folgt dem Ansatz, dass Gleichungen

xv

in mathematischen Bibliotheken auch nach der Übersetzung in ein CAS noch korrekt sein
müssten. Ist dies nicht der Fall, ist entweder die Ausgangsgleichung, die Übersetzung, oder
das CAS fehlerhaft. Hierbei ist zu beachten, dass jede Fehlerquelle einen Mehrwert für das
jeweilige System darstellt. Zusätzlich zu dieser automatischen Evaluierung, erfolgt noch eine
manuelle Analyse von Übersetzungen auf Basis englischer Wikipedia Artikel.

Zusammenfassend ermöglicht das kontextbezogene Übersetzungsprogramm LACAST eine effizi-
entere Arbeitsweise mit CAS. Mit Hilfe dieser Übersetzungen konnten auch mehrere Probleme,
wie falsche Informationen oder Vorzeichenfehler, in der Digital Library of Mathematical Func-
tions (DLMF) sowie Fehler in den kommerziell vertriebenen CAS Maple und Mathematica
automatisch aufgedeckt und behoben werden.

Die hier vorgestellte Grundlagenforschung zum semantischen Anreichern mathematischer
Ausdrücke, hat zudem etliche Beiträge zu verwandten Forschungsthemen geleistet. Zum Bei-
spiel hat die Analyse der Verteilung von mathematischen Notationen in großen Datensätzen
neue Ansätze in der digitalen Plagiatserkennung ermöglicht. Des Weiteren wird zurzeit daran
gearbeitet, die Übersetzungen von LACAST in kommende Versionen vonWikipedia und der DLMF
zu integrieren.

xvi Zusammenfassung

FRONT MATTER

Acknowledgements

This thesis would not have been possible without the tremendous help and support from nu-
merous family members, friends, colleagues, supervisors, and several international institutions.
In the following, I want to take the opportunity to thank all the individuals and organizations
that helped me along the way to make this work possible.

My first sincere wishes go to my prodigious doctoral advisers Bela Gipp and Akiko Aizawa.
Their continuous support and counsel enabled me to realize this thesis at marvelous places and
together with numerous wonderful people from all over the world. Their enduring encourage-
ment and assistance, Bela’s abiding and infectious positivity, and Akiko’s steadfast and kind
endorsement empowered my personal and professional life. Both of their competent and sincere
guidance helped me to find my way in the intricate maze of research and career decisions and
turned my often onerous time into a joyful and memorable experience.

Moreover, I am very grateful to my adviser and friend Moritz Schubotz, who supported and
guided me throughout the entire time of my doctoral thesis and even beyond. Our fruitful and
always engaging discussions, even when exhausting, enriched and positively affected most, if
not all, of my work. It is not an exaggeration to admit that my career, including my Master’s
thesis and this doctoral thesis, would not have been possible and nearly as successful and joyful
as it has been without his continuous and sincere support over the years. I am wholeheartedly
thankful for all the years we worked together.

I further wish to gratefully acknowledge my friends, colleagues, and advisers Howard Cohl,
Abdou Youssef, and BruceMiller at the National Institute of Standards andTechnology (NIST) for
their valuable advice, continuous drive to perfection, and our rewarding collaborations. I thank
Jürgen Gerhard at Maplesoft, who kindly provided me access and support for Maple on several
occasions. I am just as thankful for the assistance and support from Norman Meuschke, who
always helped me to overcome governmental and organizational hurdles, Corinna Breitinger,
who never failed to refit my gibberish, and my colleagues and friends Terry Lima Ruas and
Philipp Scharpf for many visionary discussions. I also thank all my collaborators and colleagues
with whom I had the distinct opportunity to work together, including Takuto Asakura, Fabian
Müller, Olaf Teschke, William Grosky, Marjorie McClain, Yusuke Miyao, Malte Ostendorff,
Bonita Saunders, Kenichi Iwatsuki, Takuma Udagawa, Anastasia Zhukova, and Felix Hamborg.
I further want to thank the students I worked with, including Avi Trost, Rajen Dey, Joon Bang,
Kevin Chen, and Felix Petersen. I especially appreciate the help and assistance from people
at the National Institute of Informatics (NII) to overcome governmental and daily life issues. I
wish to especially thank Rie Ayuzawa, Noriko Katsu, Akiko Takenaka, and Goran Topic.

My genuine gratitude also goes to my host organizations and those that provided financial
support for my research. I am thankful for the German Academic Exchange Program (DAAD)
for enabling two research stays at the NII in Tokyo, the NII for providing me a wonderful
work environment, the German Research Foundation (DFG) to financially support many of
my projects, the NIST for hosting me as a guest researcher, and Maplesoft for offering me

xvii

an internship during my preliminary research project on the Digital Library of Mathematical
Functions (DLMF). I finally thank the ACM Special Interest Group on Information Retrieval
(SIGIR), the University of Konstanz, the University of Wuppertal, and Maplesoft for supporting
several conference participations.

My last and most crucial gratitude goes to my family and friends, who always cheered me in
good and bad times and constantly backed and supported me so that I could selfishly pursue my
dreams. I am deeply grateful for my lovely parents Rolf & Regina, who have always been on
my side and make all this possible behind the scenes. I am also tremendously thankful for the
enduring personal support from my dear friends Kevin, Lena, Vici, Dong, Peter, Vitor, Ayuko,
and uncountably more. Finally, I thank my lovely partner Aimi for brightening even the darkest
times and pushing every possible obstacle aside. I dedicate this thesis to my lovely parents, my
dear friends, and my enchanting girlfriend.

xviii Acknowledgements

I went to the woods because I wanted to live deliberately. I wanted

to live deep and suck out all the marrow of life. To put to rout all

that was not life; and not, when I had come to die, discover that I

had not lived.

Neil Perry - Dead Poet Society

CHAPTER 1

Introduction

Contents

1.1 Motivation & Problem . 1

1.2 Research Gap . 6

1.3 Research Objective . 7

1.4 Thesis Outline . 8

1.4.1 Publications . 8

1.4.2 Research Path . 9

This thesis addresses the issue of translating mathematical expressions from LATEX to the syntax
of Computer Algebra Systems (CAS), which is typically a time-consuming and error-prone task
in the modern life of many researchers. A reliable and comprehensive translation approach
requires analyzing the textual context of mathematical formulae. In turn, research advances
in translating LATEX contribute directly towards related tasks in the Mathematical Information
Retrieval (MathIR) arena. In this chapter, I provide an introduction to the topic. Section 1.1
introduces my motivation and provides an overview of the problem. Section 1.2 summarizes
the research gap. In Section 1.3, I define the research objective and research tasks of this thesis.
Section 1.4 concludes with an outline of the thesis including an overview of the publications
that contributed to the goals of this thesis and the research path that led to these publications.

1.1 Motivation & Problem

Consider a researcher is working on Jacobi polynomials and examines the existing English
Wikipedia article about the topic1. While she might be familiar with the Digital Library of
Mathematical Functions (DLMF) [98], a standard resource for Orthogonal Polynomials and
Special Functions (OPSF), the equation 1.1 from the article might be new to her

P (α,β)
n (x) = Γ(α + n + 1)

n! Γ(α + β + n + 1)

n∑
m=0

(
n

m

)
Γ(α + β + n + m + 1)

Γ(α + m + 1)

(
z − 1

2

)m

. (1.1)

In order to analyze this new equation, e.g., to validate it, she wants to use CAS. CAS are
powerful mathematical software tools with numerous applications [207]. Today’s most widely

1https://en.wikipedia.org/wiki/Jacobi_polynomials [accessed 2021-10-01].
Hereafter, dates follow the ISO 8601 standard. i.e., YYYY-MM-DD.

1
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_1

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_1

https://en.wikipedia.org/wiki/Jacobi_polynomials
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_1&domain=pdf

Section 1.1. Motivation & Problem

Table 1.1: Different representations of a Jacobi polynomial.

System Representation

Rendered Version P
(α,β)
n (cos(aΘ))

Generic LATEX P_n^{(\alpha, \beta)}(\cos(a\Theta))

Semantic LATEX \JacobipolyP{\alpha}{\beta}{n}@{\cos@{a\Theta}}

Maple [36] JacobiP(n, alpha, beta, cos(a*Theta))

Mathematica [393] JacobiP[n, \[Alpha], \[Beta], Cos[a \[CapitalTheta]]]

SymPy [252] jacobi(n,Symbol(’alpha’),Symbol(’beta’),cos(a*Symbol(’Theta’)))

used CAS include Maple [36], Mathematica [393], and MATLAB [246]. Scientists use CAS2 to
simplify, manipulate, evaluate, compute, or even visualize mathematical expressions. Thus,
CAS play a crucial role in the modern era for pure and applied mathematics [8, 184, 207, 262]
and even found their way into classrooms [237, 363, 365, 389, 390]. In turn, CAS are the perfect
tool for the researcher in our example to examine the formula further. In order to use a CAS,
she needs to translate the expression into the correct CAS syntax.

Table 1.1 illustrates the differences between computable and presentational encodings for a
Jacobi polynomial. While the rendered version and the LATEX [220] encoding only provide
visual information, semantic LATEX [403] and the CAS encodings explicitly encode the meaning,
i.e., the semantics, of the formula. On the one hand, LATEX

3 has become the de-facto standard
to typeset mathematics in scientific publications [129, 248, 402], especially in the domain of
Science, Technology, Engineering, and Mathematics (STEM). On the other hand, computational
advances make CAS an essential asset in the modern workflow of experimenting and publishing
in the Sciences. Translating expressions between LATEX and CAS syntaxes is, therefore, a
typical task in the everyday life of our hypothetical researcher. Despite this common need, no
reliable translation from a presentational format, such as LATEX, to a computable format, such as
Mathematica, is available to date. The only option our hypothetical researcher has is to manually
translate the expression in the specific syntax of a CAS. This process is time-consuming and
often error-prone.

�
Problem: No reliable translation from a presentational mathematical format to a
computable mathematical format exists to date.

If a translation between LATEX and CAS is so essential, why are there no translation tools
available? As is often the case in research, the reasons for this are diversified. First, there are
translation approaches available. Some CAS, such as Mathematica and SymPy, allow to import
LATEX expressions. Most CAS support at least the Mathematical Markup Language (MathML),
since it is the current web standard to encode mathematical formulae. With numerous tools
available to transfer LATEX to MathML [18], a translation from LATEX to CAS syntaxes should
not be a difficult task. However, none of these available translation techniques are reliable

2In the sequel, the acronym CAS is used interchangeably with its plural.
3https://www.latex-project.org/ [accessed 2021-10-01]

2 Chapter 1

Introduction

https://www.latex-project.org/

Section 1.1. Motivation & Problem

Table 1.2: Examples of Mathematica’s LATEX import function ToExpression["x", TeXForm].
Tested with Mathematica [393] v.12.1.1. The second sum in row 8 (marked with ?) is only
partially correct. Since the second summand contains the summation index n, the second
summand should be part of the sum.

LATEX Rendering Import Result

\int_a^b x dx
∫ b

a xdx Error �

\int_a^b x \mathrm{d}x
∫ b

a xdx Error �

\int_a^b x\, dx
∫ b

a x dx Integrate[x, {x, a, b}] �

\int_a^b x\; dx
∫ b

a x dx Error �

\int_a^b x\, \mathrm{d}x
∫ b

a x dx Error �

\int_a^b \frac{dx}{x}
∫ b

a
dx
x Error �

\sum_{n=0}^N n^2
∑N

n=0 n2 Sum[n^2, {n, 0, N}] �

\sum_{n=0}^N n^2 + n
∑N

n=0 n2 + n Sum[n^2, {n, 0, N}] + n ?

{n \choose m}
(n

m

)
Error �

\binom{n}{m}
(n

m

)
Binomial[n, m] �

and comprehensive. Table 1.2 illustrates how Mathematica, one of the major proprietary CAS,
fails to import even simple formulae. Another option is SnuggleTeX [251], a LATEX to MathML
converter which also supports translations to Maxima [324]. SnuggleTeX fail to translate all
expressions in Table 1.2. Alternative translations viaMathML as an intermediate format perform
similarly (as we will show later in Section 2.3).

While the simple cases shown in Table 1.2 could be solved with a more comprehensive and flex-
ible parser and mapping strategy, such a solution would ignore the real challenge of translating
mathematics to CAS, the ambiguity. The interpretation of the majority of mathematical expres-
sions is context-dependent, i.e., the same formula may refer to different concepts in different
contexts. Take the expressions π(x + y) as an example. In number theory, the expression most
likely refers to the number of primes less than or equal to x + y. In another context, however,
it may just refer to a multiplication πx + πy. Without considering the context, an appropriate
translation of this ambiguous expression is infeasible. Today’s translation solutions, however,
do not consider the context of an input. Instead, they translate the expression based on internal
decisions, which are often not transparent to a user.

Table 1.3 shows the results of importing π(x + y) to different CAS. Each CAS in Table 1.3
interprets π as a function call but does not associate it with the prime counting function (nor
any other predefined function). Only SnuggleTeX translated π as the mathematical constant
to Maxima syntax. However, Maxima does not contain a prime counting function. The CAS
import functions consider the expression as a generic function with the name π. Mathematica
surprisingly links π still with the mathematical constant which results in a peculiar behaviour
for numeric evaluations. The expression N[Pi[x+y]] (numeric evaluation of the imported
expression) is evaluated to 3.14159[x + y]. Associating the variables x and y with numbers,
say x, y = 1, would result in the rather odd expression 3.14159[2].

Chapter 1

Introduction
3

Section 1.1. Motivation & Problem

Table 1.3: The results of importing π(x + y) in different CAS. For Maple, a MathML rep-
resentation was used. Content MathML was not tested, since there is no content dictionary
available that defines the prime counting function. SnuggleTeX translated the expression to
the CAS Maxima. The two right most columns show the expected expressions in the context
of the prime counting function or a multiplication. None of the CAS choose any of the two
expected interpretations. Note that the prime counting function in Maple can also be written
with pi(x+y) and requires to pre-load the extra package NumberTheory. Nonetheless, this
function pi(x+y) is still different to the actual imported expression Pi(x+y). Note further
that Maxima does not define a prime counting function.

Translated Expected Expression

System Expression Number of primes Multip.

Maple [36] v.2019 Pi(x+y) PrimeCounting(x+y) Pi*(x+y)

Mathematica [393] v.12.1.1 Pi[x+y] NPrimes[x+y] Pi*(x+y)

SymPy [252] v.1.8 pi(x+y) primepi(x+y) pi*(x+y)

SnuggleTeX [251] v.1.2.2 %pi*(x+y) - %pi*(x+y)

Why do existing translation techniques not allow to specify a context? Mainly because it
is an open research question of what this context is or needs to be. The exact information
needs to perform translation to CAS syntaxes, and where to find them is unlcear [11]. Some
required information is indeed encoded in the structure of the expression itself. Consider a
simple fraction 1

2 . This expression is context-independent and can be directly translated. The

expression P
(α,β)
n (x) in the context of OPSF is also often unambiguous for general-purpose

CAS. Since Mathematica supports no other formula with this presentational structure, i.e.,
P followed by a subscript and superscript with paranthesis, Mathematica is able to correctly

associate P
(•,•)
• (•), where • are wildcards, with the function JacobiP. In other cases, the

immediate textual context of the formula provides sufficient information to disambiguate the
expression [54, 329]. Consider, an author explicitly declares π(x) as the prime counting function
right before she uses it with π(x+y). In this case, it might be sufficient to scan the surrounding
context for key phrases [183, 214, 329], like ‘prime counting function’ in order to map π to, for
instance, NPrimes in Mathematica.

Often, the semantic explanations of mathematical objects in an article are scattered around in
the context or absent entirely [394]. An interested reader needs to retrieve sufficient seman-
tic explanations and correctly link them with mathematical objects in order to comprehend
the meaning of a complex formula. Sometimes, an author presumes the interpretation of an
expression can be considered as common knowledge and, therefore, does not require further
explanations. Consider π(x + y) refers to a multiplication between π and (x + y). In general,
an author may consider π (the mathematical constant) as common knowledge and does not
explicitly declare its meaning. The same could be true for scientific articles, where the length is
often limited. An article about prime numbers probably not explicitely declare the meaning of
π(x + y) because the author presumes the semantics are unambiguis given the overall context
of the article.

4 Chapter 1

Introduction

Section 1.1. Motivation & Problem

In other cases, the information needs go beyond a simple text analysis. Consider π(x + y)
as a generic function that was previously defined in the article and simply has no name. An
appropriate translation would require to retrieve the definition of the function from the context.
But even if a function is well-known and supported by a CAS, a direct translation might be
inappropriate because the definition in the CAS is not what our researcher expected [3, 13].
Legendre’s incomplete elliptic integral of the first kind F (φ, k), for example, is defined with
the amplitude φ as its first argument in the DLMF and Mathematica. In Maple, however, one
needs to use the sine of the amplitude sin(φ) for the first argument4. In turn, an appropriate
translation to Maple might be EllipticF(sin(phi), k) rather than EllipticF(phi, k)
depending on the source of the original expression. The English Wikipedia article about elliptic
integrals5 contains both versions and refers to them with F (φ, k) and F (x; k) respectively.
Even though both versions in Wikipedia refer to the same function, correct translations to
Maple of F (φ, k) and F (x; k) are not the same.

Table 1.4: Different computation results for
arccot(−1) (inspired by [84]).

System or Source arccot(−1)
[276] 1st printing 3π/4
[276] 9th printing −π/4
Maple [36] v.2020.2 3π/4

Mathematica [393] v.12.1.1 −π/4
SymPy [252] v.1.5.1 −π/4

Axiom [173] v.Aug.2014 3π/4
Reduce [151] v.5865 3π/4

MATLAB [246] v.R2021a −π/4

In cases of multi-valued functions, transla-
tions between different systems can become
eminently more complex [83, 91, 172]. Even
for simple cases, such as the arccotangent
function arccot(x), the behavior of different
CAS might be confusing. For example, since
arccot(x) is multi-valued, there are multiple
solutions of arccot(−1). CAS, like any gen-
eral calculator too, only compute values on
the principle branches and, therefore, return
only a single value. The principle branches,
however, are not necessarily uniformly po-
sitioned among multiple systems [84, 172].
In turn, the returned value of a multi-valued
function may depends on the system, see Ta-
ble 1.4. A translation of arccot(x) from the
DLMF to arccot(x) in Maple would be only
correct for �x > 0. Finally, CAS may also compute irrational looking expressions without

objections, e.g., arccot
(

1
0

)
returns 1.5708 in MATLAB6. Even for field experts, it can be chal-

lenging to keep track of every property and characteristic of CAS [20, 100].

�
Problem: Existing LATEX to CAS converters are context-agnostic, inflexible, limited
to simple expressions, and nontransparent.

In combination, all of the issues underline that an accurate manual translation to the syntax of
CAS is challenging, time-consuming, error-prone, and requires deep and substantial knowledge
about the target system. Especially with the increasing complexity of the translated expressions,
errors during the translation process might be inevitable. Real-world scenarios often include

4https://www.maplesoft.com/support/help/maple/view.aspx?path=EllipticF
[accessed 2021-10-01]

5https://en.wikipedia.org/wiki/Elliptic_integral [accessed 2021-10-01]
6MATLAB evaluates 1

0 to infinity and the limit in positive infinity of the arccotangent function is π
2 (or roughly

1.5708). Yet, the interpretation of the division by zero is not wrong, since it follows the official IEEE 754 standard
for floating-point arithmetic [170].

Chapter 1

Introduction
5

https://www.maplesoft.com/support/help/maple/view.aspx?path=EllipticF
https://en.wikipedia.org/wiki/Elliptic_integral

Section 1.2. Research Gap

muchmore complicated formulae compared to the expressions in Table 1.2 or even equation (1.1).
Moreover, if an error occurs, the cause of the error can be very challenging to detect and traced
back to its origin. The issue of translating arccot(x) to Maple, for example, may remain
undiscovered until a user calculates negative values. If the function is embedded into a more
complex equation, even experts can lose track of potential issues. In combination with unreliable
translation tools, working with CAS may even be frustrating. Mathematica, for example, is able
to import our test expression (1.1) mentioned earlier without throwing an error7. However,
investigating the imported expression reveals an incorrect translation due to an issue with
factorials. To productively work with CAS, our hypothetical researcher from above needs to
carefully evaluate if the automatically imported expression was correct. As a consequence,
existing translation approaches are not practically useful.

In this thesis, I will focus on discovering the information needs to perform correct translations
from presentational formats, here mainly LATEX, to computational formats, here mainly CAS
syntaxes. My personalmotivation is to improve the workflow of researchers by providing them a
reliable translation tool that offers crucial additional information about the translation process.
Further, I limit the support of such a translation tool to general-purpose CAS, since many
general mathematical expressions simply cannot be translated to appropriate CAS expressions
for task-specific CAS (or other mathematical software, such as theorem provers). The focus on
general-purpose CAS allows me to provide a broad solution to a general audience. Note further
that, in this thesis, I mostly focus on the two major CAS Maple and Mathematica. However,
the goal is to provide a translation tool that is easy to extend and support more CAS.

Further, the real-world applications of such a translation tool go far beyond an improved work-
flow with CAS. A computable formula can be automatically verified with CAS [51, 52, 2,
8, 13, 153, 184, 414, 415], translated to other semantically enhanced formats, such as Open-
Math [53, 57, 119, 152, 303, 361], content MathML [59, 60, 159, 270, 318, 342] or other CAS
syntaxes [110, 361], imported to theorem prover [35, 57, 152, 163, 338, 375], or embedded in
interactive documents [85, 131, 150, 162, 201, 284]. Since an appropriate translation is generally
context-dependent, a translator must use MathIR [141] techniques to access sufficient semantic
information. Hence, advances in translating LATEX to CAS syntaxes also contribute directly
towards related MathIR tasks, including entity linking [150, 208, 212, 316, 319, 321, 322], math
search engines [92, 181, 182, 203, 211, 236, 274], semantic tagging of math formulae [71, 402],
recommendation systems [30, 31, 50, 319], type assistance systems [103, 106, 14, 321, 400], and
even plagiarism detection platforms [253, 254, 334].

1.2 Research Gap

Existing translation approaches from presentational formats to computable formats share the
same issues. Currently, these translation approaches are

1. context-independent, i.e., a translation of an expression is unique regardless of the context
from where the expression came from (see the π(x + y) example mentioned earlier);

2. nontransparent, i.e., the internal translation decisions are not communicated to the user,
which makes the translation untrustworthy and errors challenging to trace or detect;

7If the binomial is given with the \binom macro rather than \choose.

6 Chapter 1

Introduction

Section 1.3. Research Objective

3. inflexible, i.e., slight changes in the notation can cause the translation to fail (see the
integral imports from Table 1.2); and

4. limited to simple expression due tomissingmappings between function definition sources,
i.e., even with semantic information, a translation often fails.

Issue 4 raises from the fact that there are semantically enhanced data formats that have been
specifically developed to make expressions between CAS interchangeable, such as Open-
Math [119, 303, 361] and content MathML [318, 343]. Nonetheless, most CAS do not support
OpenMath natively [303] and the support for content MathML is limited to school mathemat-
ics [318]. The reason is that such translation requires a database that maps functions between
different semantic sources. As discussed above, creating such a comprehensive database can be
time-consuming due to slight differences between the systems (e.g., positions of branch cuts,
different supported domains, etc.) [361]. Hence, for economic reasons, crafting and maintaining
such a library is unreasonable. Translations between semantic enhanced formats, e.g., between
CAS syntaxes, OpenMath, or content MathML, are consequentially often unreliable.

In previous research, I was focusing on the issues 2-4 by developing a rule-based LATEX to
CAS translator, called LACAST. Originally, LACAST performs translations from semantic LATEX to
Maple. Relying on semantic LATEX allows LACAST to largely ignore the ambiguity Issue 1 and
focus on the other problems. For this thesis, I continued to develop LACAST to further mitigate
the limitation and inflexibility issues 3 and 4. Further, I focused on extending LACAST to become
the first context-aware translator to tackle the context-independency issue 1.

1.3 Research Objective

This doctoral thesis aims to:

� Research Objective

Develop and evaluate an automated context-sensitive process that makes presentational
mathematical expressions computable via computer algebra systems.

Hereafter, I consider the semantic information of a mathematical expression as sufficient if a
translation of the expression into the syntax of a CAS becomes feasible. To achieve the research
objective, I define the following five research tasks:

� Research Tasks

I Analyze the strengths and weaknesses of existing semantification approaches for
translating mathematical expressions to computable formats.

II Develop a semantification process that will improve on the weaknesses of current
approaches.

III Implement a system for the automated semantification of mathematical expressions
in scientific documents.

IV Implement an extension of the system to provide translations to computer algebra
systems.

V Evaluate the effectiveness of the developed semantification and translation system.

Chapter 1

Introduction
7

Section 1.4. Thesis Outline

1.4 Thesis Outline

Chapter 1 provides an introduction for translating presentational mathematical expressions
into computable formats. The chapter further defines the research gap for such translations and
defines the research objective and tasks this thesis addresses. Finally, it outlines the structure
of the thesis and briefly summarizes the main publications.

Chapter 2 provides an overview of related work by examining existing mathematical formats
and translation approaches between them. This chapter focuses on Research Task I by ana-
lyzing the strengths and weaknesses of existing translation approaches with the main focus on
the standard formats LATEX and MathML.

Chapter 3 addresses Research Task II by studying the capability of math embeddings, intro-
ducing a new concept to describe the nested structure of mathematical objects, and presenting
a novel context-sensitive semantification process for LATEX expressions.

Chapter 4 presents the first context-sensitive LATEX to CAS translator: LACAST. In particular, this
chapter focuses on Research Tasks III and IV by implementing the previously introduced
semantification process and integrates it into the rule-based semantic LATEX to CAS translator
LACAST. In addition, the chapter briefly summarizes a context-independent neural machine
translation approach to estimate how much structural information is encoded in mathematical
expressions.

Chapter 5 evaluates the new translation tool LACAST and, therefore, contributes mainly towards
Research Task V. In particular, it introduces the novel evaluation concept of equation veri-
fications to estimate the appropriateness of translated CAS expressions. Our new evaluation
concept not only detects issues in the translation pipeline but is also able to identify errors
in the source equation, e.g., from the DLMF or Wikipedia, and the target CAS, e.g., Maple or
Mathematica. In order to maximize the number of verifiable DLMF equations via our novel eval-
uation technique, this chapter also introduces some heuristic extensions to the LACAST pipeline.
Hence, this chapter partially contributes to Research Task IV too.

Chapter 6 concludes the thesis by summarizing contributions and their impact on the MathIR
community. It further provides a brief overview of the remaining issues and future work.

An Appendix is available in the electronic supplementary material and provides additional
information about certain aspects of this thesis including an extended error analysis, result
tables, and a summary of bugs and issues we discovered with the help of LACAST in the DLMF,
Maple, Mathematica, and Wikipedia.

1.4.1 Publications

Most parts of this thesis were published in international peer-reviewed conferences and journals.
Table 1.5 provides an overview of the publications that are reused in this thesis. The first column
identifies the chapter a publication contributed to. The venue rating was taken from the Core
ranking8 for conferences and the Scimago Journal Rank (SJR)9 for journal articles. Each rank

8http : / / portal . core . edu . au / conf - ranks/ with the ranks: A* – flagship conference (top 5%),
A – excellent conference (top 15%), B – good conference (top 27%), and C – remaining conferences [accessed
2021-10-01].

9https://www.scimagojr.com/ with the ranks Q1 – Q4 where Q1 refer to the best 25% of journals in the
field, Q2 to the second best quarter, and so on [accessed 2021-10-01].

8 Chapter 1

Introduction

http://portal.core.edu.au/conf-ranks/
https://www.scimagojr.com/

Section 1.4. Thesis Outline

was retrieved for the year of publication (or year of submission, in case the paper has not been
published yet). Table 1.6 similarly shows publications that partially contributed towards the goal
of this thesis but are not reused within a chapter. Note that the publication [3] (in Table 1.6) was
part of my Master’s thesis and contributed towards this doctoral thesis as a preliminary project.
The Journal publication [13] (also in Table 1.6) is an extended and (with new results) updated
version of the thesis and the mentioned article [3]. The venue abbreviations in both tables are
explained in the glossary. Lastly, note that the TPAMI journal [11] is reused in Chapter 4 (for
the methodology) and in Chapter 5 (for the evaluation) to provide a coherent structure. My
publications, talks, and submissions are separated from the general bibliography in the back
matter and can be found on page 171.

Table 1.5: Overview of the primary publications in this thesis.

Ch. Venue Year Type Length

Author

Position

Venue

Rating Ref.

2
SIGIR 2019 Workshop Full 1 of 6 Core A* [9]

JCDL 2018 Conference Full 2 of 6 Core A* [18]

3

Scientometrics 2020 Journal Full 1 of 7 SJR Q1 [15]

WWW 2020 Conference Full 1 of 7 Core A* [14]

ICMS 2020 Conference Full 1 of 4 n/a [10]

4 TPAMI10 2021 Journal Full 1 of 6 SJR Q1 [11]

5
TACAS 2021 Conference Full 1 of 8 Core A [8]

CICM 2018 Conference Full 2 of 3 n/a [2]

6 JCDL 2020 Conference Poster 2 of 5 Core A* [17]

Table 1.6: Overview of secondary publications that partially contributed to this thesis.

Year Venue Type Length

Author

Position

Venue

Rating Ref.

2020
CLEF Workshop Full 4 of 6 n/a [16]

EMNLP Workshop Full 2 of 4 Core A [1]

2019 AJIM Journal Full 1 of 4 SJR Q1 [13]

2018 CICM Conference Short 1 of 4 n/a [12]

2017 CICM Conference Full 4 of 9 n/a [3]

1.4.2 Research Path

This section provides a brief overview of my research path that led to this thesis, i.e., it discusses
the primary publications and the motivations behind them. Every publication is marked with
the associated chapter and a reference. This research path is logically (not chronologically)
divided into three sections: preliminary work, the semantification of LATEX, and the evaluation
of translations.

Preliminary Work I had the first contact with the problem of translating LATEX to CAS
syntaxes during my undergraduate studies in mathematics. During that time, I regularly used

10The methodology part of this journal is reused in Chapter 4 while the evaluation part is reused in Chapter 5.

Chapter 1

Introduction
9

Section 1.4. Thesis Outline

CAS like MATLAB and SymPy for numeric simulations and for plotting results. At the same
time, wewere required to hand in our homework as LATEX files. While exporting content from the
CAS to LATEX files was rather straight forward, the other way around, i.e., importing LATEX into
the CAS, required manual conversions. I decided to explore the reasons for this shortcoming in
my Master’s thesis. During that time, I developed the first version of a semantic LATEX to CAS
translator, which was later coined LACAST11. The results from this first study were published at
the Conference of Intelligent Computer Mathematics (CICM) in 2017.

� “Semantic Preserving Bijective Mappings of Mathematical Formulae Between
Document Preparation Systems and Computer Algebra Systems” by Howard
S. Cohl, Moritz Schubotz, Abdou Youssef, André Greiner-Petter, Jürgen
Gerhard, Bonita Saunders, Marjorie McClain, Joon Bang, and Kevin Chen. In:
Proceedings of the International Conference of Intelligent ComputerMathematics
(CICM), 2017.

Not Reused — [3]

This first version of LACAST focused specifically on the CAS Maple but was designed modularly
to allow later extensions to other CAS. The main limitation of LACAST, however, was the re-
quirement of using semantic LATEX macros to disambiguate mathematical expressions manually.
An automatic disambiguation process did not exist at the time. Moreover, only a few previous
projects focused on a semantification for translating mathematical formats. Hence, I continued
my research in this direction.

In the following, I will use ‘we’ rather than ‘I’ in the subsequent parts of this thesis, since none
of the presented contributions would have been possible without the tremendous and fruitful
discussions and help from advisors, colleagues, students, and friends.

Semantification of LATEX As an alternative for semantic LATEX, we closely investigated exist-
ing converters for MathML first (see Section 2.2.1). Since MathML was (and still is) the standard
encoding for mathematical expressions in the web, most CAS support MathML. MathML uses
two markups, presentation and content MathML. The former visualizes a formula, while the
latter describes the semantic content. Hence, content MathML can disambiguate math much
like semantic LATEX. Since MathML is the official web standard and LATEX the de-facto standard
for writing math, there are numerous of converters available that translate LATEX to MathML.
As our first contribution, we developed MathMLben, a benchmark dataset for measuring the
quality ofMathMLmarkup that appears in a textual context. With this benchmark, we evaluated
nine state-of-the-art LATEX to MathML converters, including Mathematica as a major CAS. We
published our results in the Joint Conference on Digital Libraries (JCDL) in 2018.

� “Improving the Representation and Conversion of Mathematical Formulae by
Considering their Textual Context” by Moritz Schubotz, André Greiner-
Petter, Philipp Scharpf, Norman Meuschke, Howard S. Cohl, and Bela Gipp.
In: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries
(JCDL), 2018.

Chapter 2 — [18]

11
LaTeX to CAS Translator.

10 Chapter 1

Introduction

Section 1.4. Thesis Outline

We discovered that three of the nine tools were able to generate content MathML but with
insufficient accuracy. None of the available tools were capable of analyzing a context for a
given formula. Hence, the converters were unable to conclude the correct semantic information
for most of the symbols and functions. In our study, we proposed a manual semantification
approach that semantically enriches the translation process of existing converters by feeding
them semantic information from the surrounding context of a formula. The enrichment process
was manually illustrated via the converter LATExml, which allowed us to add custom semantic
macros to improve the generated MathML data. In fact, we used this manual approach to create
the entries of MathMLben in the first place.

Naturally, our next goal was to automatically retrieve semantic information from the context
of a given formula. Around this time, word embeddings [256] began to gain interest in the
MathIR community [121, 215, 242, 400, 404]. It seems that vector representations were able to
capture some semantic properties of tokens in natural languages. Can we create such semantic
vector representations of mathematical expressions too? Unfortunately, we discovered that
the related work in this new area of interest did not discuss a crucial underlying issue with
embedding mathematical expressions. In math expressions, certain symbols or entire groups of
tokens are fixed, such as the red tokens in the Gamma function Γ(x) or the Jacobi polynomial
Pn

(α,β)(x), while other may vary (gray). Inspired by words in natural languages, we call these
fixed tokens the stem of a mathematical object or operation. Unfortunately, in mathematics, this
stem is context-dependent. If π is a function, the red tokens are its stem π(x + y). However,
if π is not a function, the stem is just the symbol itself π(x + y). If we do not know the stem
of a mathematical object, how can we group them so that a trained model understands the
connection between variations like Γ(z) and Γ(x)? The answer is: we cannot. The only
alternative is to use context-independent representations, e.g., we only embed the identifiers or
the entire expression. Each of these approaches has advantages and disadvantages. We shared
our discussion with the community at the BIRNDL Workshop at the conference on Research
and Development in Information Retrieval (SIGIR) in 2019.

� “Why Machines Cannot Learn Mathematics, Yet” by André Greiner-Petter,
Terry Raus, Moritz Schubotz, Akiko Aizawa, William I. Grosky, and Bela
Gipp. In: Proceedings of the 4th Joint Workshop on Bibliometric-Enhanced
Information Retrieval and Natural Language Processing for Digital Libraries
(BIRNDL@SIGIR), 2019.

Chapter 2 — [9]

Nonetheless, context-independent math embeddings still have many valuable applications.
Search engines, for example, can profit from a vector representation that represents a mathe-
matical expression in a particular context. Such a trained model would still be unable to tell us
what the expression is, but it can tell us efficiently if the expression is semantically similar (e.g.,
because the surrounding text is similar) to another expression. Further, embedding semantic
LATEX allows us to overcome the issue of unknown stems for most functions since the macro
unambiguously defines the stem. Youssef and Miller [404] trained such a model on the DLMF
formulae. Later, we published an extended version of our workshop paper together with Youssef
and Miller in the Scientometrics journal.

Chapter 1

Introduction
11

Section 1.4. Thesis Outline

� “Math-Word Embedding in Math Search and Semantic Extraction” by An-
dré Greiner-Petter, Abdou Youssef, Terry Raus, Bruce R. Miller, Moritz
Schubotz, Akiko Aizawa, and Bela Gipp. In: Scientometrics 125(3): 3017-3046,
2020.

Chapter 3 — [15]

Unfortunately, this sets us back to the beginning, where we need manually crafted semantic
LATEX. We started to investigate the issue of interpreting the semantics of mathematical expres-
sions from a different perspective. As we will see later in Section 2.2.4, humans tend to visualize
mathematical expressions in a tree structure, where operators, functions, or relations are parent
nodes of their components. Identifiers and other terminal symbols are the leaves of these trees.
The MathML tree data structure comes close to these so-called expression trees (see Section 2.2.4)
but does not strictly follow the same idea [331]. The two aforementioned context-independent
approaches to embed mathematical expressions take either the leaves or the roots of such trees.
The subtrees in between are the context-dependent mathematical objects we need. Not all
subtrees, however, are meaningful, and the mentioned expression trees are only theoretical
interpretations. In searching for an approach to discover meaningful subexpressions, which we
call Mathematical Objects of Interest (MOI), we performed the first large-scale study of mathe-
matical notations on real-world scientific articles. In this study, we followed the assumption
that every subexpression with at least one identifier can be semantically important. Hence, we
split every formula into their MathML subtrees and analyzed their frequency in the corpora.
Overall, we analyzed over 2.5 Billion subexpressions in 300 Million documents and showed
that the frequency distribution of mathematical subexpressions is similar to words in natural
language corpora. By applying known frequency-based ranking functions, such as BM25, we
were also able to discover topic-relevant notations. We published these results at The Web
Conference (WWW) in 2020.

� “Discovering Mathematical Objects of Interest — A Study of Mathematical No-
tations” by André Greiner-Petter, Moritz Schubotz, Fabien Müller, Corinna
Bretinger, Howard S. Cohl, Akiko Aizawa, and Bela Gipp. In: Proceedings of
the Web Conference (WWW), 2020.

Chapter 3 — [14]

The applications that we derived from simply counting mathematical notations were surpris-
ingly versatile. For example, with the large set of indexed math notations, we implemented the
first type assistant system for math equations, developed a new faceted search engine for zb-
MATH, and enabled new approaches to measure potential plagiarism in equations. Besides these
practical applications, it also gave us the confidence to continue focusing on subexpressions for
our LATEX semantification. Previous projects that aimed to semantically enrich mathematical
expressions with information from the surrounding context primarily focused on one of the
earlier mentioned extremes, i.e., the leaves or roots in expression trees [139, 214, 279, 329, 330].
Our study also revealed that the majority of unique mathematical formulae are neither single
identifier nor highly complex mathematical expressions. Hence, we concluded that we should

12 Chapter 1

Introduction

Section 1.4. Thesis Outline

focus on semantically enriching subexpressions (subtrees) rather than the roots or leaves. We
proposed a novel context-sensitive translation approach based on semantically annotated MOI
and shared our theoretical concept with the community at the International Conference on
Mathematical Software (ICMS) in 2020.

� “Making Presentation Math Computable: Proposing a Context Sensitive Ap-
proach for Translating LaTeX to Computer Algebra Systems” by André
Greiner-Petter, Moritz Schubotz, Akiko Aizawa, and Bela Gipp. In: Pro-
ceedings of the International Conference on Mathematical Software (ICMS),
2020.

Chapter 3 — [10]

Afterward, we started to realize the proposed pipeline with a specific focus on Wikipedia. We
focused on this encyclopedia for two reasons. First, Wikipedia is a free and community-driven
encyclopedia and, therefore, (a) less strict on writing styles and (b) more descriptive compared to
scientific articles. Second, Wikipedia can actively benefit from our contribution since additional
semantic information about mathematical formulae can support users of all experience levels
to read and comprehend articles more efficiently [150]. Moreover, a successful translation from
a formula in Wikipedia to a CAS makes the formula computable which enables numerous of
additional applications. In theory, a mathematical article could be turned into an interactive
document to some degree with our translations. However, the most valuable application of a
translation of formulae in Wikipedia would be the ability to check equations for their plausi-
bility. With the help of CAS, we are able to analyze if an equation is semantically correct or
suspicious. This evaluation would enable existing quality measures in Wikipedia to incorporate
mathematical equations for the first time. The results from our novel context-sensitive transla-
tor including the plausibility check algorithms have been accepted for publication in the IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI) journal and are currently
in press.

� “Do the Math: Making Mathematics in Wikipedia Computable.” André
Greiner-Petter, Moritz Schubotz, Corinna Bretinger, Philipp Scharpf, Akiko
Aizawa, and Bela Gipp. In press: IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2021.

Chapter 4 & 5 — [11]

Currently, we are also actively working on extending the backbone of Wikipedia itself for
presenting additional semantic information about mathematical expressions by hovering over
or clicking on the formula. This new feature helps Wikipedia users to better understand the
meaning of mathematical formulae by providing details on the elements of formulae. Moreover,
it paves theway towards an interface to actively interactwithmathematical content inWikipedia
articles. We presented our progress and discussed our plans in the poster session at the JCDL
in 2020.

Chapter 1

Introduction
13

Section 1.4. Thesis Outline

� “Mathematical Formulae in Wikimedia Projects 2020.” Moritz Schubotz,André
Greiner-Petter, Norman Meuschke, Olaf Teschke, and Bela Gipp. In: Poster
Session at the ACM/IEEE Joint Conference on Digital Libraries (JCDL), 2020.

Chapters 6 — [17]

Evaluating Digital Mathematical Libraries Alongside this main research path, we contin-
uously improved and extended LACAST with new features and new supported CAS. Our first goal
was to verify the translated, now computable, formulae in the DLMF. The primary motivation
behind this approach was to quantitatively measure the accuracy of LACAST translations. How
can we very if a translation was correct? The well-established Bilingual Evaluation Understudy
(BLEU) [282] measure in natural language translations is not directly applicable for mathemati-
cal languages because an expression may contain entirely different tokens but is still equivalent
to the gold standard. Since the translation is computable, however, we can take advantage of
the power of CAS to verify a translation. The basic idea is that a human-verified equation in
one system must remain valid in the target system. If this is not the case, only three sources
of errors are possible: either the source equation, the translation, or the CAS verification was
incorrect. With the assumption that equations in the DLMF and major proprietary CAS are
mostly error-free, we can translate equations from the DLMF to discover issues within LACAST.
First, we focused on symbolic verifications, i.e., we used the CAS to symbolically simplify the
difference between left- and right-hand side of an equation. If the simplified difference is 0,
the CAS symbolically verified the equivalence of the left- and right-hand side and confirmed a
correct translation via LACAST. Additionally, we extended the verification approach to include
more precise numeric evaluations. If a symbolic manipulation failed to return 0, it could also
mean the CAS was unable to simplify the expression. We numerically calculate the difference
on specific test values and check if the difference is below a given threshold to overcome this
issue. If all test calculations are below the threshold, we consider it numerically verified. Even
though this approach cannot verify equivalence, it is very effective in discovering disparity. We
published the first paper with this new verification approach based on Maple at the CICM in
2018.

� “Automated Symbolic and Numerical Testing of DLMF Formulae Using Com-
puter Algebra Systems” by Howard S. Cohl, André Greiner-Petter, and
Moritz Schubotz. In: Proceedings of the International Conference on Intelligent
Computer Mathematics (CICM), 2018.

Chapter 5 — [2]

The extension of the system and the new results led us to an extended journal version of the
initial LACAST publication [3]. This extended version mostly covered parts of my Master’s thesis
and is not reused in this thesis. For technical details about LACAST, see the journal publication [13].
In Appendix D available in the electronic supplementary material, we summarized all significant
issues and reported bugs we discovered via LACAST. The section also includes new issues that we

14 Chapter 1

Introduction

Section 1.4. Thesis Outline

discovered during the work on the journal publication. This journal version was published in
the Aslib Journal of Information Management in 2019.

� “Semantic preserving bijective mappings for expressions involving special func-
tions between computer algebra systems and document preparation systems”
by André Greiner-Petter, Howard S. Cohl, Moritz Schubotz, and Bela Gipp.
In: Aslib Journal of Information Management 71(3): 415-439, 2019.

Appendix D — [13]

It turned out that LACAST translations on semantic LATEX were so stable that we can use the
same approach for verifying translations also to specifically search for errors in the DLMF
and issues in CAS. To maximize the number of supported DLMF formulae, we implemented
additional heuristics to LACAST, such as a logic to identify the end of a sum or to correctly
interpret prime notations as derivatives. Additionally, we added support for translations to
Mathematica and SymPy. We extended the support for Mathematica even further to perform
the same verifications in Maple also in Mathematica. The Mathematica support finally allows
us to identify computational differences in two major proprietary CAS. Moreover, we extended
the previously introduced symbolic and numeric evaluation pipeline with more sophisticated
variable extraction algorithms, more comprehensive numeric test values, resolved substitutions,
and improved constraint-awareness. All discovered issues are summarized in Appendix D
available in the electronic supplementary material. We further made all translations of the
DLMF formulae publicly available, including the symbolic and numeric verification results. The
results of this recent study have been published at the international conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS).

� “Comparative Verification of the Digital Library of Mathematical Functions
and Computer Algebra Systems” by André Greiner-Petter, Howard S. Cohl,
Abdou Youssef, Moritz Schubotz, Avi Trost, Rajen Dey, Akiko Aizawa, and
Bela Gipp. In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2022.

Chapter 5 — [8]

We also applied the same verification technique to the Wikipedia articles we mentioned ear-
lier, which enabled LACAST to symbolically and numerically verify even complex equations in
Wikipedia articles. This evaluation is also part of the TPAMI submission.

Chapter 1

Introduction
15

Section 1.4. Thesis Outline

Preprints of my publicationsare available at
https://pub.agp-research.com

My Google Scholar profile is available at
https://scholar.google.com/citations?user=Mq2B9ogAAAAJ

All translations of the DLMF formulae are available at
https://lacast.wmflabs.org

A prototype of LACAST for Wikipedia is available at
https://tpami.wmflabs.org

16 Chapter 1

Introduction

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

https://pub.agp-research.com
https://scholar.google.com/citations?user=Mq2B9ogAAAAJ
https://lacast.wmflabs.org
https://tpami.wmflabs.org

I don’t know half of you half as well as I should like, and I like

less than half of you half as well as you deserve.

Bilbo Baggins - The Lord of the Rings

CHAPTER 2

Mathematical Information Retrieval

Contents

2.1 Background and Overview . 18

2.2 Mathematical Formats and Their Conversions . 19

2.2.1 Web Formats . 20

2.2.1.1 MathML . 21

2.2.1.2 OpenMath . 23

2.2.1.3 OMDoc . 25

2.2.2 Word Processor Formats . 25

2.2.2.1 LATEX . 25

2.2.2.2 Semantic/Content LaTeX. 28

2.2.2.3 sTeX . 30

2.2.2.4 Template Editors . 31

2.2.3 Computable Formats . 32

2.2.3.1 Computer Algebra Systems . 32

2.2.3.2 Theorem Prover . 34

2.2.4 Images and Tree Representations . 34

2.2.5 Math Embeddings . 37

2.3 From Presentation to Content Languages . 38

2.3.1 Background . 39

2.3.1.1 Related Work . 42

2.3.2 Benchmarking MathML . 43

2.3.2.1 Collection . 43

2.3.2.2 Gold Standard . 44

2.3.2.3 Evaluation Metrics . 48

2.3.3 Evaluation of Context-Agnostic Conversion Tools 48

2.3.3.1 Tool Selection . 48

2.3.3.2 Testing framework . 49

2.3.3.3 Results. 49

2.3.4 Summary of MathML Converters . 51

2.4 Mathematical Information Retrieval for LaTeX Translations 51

17
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_2

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_2&domain=pdf

Section 2.1. Background and Overview

Making presentational math computable implies a transformation from one mathematical
representation to another. In order to frame this task, we need to introduce presentational and
computable formats, and analyze available transformation tools between these formats. There
is a large variety of different formats available to encode mathematical expressions, from visual
formats, such as LATEX [220] or MathML [60], to semantic enhanced encodings, such as content
MathML [270], semantic LATEX [260], STEX [200], or OpenMath [19], and entire programming
languages, such as CAS syntaxes [36, 128, 173, 175, 176, 177, 178, 393], theorem provers [37,
266, 287, 340, 354, 384], or mathematical packages in C++ [168], Python [252] or Java [79]. This
chapter introduces what we understand as presentational and computable formats, provides an
overview of math formats, and discusses existing transformation tools between these formats.

In particular, Section 2.1 introduces presentational and computable formats. Section 2.2 provides
an extensive overview of mathematical formats, their attributes, and conversion approaches
between them. Since there are a large variety of conversion tools and approaches available
for many different formats [39, 200, 18, 351, 406] a translation from a presentational to a
computable format can be achieved in many different ways. In this thesis, we mainly focus on
translations from LATEX to CAS syntaxes. The most well-studied translation path from LATEX to
CAS syntaxes would use content MathML as an intermediate, semantically enriched format.
Hence, Section 2.3 analyzes state-of-the-art LATEX to MathML converters. Section 2.4 underlines
the research gap and paves the way for the rest of the thesis by briefly discussing MathIR
approaches for conversions from presentational to computable formats. Section 2.3 has been
published at the JCDL [18]. The introduction of math embeddings in Section 2.2 was published
as a workshop paper at the SIGIR conference [9] and later reused in an extended article for the
Scientometrics journal [15].

2.1 Background and Overview

Computable encodings are interpretable formal languages in which keywords or sequences of
tokens are associated with specific implemented definitions, which allows performing certain
mathematical actions on these elements, such as evaluating numeric values or symbolically
manipulating the elements. Computable encodings, therefore, must be semantically unam-
biguous. Otherwise, an interpreter is unable to associate the sequence of tokens with a unique
underlying definition. This ambiguity problem is mainly solved by interpreters in two ways:
either the system automatically performs disambiguation steps following a decision tree with
a fixed set of internal rules, such as x^y^z in Mathematica, or the system refuses to parse the
expression and returns an error, such as for x^y^z in Maple.

�
Computable formats are formal languages that link key words or phrases with
unique implemented definitions. Computable expressions are semantically unam-
biguous.

Presentational formats, on the other hand, focus on controlling the visualization ofmathematical
formulae. They generally allow users to change spaces between tokens (e.g., \, and \; in LATEX),
support two-dimensional visualizations (e.g.,

∫ b
a

dx
x), or render entire graphs and images. How-

ever, pure presentational formats (in contrast to enhanced semantic encodings) do not specify
the meaning of an expression. Consequently, mathematical expressions in presentational for-

18 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

mats are generally semantically ambiguous, and it is the author’s responsibility to disambiguate
the meaning of the expression by providing additional information in the context. Digital
presentational formats, such as LATEX, are also interpretable formal languages1. In contrast to
computable formats, presentational languages link tokens with specific visualizations rather
than executable subroutines. Hence, expressions in these formats must be unambiguous too.
Otherwise, interpreters are unable to link an expression with a unique visualization (see x^y^z
in LATEX). The difference to computable encodings is that expressions in presentational formats
must be visually but not semantically unambiguous. For instance, LATEX refuses to parse x^y^z
because the rendering of {x^y}^z (see xyz) and x^{y^z} (see xyz

) is different. In contrast,
Maple rejects x^y^z because there is a mathematical (and in consequence a computational)
difference between (xy)z and x(yz).

�
Presentational formats are formal languages with a focus on visualization.
Presentational expressions can be semantically but not visually ambiguous.

In this thesis, we focus on LATEX for the presentational format and CAS syntaxes for computable
formats. We choose LATEX because it is currently the de-facto standard for writing scientific
papers in the STEM disciplines [129, 402]. Several other word processors, such as the article’s
editor in Wikipedia2 or Microsoft’s Word [248], entirely or partially support LATEX inputs. In
addition, LATEX is the main presentational format that is entered by hand. In contrast, MathML,
due to its XML datastructure, is not a user-friendly3 encoding and mostly automatically gen-
erated from other formats [82, 159, 18, 374]. Image formats are the result of pictures, scans,
or handwritten inputs, and, therefore, less machine-readable. As a consequence, image for-
mats of mathematical formulae are mainly converted into LATEX or MathML in a pre-processing
step [27, 39, 267, 378, 379, 406, 411]. We choose CAS syntaxes for our target computable format
because CAS generally support a large variety of different use cases, from manipulations and
visualizations to computations and simulations [81, 413]. Especially general-purpose CAS,
such as Maple [36] and Mathematica [393], address a broad range of topics [128, 392]. In con-
trast, theorem provers, proof assistants, and similar software, as potential other computable
formats, solely focus on automated reasoning [147, 266, 354, 384]. Hence, the computation of
mathematical formulae plays a less significant role in such software.

2.2 Mathematical Formats and Their Conversions

Figure 2.1 provides an overview of different math encodings and existing conversion approaches
between them. In addition to the figure, Table 2.1 provides quick access to references for specific
translation directions. Figure 2.1 organizes formats by their level of semantics and the level
of machine readability. This categorization is not meant to be as accurate as possible nor to
be complete. Instead, the figure aims to provide a rough visualization of the most common
encodings and their differences. For instance, there is no notable technical difference between

1Note that this interpretation of presentational formats does not include images. Since images are less machine-
readable formats, they are generally first converted into interpretable formats, such as LATEX. This conversion process
is very challenging on its own [406, 411]. Hence, including images for our task would not provide any benefits but
makes it unnecessarily more complicated.

2https://en.wikipedia.org/wiki/Help:Displaying_a_formula [accessed 2021-10-01]
3A little histrionically described as ‘Making humans edit XML is sadistic!’ from the Django 1.7.11 documenta-

tion [118].

Chapter 2

Mathematical Information Retrieval
19

https://en.wikipedia.org/wiki/Help:Displaying_a_formula

Section 2.2. Mathematical Formats and Their Conversions

Level of Semantics

M
ac
h
in
e
R
ea
da
bi
li
ty

Images

LATEX

pMML

semantic
LATEX

sTeX

cMML Open
Math

OMDoc

Theorem
Prover

CAS

[406, 411]

[18, 351]

[18]

[270, 364] [342]

[198]
[198]

[152, 205]

[152][318]

[28]

[198]

[19]

[361]

[57, 338]

[200]

[200]
[257]

[13]

[257]

[260]

[391]

Figure 2.1: Reference map of mathematical formats and translations between them. The red
path illustrates the main subject of this thesis. In Section 2.3, we focus specifically on existing
translation approaches from LATEX to MathML (orange arrows) to evaluate an alternative to the
red translation path.

the levels of semantics in content MathML and OpenMath (see the paragraph about OpenMath
in Section 2.2.1). Nonetheless, OpenMath defines the content dictionaries that content MathML
uses to semantically annotate symbols beyond school mathematics. Hence, we could argue
that content MathML encodes less semantic information without the help of OpenMath and,
therefore, should be positioned more to the left. Another disparity can be found in the level
of machine readability between CAS syntaxes and theorem provers. Since both formats are
programming languages, any CAS or theorem prover expression requires a very specific (often
proprietary) parser. Thus, a programming language is arguably never more machine readable

than any other programming language. Nonetheless, most CAS prefer a more intuitive input
format (sometimes even 2D inputs) similar to LATEX over a machine-readable syntax [88, 128,
179] to improve their user experience. Because of these more user-friendly input formats, we
positioned CAS syntaxes below theorem prover formats. Note also that math embeddings, i.e.,
vector representation of math tokens, are not in Figure 2.1 because the level of semantics these
vectors capture is still unclear and an open research question (see Section 2.2.5). The red path
in Figure 2.1 shows the new translation path that we focus on in this thesis. Dotted arrows
represent translation paths that generally do not require context analysis and are, therefore,
of less interest for the subject of this thesis. The orange and red arrows (and highlighted cells
in Table 2.1) refer to our contributions for this thesis. The red arrows refer the main research
contribution explained in the chapters 3 and 4.

2.2.1 Web Formats

Web formats are designed to display mathematical formulae and knowledge on the web. Con-
sequently, those formats prioritize machine readability over user experience. Hence, a variety
of different translation approaches to, from, or between web formats exists. Since mathematics
in the web is generally embedded in HTML code, most web formats use the XML encoding

20 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

Table 2.1: Overview table of available mathematical format translations. The highlighted
conversion fields refer to contributions made in this thesis. The columns and rows refer to:
‘pMML’ for presentation MathML, ‘cMML’ for content MathML, ‘sem.LaTeX’ for semantic
LATEX, ‘Theo. Prov.’ for theorem prover or proof assistants, ‘Img’ for images, and ‘Speech’ for
spoken (audio) mathematical content. The group ‘Comp.’ refers to computable formats. In some
cases, no transformation is necessary, e.g., from OMDoc to OpenMath because OMDoc uses
OpenMath internally. In this (and similar) cases, we simply refer to the overview publication of
the format, here [198] for OMDoc.

From

T
o

pM
M
L

cM
M
L

O
p
en
M
at
h

O
M
D
oc

L
aT
eX

se
m
.L
aT
eX

ST
EX

T
h
eo
.
P
ro
v.

C
A
S

V
ec
to
r

Im
g

Sp
ee
ch

pMML / [364] [61] [391] [86] [358] [349]

W
ebcMML [300] / [342] [198] [391] [318] [242] [257]

OpenMath [59] [342] / [198] [61] [57] [303]

OMDoc [198] [198] [198] / [198] [198] [152] [152]

LaTeX [18] [159] [257] [198] / [11] [195] [11] [15] [358] [249]

T
eXsem.LaTeX [257] [18] [257] [257] / [13] [404] [257]

STEX [257] [257] [257] [195] [198] / [257]

Theo. Prov. [205] [205] [167] [62] [338]

CAS [391] [391] [391] [13] [338] [361] [391] C
om

p.

Vector [400] /

Img [406] [406] [406] /

Speech [386] [386] [387]

Web TeX Comp.

structure. Thus, web formats are often described as verbose and rarely edited or created by
hand. On the other hand, the XML structure simplifies the inter-connectivity between web
formats, e.g., via XSL Transformations (XSLT) [362]. There are three main formats used in
the web: the current web standard MathML, the pure semantic encoding OpenMath, and the
semantic document encoding OMDoc. Note that many websites still use image formats to
display math. We will discuss image formats in Section 2.2.4.

2.2.1.1 MathML

For the web, the Mathematical Markup Language (MathML) [60] is the current official recom-
mendation from the World Wide Web Consortium (W3C) and even an official standard since
2015 [169] for HTML5. MathML is defined via two different markups: the presentation4 and

4https://www.w3.org/TR/MathML3/chapter3.html [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
21

https://www.w3.org/TR/MathML3/chapter3.html

Section 2.2. Mathematical Formats and Their Conversions

the content5 markup. MathML containing only presentation markup elements is, therefore,
also called presentation MathML or, in case it only contains content markup elements, content
MathML, respectively. Both markups can be used together side by side for a single expression in
so-called parallel markup [202, 259, 270]. If elements in the presentation markup are linked back
and forth with elements from the content markup, the encoding is also called cross-referenced
MathML.

Content MathML, in contrast to presentation MathML, aims to encode the meaning, i.e., the
semantics, of mathematical expressions. Content MathML addresses the issues of ambiguous
presentational encodings by providing a standard representation of the content of mathematics.
The encoding comes with a large number of predefined functions, e.g., for sin and log, intend-
ing to cover most of K-146 mathematics. For formulae beyond school mathematics, content
MathML use so-called Content Dictionaries (DCs) [204] (see the OpenMath paragraph for more
details about CDs). Listing 2.1 shows presentation and content MathML encodings for the Leg-
endre polynomial Pn(x). Note that the presentation MathML encoding contains an operator
(<mo> for mathematical operator) between Pn and (x) which contains the invisible character
function application (unicode character U+2061). Nowadays, content MathML is often used in
digital libraries to improve the performance of math search engines with accessible semantic
information [345, 347, 348, 381].

Since MathML is the web standard, there are numerous tools available that convert other
encodings from and to MathML. Most common conversions include translations between
presentation and content MathML [139, 270, 364], from [159, 257, 267, 335, 374] and to7 LATEX,
OpenMath [59, 342, 343], CAS [318], PDF [27, 267], images [406], and audio encodings (mainly
in the math to speech research field) [67, 349, 387]. The W3C officially lists 42 converters and
other softare tools that generate MathML on their wiki8. In addition, the official interoperability
report9 of MathML provides a comprehensive overview of software that supports MathML and
show official statements from implementors. Due to its XML format, most conversion tools use
XSLT [362] to transformMathML into either other XML encodings or string representations [59,
61]. This translation approach can be described as rule-based, because in XSLT, we define a set
of transformation rules for XML subtrees.

Most of the converters to MathML do not support content MathML. Translations from presen-
tational formats to content MathML face a wide range of ambiguity issues [159, 259, 374]. For
example, the <mo> element in Listing 2.1 regularly contains the invisible times symbol (unicode
character U+2062) rather than function application because most conversion tools interpret
Pn not as a function. For content MathML, even more disambiguation steps are required to
link P with the Legendre polynomial correctly. For such disambiguation, a combination of
semantification and XSLT rules are used to perform translations to content MathML [139, 270,
364]. Nghiem et al. [270] proposes a machine translation approach to generate content MathML
from presentation MathML but does not consider textual descriptions from the surrounding
context of a formula. Likewise, Toloaca and Kohlhase [364] uses patterns of notation definitions

5https://www.w3.org/TR/MathML3/chapter4.html [accessed 2021-10-01]
6Kindergarten to early college.
7Two well-known projects for translations from MathML to LATEX use XSL transformations:

web-xslt https://github.com/davidcarlisle/web-xslt/tree/main/pmml2tex and
mml2tex https://github.com/transpect/mml2tex [accessed 2021-10-01].

8https://www.w3.org/wiki/Math_Tools [accessed 2021-10-01]
9https://www.w3.org/Math/iandi/mml3-impl-interop20090520.html [accessed 2021-10-01]

22 Chapter 2

Mathematical Information Retrieval

https://www.w3.org/TR/MathML3/chapter4.html
https://github.com/davidcarlisle/web-xslt/tree/main/pmml2tex
https://github.com/transpect/mml2tex
https://www.w3.org/wiki/Math_Tools
https://www.w3.org/Math/iandi/mml3-impl-interop20090520.html

Section 2.2. Mathematical Formats and Their Conversions

to find a content MathML expression that matches the presentation MathML parse tree. Grigore
et al. [139], on the other hand, generates a local context of five nouns prior to the expression
first to conclude symbol declarations from OpenMath CDs. Besides Grigore et al. [139], other
existing approaches for translations to content MathML only consider the semantics within
the given formula itself or in formulae in the same document [159, 259, 374] but ignore the
textual context surrounding a formula. For example, these tools follow the assumption that a P
with subscript followed by an expression in parenthesis should be interpreted as the Legendre
polynomial. However, many expressions cannot be disambiguated without considering the
textual context, such as the π(x + y) example from the introduction.

Most CAS support MathML either directly or via external software packages [318, 343]. How-
ever, to the best of our knowledge, no CAS currently consider the CD in content MathML
correctly. Hence, these import and export functions in CAS are generally limited to school
mathematics. It should be noted that the CDs are considered by CAS but only in OpenMath, e.g.,
via the transport protocol Symbolic Computation Software Composability Protocol (SCSCP) [361].
Since this protocol was developed to enable inter-CAS communication, we explain this project
more in detail in Section 2.2.3.

In summary, a reliable generation of content MathML requires a semantic enhanced source
formula, e.g., in CAS syntaxes [318, 343], theorem prover formats [152], or OpenMath [59,
342]. Otherwise, translations tend to generate inaccurate MathML. In Section 2.3, we will
examine existing LATEX to MathML converters more in detail to investigate the practicality of
using MathML as an intermediate format for translations from LATEX to CAS encodings.

2.2.1.2 OpenMath

The OpenMath Society (originally OpenMath Consortium [19]) defines another standard encod-
ing called OpenMath [53]. The OpenMath standard aims to focus exclusively on the semantics
of mathematics and, therefore, going a step further compared to MathML [204], which aims
to cover both the presentation and the content information in a single format. Originally,
OpenMath was invented during a series of workshops starting in 1993, mainly from researchers
in the computer algebra community, to easily exchange mathematical expressions between
CAS and other systems [19, 89]. MathML, originally developed with the same goal, was first
released in 199810. Both formats are very similar to each other [204] and one may ask for the
purpose of two different formats for more or less the same tasks [82, 114]. Discussions about
the necessity of both formats raise from time to time even decades later [25, 204]. However,
OpenMath and MathML have been and are still developed alongside each other rather than
competing with one another due to a large overlap of people working on both formats [204].
To summarize the coexistence today: MathML provides rendered visualizations for OpenMath,
while the Content Dictionaries (CDs) from OpenMath add semantics to MathML11.

The OpenMath Society maintains a set of standard CDs. A CD is a set of declarations (i.e.,
definitions, notations, constraints, etc.) for mathematical symbols, functions, operators, and
other mathematical concepts. The idea behind the publicly maintained CDs by the OpenMath

10https://www.w3.org/TR/1998/REC-xml-19980210 [accessed 2021-10-01]
11A more detailed discussion about the history of both formats can be found at https://openmath.org/

projects /esprit /final /node6 . htm, https :/ /open math . org/ om- m m l/ [both accessed 2021-10-01],
and [198, pp. 5].

Chapter 2

Mathematical Information Retrieval
23

https://www.w3.org/TR/1998/REC-xml-19980210
https://openmath.org/projects/esprit/final/node6.htm
https://openmath.org/projects/esprit/final/node6.htm
https://openmath.org/om-mml/

Section 2.2. Mathematical Formats and Their Conversions

�
Presentational

MathML

1 <mrow>
2 <msub>
3 <mi>P</mi>
4 <mi>n</mi>
5 </msub>
6 <mo>
7 <!-- Invisible
8 Funct. Appl.
9 Unicode U+2061 -->
10 </mo>
11 <mrow>
12 <mo>(</mo>
13 <mi>x</mi>
14 <mo>)</mo>
15 </mrow>
16 </mrow>

� Content MathML

1 <apply>
2 <csymbol definitionURL="http://www.

openmath.org/cd/orthpoly1.ocd"
encoding="OpenMath">legendreP

3 </csymbol>
4 <ci>n</ci><ci>x</ci>
5 </apply>

� OpenMath

1 <OMOBJ><OMA>
2 <OMS name="legendreP" cd="orthpoly1"/>
3 <OMV name="n"/>
4 <OMV name="x"/>
5 </OMA></OMOBJ>

Listing 2.1: The Legendre polynomial in two MathML encodings and in OpenMath.

Society is to provide a ground truth for math declarations so that the used symbols become in-
terchangeable among different parties. However, everybody can create new custom CDs which
might be integrated into the existing standard set maintained by the OpenMath Society [90].
M. Schubotz [327], for example, proposed a concept for a CD that uses on the knowledge
base Wikidata. More recently, B. Miller [258] created a content dictionary specifically for the
functions in the DLMF.

Listing 2.1 compares both MathML markups with OpenMath. While the tree structures of
content MathML and OpenMath cannot directly be compared with mathematical expression
trees [331] (see also Section 2.2.4), the XML tree structure of both formats is unique. Both
formats rely on the CD entry of the Legendre polynomial in orthpoly112. Since the CD is from
OpenMath, the OpenMath encoding does not require the entire url. The CD entry further
specifies that the Legendre polynomial has two arguments. Hence, the following two siblings in
the tree structure are considered to be the arguments. OpenMath specifically annotate them as
OMV (for variable objects). Alternatively to the orthpoly1 CD by OpenMath, one can also use
Schubotz’s [327] Wikidata CD to annotate P with the Wikidata item Q215405 or Miller’s [258]
DLMF CD to link P to §18.3 of the DLMF [98, (18.3)].

As previously mentioned, both formats (content MathML and OpenMath) are rather similar
to each other [56, 343]. Hence, there are several ways to transform mathematical expressions
between both formats [343], e.g., via XSLT [59, 342]. This transformation is possible without
information retrieval techniques since both formats encode the same level of semantic infor-
mation via CDs. Even though the primary goal for OpenMath was to provide a format that
allows communication between mathematical software [19], most CAS do not support Open-
Math directly. Instead, an independent project of research institutions funded by the European
Union was launched to improve the symbolic computation infrastructure in Europe. The main

12https://openmath.org/cd/orthpoly1.html#legendreP [accessed 2021-10-01]

24 Chapter 2

Mathematical Information Retrieval

https://www.wikidata.org/wiki/215405
https://dlmf.nist.gov/18.3
https://openmath.org/cd/orthpoly1.html#legendreP

Section 2.2. Mathematical Formats and Their Conversions

result of this project was the SCSCP protocol for inter-CAS communication via OpenMath. We
will discuss the SCSCP protocol and the project more in detail in Section 2.2.3. Several CAS,
including Maple [243] and Mathematica [44], implemented endpoints for the SCSCP protocol.
Hence, via this new protocol, CAS support OpenMath to some degree. Apart from the protocol
solution, there are some research projects available that use OpenMath as an interface to and
between CAS and theorem prover formats [57, 152, 303, 338, 343].

2.2.1.3 OMDoc

Sometimes, it might be worthwhile to annotate the context of mathematical expressions with
additional information explicitly. For example, an equation might be part of a theorem that has
not been proven yet. Hence, that particular equation and its context should not be confused
with a definition. Since this meta-information about mathematical expressions is organized
on a document level, Kohlhase [198, 199] introduced another format, the Open Mathematical
Document (OMDoc), to semantically describe entire mathematical documents. While formats
like OpenMath orMathML encode the semantics of single expressions, whichKohlhase describes
as the microscopic level, OMDoc aims for the macroscopic, i.e., the document level. This format
can be especially useful for interactive documents [80, 85, 131, 150, 162, 201] and theorem
prover [38, 146, 163, 340] which generally rely more on the meta information from a document
level. Single math expressions in OMDoc are still encoded as OpenMath for the semantics and
MathML for the visualization. In turn, this thesis focuses more on the formats that directly
encode mathematical expressions rather than a macroscopic level encoding. Nonetheless, it
should be noticed that a translation to a CAS might be different depending on the scope of
an equation, e.g., an equation symbol in a definition differs from an equation symbol in an
example. Heras et al. [152], for example, used OMDoc to interface CAS and theorem prover.
Hence, the OMDoc format might be worth supporting once the translation reaches a level of
reliability and comprehensiveness that the semantics on the document level matter (see the
future work section 6.3).

2.2.2 Word Processor Formats

The previously explained formats of mathematics are beneficial for web applications and ex-
changing mathematical knowledge between systems. However, the underlying verbose XML
data structure makes manual maintenance of these formats too cumbersome. In turn, MathML
and OpenMath, considering a specific size, are almost always computer-generated. The actual
source of the data, something a human manually typed, uses a different format, such as LATEX,
visual template editors, or image formats. In the following, we introduce formats and methods
used to type mathematics in word processors manually.

2.2.2.1 LATEX

LATEX is currently the de-facto standard for writing scientific papers in the STEM disciplines [129,
220, 402] and has even been described as the lingua franca of the scientific world [220]. Numerous
other word processors entirely or partially support LATEX inputs. LATEX was developed by Leslie
Lamport and extended the TEX system with some valuable macros that make working with TEX
easier [220]. TEX was developed by Donald E. Knuth [189, p.559] in 1977. Knuth was dissatisfied
with the typography of his book, The Art of Computer Programming [189, pp. 5, 6, and 24]
and created TEX to overcome the hurdles of consistently and reliably typesetting mathematical

Chapter 2

Mathematical Information Retrieval
25

Section 2.2. Mathematical Formats and Their Conversions

formulae for printing. Today, there is no significant difference between LATEX and TEX in terms
of mathematical expressions. Hence, we continue using LATEX as the modern successor and
refer to TEX only to underline technical differences or to describe the underlying base for other
TEX-like encodings. LATEX provides an intuitive syntax for mathematics that is similar to the
way a person would write the math by hand, e.g., by using the underscore to set a sequence of
tokens in subscript.

LATEX is an interpretable language that requires a parser. Theoretically, the flexibility of LATEX (and
especially the underlying TEX implementation) makes parsing LATEX really challenging [187].
For example, TEX allows to redefine every literal at runtime, making TEX (and therefore LATEX
too) to a context-sensitive formal language. However, in practice, most LATEX literals are gen-
erally not redefined. Instead, it is common to extend LATEX with additional commands rather
than redefining existing logic. Especially in mathematical expressions, several projects simply
presume that LATEX is parsable with a context-free grammar, which makes parsing mathematical
expressions in LATEX a lot simpler [71, 402].

Since LATEX is the standard to typeset mathematics, there are numerous of translation tools to the
webstandard MathML available [133, 135, 159, 257, 267, 335, 374] (see also MathML explanation
in Section 2.2.1). In the next Section 2.3, we will focus more closely on translations between LATEX
and MathML. LATEX is also a standard target encoding for Optical Character Recognition (OCR)
techniques [406, 411], which retrieve mathematical expressions from images or PDF files (see
Section 2.2.4). LATEX focus solely on the representation ofmath (similar to presentationMathML).
Additionally, recent studies try to explore the capabilities of trained vector representations of
LATEX expressions [121, 15, 215, 360, 400, 404] to explore new similarity measure and search
engines [404], classification approaches [404], and even automatically generating new LATEX
expressions [400]. Nonetheless, the effectiveness of capturing the semantic information with
these methods is controversial [9].

LATEX to CAS converters Most relevant for our task are existing translation approaches
directly from LATEX to CAS sytanxes. These translators can be categorized in two groups: (1)
CAS internal import functions and (2) external programs for specific or multiple CAS. Mathe-
matica [391] and SymPy [357] are two CAS with the ability to import LATEX expressions directly.
SymPy’s import function was ported from the external latex2sympy13 project. Examples of
external tools are SnuggleTeX [251] and our in-house translator LACAST [3, 13]. SnuggleTeX
is a LATEX to MathML converter with the experimental feature to perform translations to the
CAS Maxima [324]. LACAST is the predecessor project of this thesis and focused on translating
semantic LATEX from the DLMF to the CAS Maple.

All of these converters are rule-based translators, i.e., they perform translations on hard-
coded pre-defined conversion rules. SnuggleTeX support translations to Maxima since version
1.1.0 [251]. The tool allows users to manually predefine translation rules, such as interpreting e
as the mathematical constant, Γ as the Gamma function, or f as a general function. SnuggleTeX
is no longer actively maintained and mostly fail to translate general expressions. The developers
themselves declare the translation to Maxima as experimental and limited14. SymPy, in contrast,

13The project is therefore no longer actively developed but still available on GitHub: https://github.com
/augustt198/latex2sympy [accessed 2021-10-01]

14https://www2.ph.ed.ac.uk/snuggletex/documentation/semantic-enrichment.html [accessed
2021-10-01]

26 Chapter 2

Mathematical Information Retrieval

https://github.com/augustt198/latex2sympy
https://github.com/augustt198/latex2sympy
https://www2.ph.ed.ac.uk/snuggletex/documentation/semantic-enrichment.html

Section 2.2. Mathematical Formats and Their Conversions

is actively maintained and provide a more sophisticated import function for LATEX expressions.
SymPy’s import function parses a given LATEX expression via ANTLR15 and traverses through
the parse tree to convert each token (and subtree) into the SymPy syntax. SymPy uses a set of
heuristics that mostly cover standard notations, including \sin. Additionally, it uses pattern
matching approaches to identify typical mathematical concepts, such as the derivative notation
in d

dx sin(x). Similarly, LACAST first parses the input expression with the Part-of-Math (POM)
tagger [402] and performs translations by traversing through the parse tree. The POM tagger
tags tokens with additional information from external lexicon files. LACAST manipulates these
lexicon files to tag tokens with their appropriate translation patterns. LACAST takes the translation
patterns attached to a single token and fills them with with the following and preceding nodes
in the parse tree to perform a translation. Within this thesis, we will extend LACAST further with
pattern matching techniques and human-inspired heuristics to perform more general formulae,
including the derivative notation example, sums, products, and other operators. A more detailed
discussion about the first version of LACAST is available in [13].

While SymPy and SnuggleTeX are open source and allows interested readers to analyze the
internal implementation details, we can only speculate about the solutions in proprietary soft-
ware, such as Mathematica. As we saw in Table 1.2 (and later in Chapter 4), Mathematica seems

to follow a pattern recognition approach to link known notations, such as P
(α,β)
n (x), to their in-

ternal counterparts, such as JacobiP[n, \[Alpha], \[Beta], x]. Since Mathematica (nor
does any other CAS or mentioned converter) analyze the textual context of a formula, import-
ing ambiguous notations generally fail. Since the internal logic (and therefore the underlying
patterns) is hidden, it is difficult to estimate the accuracy and power of Mathematica’s LATEX
import function. As an alternative to Mathematica itself, one can use WolframAlpha16 [309].
WolframAlpha is described as a knowledge or answer engine. Technically, WolframAlpha is
a web interface which uses Mathematica as backbone for computations. WolframAlpha per-
forms numerous of pre-processing and interpretation steps to allow users to generate scientific
information without inputting specific Mathematica syntax [64, 383].

Table 2.2 compares the converters on our introduction examples (see Table 1.2). The table
contains also LACAST first version (published in 2017 [3]) for comparison. We observe that Wol-
framAlpha clearly performs best on this simple general inputs. The reason is thatWolframAlpha
focus on a broad, less scientific audience which allows the system to make several assumptions.

On more topic specific inputs, such as P
(α,β)
n (cos(aΘ)), it fails. This is further underlined by

the fact that Mathematica itself has no trouble interpreting P
(α,β)
n (cos(aΘ)). This indicates

that both systems are optimized for their expected user groups. On these simple cases, SymPy
also performs better compared to Mathematica. However, SymPy’s size and support of special
functions is not comparable with Mathematica and therefore falls behind Mathematica on a
more scientific dataset, such as the DLMF.

A more sophisticated evaluation on 100 randomly selected DLMF formulae revealed that Math-
ematica can be considered the current state-of-the-art for translating LATEX to CAS. Nonetheless,
it only translated 11 cases correctly compared to 7 successful translations by SymPy and 22 by
LACAST. The full benchmark is available in Table E.1 in Appendix E.1 available in the electronic
supplementary material.

15ANother Tool for Language Recognition (ANTLR): https : / / www . antlr . org / index . ht m l [accessed
2021-10-01]

16Often stylized with Wolfram|Alpha

Chapter 2

Mathematical Information Retrieval
27

https://www.antlr.org/index.html

Section 2.2. Mathematical Formats and Their Conversions

Table 2.2: LATEX to CAS translation comparison between Mathematica’s (MM) and SymPy’s (SP)
import functions, SnuggleTeX (ST) translation to Maxima, WolframAlpha (WA) interpretation of
LATEX inputs, and the first version of LACAST (LCT1)

LATEX Rendering MM SP ST WA LCT1
\int_a^b x dx

∫ b
a xdx � � � � �

\int_a^b x \mathrm{d}x
∫ b

a xdx � � � � �

\int_a^b x\, dx
∫ b

a x dx � � � � �

\int_a^b x\; dx
∫ b

a x dx � � � � �

\int_a^b x\, \mathrm{d}x
∫ b

a x dx � � � � �

\int_a^b \frac{dx}{x}
∫ b

a
dx
x � � � � �

\sum_{n=0}^N n^2
∑N

n=0 n2 � � � � �

\sum_{n=0}^N n^2 + n
∑N

n=0 n2 + n ? ? � ? ?

{n \choose m}
(n

m

)
� � � � �

\binom{n}{m}
(n

m

)
� � � � �

P_n^{(\alpha,\beta)}(\cos(a\Theta)) P
(α,β)
n (cos(aΘ)) � � � � �

\cos(a\Theta) cos(aΘ) � � � � �

\frac{d}{dx} \sin(x) d
dx sin(x) � � � � �

Since LATEX can be easily extended with new content via macros, some projects try to semanti-
cally enhance LATEX with unambiguous commands. The two most comprehensive projects are
semantic LATEX and STEX.

2.2.2.2 Semantic/Content LaTeX

� The Jacobi polynomial in LATEX and semantic LATEX

1 P_n^{(\alpha , \beta)}(x) % Generic LaTeX
2 \JacobipolyP {n}{ \alpha }{\beta}@{x} % Semantic LaTeX

Listing 2.2: The Jacobi polynomial in LATEX (line 1) and semantic LATEX (line 2).

Semantic LATEX (also known as content LATEX) was developed by Bruce Miller [260] at the Na-
tional Institute of Standards and Technology (NIST) to semantically enhance the equations in
the DLMF [403]. Essentially, semantic LATEX is a set of custom LATEX macros which are linked
to unique definitions in the DLMF. Consider for example the Jacobi polynomial in Listing 2.2.
The general LATEX expression does not contain any information linked to the Jacobi polynomial.
However, semantic LATEX replaces the general expression with a new macro \JacobipolyP
which is linked to the DLMF [98, (18.3#T1.t1.r2)]17. In addition, all variable arguments (parame-

17Hereafter, we refer to specific equations in the DLMF by their labels. The label can be added to the base
URL of the DLMF. For example, the sine function is defined at 4.14.E1, which can be reached via https :
//dlmf.nist.gov/4.14.E1 [accessed 2021-10-01].

28 Chapter 2

Mathematical Information Retrieval

https://dlmf.nist.gov/18.3#T1.t1.r2
https://dlmf.nist.gov/4.14.E1
https://dlmf.nist.gov/4.14.E1

Section 2.2. Mathematical Formats and Their Conversions

ters and variables) are separated and ordered following the function command. This separation
is essential to disambiguate notations. For example, the sine function is sometimes written with-
out parenthesis, such as sin x, resulting in ambiguous semantic notations, such as in sin x + y.
The semantic LATEX macros allow to visualize this expression but encode it unambiguously via
\sin@@{x+y} (which is rendered as sin x + y). Originally, the semantic LATEX helped to develop
a reliable search engine for the DLMF [260]. Nowadays, the macros are also in use in other
projects and have been even extended for the Digital Repository of Mathematical Formulae
(DRMF) [77, 78], an outgrowth of the DLMF.

Semantic LATEX will play a crucial role in the rest of this thesis because it allows us to stick
with the easily maintainable syntax of LATEX but semantically elevates the information of math
expressions to a level that can be exploited for translations towards CAS [3, 8, 13]. The main
reason is that the semantic LATEX macros mostly cover OPSF from the DLMF. OPSF are a set of
functions and polynomials which are generally considered as important, such as the trigono-
metric functions (also categorized as elementary functions), the Beta function, or orthogonal
polynomials. Most OPSF have more or less well-established names and standard notations. The
DLMF (i.e., especially the original book [276]) is considered a standard reference for OPSF [381].
General-purpose CAS, such as Mathematica and Maple, focus also on the comprehensive sup-
port of OPSF [381]. Hence, semantic LATEX macros play a crucial role for translations from LATEX
to CAS syntaxes. Since CAS syntaxes are programming languages, CAS can be extended with
new code. However, translating new math formulae to CAS can become arbitrarily complex.
Consider the prime counting function would be not supported by Mathematica. In this case,
π(x + y) cannot be translated to a simple mathematical formula in the syntax of Mathematica
but would require entire new subroutines. Therefore, a comprehensive, viable, and reliable
translator from LATEX to the syntax of CAS should maximize its support for OPSF in order to be
useful.

Definition 2.1 provides a brief definition for the elements of a semantic macro. While the
semantic source of the DLMF is publicly available [403], the actual definitions, i.e., the LATEX
style files, of the macros, are still private18. B. Miller provided access to the definitions of
the macros for this thesis. Later in this thesis, we will rely on additional meta-information
given for each semantic macro. This includes default parameters and variables, a short textual
description, and links to the DLMF CD [258]. Further information is not explicitly given in
the macro definition files. For example, function constraints, domains, branch cut positions,
singularities, and other properties are only given in the DLMF.

As previously mentioned, we19 developed LACAST for translating semantic LATEX DLMF formulae
to CAS [3, 13]. The first version did not contain any disambiguation steps or pattern matching
approaches to deduce the intended meaning of an expression. Instead, if fully relied on the
semantic LATEX macros to perform translations to Maple. For example, sums or products were
not supported directly but required the semantically enhanced macros from the DRMF [77,
78]. The source of LACAST is not yet publicly available20 due to the dependency to the POM
tagger [402] and the semantic LATEX macros [260, 403] but accessible via open API endpoints21.

18As of 2021-10-1.
19The first version of LACAST was the subject of my Master’s thesis and laid the foundation for a reliable translation

from semantic LATEX to multiple CAS.
20As of 2021-10-01.
21The API contains a Swagger UI and is reachable at https://vmext-demo.formulasearchengine.com

[accessed 2021-10-01]. LACAST is available under math/translation path (in the math controller). The experimental

Chapter 2

Mathematical Information Retrieval
29

https://vmext-demo.formulasearchengine.com

Section 2.2. Mathematical Formats and Their Conversions

� Definition 2.1: The elements of a semantic macro

A semantic LATEX macro is a LATEX macro with a unique name followed by a number
of arguments. Certain elements of the following arguments are optional but the order
remains the same. While a caret and primes are interchangeable, each order would have
a different meaning, as it can be seen in the example below.

A semantic macro and its arguments:
\macro The unique semantic macro name with a backslash
[optPar] An optional parameter in square brackets
{par} Parameters in curly brackets
’ or ^ Optional prime symbols or a caret for power notations
@ A number of @ symbols to control the visualization of the macro
{var} Variables in curly brackets

Examples:

\sin@{x} −→ sin(x)
\sin@@{x} −→ sin x
\BesselJ{\nu}’’^2@{z} −→ J ′′2

n (z)
\BesselJ{\nu}^2’’@{z} −→ (J2

n)′′(z)
\genhyperF{2}{1}@{a,b}{c}{z} −→ 2F1(a, b; c; z)
\genhyperF{2}{1}@@{a,b}{c}{z} −→ 2F1

(
a,b
c ; z

)
\genhyperF{2}{1}@@@{a,b}{c}{z} −→ 2F1(z)

Apart from LACAST, LATExml [257] is another tool that supports semantic LATEX and provides
conversions to LATEX, MathML, and a variety of image formats. LATExml was also developed by
B. Miller with the original goal to support the development of DLMF [133]. LATExml is a general
LATEX to XML converter. However, in order to support the development of the DLMF, LATExml
is able to fully load semantic LATEX definition files to convert semantic LATEX into semantically
appropriate content MathML. With this ability, LATExml is generally capable of converting other
LATEX encodings too, such as the following STEX.

2.2.2.3 sTeX

STEX refers to semantic TEX and should not be confused with B. Miller’s semantic LATEX. STEX was
developed around 2008 [194, 195, 200] with the goal to semantically annotate LATEX documents
with semanticmacros. Specifically, STEX should serve as a source format to generate the semantic
document format OMDoc. While the underlying motivation and technical solution of STEX and
semantic LATEX are very similar, there are some core differences between both formats. Semantic
LATEX was developed specifically for the DLMF and, therefore, provide semantic macros for
OPSF. In particular, a semantic macro in the DLMF represents a specific unique function. In
turn, STEX aim to cover general mathematical notations and provide a logic to semantically
annotate general functions and symbols. Consider the aforementioned example π(x + y). If
π is referring to the prime counting function, we can resolve the ambiguity with semantic
LATEX via \nprimes@{x+y} since the semantic macro \nprimes is referring to that function.

flag performs pattern matching approaches described later in this thesis. The label allows to specify a DLMF equation
label to perform specific assumptions (e.g., that i is an index and not the imaginary unit).

30 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

In STEX, an author can use modules and IDs to define the function and set the notation via
\symdef{\pi}[1]{\prefix{\pi}{#1}}. While this makes the interpretation of π(x + y)
unambiguous, an underlying definition is still missing. Hence, STEX provides the option to link
symbols with their definitions in the document. This definition linking underlines the original
motivation and connection to the semantic document format OMDoc.

Since STEX is not limited to specific domains, we could define any notation we want in our
semantic document. On the other hand, this generalizability of STEX makes the format more
verbose and somehow similar to a programming language. In STEX, we need to define and
declare symbols explicitly. In addition, a defined new symbol still needs to be manually linked
to an underlying definition. In semantic LATEX, the macro itself is linked to the appropriate
definition in the DLMF. STEX provide access to predefined sets of macros that aim to cover K-14
mathematics [195].

In conclusion, STEX is flexible but verbose. The format is useful when it comes to annotating
a general mathematical document semantically. However, the strength of STEX, for example,
the ability to define any symbol with specific semantics, is generally not very important for
translations to CAS. CAS have a fixed set of supported functions and often try to mimic common
notation styles, e.g., one does not need to define − as a unary postfix operator in −2. In turn, a
translation from LATEX to CAS faces the issue of identifying the name of the functions involved,
its arguments, and the appropriate mappings to counterparts in CAS syntax. Semantic LATEX,
on the other hand, provides a syntax that makes it easy to solve these issues. The name of the
function is directly encoded in the name of the macro, the arguments are explicitly declared
and distinguishable (by curly brackets), and a mapping to an appropriate counterpart in the
CAS can be more easily found due to the large overlap of functions in the DLMF and supported
functions in CAS.

As previouslymentioned, LATExml [257] is able to load TEX definition files and support conversion
to XML encodings. Hence, LATExml can transform STEX expressions to content MathML[200].
The ability to link STEX symbols with their definitions in a document or external source further
makes it to a source for generating entire semantic enhanced OMDoc documents [195]. STEX
could be also used as an alternative to semantic LATEX for translations to CAS. However, due to
the natural overlap of functions in the DLMF and CAS, at some point in the development of a
translation process on STEX, we would create semantic enhanced macros for OPSF similar to
the existing semantic LATEX macros. Hence, using STEX in comparison to semantic LATEX has no
direct advantages to perform translations towards CAS. The higher flexibility of STEX makes it
a good candidate for translations beyond OPSF.

2.2.2.4 Template Editors

Since LATEX is an interpretable language with over ten thousand mathematical symbols
alone [280], learning LATEX syntax is often simply too time-consuming and complex for many
users. To provide an easier access to rendered mathematics, especially in so-called what you see

is what you get (WYSIWYG) editors, such as Microsoft’s Office programs22 orWikipedia’s visual
article editor23, template editors become the norm. Template editors provide visual templates

22https://support.microsoft.com/en-us/office/
equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f [accessed 2021-10-01]

23The wikipedia’s article about formula editors (https://en.wikipedia.org/wiki/Formula_editor
[accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
31

https://support.microsoft.com/en-us/office/equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f
https://support.microsoft.com/en-us/office/equation-editor-6eac7d71-3c74-437b-80d3-c7dea24fdf3f
https://en.wikipedia.org/wiki/Formula_editor

Section 2.2. Mathematical Formats and Their Conversions

Figure 2.2: The math template editor of Microsoft’s Word [395].

of standard mathematical notations so that the user only needs to fill in the remaining spaces.
Figure 2.2 shows the template editor of Microsoft’s Word [395] for a snippet of the templates for
sums. Modern graphic interfaces of CAS also often contain such template editors to improve
the user experience further. In comparison to LATEX, template editors are generally easier to use
but limited to the offered templates. Hence, for more complex expressions, template editors
are often described as confining [273]. Template editors do not introduce a new math format.
The editors only provide a different input method but encode the mathematical formulae in
system-specific formats, such as MathML in Microsoft’s Word or Maple syntax in Maple.

2.2.3 Computable Formats

So far, we have covered the major formats that focus on the presentation of mathematical
expressions and on formats that capture the semantics. Even though formats like content
MathML, OpenMath, and the semantic LATEX extensions can resolve the ambiguity of math
formulae, they are not computable formats, i.e., we cannot perform actual calculations and
computations on them. The syntax of a computable format is a formal language in which every
word is linked to specific subroutines. Much like programming languages, computable formats
are semantically unambiguous and interpretable. In turn, computable formats are generally
part of a larger software package that ships an interpreter to parse inputs and an engine that
performs the computations. In the following, we briefly discuss CAS and theorem prover
formats as examples of computable formats. We will not specifically focus on math packages
for specific programming languages, such as C++ [168], Python [252] or Java [79]. Most CAS
and theorem provers, however, internally rely on those lower-level packages to some degree.

2.2.3.1 Computer Algebra Systems

A CAS is a mathematical software that can perform a variety of mathematical operations on
math inputs, such as symbolic manipulations, numeric calculations, plotting and visualization,
simplification, and many more [76, 81, 128, 413]. With the increasing power of computers, CAS
became a crucial part of the modern scientific world [32, 262, 352, 356] and are widely used
for mathematical problem solving [49, 51, 127, 216, 414], simulations [46, 142, 166, 265, 294],
symbolic manipulations [115, 325], and even for teaching students from schools to universities
[158, 237, 244, 350, 363, 365, 389, 390]. Due to their complexity, CAS are often large and expen-
sive proprietary software packages [36, 164, 393]. However, there are several well-known open

32 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

source options available [42], such as SymPy [252], Axiom24 [176], and Reduce25 [151]. Many
CAS focus on specific domains or mathematical tasks, such as Cadabra [289, 290, 291] (tensor
field theory), FORM [372] (particle physics), GAP [177] (group theory and combinatorics), PAR-
I/GP [283] (number theory), or MATLAB [164] (primarily for numeric computation). In contrast,
general-purpose CAS, including Mathematica [393], Maple [36], Axiom [176], SymPy [178,
252], Maxima [264, 324], or Reduce [151], aim to provide a large set of tools and algorithms that
are beneficial for many mathematical applications. Therefore, general-purpose CAS support
a large number of OPSF, since these functions and polynomials are used in a large variety
of different scientific fields, from pure and applied mathematics to physics and engineering.
Therefore, we primarily focus on translations to general-purpose CAS in this thesis rather than
to domain-specific CAS.

The input formats of general-purpose CAS are often multi-paradigm programming lan-
guages [88], i.e., they combine multiple standard programming features, such as functional,
mathematical, and procedural approaches. Major CAS generally use their own input language,
such as the Wolfram Language in Mathematica [392]. Like any programming language,
the input format must be unambiguous to the underlying parser of the CAS so that every
keyword is uniquely linked to subroutines in the CAS engine. This link to a subroutine makes
the expression computable. In contrast, the semantic LATEX macros are linked to theoretical
mathematical concepts defined in the DLMF but not with specific implementations. Hence, a
translation to a CAS syntax requires to link mathematical notations, e.g., Γ(z), that refer to
specific mathematical concepts, e.g., the Gamma function, to the correct sequence of keywords
in the CAS, e.g., GAMMA(z) in Maple.

Since computable languages naturally encode the highest level of semantic information in
their expressions, a translation towards other systems that encode less semantic information
is possible with a comprehensive list of simple mapping rules. Many CAS therefore provide
a variety of different output formats, from LATEX to MathML (including content MathML) and
images. Translations between CAS or other mathematical software, such as theorem prover,
require more sophisticated mappings due to system-specific implementations [110]. From 2006
to 2011, a joint research project funded by the European Unionwith over 3Million Euro launched
intending to improve the symbolic computation infrastructure for Europe26. The result of the
SCIEnce project was the Symbolic Computation Software Composability Protocol (SCSCP) [119,
361], which uses the OpenMath encoding to transfer mathematical expressions. Using the
SCSCP, interfaces for GAP [206], KANT [120], Maple [243], MuPAD [155], Mathematica [44],
and Macaulay2 [311] were implemented.

Note that there are solutions available that do not require any translation between LATEX and
CAS. For example, the CAS syntax of Cadabra [291] is a subset of TEX itself. Similarly, SageTeX27

is a LATEX package that allows authors to enter SageMath [317] expressions into LATEX documents,
turning the document into an interactive document [201] to some degree. SageMath is a general-
purpose CAS that relies on existing solutions for domain-specific tasks, such as GAP [177] for
group theory or PARI/GP [283] for number theory problems. These solutions do not require

24Open source since 2001 (first released in 1965).
25Open source since 2008 (first released in 1963).
26EU FP6 project 026133: https://cordis.europa.eu/project/id/26133/ [accessed 2021-10-01]
27https://doc.sagemath.org/html/en/tutorial/sagetex.html [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
33

https://cordis.europa.eu/project/id/26133/
https://doc.sagemath.org/html/en/tutorial/sagetex.html

Section 2.2. Mathematical Formats and Their Conversions

translations since the input must be provided in the syntax of the CAS. Hence, a translation
must be performed manually or via external tools.

In the introduction, we mentioned potential issues of CAS with multi-valued functions. Multi-
valued functions map values from a domain to multiple values in a codomain and frequently
appear in the complex analysis of elementary and special functions [8]. Prominent examples
are the inverse trigonometric functions, the complex logarithm, or the square root. All modern
CAS28 compute multi-valued functions on their principle branches which makes these functions
effectively single-valued (e.g., a calculator always returns 2 for

√
4 rather than ±2 or just −2).

The correct properties of multi-valued functions on the complex plane may no longer be valid by
their counterpart functions on CAS, e.g., (1/z)w = 1/(zw) for z, w ∈ C and z �= 0 is no longer
valid within CAS. The positioning and handling of branch cuts in CAS is often discussed in
scientific articles and generally prominantly noticed in CAS handbooks [83, 84, 91, 108, 171, 172].
However, especially in more complex scenarios, it is easy to lose track of branch cut positioning
and evaluate expressions on incorrect values. We provide a more complex example and a more
detailed explanation of branch cuts in Appendix A available in the electronic supplementary
material. To the best of our knowledge, no available translation tool from, to, or between CAS
(including the SCSCP solutions) consider branch cut positions.

2.2.3.2 Theorem Prover

The idea of automated reasoning and deduction systems is as old as computers [147]. With
the power of computers and a strict axiomatic approach as in Principia Mathematica [385],
computers can perform automatic reasoning steps to discover and proof new mathematical
theorems. Up until today, automated theorem proving and verifying is an extensive research
area with an ever-growing interest [266, 354, 384]. There are numerous theorem provers and
proof assistants systems available, such as HOL Light [146], HOLF [340], or Isabelle [287].
However, focusing on the deduction, the encoding of theorem provers generally goes beyond
mathematical expressions. The syntax provides specific options for assumptions, links between
multiple concepts, and logical steps. An example of a proof by Isabelle, which clearly visualizes
the different notation of theorem provers and CAS, is given in Appendix C available in the
electronic supplementary material.

Nonetheless, theorem prover formats are computable formats with specific mathematical ap-
plications. Hence, there is a genuine interest in transferring findings and solutions from one
system to the other. There are some translation approaches between theorem prover and CAS
available, from direct translations [28, 148] to translations over OpenMath [57, 338] and OM-
Doc [152]. Theorem provers are generally unable to compute a single mathematical formula
in the sense of numeric computations or symbolic manipulations. Hence, we do not choose
theorem provers as the target computable format for our desired translation process.

2.2.4 Images and Tree Representations

In the following, we briefly discuss formats with the specific visualization focus: images and
tree representations. Especially older literature is often only available in digital scans, and many
copies of publications do not provide access to the original LATEX source. Images can be con-

28The authors are not aware of any example of a CAS which treats multi-valued functions without adopting
principal branches.

34 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

sidered as the purest presentational format of mathematical expressions. Tree representations
of math expressions, on the other hand, are more theoretical concepts to visualize the logical
or presentational structure of math. Tree representations are primarily used for explanation
purposes to underline or visualize an idea or concept. Parse trees, as a generated specific tree
format of mathematical string inputs, on the other hand, play a crucial role in almost every
mathematical software tool. Often, digital mathematical formats try to mimic the logical tree
structure of math expressions. This is also one of the reasons why the web formats (MathML
and OpenMath) use XML to encode mathematical content.

Symbolic Layout, Operator, Parse, and Expression Trees Mathematical expressions are
often represented in tree structures. For example, MathML itself is an XML tree data structure.
Moreover, mathematicians often have a logical but theoretical tree representation of a formula
in mind in which numbers and identifiers are terminal symbols (leaves) and children of math
operators, functions, and relations [192, 331]. These so-called expression trees are more or less
a theoretical structure and are mainly used to visualize logical correlations and connections
in mathematical expressions. Schubotz et al. [331] attempted to automate the visualization
process of expression trees based on cross-referenced MathML data which resulted in VMEXT,
a visualization tool for MathML. Figure 2.3 shows a possible expression tree visualization for
the Jacobi polynomial definition in terms of the hypergeometric function.

P (α,β)
n (z) = (α + 1)n

n! 2F1
(
−n, 1 + α + β + n; α + 1; 1

2(1 − z)
)

Relation

Function

Operator

Identifier

Number

Figure 2.3: An expression tree representation of the explicit Jacobi polynomial definition in
terms of the hypergeometric function.

For visualization and education purposes, these tree representations can be beneficial. However,
generating these trees requires a deep understanding of the logical structure of the expression. In
addition, there is no exact definition available for expression trees. Hence, the exact visualization
is often up for discussions, e.g., whether parameters are children similar to variables or part of
the function node itself [9]. A missing standard definition makes expression trees unreliable
and, therefore, less practical for a mathematical encoding.

Parse Trees Parse trees are generated tree representations of source expressions (strings).
These trees are generated by a parser that follows a strict set of rules, e.g., a context-free gram-
mar [101, 188, 298]. Mathematical LATEX (as a subset of TEX) considering a couple simplifications

Chapter 2

Mathematical Information Retrieval
35

Section 2.2. Mathematical Formats and Their Conversions

(e.g., no re-defined standard literals and macros) can also be described in a context-free gram-
mar [402] even though TEX itself is Turing complete [133, 135, 187]. The POM tagger [402],
for example, parses mathematical LATEX following a context-free grammar. Similarly, Chien
and Cheng [71] build a custom context-free grammar parser for their semantic tokenization
of mathematical LATEX expressions. LATExml follows the more sophisticated TEX-like digestion
methods [187] to parse entire TEX files [133, 135]. CAS inputs are parsed internally for further
processing [138, 392]. Maple’s internal parser also generates a parse tree in which equivalent
nodes are merged together for more efficient memory usage (mathematically speaking, this
data structure is no longer a valid tree but instead a directed, acyclic graph, or simply DAG) [3,
13].

In contrast to theoretical tree representations, such as the mentioned expression trees, parse
trees are crucial for many applications because a tree data format is more easy to process due
to their structural logic [93, 242, 286, 406]. While string sequences of commands may contain
ambiguities, tree data structures are unique and provide easy access to single logical nodes,
groups of nodes, and their dependencies. Hence, parsing a mathematical input (such as in
CAS inputs or LATEX expressions) is typically the first step in any processing pipeline. Later
in this thesis, we will also take advantage of tree representations by defining a translation
between math formats as graph transformations on their tree representations. To generate a
tree representation of mathematical LATEX formats, we can either build a custom parser [71]
or rely on existing parsers, such as LATExml [257] or the POM tagger [402]. Parse trees (and
other custom generated tree formats that are generated by analyzing a given input) can also
be categorized into symbol layout trees (for presentational formats) and operator trees (for
content/semantic formats) [406]. For example, parsing LATEX may result in a symbol layout tree
that describes the visual structure of formulae while parsing semantic LATEX (or CAS inputs)
may result in operator trees which describe the logical mathematical structure of the input.

Images From pixel graphics (e.g., JPEG or PNG) to vector graphics (e.g., Scalable Vector
Graphics (SVG)) and document formats (e.g., PDF), mathematical expression can appear in
a variety of different image formats. The two-dimensional structure of mathematics makes
drawing mathematical formulae on a sheet of paper or touch screens the most intuitive input
method for mathematics. In addition, with rising digitization, scans of old scientific articles are
no longer the only source of math images. Handwriting systems are more and more adopted in
offices and educational institutions [411]. In 2016, Wikipedia switched from non-scalable PNG
images to vector graphics for visualizing mathematics [17] (see Appendix B available in the
electronic supplementary material, for a more sophisticated overview of the history of math
formulae in Wikipedia).

However, image formats are not directly interpretable and are, therefore, less machine-readable.
Hence, the first step of analyzing mathematics in images is always converting into a more
machine-readable, digital format. The majority of conversion approaches, including handwrit-
ing recognition and Optical Character Recognition (OCR), focus on translations to MathML
or LATEX [373, 406, 411]. Hence, for our task (translating presentational formats to computable
formats), starting with image formats is not practically useful.

Nonetheless, one particular issue in math OCR is also of interest for our translation task:
detection of inline mathematics. In image formats, detecting inline mathematics is difficult
because formulae may blend into texts [74, 125, 126, 230, 398]. Even a detection of italic fonts

36 Chapter 2

Mathematical Information Retrieval

Section 2.2. Mathematical Formats and Their Conversions

can be a challenging task [66, 112, 113, 233]. A variable can easily be confused with words,
such as the Latin letter ‘a.’ A similar issue raises in other formats, including LATEX documents
and Wikipedia articles when an author does not correctly annotate mathematical formulae.
In Wikipedia, for example, single identifiers in a text are often put in italic font rather than in
mathematical environments. The capability of using UTF-8 encodings incites Wikipedia editors
to put inline mathematics into the text directly, even when special characters are involved.
For example, the mathematical expression 0 ≤ φ ≤ 4π in the English Wikipedia article about
Jacobi polynomials29 is a sequence of UTF-8 characters and thus challenging to identify as
mathematics for MathIR parser. Nevertheless, identifying all mathematical expressions in a
document might be necessary for more reliable translations towards computable formats. For
example, the mentioned relation of φ defines the domain of the Wigner d-matrix and is of
interest for automatic evaluations (see Chapter 5).

2.2.5 Math Embeddings

Word embedding techniques has received significant attention over the last years in the Natural
Language Processing (NLP) community, especially after the publication of word2vec [256].
Therefore, more and more projects try to adapt this knowledge for solving tasks in the MathIR
arena [121, 15, 141, 215, 353, 360, 400, 404]. These projects try to embed math expressions into
natural languages to create a vector representation of the formula. A vector representation is
the data format with the highest machine readability among all other representations of math-
ematical formula. The math embeddings successfully enabled a new approach to measure the
similarity between math expressions, which is especially useful for math search, classification,
and similar tasks [121, 215, 400, 404].

Considering the equation embedding techniques in [215], we devise three main types of math-
ematical embedding: Mathematical Expressions as Single Tokens, Stream of Tokens, and Semantic

Groups of Tokens. In the following we briefly explain each type on an example expression
containing the inequality for Van der Waerden numbers

W (2, k) > 2k/kε. (2.1)

This expression is the first entry in the the MathML benchmark [18] we are going to explain in
detail in Section 2.3.

Mathematical Expressions as Single Tokens So called equation embeddings (EqEmb)
were introduced by Krstovski and Blei [215] and use an entire mathematical expression as one
token. In a one-token representation, the inner structure of the mathematical expression is not
considered. For example, W (r, k) is represented as one single token t1. Any other expression,
such as W (2, k) in the context, is an entirely independent token t2. Therefore, this approach
does not learn any connections between W (2, k) and W (r, k). However, [215] has shown
promising results for comparing mathematical expressions with this approach.

Stream of Tokens As an alternative to embedding mathematical expressions as a single
token, one can also represent an expression through a sequence of its inner elements. For
example, considering only the identifiers in Equation (2.1), it would generate W , k, and ε as a
sequence/stream of tokens. This approachhas the advantage of learning allmathematical tokens.

29https://en.wikipedia.org/wiki/Jacobi_polynomials#Applications [accessed 2021-10-01]

Chapter 2

Mathematical Information Retrieval
37

https://en.wikipedia.org/wiki/Jacobi_polynomials#Applications

Section 2.3. From Presentation to Content Languages

However, this method also has some drawbacks. Complex mathematical expressions may lead
to long chains of elements, which can be especially problematic when the window size of the
trainingmodel is too small. Naturally, there are approaches to reduce the length of chains. Gao et
al. [121] use a continuous bag of words (CBOW) approach and embed all mathematical symbols,
including identifiers and operands, such as +, − or variations of equalities =. Krstovski and
Blei [215] also evaluated the stream of tokens approach but do not cut out symbols. They trained
their model on the entire sequence of tokens that the LATEX tokenizer generates. Considering
Equation (2.1), it would result in a stream of 13 tokens. They use a long short-term memory
(LSTM) architecture to overcome the limiting window size and further limit chain lengths to
20 − 150 tokens. Usually, in word embedding, such behaviour is not preferred since it increases
the noise in the data.

We [15] also use this stream of tokens approach to train our model on the DLMF without any
filters. Thus, Equation (2.1) generates all 13 tokens. Later in Section 3.1, we show another model
trained on the arXiv collection, which uses a stream of mathematical identifiers and cut out
all other expressions, i.e., in case of (2.1), we embed W , k, and ε. We presume this approach
is more appropriate to learn connections between identifiers and their definiens. We will see
later that both of our models trained on math embedding are able to detect similarities between
mathematical objects, but does not perform well on detecting connections to word descriptors.

Semantic Groups of Tokens The third approach of embedding mathematics is only the-
oretical. Current MathIR and Machine Learning (ML) approaches would benefit from a basic
structural knowledge of mathematical expressions, such that variations of function calls (e.g.,
W (r, k) and W (2, k)) can be recognized as the same function. Instead of defining a unified
standard, current techniques use their ad-hoc interpretations of structural connections. We
assume that an embedding technique would benefit from a system that can detect the parts of
interest in mathematical expressions before any training process. However, such a system still
does not exist. Later in Section 3.2, we will introduce a new concept to interpret logical groups
of mathematical objects that may enable a semantic embedding in the future.

It is important to mention that it remains unclear to what degree math semantic information
can be embedded in a vector representation [9]. Since there is no answer to this question, we
have not included math embeddings (i.e., vector representations of formulae) to Figure 2.1.
Nonetheless, a vector representation can be decoded into a CAS syntax representation again
to perform a ML based translation [296]. We will elaborate on such an approach more in
Chapter 4.

2.3 From Presentation to Content Languages

We introduced several different formats for encoding mathematical formulae digitally and
provided an overview of several existing conversion tools between these formats. Considering
Figure 2.1, the goal of this thesis, i.e., making presentational math computable, requires to
convert mathematical formats from the most left of the figure to the most right. We have
chosen LATEX as the source format and general-purpose CAS syntaxes for the target formats.
Considering the merit of communicating knowledge in sciences, it comes to no surprise that
there are numerous of translation tools and theoretical approaches available to convert math
formulae between multiple formats, including our goal translation from LATEX to CAS syntaxes.

38 Chapter 2

Mathematical Information Retrieval

Section 2.3. From Presentation to Content Languages

Since MathML is the web standard which is supported by several CAS at least partially [57,
110, 303, 338] (or OpenMath respectively), a translation from LATEX to CAS could be performed
over MathML (preferably content MathML). In this section, we analyze state-of-the-art LATEX to
MathML converters to study the applicability of using MathML as an intermediate format for
translations from LATEX to CAS syntaxes. This section was previously published [18].

2.3.1 Background

In the following, we use the Riemann hypothesis (2.2) as an example to explain typical challenges
of converting different representation formats of mathematical formulae:

ζ(s) = 0 ⇒ �s = 1
2 ∨
s = 0. (2.2)

We will focus on the representation of the formula in LATEX and in the format of the CAS
Mathematica. LATEX is a common language for encoding the presentation of mathematical
formulae. In contrast to LATEX, Mathematica’s representation focuses on making formulae
computable. Hence the content must be encoded, i.e., both the structure and the semantics of
mathematical formulae must be taken into consideration.

In LATEX, the Riemann hypothesis can be expressed using the following string:

� Riemann hypothesis in LATEX

1 \zeta(s) = 0 \Rightarrow \Re s = \frac 12 \lor \Im s=0

In Mathematica, the Riemann hypothesis can be represented as:

� Riemann hypothesis in Mathematica

1 Implies [Equal[Zeta[s], 0], Or[Equal[Re[s], Rational [1, 2]],
Equal[Im[s], 0]]]

The conversion between these two formats is challenging due to a range of conceptual and
technical differences.

First, the grammars underlying the two representation formats greatly differ. LATEX uses the
unrestricted grammar of the TEX typesetting system. The entire set of commands can be re-
defined and extended at runtime, which means that TEX effectively allows its users to change
every character used for the markup, including the \ character typically used to start commands.
The large degree of freedom of the TEX grammar significantly complicates recognizing even
the most basic tokens contained in mathematical formulae. In difference to LATEX, CAS use a
significantly more restrictive grammar consisting of a predefined set of keywords and set rules
that govern the structure of expressions. For example in Mathematica, function arguments
must always be enclosed in square brackets and separated by commas.

Second, the extensive differences in the grammars of the two languages are reflected in the
resulting expression trees. Similar to parse trees in natural language, the syntactic rules of
mathematical notation, such as operator precedence and function scope, determine a hierarchical

Chapter 2

Mathematical Information Retrieval
39

Section 2.3. From Presentation to Content Languages

structure for mathematical expressions that can be understood, represented, and processed as a
tree. The mathematical expression trees of formulae consist of functions or operators and their
arguments. We used nested square brackets to denote levels of the tree and Arabic numbers
in a gray font to indicate individual tokens in the markup. For the LATEX representation of the
Riemann hypothesis, the expression tree is:

� Representation tree of Riemann hypothesis in LATEX[
ζ1
l (2

l s3
l)4

l =5
l 06

l ⇒7
l �8

l s9
l =10

l

[
11·
·

112
l 213

l

]
∨14
l
15

l s16
l =17

l 018
l

]
.

The tree consists of 18 nodes, i.e., tokens, with a maximum depth of two (for the fraction
command \frac12). The expression tree of the Mathematica expression consists of 16 tokens
with a maximum depth of five:

� Representation tree of Riemann hypothesis in Mathematica⎡⎣19
⇒
[

20
=

[
21
ζ s22

l

]
023
n

] [
24
∨
[

25
=
[26
� s27

l

] [28
Q129

n 230
n

]] [
31
=
[32
� s33

l

]
034
n

]]⎤⎦ .

The higher complexity of the Mathematica expression reflects that a CAS represents the content
structure of the formula, which is deeply nested. In contrast, LATEX exclusively represents the
presentational layout of the Riemann hypothesis, which is almost linear.

For the given example of the Riemann hypothesis, finding alignments between the tokens
in both representations and converting one representation into the other is possible. In fact,
Mathematica and other CAS offer a direct import of TEX expressions, which we evaluate in
Section 2.3.3.

However, aside from technical obstacles, such as reliably determining tokens in TEX expressions,
conceptual differences also prevent a successful conversion between presentation languages,
such as TEX, and content languages. Even if there was only one generally accepted presentation
language, e.g., a standardized TEX dialect, and only one generally accepted content language,
e.g., a standardized input language for CAS, an accurate conversion between the representation
formats could not be guaranteed.

The reason is that neither the presentation language, nor the content language always provides
all required information to convert an expression to the respective language. This can be
illustrated by the simple expression: F (a + b) = Fa + Fb. The inherent content ambiguity of
F prevents a deterministic conversion from the presentation language to a content language. F
might, for example, represent a number, a matrix, a linear function or even a symbol. Without
additional information, a correct conversion to a content language is not guaranteed. On the
other hand, the transformation from content language to presentation language often depends
on the preferences of the author and the context. For example, authors sometimes change the
presentation of a formula to focus on specific parts of the formula or improve its readability.

Another obstacle to conversions between typical presentation languages and typical content
languages, such as the formats of CAS, are the restricted set of functions and the simpler

40 Chapter 2

Mathematical Information Retrieval

Section 2.3. From Presentation to Content Languages

grammars that CAS offer. While TEX allows users to express the presentation of virtually
all mathematical symbols, thus denoting any mathematical concept, CAS do not support all
available mathematical functions or structures. A significant problem related to the discrepancy
of the space of concepts expressible using presentation markup and the implementation of
such concepts in CAS are branch cuts. Branch cuts are restrictions of the set of output values
that CAS impose for functions that yield ambiguous, i.e., multiple mathematically permissible
outputs. One example is the complex logarithm [98, (4.2.1)], which has an infinite set of
permissible outputs resulting from the periodicity of its inverse function. To account for this
circumstance, CAS typically restrict the set of permissible outputs by cutting the complex
plane of permissible outputs. However, since the method of restricting the set of permissible
outputs varies between systems, identical inputs can lead to drastically different results [3].
For example, multiple scientific publications address the problem of accounting for branch cuts
when entering expressions in CAS, such as [109] for Maple.

Our review of obstacles to the conversion of representation formats for mathematical formulae
highlights the need to store both presentation and content information to allow for reversible
transformations. Mathematical representation formats that include presentation and content
information can enable the reliable exchange of information between typesetting systems and
CAS.

MathML offers standardized markup functionality for both presentation and content informa-
tion. Moreover, the declarative MathML XML format is relatively easy to parse and allows for
cross references between Presentation Language (PL) and Content Language (CL) elements.
Listing 2.3 represents excerpts of the MathML markup for our example of the Riemann hypoth-
esis (2.2). In this excerpt, the PL token 7 corresponds to the CL token 19, PL token 5 corresponds
to CL token 20, and so forth.

� Riemann hypothesis in MathML

1 <math><semantics><mrow>. . .
2 <mo id="5" xref="20">=</mo>
3 <mn id="5" xref="21">0</mn>
4 <mo id="7" xref="19">⇒</ci>. . .</mrow>
5 <annotation-xml encoding="MathML-Content">
6 <apply><implies id="19" xref="7"/>
7 <apply><eq id="20" xref="5"/>. . .
8 <apply><csymbol id="21" xref="1" cd="wikidata">Q187235</csymbol>. . .
9 </annotation-xml></semantics></math>

Listing 2.3: MathML representation of the Riemann hypothesis (2.2) (excerpt).

Combined presentation and content formats, such as MathML, significantly improve the access
to mathematical knowledge for users of digital libraries. For example, including content infor-
mation of formulae can advance search and recommendation systems for mathematical content.
The quality of these mathematical information retrieval systems crucially depends on the accu-
racy of the computed document-query and document-document similarities. Considering the
content information of mathematical formulae can improve these computations by:

Chapter 2

Mathematical Information Retrieval
41

https://dlmf.nist.gov/ 4.2.1
https://www.wikidata.org/w/index.php?title=Q187235&oldid=616744815

Section 2.3. From Presentation to Content Languages

1. enabling the consideration of mathematical equivalence as a similarity feature. Instead
of exclusively analyzing presentation information as indexed, e.g., by considering the
overlap in presentational tokens, content information allows modifying the query and
the indexed information. For example, it would become possible to recognize that the

expressions a(b
c + d

c) and a(b+d)
c have a distance of zero.

2. allowing the association of mathematical tokens with mathematical concepts. For exam-
ple, linking identifiers, such as E, m, and c, to energy, mass, and speed of light, could
enable searching for all formulae that combine all or a subset of the concepts.

3. enabling the analysis of structural similarity. The availability of content information
would enable the application of measures, such as derivatives of the tree edit distance,
to discover structural similarity, e.g., using λ-calculus. This functionality could increase
the capabilities of math-based plagiarism detection systems when it comes to identifying
obfuscated instances of reused mathematical formulae [253].

Content information could furthermore enable interactive support functions for consumers and
producers of mathematical content. For example, readers of mathematical documents could be
offered interactive computations and visualizations of formulae to accelerate the understanding
of STEM documents. Authors of mathematical documents could benefit from automated editing
suggestions, such as auto completion, reference suggestion, and sanity checks, e.g., type and
definiteness checking, similar to the functionality of word processors for natural language texts.

2.3.1.1 Related Work

A variety of tools exist to convert format representations of mathematical formulae. However,
to our knowledge, Stamerjohanns et al. [351] presented the only study that evaluated the
conversion quality of tools. Unfortunately, many of the tools evaluated by Stamerjohanns et
al. are no longer available or out of date. Watt presents a strategy to preserve formula semantics
in TEX to MathML conversions. His approach relies on encoding the semantics in custom TEX
macros rather than to expand the macros [380]. Padovani discusses the roles of MathML and
TEX elements for managing large repositories of mathematical knowledge [278]. Nghiem et al.
used statistical machine translation to convert presentation to content language [271]. However,
they do not consider the textual context of formulae. We will present detailed descriptions and
evaluation results for specific conversion approaches in Section 2.3.3.

Youssef addressed the semantic enrichment of mathematical formulae in presentation language.
They developed an automated tagger that parses LATEX formulae and annotates recognized
tokens very similarly to Part-of-Speech (POS) taggers for natural language [402]. Their tagger
currently uses a predefined, context-independent dictionary to identify and annotate formula
components. Schubotz et al. proposed an approach to semantically enrich formulae by analyzing
their textual context for the definitions of identifiers [329, 330].

With their ‘math in the middle approach’, Dehaye et al. envision an entirely different approach
to exchanging machine readable mathematical expressions. In their vision, independent and
enclosed virtual research environments use a standardized format for mathematics to avoid
computions and transfers between different systems. [94].

For an extensive review of format conversion and retrieval approaches for mathematical for-
mulae, refer to [326, Chapter 2].

42 Chapter 2

Mathematical Information Retrieval

Section 2.3. From Presentation to Content Languages

2.3.2 Benchmarking MathML

This section presents MathMLben - a benchmark dataset for measuring the quality of MathML
markup of mathematical formulae appearing in a textual context. MathMLben is an improve-
ment of the gold standard provided by Schubotz et al. [329]. The dataset considers recent
discussions of the International Mathematical Knowledge of Trust30 working group, in par-
ticular the idea of a ‘Semantic Capture Language’ [165], which makes the gold standard more
robust and easily accessible. MathMLben:

• allows comparisons to prior works;

• covers a wide range of research areas in STEM literature;

• provides references to manually annotated and corrected MathML items that are compli-
ant with the MathML standard;

• is easy to modify and extend, i.e., by external collaborators;

• includes default distance measures; and

• facilitates the development of converters and tools.

In Section 2.3.2.1, we present the test collection included in MathMLben. In Section 2.3.2.2, we
present the encoding guidelines for the human assessors and describe the tools we developed
to support assessors in creating the gold standard dataset. In Section 2.3.2.3, we describe the
similarity measures used to assess the markup quality.

2.3.2.1 Collection

Our test collection contains 305 formulae (more precisely, mathematical expressions ranging
from individual symbols to complex multi-line formulae) and the documents in which they
appear.

Expressions 1 to 100 correspond to the search targets used for the ‘National Institute of
Informatics Testbeds and Community for Information access Research Project’ (NTCIR) 11
Math Wikipedia Task [329]. This list of formulae has been used for formula search and content
enrichment tasks by at least 7 different research institutions. The formulae were randomly
sampled from Wikipedia and include expressions with incorrect presentation markup.

Expressions 101 to 200 are random samples taken from the NIST DLMF [98]. The DLMF
website contains 9,897 labeled formulae created from semantic LATEX source files [77, 78]. In
contrast to the examples from Wikipedia, all these formulae are from the mathematics research
field and exhibit high quality presentation markup. The formulae were curated by renowned
mathematicians and the editorial board keeps improving the quality of the formulae’s markup31.
Sometimes, a labeled formula contains multiple equations. In such cases, we randomly chose
one of the equations.

Expressions 201 to 305 were chosen from the queries of the NTCIR arXiv and NTCIR-12
Wikipedia datasets. 70% of these queries originate from the arXiv [22] and 30% from aWikipedia
dump.

30http://imkt.org/ [accessed 2021-08-03]
31http://dlmf.nist.gov/about/staff [accessed 2021-08-03]

Chapter 2

Mathematical Information Retrieval
43

http://imkt.org/
http://dlmf.nist.gov/about/staff

Section 2.3. From Presentation to Content Languages

All data is openly available for research purposes and can be obtained from: https://mathm
lben.wmflabs.org32.

2.3.2.2 Gold Standard

We provide explicit markup with universal, context-independent symbols in content MathML.
Since the symbols from the default content dictionary of MathML33 alone were insufficient to
cover the range of semantics in our collection, we added the Wikidata content dictionary [328].
As a result, we could refer to all Wikidata items as symbols in a content tree. This approach has
several advantages. Descriptions and labels are available in many languages. Some symbols
even have external identifiers, e.g., from the Wolfram Functions Site, or from stack-exchange
topics. All symbols are linked to Wikipedia articles, which offer extensive human-readable
descriptions. Finally, symbols have relations to other Wikidata items, which opens a range of
new research opportunities, e.g., for improving the taxonomic distance measure [336].

Our Wikidata-enhanced, yet standard-compliant MathML markup, facilitates the manual cre-
ation of content markup. To further support human assessors in creating content annotations,
we extended the VMEXT visualization tool [331] to develop a visual support tool for creating
and editing the MathMLben gold standard.

Table 2.3: Special content symbols added to LATExml for the creation of the gold standard.

No. Rendering Meaning Example IDs

1 [x, y] commutator 91

2 xy
z tensor 43, 208, 226

3 x† adjoint 224, 277

4 x
′

transformation 20

5 x◦ degree 20

6 x(dim) contraction 225

For each formula, we saved the source document written in different dialects of LATEX and
converted it into content MathML with parallel markup using LATExml [135, 257]. LATExml is a
Perl program that converts LATEX documents to XML and HTML. We chose LATExml, because
it is the only tool that supports our semantic macro set. We manually annotated our dataset,
generated the MathML representation, manually corrected errors in the MathML, and linked
the identifiers to Wikidata concept entries whenever possible. Alternatively, one could initially
generate MathML using a CAS and then manually improve the markup.

Since there is no generally accepted definition of expression trees, we made several design
decision to create semantic representations of the formulae in our dataset using MathML trees.
In some cases, we created new macros to be able to create a MathML tree for our purposes
using LATExml

34. Table 2.3 lists the newly created macros. Hereafter, we explain our decisions
and give examples of formulae in our dataset that were affected by the decisions.

32Visit https://mathmlben.wmflabs.org/about for a user guide [accessed 2021-08-03].
33http://www.openmath.org/cd [accessed 2021-08-03]
34http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.

SSS0.Px1 [accessed 2021-08-03]

44 Chapter 2

Mathematical Information Retrieval

https://mathmlben.wmflabs.org
https://mathmlben.wmflabs.org
https://www.wikidata.org/wiki/2989763
https://mathmlben.wmflabs.org/91
https://www.wikidata.org/wiki/188524
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/208
https://mathmlben.wmflabs.org/226
https://www.wikidata.org/wiki/2051983
https://mathmlben.wmflabs.org/224
https://mathmlben.wmflabs.org/277
https://www.wikidata.org/wiki/Q12202238
https://mathmlben.wmflabs.org/20
https://www.wikidata.org/wiki/Q28390
https://mathmlben.wmflabs.org/20
https://www.wikidata.org/wiki/Q5165685
https://mathmlben.wmflabs.org/225
https://mathmlben.wmflabs.org/about
http://www.openmath.org/cd
http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.SSS0.Px1
http://dlmf.nist.gov/latexml/manual/customization/customization.latexml.html#SS1.SSS0.Px1

Section 2.3. From Presentation to Content Languages

• not assignWikidata items to basic mathematical identifiers and functions like factorial,
\log, \exp, \times, \pi. Instead, we left these annotations to the DLMF LATEX macros,
because they represent the mathematical concept by linking to the definition in the DLMF
and LATExml creates valid and accurate content MathML for these macros [GoldID 3, 11,
19, ...];

• split up indices and labels of elements as child nodes of the element. For example, we
represent i as a child node of p in p_i [GoldID 29, 36, 43, ...];

• create a special macro to represent tensors, such as for Tαβ [GoldID 43], to represent
upper and lower indices as child nodes (see table 2.3);

• create a macro for dimensions of tensor contractions [GoldID 225], e.g., to distinguish
the three dimensional contraction of the metric tensor in g(3) from a power function (see
table 2.3);

• chose one subexpression randomly if the original expression contained lists of expressions
[GoldID 278];

• remove equation labels, as they are not part of the formula itself. For example, in

E = mc2, ()

the () is the ignored label;

• remove operations applied to entire equations, e.g., applying the modulus. In such cases,
we interpreted the modulus as a constraint of the equation [GoldID 177];

• use additional macros (see table 2.3) to interpret complex conjugations, transformation
signs, and degree-symbols as functional operations (identifier is a child node of the
operation symbol), e.g., * or \dagger for complex conjugations [GoldID 224, 277], S’ for
transformations [GoldID 20], 30^\circ for thirty degrees [Gold ID 30];

• for formulae with multiple cases, render each case as a separate branch [GoldID 49];

• render variables that are part of separate branches in bracket notation. We implemented
theDirac Bracket commutator [] (omitting the index _\text{DB}) and an anticommutator
by defining new macros (see table 2.3). Thus, there is a distinction between a (ring)
commutator [a,b] = ab - ba and an anticommutator {a,b} = ab + ba, without
further annotation of Dirac or Poisson brackets [GoldID 91];

• use the command \operatorname{} for multi-character identifiers or operators [GoldID
22]. This markup is necessary, because most LATEX parsers, including LATExml, interpret
multi-character expressions as multiplications of the characters. In general, this inter-
pretation is correct, since it is inconvenient to use multi-character identifiers [54].

Some of these design decisions are debatable. For example, introducing a new macro, such as
\identifiername{}, to distinguish between multi-character identifiers and operators might
be advantageous to our approach. However, introducing many highly specialized macros is
likely not a viable approach and exaggerated. A borderline example in regard to this prob-
lem is Δx [GoldID 280]. Formulae of this form could be annotated as \operatorname{},
\identifiername{} or more generally as \expressionname{}. We interpret Δ as a differ-
ence applied to a variable, and render the expression as a function call.

Chapter 2

Mathematical Information Retrieval
45

https://mathmlben.wmflabs.org/3
https://mathmlben.wmflabs.org/11
https://mathmlben.wmflabs.org/19
https://mathmlben.wmflabs.org/29
https://mathmlben.wmflabs.org/36
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/43
https://mathmlben.wmflabs.org/225
https://mathmlben.wmflabs.org/278
https://mathmlben.wmflabs.org/177
https://mathmlben.wmflabs.org/224
https://mathmlben.wmflabs.org/277
https://mathmlben.wmflabs.org/20
https://mathmlben.wmflabs.org/49
https://mathmlben.wmflabs.org/91
https://mathmlben.wmflabs.org/22
https://mathmlben.wmflabs.org/280

Section 2.3. From Presentation to Content Languages

Figure 2.4: Graphical User Interface (GUI) to support the creation of our gold standard. The
interface provides several TEX input fields (left) and a mathematical expression tree rendered
by the VMEXT visualization tool (right).

Similar cases of overfeeding the dataset with highly specialized macros are bracket notations.
For example, the bracket (Dirac) notation, e.g., [GoldID 209], is mainly used in quantum physics.
The angle brackets for the Dirac notation, 〈 and 〉, and a vertical bar | is already interpreted
correctly as "latexml - quantum-operator-product". However, a more precise distinction between
a twofold scalar product, e.g., 〈a|b〉, and a threefold expectation value, e.g., 〈a|A|a〉, might
become necessary in some scenarios to distinguish between matrix elements and a scalar
product.

We developed a Web application to create and cultivate the gold standard entries, which is
available at: https : / / math m lben . w m flabs . org/. The GUI provides the following
information for each Gold ID entry.

• Formula Name: the name of the formula (optional)

• Formula Type: either definition, equation, relation or General Formula (if none of the
previous names fit)

• Original Input TEX: the LATEX expression extracted from the source

• Corrected TEX: the manually corrected LATEX expression

• Hyperlink: the hyperlink to the position of the formula in the source

• Semantic LATEX Input: the manually created semantic version of the corrected LATEX
field. This entry is used to generate our MathML with Wikidata annotations.

46 Chapter 2

Mathematical Information Retrieval

https://mathmlben.wmflabs.org/209
https://mathmlben.wmflabs.org/

Section 2.3. From Presentation to Content Languages

• Preview of Corrected LATEX: a preview of the corrected LATEX input field rendered as
an SVG image in real time using Mathoid [335], a service to generate SVGs and MathML
from LATEX input. It is shown in the top right corner of the GUI.

• VMEXT Preview: the VMEXT field renders the expression tree based on the content
MathML. The symbol in each node is associated with the symbol in the cross referenced
presentation MathML.

Figure 2.4 shows the GUI that allows to manually modify the different formats of a formula.
While the other fields are intended to provide additional information, the pipeline to create and
cultivate a gold standard entry starts with the semantic LATEX input field. LATExml will generate
content MathML based on this input and VMEXT will render the generated content MathML
afterwards. We control the output by using the DLMF LATEX macros [260] and our developed
extensions. The following list contains some example of the DLMF LATEX macros.

• \EulerGamma@{z}: Γ(z): gamma function,

• \BesselJ{\nu}@{z}: Jν(z): Bessel function of the first kind,

• \LegendreQ[\mu]{\nu}@{z}: Qμ
ν (z):

associated Legendre function of the second kind,

• \JacobiP{\alpha}{\beta}{n}@{x}: P
(α,β)
n (x):

Jacobi polynomial.

The DLMF web pages, which we use as one of the sources for our dataset, were generated
from semantically enriched LATEX sources using LATExml. Since LATExml is capable to interpret
semantic macros, generates content MathML that can be controlled with macros, and is easily
extensible by new macros, we also used LATExml to generate our gold standard. While the DLMF
is a compendium for special functions, we need to annotate every identifier in the formula with
semantic information. Therefore, we extended the set of semantic macros.

In addition to the special symbols listed in Table 2.3, we created macros to semantically enrich
identifiers, operators, and other mathematical concepts by linking them to their Wikidata items.
As shown in Figure 2.4, the annotations are visualized using yellow info boxes appearing on
mouse over. The boxes show the Wikidata QID, the name, and the description (if available) of
the linked concept.

Aside from naming, classifying, and semantically annotating each formula, we performed three
other tasks:

• correcting the LATEX string extracted from the sources;

• checking and correcting the MathML generated by LATExml

• visualizing the MathMl using VMEXT

Most of the extracted formulae contained concepts to improve human readability of the source
code, such as commented line breaks, %\n, in long mathematical expressions, or special macros
to improve the displayed version of the formula, e.g., spacing macros, delimiters, and scale
settings, such as \!, \, or \>. Since they are part of the expression, all of the tested tools
(also LATExml) try to include these formating improvements into the MathML markup. For our

Chapter 2

Mathematical Information Retrieval
47

Section 2.3. From Presentation to Content Languages

gold standard, we focus on the pure semantic information and forgo formating improvements
related to displaying the formula. The corrected TEX field shows the cleaned mathematical LATEX
expression.

Using the corrected TEX field and the semantic macros, we were able to adjust the MathML
output using LATExml and verify it by checking the visualization from VMEXT.

2.3.2.3 Evaluation Metrics

To quantify the conversion quality of individual tools, we computed the similarity of each
tool’s output and the manually created gold standard. To define the similarity measures for
this comparison, we built upon our previous work [336], in which we defined and evaluated
four similarity measures: taxonomic distance, data type hierarchy level, match depth, and
query coverage. The measures taxonomic distance and data type hierarchy level require the
availability of a hierarchical ordering of mathematical functions and objects. For our use case,
we derived this hierarchical ordering from the MathML content dictionary. The measures assign
a higher similarity score if matching formula elements belong to the same taxonomic class.
The match depth measure operates under the assumption that matching elements, which are
more deeply nested in a formula’s content tree, i.e., farther away from the root node, are less
significant for the overall similarity of the formula, hence are assigned a lower weight. The
query coverage measure performs a simple ‘bag of tokens’ comparison between two formulae
and assigns a higher score the more tokens the two formulae share.

In addition to these similarity measures, we also included the tree edit distance. For this purpose,
we adapted the robust tree edit distance (RTED) implementation for Java [288]. We modified
RTED to accept any valid XML input and added math-specific ‘shortcuts’, i.e., rewrite rules that
generate lower distance scores than arbitrary rewrites. For example, rewriting a

b to ab−1 causes
a significant difference in the expression tree: Three nodes (∧, −, 1) are inserted and one node
is renamed ÷ → ·. The ‘costs’ for performing these edits using the stock implementation of
RTED are c = 3i + r. However, the actual difference is an equivalence, which we think should
be assigned a cost of e < 3i + r. We set e < r < i.

2.3.3 Evaluation of Context-Agnostic Conversion Tools

This section presents the results of evaluating existing, context-agnostic conversion tools for
mathematical formulae using our benchmark datasetMathMLben (cf. Section 2.3.2). We compare
the distances between the presentation MathML and the content MathML tree of a formula
yielded by each tool to the respective trees of formulae in the gold standard. We use the
tree edit distance with customized weights and math-specific shortcuts. The goal of shortcuts
is eliminating notational-inherent degrees of freedom, e.g., additional PL elements or layout
blocks, such as mrow or mfenced.

2.3.3.1 Tool Selection

We compiled a list of available conversion tools from the W3C35 wiki, from GitHub, and from
questions about automated conversion of mathematical LATEX to MathML on Stack Overflow.
We selected the following converters:

35https://www.w3.org/wiki/Math_Tools [accessed 2021-08-03]

48 Chapter 2

Mathematical Information Retrieval

https://www.w3.org/wiki/Math_Tools

Section 2.3. From Presentation to Content Languages

• LATExml: can convert generic and semantically annotated LATEX expressions to XML/
HTML/MathML. The tool is written in Perl [257] and is actively maintained. LATExml was
specifically developed to generate the DLMF web page and can therefore parse entire TEX
documents. LATExml also supports conversions to content MathML.

• LaTeX2MathML: is a small python project and is able to generate presentation MathML
from generic LATEX expressions [245].

• Mathoid: is a service developed using Node.js, PhantomJS and MathJax (a javascript
display engine for mathematics) to generate SVGs andMathML from LATEX input. Mathoid
is currently used to render mathematical formulae on Wikipedia [335].

• SnuggleTeX: is an open-source Java library developed at the University of Edin-
burgh [251]. The tool allows to convert simple LATEX expression to XHTML and
presentation MathML.

• MathToWeb: is an open-source Java-based web application that generates presentation
MathML from LATEX expressions36.

• TeXZilla: is a javascript web application for LATEX to MathML conversion capable of
handling Unicode characters37.

• Mathematical: is an application written in C and wrapped in Ruby to provide a fast
translation from LATEX expressions to the image formats SVG and PNG. The tool also
provides translations to presentation MathML38.

• CAS: we included Mathematica, which is capable of parsing LATEX expressions.

• Part-of-Math (POM) Tagger: is a grammar-based LATEX parser that tags recognized tokens
with information from a dictionary [402]. The POM tagger is currently under develop-
ment. In this paper, we use the first version. In [3], this version was used to provide
translations LATEX to the CAS Maple. In its current state, the program offers no export to
MathML. We developed an XML exporter to be able to compare the tree provided by the
POM tagger with the MathML trees in the gold standard.

2.3.3.2 Testing framework

We developed a Java-based framework that calls the programs to parse the corrected TEX input
data from the gold standard to presentation MathML, and, if applicable, to content MathML. In
case of the POM tagger, we parsed the input string to a general XML document. We used the
corrected TEX input format instead of the originally extracted string expressions, see 2.3.2.2.

Executing the testing framework requires the manual installation of the tested tools. The POM
tagger is not yet publicly available.

2.3.3.3 Results

Figure 2.5 shows the averaged structural tree edit distances between the presentation trees
(blue) and content trees (orange) of the generated MathML files and the gold standard. To

36https://www.mathtowebonline.com [accessed 2021-08-03]
37https://fred-wang.github.io/TeXZilla [accessed 2021-08-03]
38https://github.com/gjtorikian/mathematical [accessed 2021-08-03]

Chapter 2

Mathematical Information Retrieval
49

https://www.mathtowebonline.com
https://fred-wang.github.io/TeXZilla
https://github.com/gjtorikian/mathematical

Section 2.3. From Presentation to Content Languages

305 305
288 295 305

229

290
305 305

0

50

100

150

200

250

300

0
10
20
30
40
50
60
70
80

Su
cc

es
sf

ul
ly

 P
ar

se
d

Ex
pr

es
sio

ns

Tr
ee

 E
di

t D
ist

an
ce

Average Distance of Presentation Subtree
Average Distance of Content Subtree
Successfully Parsed LaTeX Expressions

Average of Structural Distances & Successfully
Parsed Expressions

Figure 2.5: Overview of the structural tree edit distances (using r = 0, i = d = 1) between the
MathML trees generated by the conversion tools and the gold standard MathML trees.

calculate the structural tree edit distances, we used the RTED [288] algorithm with costs of
i = 1 for inserting, d = 1 for deleting and r = 0 for renaming nodes. Furthermore, the Figure
shows the total number of successful transformations for the 305 expressions (black ticks).
Note that we also consider differences of the presentation tree to the gold standard as deficits,
because the mapping from LATEX expressions to rendered expressions is unique (as long as the
same preambles are used). A larger number indicates that more elements of an expression were
misinterpreted by the parser. However, certain differences between presentation trees might be
tolerable, e.g., reordering commutative expressions, while differences between content trees are
more critical. Also note that improving content trees may not necessarily improve presentation
trees and vice versa. In case of f(x + y), the content tree will change depending whether f
represents a variable or a function, while the presentation tree will be identical in both cases. In
contrast, a

b ,
a/b, and a/b have different presentation trees, while the content trees are identical.

Figure 2.6 illustrates the runtime performance of the tools. We excluded the CAS from the
runtime performance tests, because the system is not primarily intended for parsing LATEX ex-
pressions, but for performing complex computations. Therefore, runtime comparisons between
a CAS and conversion tools would not be representative. We measured the times required to
transform all 305 expressions in the gold standard and write the transformed MathML to the
storage cache. Note that the native code of LaTeX2MathML, Mathematical and LATExml were
called from the Java Virtual Machine (JVM) and Mathoid was called through local web-requests,
which increased the runtime of these tools. The figure is scaled logarithmically. We would
like to emphasize that LATExml is designed to translate sets of LATEX documents instead of single
mathematical expressions. Most of the other tools are lightweight engines.

50 Chapter 2

Mathematical Information Retrieval

Section 2.4. Mathematical Information Retrieval for LaTeX Translations

372,76

29,65

20,77

9,57

4,17

3,69

1,79

1,41

1,00 10,00 100,00 1000,00

LatexML

Mathoid

Mathematical

Latex2MML

MathToWeb

POM

SnuggleTeX

TeXZilla

Performance of Tools

 Duration in Seconds

Figure 2.6: Time in seconds required by each tool to parse the 305 gold standard LATEX expressions
in logarithmic scale.

In this benchmark, we focused on the structural tree distances rather than on distances in
semantics. While our gold standard provides the information necessary to compare the extracted
semantic information, we will focus on this problem in future work.

2.3.4 Summary of MathML Converters

We make available the first benchmark dataset to evaluate the conversion of mathematical
formulae between presentation and content formats. During the encoding process for our
MathML-based gold standard, we presented the conceptual and technical issues that conversion
tools for this task must address. Using the newly created benchmark dataset, we evaluated
popular context-agnostic LATEX-to-MathML converters. We found that many converters simply
do not support the conversion from presentation to content format, and those that did often
yielded mathematically incorrect content representations even for basic input data. These
results underscore the need for future research on mathematical format conversions.

Of the tools we tested, LATExml yielded the best conversion results, was easy to configure,
and highly extensible. However, these benefits come at the price of a slow conversion speed.
Due to its comparably low error rate, we chose to extend the LATExml output with semantic
enhancements.

2.4 Mathematical Information Retrieval for LaTeX Translations

In the following, we will briefly discuss related work in the Mathematical Information Retrieval
(MathIR) arena in order to find existing practical approaches for a translation from presen-
tational to computable formats. MathIR is the research area that aims to retrieve additional
(generally semantic) information about mathematical content [141]. In turn, the task of trans-
lating mathematical presentational formats to computable formats is part of this research area

Chapter 2

Mathematical Information Retrieval
51

Section 2.4. Mathematical Information Retrieval for LaTeX Translations

since it requires a context-dependent semantification39, i.e., the semantic enhancement or en-
richment of mathematical objects with additional information. One of the most well-studied
tasks in MathIR40 is searching for relevant mathematical expressions or content [21, 22, 241, 346,
405, 408]. However, successful solutions in this area focus on similarity measures and do not
necessarily require a deep understanding of the meaning and content of a formula. Likewise,
other tasks in MathIR, such as entity linking, use similarity measures to retrieve connections
between entities rather than semantic relatedness [208, 319, 321]. Thus, many related work in
MathIR is not particularly beneficial for translating presentational encodings to computable
formats. One of the reasons for this research gap is presumably a semantic version of the chicken
or the egg causality dilemma. On the one hand, semantically enriching mathematical objects in
an expression require identifying the meaningful objects. On the other hand, identifying those
meaningful objects requires semantic information about those objects. In other words, if we

want to annotate P
(α,β)
n (x) with Jacobi polynomial in our use case equation (1.1), we need to

know that P
(α,β)
n (x) refers to the Jacobi polynomial.

Figure 2.7 illustrates this issue by splitting a math expression into four layers of mathematical
objects. The identifier layer contains all identifiers (which may include general symbols and
numbers too). The arithmetic layer contains arithmetic structures that combine tokens from
the identifier layer to mathematical terms. This layer may include logic terms, sets, and other
mathematical concepts with specific notations. The function layer combines elements from the
lower layers to entire function calls. The top expression layer contains entire expressions in
documents which are often a composition of elements in the previous layers. The difference of
elements in the function and arithmetic layer is the ambiguity of the notations. Elements in
the arithmetic layer generally do not need to be mapped to specific keywords in CAS because
they are often semantically unique. In contrast, elements in the function layer are potentially
ambiguous. However, a clear distinction between both layers is not always necessary and
may even confuse in other MathIR related scenarios. For our task, the distinction is beneficial
because elements in the function layer must be mapped to specific keywords in the CAS syntax,
while elements in the arithmetic layer can be mostly ignored.

Existing MathIR tasks focus on semantically enhancing either the expression [208, 209, 215],
arithmetic [93, 242, 339], or the identifier [121, 279, 329, 330, 339, 400] layer, missing the
important function layer entirely. An algorithm needs to understand the involved functions to
identify objects in the function layer. This dilemma is usually avoided in MathIR tasks since
objects in the other layers can be extracted primarily context-independently. The meaning of
arithmetic operators usually does not change (e.g., +, −, or /) and math identifiers can often be
presumed to be Latin or Greek letters. The function layer, however, contains the most crucial
objects for the translation task. Identifiers generally represent mutable objects, such as variables
or parameters, and do not require specific mapping rules. Similarly, arithmetic operations are
natively supported by most mathematical software. Finally, objects in the expression layers are
often too abstract (because they are compositions of multiple objects) and cannot be mapped
as a whole to a single logic procedure in a computable format.

There are approaches available that try to semantically enrich elements in the function layer.
However, most of these semantic enrichment approaches focus solely on mathematical ex-
pressions themselves and do not analyze textual information [159, 259, 270, 339, 364, 374].

39Also often called semantic enrichment.
40For an extensive review of retrieval approaches for mathematical formulae, see also [326, Chapter 2].

52 Chapter 2

Mathematical Information Retrieval

Section 2.4. Mathematical Information Retrieval for LaTeX Translations

Expression
Layer

Identifier
Layer

Function
Layer

Arithmetic
Layer

Figure 2.7: Four different layers of math objects in a single mathematical expression. The red
highlights in the function and arithmetic layer refer to the fixed structure (or stem) of the
function or operator. Gray tokens are mutable. Elements in the arithmetic layer are generally
understood without further mappings and are mostly context-independent while elements in
the function layer must be mapped to specific procedures in CAS and require disambiguation.
However a strict distinction is not always required and might be even confusing. For example,
n! is mostly understood by CAS and context-independent but can (and sometimes should) be
mapped to the specific factorial procedure making it more to an element of the function layer.

Approaches that take the textual context of a formula into account, on the other hand, do not
semantically enrich objects in the function layer. Instead, they focus on other specific appli-
cations, including math embeddings with the goal of a semantic vector representation [121,
215, 360, 400, 404], entity linking [208, 212, 316, 321], math word problem solving [285, 409],
semantic annotation [183, 214, 279, 329, 330], and context-aware math search engines [93, 122,
124, 145, 210, 211, 232, 273, 314, 315, 366]. Regarding translating mathematical expressions from
a lower level of semantics to a higher level, relevant literature is limited. The main relevant
related literature for our task include semantic tagging [71, 402], annotations [139, 183, 214, 279,
329, 330], and term disambiguations [339]. In the following, we distinguish semantic tagging
(the task of precisely tagging math objects with a pre-defined set of semantic tags) and semantic
annotation (the task of adding any number of relevant descriptions to math objects).

Semantic Tagging and Term Disambiguation Semantic tagging of mathematical tokens
has rarely been studied in the past and has not reached a well-established reliability level yet. To
the best of our knowledge, only Chien et al. [71] (2015) and Youssef [402] (2017) addressed the
issue for semantic tokenization of math formulae. Youssef [402] created the POM tagger, which
tags tokens in the LATEX parse tree with additional information from a manually crafted lexicon.
The POM tagger is still a work in progress and does not perform disambiguation steps yet. In the
future, it is planned to reduce the number of possible tags for a token by analyzing the textual
context and eliminating false tags. Ideally, the extracted context information results in a single,
unique tag for each token. However, no update of the POM tagger, including the disambiguation
steps, has been published so far. Recently, however, Shan and Youssef [339] presented several
machine learning approaches as the first step towards disambiguation of mathematical terms.
They trained different models on the semantic DLMF dataset and successfully disambiguated

Chapter 2

Mathematical Information Retrieval
53

Section 2.4. Mathematical Information Retrieval for LaTeX Translations

prime notations with an F1 score of 0.83. However, if the models only adapted the relatively
strict DLMF notation style for primes or if they are also able to disambiguate other real-world
data has not been discussed.

Chien et al. [71] proposed a probabilistic model on entire document collections to conclude
semantic tags of mathematical tokens. They focused on tagging single identifiers (i.e., no groups
of tokens). They constituted that the consistency property and user habits are critical aspects for
successful tag disambiguation. With user habits, the authors referred to the different education
levels and expertise of users so that a model can predict the preferred notation for specific
semantics. The consistency property refers to the assumption that the meaning of a single
term does not change within a certain context, e.g., a document. Recent efforts on annotating
mathematical symbols by Asakura et al. [1], however, indicate that the scope of consistent tags
could be significantly smaller than an entire document or a document collection. The semantics
of frequently used symbols, such as x or t, may even change within single paragraphs. Another
interesting counterexample is the connection between Euler numbers and Euler polynomials [98,
(24.2.9)] in

En = 2n En

(1
2

)
. (2.3)

While clearly connected, the first E refers to the Euler number but the second E refers to Euler
polynomials. This underlines that under special circumstances, even within the scope of a single
equation, an identifier may refer to two different mathematical concepts. Chien et al. reported
a maximum accuracy of 0.94.

Semantic Annotation Task While the task of semantic annotation has been studied more
comprehensively, none of these existing approaches tried to convert the source expressions
into a computable format [139, 183, 214, 279, 329, 330]. Grigore et al. [139], Nghiem et al. [269],
Pagel et al. [279], Schubotz et al. [329, 330], and Kristianto et al. [214] analyze nouns or noun
phrases in the surrounding context of a formula to semantically annotate an entire expression
or parts of an expression. Only Grigore et al. [139] tried to use this information to perform a
translation to a semantically enhanced format, here content MathML. The authors deduced a
CD entry for a math symbol by calculating the similarity of the nouns surrounding the symbol
and the textual description (or more precisely: the cluster of nouns in that description) of the
CD entry. They measured the similarity with distributional properties fromWordNet [261]. The
other approaches either use the gained semantic information to improve search engines [214,
269] or enable entity linking [279, 329, 330]. While other semantification approaches exist that
elevate source presentational formats to a semantically enriched format [245, 251, 257, 270, 271,
364, 391], none of them take the textual context into account. Some of them, however, perform
disambiguation steps by considering other mathematical expressions in the same document
(again presuming a semantic consistency ofmath notation within a single document as proposed
by Chien et al. [71]) [270, 271]. None of the previous work considered the possibility of an
identifier that has multiple meanings within a single formula, as shown in equation (2.3).

Summary In summary, semantic enriching approaches avoid the essential function layer [159,
259, 270, 364, 374], ignore the textual context surrounding a formula [71, 245, 251, 257, 270, 271,
296, 364, 391], or does not use the extracted information for a translation towards a semantic
enhanced format [183, 214, 279, 329, 330, 402]. Nonetheless, the related work underlines the
benefits of analyzing the textual context of a formula. More importantly, the research has

54 Chapter 2

Mathematical Information Retrieval

https://dlmf.nist.gov/24.2.9

Section 2.4. Mathematical Information Retrieval for LaTeX Translations

shown that even simple noun phrase extraction provide viable information for numerous of
applications [139, 183, 214, 279, 329, 330]. Thismotivated us to apply these promising approaches
for our semantification pipeline too.

Regarding the final translations towards computable formats, our comprehensive analysis of
LATEX to MathML conversion tools in the previous section revealed that we probably gain no
benefits from translating LATEX to MathML in an intermediate step. While many CAS provide
import functions forMathML, there is no substantial support forOpenMath CDs. Another option
would be OpenMath, since the SCSCP protocol uses OpenMath for inter-CAS communications.
However, the SCSCP is relatively complex for our task and difficult to extend for new CAS if
we do not have access to the internal libraries. Additionally, there are no translation tools from
LATEX to OpenMath even though LATExml can be exploited to realize rule-based translations.

In a previous research project, we developed LACAST, a semantic LATEX to CAS translator, specifi-
cally for the DLMF [3, 13]. The goal of LACAST was to translate DLMF formulae, given in semantic
LATEX, to the CAS Maple. The semantic LATEX macros reduced the ambiguity in mathematical
expressions and enabled LACAST to focus on other translation issues, such as definition disparity
between the DLMF and Maple. Hence, we already established a reliable and expandable trans-
lation pipeline from semantic LATEX to Maple. As a consequence, we focus our efforts on the
more promising semantification of LATEX to semantic LATEX rather than from LATEX to content
MathML in this thesis41.

41Since the original development of LACAST was part of my Master’s thesis, the content of the associated early
publications [3, 13] is not reused in this thesis. For more details about LACAST, see [13].

Chapter 2

Mathematical Information Retrieval
55

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

You must strive to find your own voice because the longer you

wait to begin, the less likely you are going to find it at all.

John Keating - Dead Poet Society

CHAPTER 3

Semantification of Mathematical LaTeX

Contents

3.1 Semantification via Math-Word Embeddings . 59

3.1.1 Foundations and Related Work . 61

3.1.1.1 Word Embedding . 62

3.1.2 Semantic Knowledge Extraction . 63

3.1.2.1 Evaluation of Math-Embedding-Based Knowledge Ex-
traction . 64

3.1.2.2 Improvement by Considering the Context 65

3.1.2.3 Visualizing Our Model . 66

3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches . . . 68

3.1.4 The Future of Math Embeddings . 70

3.2 Semantification with Mathematical Objects of Interest . 70

3.2.1 Related Work . 72

3.2.2 Data Preparation . 72

3.2.2.1 Data Wrangling . 73

3.2.2.2 Complexity of Math . 75

3.2.3 Frequency Distributions of Mathematical Formulae 76

3.2.3.1 Zipf’s Law . 77

3.2.3.2 Analyzing and Comparing Frequencies 79

3.2.4 Relevance Ranking for Formulae . 81

3.2.5 Applications . 87

3.2.6 Outlook . 91

3.3 Semantification with Textual Context Analysis . 91

3.3.1 Semantification, Translation & Evaluation Pipeline 91

In this chapter, we will focus on the research task II, i.e., we develop a new semantification
process that addresses the issues of existing approaches outlined in the previous chapter. We
identified two main issues with existing MathIR approaches for disambiguation and seman-
tification of LATEX expressions. First, many semantification approaches solely focus on single
tokens, such as identifiers, or the entire mathematical expression but miss to enrich the essential
subexpressions between both extremes semantically. Second, existing translation approaches
lack context sensitivity and disambiguate expressions by following an internal (often hidden)

57
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_3&domain=pdf

context-agnostic decision process. This chapter addresses these issues within three parts.
First, we elaborate on the capabilities of word embedding techniques to semantically enrich
mathematical expressions. Second, we study the frequency distribution of mathematical subex-
pressions in scientific corpora to understand the variety and complexity of subexpressions
better. Third, we briefly outline a context-sensitive translation pipeline based on the gained
knowledge from the first two parts.

The primary goal of this chapter is to develop a context-sensitive LATEX to CAS translation
pipeline. Unfortunately, it is not clear where we can find sufficient semantic information in
the context to perform reliable translations. We can expect a certain amount of inclusive
information in the given expression itself [54, 71, 394]. Additionally, related work has proven
that noun phrases in the nearby textual context (such as the leading or following sentences of
a formula) can successfully disambiguate math formulae [139, 209, 213, 329]. However, many
functions are not necessarily declared in the surrounding context because the author presumes
the interpretation is unambiguous. Wolska and Grigore [394] have shown that only around
70% of mathematical identifiers are explicitly declared in the surrounding context. In this case,
the location of the information that disambiguates the expression may vary greatly depending
on many factors, such as the expected education level of the target audience of the article, the
given references in the document, or even the author’s preferred notation style. One possible
solution for exploiting this source of semantic information is to build a common knowledge
database for mathematical expressions.

As a first attempt to automatically build such a common knowledge database that stores the
standard, i.e., most common, meanings of mathematical symbols, we explore the capabilities
of machine learning algorithms in the first part of this chapter. Specifically, we use word
embeddings to train common co-occurrences of mathematical and natural language tokens.
We will show that this approach is not as successful as we hoped for our knowledge extraction
task but enables new approaches for mathematical search engines. Further, the results will
once again underline the issues with the interpretation of nested mathematical objects. Word
embeddings for mathematical tokens are mainly unable to properly train the connections with
defining expressions in the context because they still ignore the function layer of mathematical
expressions. In the following, we focused our studies on mathematical subexpressions.

As a thought experiment, consider mathematical expressions are like entire sentences in natural
languages rather than single words. Following this analogy, entire math terms are analog to
words, and the notation of mathematical expressions certainly follow a specific grammar [54].
However, ourmathematical sentences have one distinct difference compared to natural language
sentences. The grammar of mathematical expressions is built around a nested structure in
contrast to the sequential order of words. For example, a math term representing a variable is
a placeholder and can be replaced with arbitrarily complex and deeply nested subexpressions
without violating any grammatical rules. This nested structure makes the semantic tokenization
of mathematical expressions to a complex and eventually context-dependent task [71, 402]. In
order to review our analogy, we perform the most extensive notation analysis of mathematical
subexpressions (since those are the potential words) on two real-world scientific datasets. We
discovered that the frequency distributions of mathematical objects obey Zipf’s law, similar
to words in natural language corpora. In turn, we can use frequency-based retrieval functions
to distinguish important or informative mathematical objects from stop-word-like structures.
We coin these essential and informative objects Mathematical Objects of Interest (MOI). The

58 Chapter 3

Semantification of Mathematical LaTeX

Section 3.1. Semantification via Math-Word Embeddings

success of this new interpretation finally motivated us to move away from the established
MathIR techniques that focus on single identifiers or entire math expressions to meaningful
subexpressions. Hence, we conclude this chapter with an abstract context-sensitive translation
approach that finally attributes to the nested grammar of mathematical formulae and is based
on the new concept of MOI.

In summary, this chapter is organized as follows. In Section 3.1, we explore the capabilities of
word embeddings to discover common co-occurrences of natural language tokens and math
tokens in large scientific datasets. In Section 3.2, we introduce the new concept of MOI and
perform the first extensive frequency distribution study of mathematical notations in two large
scientific corpora. Section 3.3 concludes the findings of the previous sections by introducing a
novel context-sensitive translation approach from LATEX to CAS expressions. Section 3.1 was
published as an article in the Scientometrics journal [15]. Section 3.2 was published as full
paper at the WWW conference [14]. Excerpts of Section 3.3 have been published at the ICMS
conference in a full paper [10].

3.1 Semantification via Math-Word Embeddings

Mathematics is capable of explaining complicated concepts and relations in a compact, precise,
and accurate way. Learning this idiom takes time and is often difficult, even to humans. The
general applicability of mathematics allows a certain level of ambiguity in its expressions. Short
explanations ormathematical expressions are often used to mitigate the ambiguity problem, that
serve as a context to the reader. Along with context-dependency, inherent issues of linguistics
(e.g., ambiguity, non-formality) make it even more challenging for computers to understand
mathematical expressions. Nevertheless, a system capable of automatically capturing the se-
mantics of mathematical expressions would be suitable for improving several applications, from
search engines to recommendation systems. Word embedding [33, 34, 43, 65, 73, 217, 222, 239,
250, 255, 272, 293, 295] has made it possible to apply deep learning in NLP with great effect.
That is because embedding represents individual words with numerical vectors that capture
contextual and relational semantics of the words. Such representation enables inputting words
and sentences to a Neural Network (NN) in numerical form. This allows the training of NNs
and using them as predictive models for various NLP tasks and applications, such as semantic
role modeling [149, 412], word-sense disambiguation [160, 305], sentence classification [186],
sentiment analysis [344], coreference resolution [223, 388], named entity recognition [72], read-
ing comprehension [75], question answering [234], natural language inference [69, 137], and
machine translation [97]. The performance of word embedding in NLP tasks has been measured
and shown to deliver fairly high accuracy [256, 293, 295].

Asmath text consists of natural text as well asmath expressions that exhibit linear and contextual
correlation characteristics that are very similar to those of natural sentences, word embedding
applies to math text much as it does to natural text. Accordingly, it is worthwhile to explore
the use and effectiveness of word embedding in Mathematical Language Processing (MLP),
Mathematical Knowledge Management (MKM), and MathIR. Still, math expressions and math
writing styles are different from natural text to the point that NLP techniques have to undergo
significant adaptations and modifications to work well in math contexts.

While some efforts have started to apply word embedding to MLP, such as equation embed-
ding [121, 9, 215, 400, 404], there is a healthy skepticism about the use of ML and Deep Learning

Chapter 3

Semantification of Mathematical LaTeX
59

Section 3.1. Semantification via Math-Word Embeddings

(DL) in MLP and MKM, on the basis that much work is still required to prove the effective-
ness of DL in MLP. To learn how to adapt and apply DL in the MLP/MKM/MathIR context is
not an easy task. Most applications of DL in MLP/MKM/MathIR rest on the effectiveness of
word/math-term embedding (henceforth math embedding) because the latter is the most basic
foundation in language DL. Therefore, it behooves us to start to look at the effectiveness of
math embedding in basic tasks, such as term similarity, analogy, information retrieval, and basic
math search, to learn more about their extension and limitations. More importantly, we need
to learn how to refine and evolve math embedding to become accurate enough for more severe
applications, such as knowledge extraction. That is the primary objective of this section.

To that effect, there is a fundamental need for datasets and benchmarks, preferably standard
ones, to allow researchers to measure the performance of various math embedding techniques,
and applications based on them, in an objective and statistically significant way, and to measure
improvements and comparative progress. Such resources are abundant in the natural language
domain but scarce in the MLP domain. Developing some of such datasets and benchmarks will
hopefully form the nucleus for further development by the community to facilitate research
and speed up progress in this vital area of research.

While the task of creating such resources forDL applications inMLP can be long and demanding,
the examination of math embedding should not wait but should proceed right away, even if
in an exploratory manner. Early evaluations of math embedding should ascertain its value
for MLP/MKM/MathIR and inform the process and trajectory of creating the corpora and
benchmarks. Admittedly, until adequate datasets and benchmarks become available for MLP,
we have to resort to less systematic performance evaluation and rely on performing preliminary
tests on the limited resources available. The DLMF [98] and arXiv.org preprint archive1 are
good resources to start our exploratory embedding efforts. The DLMF offers high quality, and
the authors are familiar with its structure and content (which aids in crafting some of the tests).
As for the arXiv collection, its large volume of mostly math articles makes it an option worth
to investigate as well.

In this section, we provide an exploratory investigation of the effectiveness and use of word
embedding in MLP and MKM through different perspectives. First, we train word2vec models
on the DLMF and arXiv with slightly different approaches for embedding math. Since the
DLMF is primarily a handbook of mathematical equations, it does not provide extensive textual
content. We will show that the DLMF trained model is appropriate to discover mathematical
term similarities and term analogies, and to generate query expansions. We hypothesize that
the arXiv trained models are beneficial to extract definiens, i.e., textual descriptive phrases for
math terms. We examine the possible reasons why the word embedding models, trained on the
arXiv dataset, does not present valuable results for this task. Besides, we discuss some of the
reasons that we believe thwart the progress in MathIR in the direction of machine learning. In
summary, we focus on five tasks (i) term similarity, (ii) math analogies, (iii) concept modeling,
(iv) query expansion, and (v) knowledge extraction. In the context of this thesis, we are mostly
interested in the latter, i.e., knowledge extractions, and will solely focus on these experiments
and results. For the tasks (i-iv), see [15].

1https://arxiv.org/ [accessed 2019-09-01]

60 Chapter 3

Semantification of Mathematical LaTeX

https://arxiv.org/

Section 3.1. Semantification via Math-Word Embeddings

3.1.1 Foundations and Related Work

Understanding mathematical expressions essentially mean comprehending the semantic value
of its internal components, which can be accomplished by linking its elements with their
corresponding mathematical definitions. Current MathIR approaches [213, 329, 330] try to
extract textual descriptors of the parts that compose mathematical equations. Intuitively, there
are questions that arise from this scenario, such as (i) how to determine the parts which have
their own descriptors, and (ii) how to identify correct descriptors over others.

Answers to (i) are more concerned in choosing the correct definitions for which parts of a
mathematical expression are considered as one mathematical object [197, 18, 402]. Current
definition-languages, such as the content MathML 3.02 specification, are often imprecise3. For
example, content MathML 3.0 uses ‘csymbol’ elements for functions and specifies them as
expressions that refer to a specific, mathematically-defined concept with an external definition4.
However, in case of the Van der Waerden number, for instance, it is not clear whether W or
the sequence W (r, k) should be declared as a ‘csymbol’. Another example involves content
identifiers, which MathML specifies as mathematical variables that have properties, but no fixed

value5. While content identifiers are allowed to have complex rendered structures (e.g., β2
i), it

is not permitted to enclose identifiers within other identifiers. Let us consider αi, where α is a
vector and αi its i-th element. In this case, αi should be considered as a composition of three
content identifiers, each one carrying its own individualized semantic information, namely the
vector α, the element αi of the vector, and the index i. However, with the current specification,
the definition of these identifiers would not be canonical. One possible workaround to represent
such expressions with content MathML is to use a structure of four nodes, interpreting αi as
a function via a ‘csymbol’ (one parent ‘apply’ node with the three children vector-selector, α,
and i). However, ML algorithms and MathIR approaches would benefit from more precise
definitions and a unified answer for (i). Most of the related work relies on these relatively vague
definitions and in the analysis of content identifiers, focusing their efforts on (ii).

Questions (i), (ii), and other pragmatic issues are already in discussion in a bigger context, as
data production continues to rise and digital repositories seem to be the future for any archive
structure. A prominent example is the National Research Council’s effort to establish what they
call the Digital Mathematical Library (DML)6, a project under the International Mathematical
Union. The goal of this project is to take advantage of new technologies and help to solve
the inability to search, relate, and aggregate information about mathematical expressions in
documents over the web.

The advances most relevant to our work are the recent developments in word embedding [43,
65, 73, 256, 293, 295, 313]. Word embedding takes as input a text collection and generates a
numerical feature vector (typically with 100 or 300 dimensions) for each word in the collection.
This vector captures latent semantics of a word from the contexts of its occurrences in the

2https://www.w3.org/TR/MathML3/ [accessed 2019-09-01]
3Note that OpenMath is another specification designed to encode semantics of mathematics. However, content

MathML is an encoding of OpenMath and inherent problems of content MathML also apply to OpenMath (see
https://www.openmath.org/om-mml/ [accessed 2019-09-01]).

4https://www.w3.org/TR/\gls{mathml}3/chapter4.html#contm.csymbol [accessed 2019-09-01]
5https://www.w3.org/TR/\gls{mathml}3/chapter4.html#contm.ci [accessed 2019-09-01]
6https://www.nap.edu/read/18619 [accessed 2019-09-01]

Chapter 3

Semantification of Mathematical LaTeX
61

https://www.w3.org/TR/MathML3/
https://www.openmath.org/om-mml/
https://www.w3.org/TR/\gls {mathml}3/chapter4.html#contm.csymbol
https://www.w3.org/TR/\gls {mathml}3/chapter4.html#contm.ci
https://www.nap.edu/read/18619

Section 3.1. Semantification via Math-Word Embeddings

collection; in particular, words that often co-occur nearby tend to have similar feature vectors
(where similarity is measured by the cosine similarity, the Euclidean distance, etc.).

Recently, more andmore projects try to adapt theseword embedding techniques to learn patterns
of the correlations between context andmathematics. In the work of Gao et al. [121], they embed
single symbols and train a model that can discover similarities between mathematical symbols.
Similarly to this approach, Krstovski and Blei [215] uses a variation of word embedding to
represent complex mathematical expressions as single unit tokens for IR. In 2019, Yusanaga and
Lafferty [400] explore an embedding technique based on recurrent neural networks to improve
topic models by considering mathematical expressions. They state their approach outperforms
topic models that do not considermathematics in text and report a topic coherence improvement
of 0.012 over the LDA7 baseline. Equation embedding, as in [121, 215, 400], present promising
results for identifying similar equations and contextual descriptive keywords. In the following,
we will explore in more detail different techniques of word embedding.

3.1.1.1 Word Embedding

In this section, we apply word2vec [256] on the DLMF [98] and on the collection of arXiv docu-
ments for generating embedding vectors for various math symbols and terms. The word2vec
technique computes real-valued vectors for words in a document using two main approaches:
skip-gram and continuous bag-of-words (CBOW). Both produce a fixed-length n-dimensional
vector representation for each word in a corpus. In the skip-gram training model, one tries to
predict the context of a given the word, while CBOW predicts a target word given its context.
In word2vec, context is defined as the adjacent neighboring words in a defined range, called
a sliding window. The main idea is that the numerical vectors representing similar words
should have close values if the words have similar context, often illustrated by the king-queen
relationship.

� King-Queen Relationship of Word-Embedding Vectors

The king-queen relationship describes the similarity (in terms of the cosine distance
between the vectors) of:

vking −
vman ≈
vqueen −
vwoman, (3.1)

where
vt represents the vector for the token t.

Extending word2vec’s approaches, Le and Mikolov [222] propose Paragraph Vectors, a frame-
work that learns continuous distributed vector representations for any size of text segments
(e.g., sentences, paragraphs, documents). This technique alleviates the inability of word2vec to
embed documents as one single entity. This technique also comes in two distinct variations:
Distributed Memory and Distributed Bag-of-Words, which are analogous to the skip-gram and
CBOW training models, respectively.

Other approaches also produce word embedding given a training corpus as input, such as
fastText [43], ELMo [295], and GloVe [293]. The choice for word2vec for our experiments is
justified because of its implementation ease, training speed using modest computing resources,

7Latent Dirichlet Allocation

62 Chapter 3

Semantification of Mathematical LaTeX

Section 3.1. Semantification via Math-Word Embeddings

general applicability, and robustness in several NLP tasks [160, 161, 229, 238, 302, 312]. Ad-
ditionally, in fastText they propose to learn word representations as a sum of the n-grams of
its constituent characters (sub-words). The sub-word structure would incorporate a certain
noise8 to our experiments. In ELMo, they compute their word vectors as the average of their
characters representations, which are obtained through a two-layer bidirectional language
model (biLM). This would bring even more granularity than fastText, as they consider each
character in a word as having their own n-dimensional vector representation. Another factor
that prevents us from using ELMo, for now, is its expensive training process9. Closer to the
word2vec technique, GloVe [293] is also considered, but its co-occurrence matrix would escalate
the memory usage, making its training for arXiv not possible at the moment. We also examine
the recently published Universal Sentence Encoder [65] from Google, but their implementa-
tion does not allow one to use a new training corpus, only to access its pre-calculated vectors
based on words. We also considered BERT [96] with its recent advances of Transformer-based
architectures in NLP as an alternative to word2vec. However, incorporating BERT and other
Transformer-based architectures would require a significant restructuring of the core idea of our
work. BERT is pre-trained in two general tasks that are not directly transferable to mathematics
embeddings: Masked Language Modelling and Next Sentence Prediction. Since this work is an
exploratory investigation of the potential of word embedding techniques in MLP and MKM, we
gave preference to tools that could be applied directly. Nonetheless, since some of our results
are promising, we plan to include Transformer-based systems, such as BERT [96], XLNet [399],
RoBERTa [235], and Transformers-XL [87], in future work.

The overall performance of word embedding algorithms has shown superior results in many
different NLP tasks, such as machine translation [256], relation similarity [161], word sense
disambiguation [55], word similarity [268, 312], and topic categorization [301]. In the same
direction, we also explore how well mathematical tokens can be embedded according to their
semantic information. However, mathematical formulae are highly ambiguous and, if not
properly processed, their representation is jeopardized.

To investigate the situations described in Sections 3.1.1.1 and 2.2.5 we applied word2vec on
two different scenarios, one focusing on MathIR (DLMF) and the other on semantic knowledge
extraction (arXiv), i.e., identifying definiens for math objects. To summarize our decisions, for
the DLMF and arXiv, we choose the stream of token embedding technique, i.e., each inner token
is represented as a single n-dimensional vector in the embedding model. For the DLMF, we
embed all inner tokens, while for the arXiv, we only embed the identifiers. In this thesis, we
are more interested in applying math embeddings to semantic extraction task. The MathIR task
is described in [15, Section 3].

3.1.2 Semantic Knowledge Extraction

Extracting definiens of mathematical objects from a textual context is a common task in
MathIR [214, 279, 329, 330, 405] that often provides a gold dataset for its evaluation. Since
the DLMF does not provide extensive textual information for its mathematical expressions, we
considered an alternative scenario in our analysis, one in which we trained a second word2vec
model on a much larger corpus composed of articles/papers from the arXiv collection. In this
section, we compare our findings against the approach by Schubotz et al. [330]. We apply varia-

8Noise means, the data consists of many uninteresting tokens that affect the trained model negatively.
9https://github.com/allenai/bilm-tf [accessed 2019-09-01]

Chapter 3

Semantification of Mathematical LaTeX
63

https://github.com/allenai/bilm-tf

Section 3.1. Semantification via Math-Word Embeddings

tions of a word2vec [256] and paragraph vectors [222] implementation to extract mathematical
relations from the arXMLiv 2018 [132] dataset (i.e., an HTML collection of the arXiv.org preprint
archive10), which is used as our training corpus. We also consider the subsets that do not report
errors during the document conversion (i.e., no_problem and warning) which represent 70% of
archive.org. We make the code, regarding our experiments, publicly available11.

3.1.2.1 Evaluation of Math-Embedding-Based Knowledge Extraction

As a pre-processing step, we represent mathematical expressions using the MathML12 notation.
First, we replace all mathematical expressions with the identifiers sequence it contains, i.e.,
W (2, k) is replaced by ‘W k’. We also add the prefix ‘math-’ to all identifier tokens to distin-
guish between textual and mathematical terms later. Second, we remove all common English
stopwords from the training corpus. Finally, we train a word2vec model (skip-gram) using the
following hyperparameters13: vector size of 300 dimensions, a window size of 15, minimum
word count of 10, and a negative sampling of 1E − 5. We justify the hyperparameter used in
our experiments based on previous publications using similar models [63, 221, 222, 255, 312].

In the following, distances between vectors are calculated via the cosine distance. The trained
model was able to partially incorporate semantics of mathematical identifiers. For instance,
the closest 27 vectors to the mathematical identifier f are mathematical identifiers themselves
and the fourth closest noun vector to f is ‘function’. We observe that the results of the model
trained on arXiv are comparable with our previous experiments on the DLMF.

Previously, we used the semantic relations between embedding vectors to search for relevant
terms in the model. Hereafter, we will refer to this algebraic property as semantic distance to a
given term with respect to a given relation, i.e., two related vectors. For example, to answer
the query/question: What is to ‘complex’ as x is to ‘real’, one has to find the closest semantic

vectors to ‘complex’ with respect to the relation between x and ‘real’, i.e., finding
v in

v −
vcomplex ≈
vx −
vreal.

Instead of asking for mathematical expressions, we will now reword the query to ask for specific
words. For example, to retrieve the meaning of f from the model, we can ask for: What is to
f as ‘variable’ is to x? Or in other words, what is semantically close to f with respect to the
relation between ‘variable’ and x? Table 3.1 shows the top 10 semantically closest results to f
with respect to the relations between
vvariable and
vx,
vvariable and
vy , and
vvariable and
va.

From Table 3.1, we can observe a similar behaviour. Later, we will explore that mathematical
vectors build a cluster in the trained model, i.e., that the vectors of
vf ,
vx, and
vy are close to
each other with respect to the cosine similarity. This cluster, and the fact that we did not use
stemming and lemmatization for preprocessing, explains that the top hit to the queries is always
‘variables’. To refine the order of the extracted answers, we calculated the cosine similarity
between
vf and the vectors for the extractedwords directly. Table 3.2 shows the cosine distances
between
vf and the extracted words from the query: Term is to f what ‘variable’ is to a.

10https://arxiv.org/ [accessed 2019-09-01]
11https://github.com/ag-gipp/math2vec [accessed 2019-09-01]
12The source TEX file has to use mathematical environments for its expressions.
13Non mentioned hyperparameters are used with their default values as described in the Gensim API [307]

64 Chapter 3

Semantification of Mathematical LaTeX

https://arxiv.org/
https://github.com/ag-gipp/math2vec

Section 3.1. Semantification via Math-Word Embeddings

Table 3.1: Analogies of the form: Find the Term where Term is a word that is to X what Y is to Z.

Top-10 best Terms and their cosine similarities where

Term is to f what

‘variable’ is to x
Term is to f what

‘variable’ is to y
Term is to f what

‘variable’ is to a

variables 0.7655 variables 0.7481 variables 0.7600
independent 0.7411 function 0.7249 function 0.7154
appropriate 0.7279 given 0.7103 appropriate 0.6925

means 0.7250 means 0.7083 independent 0.6789
ie 0.7234 ie 0.7067 instead 0.6784

instead 0.7233 independent 0.7030 defined 0.6729
namely 0.7139 thus 0.6925 namely 0.6719

function 0.7131 instead 0.6922 continuous 0.6707
following 0.7117 appropriate 0.6891 depends 0.6629
depends 0.7095 defined 0.6889 represents 0.6623

Asking for the meaning of f is a very generic question. Thus, we performed a detailed evaluation
on the first 100 entries14 of the MathMLben benchmark [18]. We evaluated the average of the
semantic distances with respect to the relations between
vvariable and
vx,
vvariable and
va, and

vfunction and
vf. We have chosen to test on these relations because we believe that these relations
are the most general and still applicable, e.g., seen in Table 3.2. In addition, we consider only
results with a cosine similarity equal to or greater than 0.70 to maintain a minimum quality
in our experiments. The overall results were poor, with a precision of p = .0023 and a recall
of r = .052. Despite the weak results, an investigation of some specific examples showed
interesting characteristics; for example, for the identifier W , the four semantically closest
results were functions, variables, form, and the mathematical identifier q. The poor performance
illustrates that there might be underlying issues with our approach. However, as mentioned
before, mathematical notation is highly flexible and content-dependent. Hence, in the next
section, we explore a technique that rearranges the hits according to the actual close context of
the mathematical expression.

3.1.2.2 Improvement by Considering the Context

We also investigate how a different word embedding technique would affect our experiments. To
do so, we trained a Distributed Bag-of-Words of Paragraph Vectors (DBOW-PV) [222] model. We
trained this DBOW-PV in the same corpus as our word2vec model (with the same preprocessing
steps) with the following configuration: 400 dimensions, a window size of 25, and minimum
count of 10 words. Schubotz et al. [330] analyze all occurrences of mathematical identifiers
and consider the entire article at once. We believe this prevents the algorithm from finding
the right descriptor in the text, since later or prior occurrences of an identifier might appear in
a different context, and potentially introduce different meanings. Instead of using the entire
document, we consider the algorithm by Schubotz et al. [330] only in the input paragraph and

14Same entries used in [330]

Chapter 3

Semantification of Mathematical LaTeX
65

Section 3.1. Semantification via Math-Word Embeddings

Table 3.2: The cosine distances of f regarding to the hits in Table 3.1.

Cosine distances between the

Terms from Table 3.1 to f

function 0.8138
defined 0.7932

independent 0.7323
namely 0.7214
depends 0.7022

represents 0.6983
instead 0.6837

appropriate 0.6698
continuous 0.6203
variables 0.5638

similar paragraphs given by our DBOW-PV model. Unfortunately, the obtained variance within
the paragraphs brings a high number of false positives to the list of candidates, which affects
the performance of the original approach negatively.

As a second approach for improving our system, we considered a given textual context to
reorder extracted words according to their cosine similarities to the given context. For example,
consider the sentence: ‘Let f(x, y) be a continuous function where x and y are arbitrary values.’.
We ask for the meaning of f concerning this given context sentence. The top-k closest words
to f in the word2vec model only represent the distance over the entire corpus, in this case,
arXiv, but not regarding a given context. To address this issue, we retrieved similar paragraphs
to our context example via the DBOW-PV model and computed the weighted average distance
between all top-k words, that are similar to f and the retrieved sentences. We expected that the
word describing f in our example sentence would also present a higher cosine similarity to the
context itself. Table 3.3 shows the top-10 closest words (i.e., we filtered out other math tokens)
and their cosine similarity to f in the left column. The right column shows the average cosine
similarities of the extracted words to the context example sentence we used and its retrieved
similar sentences.

As Table 3.3 illustrates, this context-sensitive approach was not beneficial; in fact it undermined
ourmodel. According to the fact that the identifier should be closer to the given context sentence
rather than to the related sentences retrieved from the DBOW-PV model, we also explored the
use of weighted average. However, the weighted average did not improve the results of the
normal average. Other hyperparameters for the word embedding models were also tested in an
attempt to tune our system. However, we could not determine any drastic changes regarding
the measured performances.

3.1.2.3 Visualizing Our Model

Figure 3.1 illustrates four t-SNE[154] plots of our word2vec model. Since t-SNE plots may
produce misleading structures [382], we plot four t-SNE plots with different perplexity values.

66 Chapter 3

Semantification of Mathematical LaTeX

Section 3.1. Semantification via Math-Word Embeddings

Table 3.3: We are looking for descriptive terms for f in a given context ‘Let f(x, y) be a

continuous function where x and y are arbitrary values’. To achieve this, we retrieved close
vectors to f and computed their distances to the given context sentence. To bring variety to
the context, we used our DBOW-PV model to retrieve related sentences to the given context
and computed the average distance of the words to these related sentences.

Top-10 closes words (no

math symbols) to f and their

cosine similarities.

After reordering the hits

according to their distances

to the context vector.

given 0.8162 case 0.8568
case 0.7960 corresponding 0.8562

corresponding 0.7957 note 0.8451
function 0.7900 thus 0.8414

note 0.7803 obtain 0.8413
thus 0.7726 ie 0.8335

obtain 0.7712 since 0.8250
value 0.7682 function 0.8086

ie 0.7656 value 0.8015
since 0.7583 given 0.7096

Other parameters were set to their default values according to the t-SNE python package.
We colored word tokens in blue and math tokens in red. The plots illustrate, though not
surprisingly, that math tokens are clustered together. However, a certain subset of math tokens
appear isolated from other math tokens. By attaching the content to some of the vectors,
we can see that math tokens, such as and (an and within math mode) and im (most likely
referring to imaginary numbers) are part of a second cluster of math tokens. The plot is similar
to the visualized model presented in [121], even though they use a different word embedding
technique. Hence, the general structure within math word2vec models seems to be insensitive
to the embedding technique of formulae used. Compared to [121], we provide a model with
richer details that reveal some dense clusters, e.g., numbers (bottom right plot at (11, 8)) or
equation labels (bottom right plot at (−14, 0)).

Based on the presented results, one can still argue thatmore settings should be explored (e.g., dif-
ferent parameters and embedding techniques) for the embedding phase, different pre-processing
steps (e.g., stemming and lemmatization) should be adopted, and post-processing techniques
(e.g., boosting terms of interest based on a knowledge database such as OntoMathPro [104, 105])
should also be investigated. This presumably solves some minor problems, such as removing
the inaccurate first hit in Table 3.1. Nevertheless, the overall results would not surpass the
ones in [330], which reports a precision score of p = 0.48. On the grounds that mathematics is
highly customizable, many of the defined relations between mathematical concepts and their
descriptors are only valid in a local scope. Let us consider an author that notates his algorithm
using the symbol π. The author’s specific use of π does not change its general use, but it affects
the meaning in the scope of the article. Current ML approaches only learn patterns of most
frequently used combinations, e.g., between f and ‘function’, as seen in Table 3.1.

Chapter 3

Semantification of Mathematical LaTeX
67

Section 3.1. Semantification via Math-Word Embeddings

Figure 3.1: t-SNE plot of top-1000 closest vectors of the identifier f with perplexity values 5
(top left), 10 (top right), 40 (bottom left), and 100 (bottom right) and the default values of the
t-SNE python package for other settings.

Even though math notations can change, such as π in the example above, one could assume the
existence of a common ground for most notations. The low performance of our experiments
compared to the results in [330] seem to confirm that math notations change regularly in
real-world documents, i.e., are tied to a specific context. If a common ground exists, for math
notations, it must be marginally small, at least in the 100 test cases from [18].

3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches

We assume the low performance regarding our knowledge extraction experiments are caused by
fundamental issues that should be discussed before more efforts are made to train ML algorithms
for extracting knowledge of math expressions. In the following, we discuss some reasons that
we believe can help ML algorithms to understand mathematics better.

It is reported that 70% of mathematical symbols are explicitly declared in the context [394].
Only four reasons justify an explicit declaration in the context: (a) a new mathematical symbol
is defined, (b) a known notation is changed, (c) used symbols are present in other contexts and
require specifications to be correctly interpreted, or (d) authors’ declarations are redundant
(e.g., for improving readability). We assume (d) is a rare scenario compared to the other ones
(a-c), except in educational literature. Current math-embedding techniques can learn semantic

68 Chapter 3

Semantification of Mathematical LaTeX

Section 3.1. Semantification via Math-Word Embeddings

connections only in that 70%, where the definiens is available. Besides (d), the algorithm
would learn either rare notations (in case of (a)) or ambiguous notations (in cases (b-c)). The
flexibility that mathematical documents allow to (re)define used mathematical notations further
corroborates the complexity of learning mathematics.

Learning algorithms would benefit from literature focused on (a) and (d), instead of (b) and (c).
Similar to students who start to learn mathematics, ML algorithms have to consider the structure
of the content they learn. It is hard to learn mathematics only considering arXiv documents
without prior or complementary knowledge. Usually, these documents represent state-of-the-
art findings containing new and unusual notations and lack of extensive explanations (e.g.,
due to page limitations). In contrast, educational books carefully and extensively explain new
concepts. We assume better results can be obtained if ML algorithms are trained in multiple
stages, first on educational literature, then on datasets of advanced math articles. A basic
model trained in educational literature should capture standard relations between mathematical
concepts and descriptors. This model should also be able to capture patterns independently of
how new or unusual the notations are present in the literature. In 2014, Matsuzaki et al. [247]
presented some promising results to answer mathematical questions from Japanese university
entrance exams automatically. While the approach involves many manual adjustments and
analysis, the promising results illustrate the different levels of knowledge that is still required
for understanding arXiv documents vs. university entrance level exams. A well-structured
digital mathematical library that distinguishes the different levels of sophistication in articles
(e.g. introductions vs. state-of-the-art publications) would also benefit mathematical machine
learning tasks.

The lack of references and applications that provide a solid semantic structure of natural lan-
guage for mathematical identifiers make the disambiguation process of the latter even more
challenging. In natural texts, one can try to infer the most suitable word sense for a word based
on the lemma15 itself, the adjacent words, dictionaries, and thesauri to name a few. However, in
the mathematical arena, the scarcity of resources and the flexibility of redefining their identifiers
make this issue much harder. The context text preceding or following the mathematical equa-
tion is essential for its understanding. This context can be considered in a long or short distance
away from the equation, which aggravates the problem. Thus, a comprehensive annotated
dataset that addresses these needs of structural knowledge would enable further progress in
MathIR with the help of ML algorithms.

Another primary source of complexity is the inherent ambiguity present in any language,
especially in mathematics. A typical workaround in linguistics for such ambiguous notations is
to consider the use of lexical databases (e.g., WordNet [116, 261]) to identify the most suitable
word senses for a given word. These databases allow embeddings algorithms to train a vector
for each semantic meaning for every token. For example, Java could have multiple vectors in
a single model according to its different meanings of the word, e.g., the island in the south of
Indonesia, the programming language or the coffee beans. However, mathematics lacks such
systems, which makes its adoption not feasible at the moment. Youssef [402] proposes the
use of tags, similarly to the PoS tags in linguistics, but for tagging mathematical TEX tokens,
bringing more information to the tokens considered. As a result, a lexicon containing several
meanings for a large set of mathematical symbols is developed. OntoMathPro [104, 105] aims for
generating a comprehensive ontology of mathematical knowledge and, therefore, also contain

15canonical form, dictionary form, or citation form of a set of words

Chapter 3

Semantification of Mathematical LaTeX
69

Section 3.2. Semantification with Mathematical Objects of Interest

information about the different meanings of mathematical tokens. Such dictionaries might
enable the disambiguation approaches in linguistics to be used in mathematical embedding in
the near future.

Another issue in recent publications is the lack of standards and the scarcity of benchmarks
to properly evaluate MathIR algorithms. Krstovski and Blei [215], and Yasunaga and Laf-
ferty [400] provide an interesting perspective on the problem of mathematic embeddings. Their
experiments are focused on math-analogies. Our findings on Section 3.2 corroborate with the
math-analogies results, as our experiments have comparable results in a controlled environ-
ment. However, because of a missing well-established benchmark, we, as well the mentioned
publications, are only able to provide incipient results. Existing datasets are often created
for and, therefore, limited to specific tasks. For example, the NTCIR math tasks [21, 22, 405]
or the upcoming ARQMath16 task, provide datasets that are specifically designed to tackle
problems of mathematical search engines. The secondary task of ARQMath actually search for
math-analogies. In general, a proper, common standard for interpreting semantic structures of
mathematics (see for example the mentioned problems with αi in Section 2) would be beneficial
for several tasks in MathIR, such as semantic knowledge extraction.

3.1.4 The Future of Math Embeddings

As we explored through this section, our preliminary results stress the urgent need for creating
extensive math-specific benchmarks for testing math embedding techniques on math-specific
tasks. To appreciate more the magnitude and dimensions of creating such benchmarks, it is
instructive to look at some of those developed for NLP whose tasks can beneficially inform
and guide corresponding tasks in MLP. The NLP benchmarks include one for natural language
inference [47], one for machine comprehension [306], one for semantic role modeling [281],
and one for language modeling [68], to name a few. With such benchmarks, which are often de

facto standards for the corresponding NLP tasks, the NLP research community has been able
to (1) measure the performance of new techniques up to statistical significance, and (2) track
progress in various NLP techniques, including deep learning for NLP, by quickly comparing
the performance of new techniques to others and to the state-of-the-art.

While our exploratory studies regarding our term similarities, analogies, and query expansions
need extensive future experimentation for statistically significant validation on large datasets
and benchmarks, they show some of the promise and limitations of word embedding in math
(MLP) applications. Especially its applicability for our desired knowledge extraction process is
highly questionable. One of the main issues we encountered for embedding mathematics is the
inability to model the nested semantic structure of mathematical expressions. In the following,
we will further explore properties of mathematical subexpressions by analyzing their frequency
distributions in large datasets.

3.2 Semantification with Mathematical Objects of Interest

As discussed before, math expressions often contain meaningful and important subexpressions.
MathIR [141] applications could benefit from an approach that lies between the extremes of

16https://www.cs.rit.edu/~dprl/ARQMath/ [accessed 2020-02-01]

70 Chapter 3

Semantification of Mathematical LaTeX

https://www.cs.rit.edu/~dprl/ARQMath/

Section 3.2. Semantification with Mathematical Objects of Interest

examining only individual symbols or considering an entire equation as one entity. Consider
for example, the explicit definition for Jacobi polynomials [98, (18.5.7)]

� The Explicit Definition of Jacobi Polynomials

P (α,β)
n (x) = Γ(α + n + 1)

n! Γ(α + β + n + 1)

n∑
m=0

(
n

m

)
Γ(α + β + n + m + 1)

Γ(α + m + 1)

(
x − 1

2

)m

(3.2)

The interesting components in this equation are P
(α,β)
n (x) on the left-hand side, and the ap-

pearance of the gamma function Γ(s) on the right-hand side, implying a direct relationship
between Jacobi polynomials and the gamma function. Considering the entire expression as a
single object misses this important relationship. On the other hand, focusing on single symbols
can result in the misleading interpretation of Γ as a variable and Γ(α+n+1) as a multiplication
between Γ and (α + n + 1). A system capable of identifying the important components, such

as P
(α,β)
n (x) or Γ(α + n + 1), is therefore desirable. Hereafter, we define these components as

Mathematical Objects of Interest (MOI) [9].

The importance of math objects is a somewhat imprecise description and thus difficult to mea-
sure. Currently, not much effort has been made in identifying meaningful subexpressions.
Kristianto et al. [214] introduced dependency graphs between formulae. With this approach,
they were able to build dependency graphs of mathematical expressions, but only if the expres-
sions appeared as single expressions in the context. For example, if Γ(α + n + 1) appears as
a stand-alone expression in the context, the algorithm will declare a dependency with Equa-
tion (3.2). However, it is more likely that different forms, such as Γ(s), appear in the context.
Since this expression does not match any subexpression in Equation (3.2), the approach cannot
establish a connection with Γ(s). Kohlhase et al. studied in [191, 193, 196] another approach
to identify essential components in formulae. They performed eye-tracking studies to identify
important areas in rendered mathematical formulae. While this is an interesting approach that
allows one to learn more about the insights of human behaviors of reading and understanding
math, it is inaccessible for extensive studies.

This section presents the first extensive frequency distribution study of mathematical equations
in two large scientific corpora, the e-Print archive arXiv.org (hereafter referred to as arXiv17)
and the international reviewing service for pure and applied mathematics zbMATH18. We will
show that math expressions, similar to words in natural language corpora, also obey Zipf’s
law [297], and therefore follows a Zipfian distribution. Related research projects observed a
relation to Zipf’s law for single math symbols [71, 329]. In the context of quantitative linguistics,
Zipf’s law states that given a text corpus, the frequency of any word is inversely proportional
to its rank in the frequency table. Motivated by the similarity to linguistic properties, we will
present a novel approach for ranking formulae by their relevance via a customized version of
the ranking function BM25 [310]. We will present results that can be easily embedded in other
systems in order to distinguish between common and uncommon notations within formulae.
Our results lay a foundation for future research projects in MathIR.

17https://arxiv.org/ [accessed 2019-09-01]
18https://zbmath.org [accessed 2019-09-01]

Chapter 3

Semantification of Mathematical LaTeX
71

https://dlmf.nist.gov/18.5.7
https://arxiv.org/
https://zbmath.org

Section 3.2. Semantification with Mathematical Objects of Interest

Fundamental knowledge on frequency distributions of math formulae is beneficial for numerous
applications in MathIR, ranging from educational purposes [341] to math recommendation
systems [50], search engines [92, 274], and even automatic plagiarism detection systems [253,
254, 334]. For example, students can search for the conventions to write certain quantities in
formulae; document preparation systems can integrate an auto-completion or auto-correction
service for math inputs; search or recommendation engines can adjust their ranking scores
with respect to standard notations; and plagiarism detection systems can estimate whether two
identical formulae indicate potential plagiarism or are just using the conventional notations in
a particular subject area. To exemplify the applicability of our findings, we present a textual
search approach to retrieve mathematical formulae. Further, we will extend zbMATH’s faceted
search by providing facets of mathematical formulae according to a given textual search query.
Lastly, we present a simple auto-completion system for math inputs as a contribution towards
advancing mathematical recommendation systems. Further, we show that the results provide
useful insights for plagiarism detection algorithms. We provide access to the source code,
the results, and extended versions of all of the figures appearing in this paper at https :
//github.com/ag-gipp/FormulaCloudData.

3.2.1 Related Work

Today, mathematical search engines index formulae in a database. Much effort has been un-
dertaken to make this process as efficient as possible in terms of precision and runtime per-
formance [92, 181, 231, 236, 407]. The generated databases naturally contain the information
required to examine the distributions of the indexed mathematical formulae. Yet, no in-depth
studies of these distributions have been undertaken. Instead, math search engines focus on
other aspects, such as devising novel similarity measures and improving runtime efficiency.
This is because the goal of math search engines is to retrieve relevant (i.e., similar) formulae
which correspond to a given search query that partially [211, 231, 274] or exclusively [92, 181,
182] contains formulae. However, for a fundamental study of distributions of mathematical
expressions, no similarity measures nor efficient lookup or indexing is required. Thus, we use
the general-purpose query language XQuery and employ the BaseX19 implementation. BaseX
is a free open-source XML database engine, which is fully compatible with the latest XQuery
standard [140, 396]. Since our implementations rely on XQuery, we are able to switch to any
other database which allows for processing via XQuery.

3.2.2 Data Preparation

LATEX is the de facto standard for the preparation of academic manuscripts in the fields of
mathematics and physics [129]. Since LATEX allows for advanced customizations and even
computations, it is challenging to process. For this reason, LATEX expressions are unsuitable for
an extensive distribution analysis of mathematical notations. For mathematical expressions on
the web, the XML formatted MathML20 is the current standard, as specified by the World Wide
Web Consortium (W3C). The tree structure and the fixed standard, i.e., MathML tags, cannot be
changed, thus making this data format reliable. Several available tools are able to convert from
LATEX to MathML [18] and various databases are able to index XML data. Thus, for this study,

19http://basex.org/ [accessed 2019-09-01]; We used BaseX 9.2 for our experiments.
20https://www.w3.org/TR/MathML3/ [accessed 2019-09-01]

72 Chapter 3

Semantification of Mathematical LaTeX

https://github.com/ag-gipp/FormulaCloudData
https://github.com/ag-gipp/FormulaCloudData
http://basex.org/
https://www.w3.org/TR/MathML3/

Section 3.2. Semantification with Mathematical Objects of Interest

we have chosen to focus on MathML. In the following, we investigate the databases arXMLiv
(08/2018) [132] and zbMATH21 [333].

The arXMLiv dataset (≈1.2 million documents) contains HTML5 versions of the documents
from the e-Print archive arXiv.org. The HTML5 documents were generated from the TEX
sources via LATExml [257]. LATExml converted all mathematical expressions into MathML with
parallel markup, i.e., presentation and content MathML. In this study we only consider the
subsets no-problem and warning, which generated no errors during the conversion process.
Nonetheless, the MathML data generated still contains some errors or falsely annotated math.
For example, we discovered several instances of affiliation and footnotes, SVG22 and other
unknown tags, encoded in MathML. Regarding the footnotes, we presumed that authors falsely
used mathematical environments for generating footnote or affiliation marks. We used the TEX
string, provided as an attribute in the MathML data, to filter out expressions that match the
string ‘{}^{*}’, where ‘*’ indicates any possible expression. In addition, we filtered out SVG
and other unknown tags. We assume that these expressions were generated by mistake due to
limitations of LATExml. The final arXiv dataset consisted of 841,008 documents which contained
at least one mathematical formula. The dataset contained a total of 294,151,288 mathematical
expressions.

In addition to arXiv, we investigated zbMATH, an international reviewing service for pure and
applied mathematics which contains abstracts and reviews of articles, hereafter uniformly called
abstracts, mainly from the domains of pure and applied mathematics. The abstracts in zbMATH
are formatted in TEX [333]. To be able to compare arXiv and zbMATH, we manually generated
MathML via LATExml for each mathematical formula in zbMATH and performed the same filters
as used for the arXiv documents. The zbMATH dataset contained 2,813,451 abstracts, of which
1,349,297 contained at least one formula. In total, the dataset contained 11,747,860 formulae.
Even though the total number of formulae is smaller compared to arXiv, we hypothesize that
math formulae in abstracts are particularly meaningful.

3.2.2.1 Data Wrangling

Since we focused on the frequency distributions of visual expressions, we only considered
pMML. Rather than normalizing the pMML data, e.g., via MathMLCan [117], which would also
change the tree structure and visual core elements in pMML, we only eliminated the attributes.
These attributes are used for minor visual changes, e.g., stretched parentheses or inline limits
of sums and integrals. Thus, for this first study, we preserved the core structure of the pMML
data, which might provide insightful statistics for the MathML community to further cultivate
the standard. After extracting all MathML expressions, filtering out falsely annotated math and
SVG tags, and eliminating unnecessary attributes and annotations, the datasets required 83GB
of disk space for arXiv and 6GB for zbMATH, respectively.

In the following, we indexed the data via BaseX. The indexed datasets required a disk space of
143.9GB in total (140GB for arXiv and 3.9GB for zbMATH). Due to the limitations23 of databases
in BaseX, it was necessary to split our datasets into smaller subsets. We split the datasets

21https://zbmath.org/ [accessed 2019-09-01]
22Scalable Vector Graphics
23A detailed overview of the limitations of BaseX databases can be found at http://docs.basex.org/wiki/

Statistics [accessed 2019-09-01].

Chapter 3

Semantification of Mathematical LaTeX
73

https://zbmath.org/
http://docs.basex.org/wiki/Statistics
http://docs.basex.org/wiki/Statistics

Section 3.2. Semantification with Mathematical Objects of Interest

according to the 20major article categories of arXiv24 and classifications of zbMATH. To increase
performance, we use BaseX in a server-client environment. We experienced performance issues
in BaseXwhenmultiple clients repeatedly requested data from the same server in short intervals.
We determined that the best workaround for this issue was to launch BaseX servers for each
database, i.e., each category/classification.

Mathematical expressions often consist of multiple meaningful subexpressions, which we de-
fined as MOIs. However, without further investigation of the context, it is impossible to deter-
mine meaningful subexpressions. As a consequence, every equation is a potential MOI on its
own and potentially consists of multiple other MOIs. For an extensive frequency distributional
analysis, we aim to discover all possible mathematical objects. Hence, we split every formula
into its components. Since MathML is an XML data format (essentially a tree-structured format),
we define subexpressions of equations as subtrees of its MathML format.

� P
(α,β)
n (x)

1 <math><mrow>
2 <msubsup>
3 <mi>P</mi>
4 <mi>n</mi>
5 <mrow>
6 <mo>(</mo>
7 <mi>α</mi>
8 <mo>,</mo>
9 <mi>β</mi>
10 <mo>)</mo>
11 <mo></mo>
12 </mrow>
13 </msubsup>
14 <mo></mo>
15 <mrow>
16 <mo>(</mo>
17 <mi>x</mi>
18 <mo>)</mo>
19 </mrow>
20 </mrow></math>

Listing 3.1: MathML repre-

sentation of P
(α,β)
n (x).

Listing 3.1 illustrates a Jacobi polynomial P
(α,β)
n (x) in pMML.

The <mo> element on line 14 contains the invisible times UTF-8
character. By definition, the <math> element is the root element
of MathML expressions. Since we cut off all other elements be-
sides pMML nodes, each <math> element has one and only one
child element25. Thus, we define the child element of the <math>
element as the root of the expression. Starting from this root
element, we explore all subexpressions. For this study, we pre-
sume that every meaningful mathematical object (i.e., MOI) must
contain at least one identifier.

Hence, we only study subtrees which contain at least one <mi>
node. Identifiers, in the sense of MathML, are ‘symbolic names

or arbitrary text’ 26, e.g., single Latin or Greek letters. Identi-
fiers do not contain special characters (other than Greek letters)
or numbers. As a consequence, arithmetic expressions, such
as (1 + 2)2, or sequences of special characters and numbers,
such as {1, 2, ...} ∩ {−1}, will not appear in our distributional
analysis. However, if a sequence or arithmetic expression con-
sists of an identifier somewhere in the pMML tree (such as in
{1, 2, ...} ∩ A), the entire expression will be recognized. The

Jacobi polynomial P
(α,β)
n (x), therefore consists of the following

subexpressions: P
(α,β)
n , (α, β), (x), and the single identifiers P ,

n, α, β, and x. The entire expression is also a mathematical ob-
ject. Hence, we take entire expressions with an identifier into

account for our analysis. In the following, the set of subexpressions will be understood to
include the expression itself.

For our experiments, we also generated a string representation of the MathML data. The string
is generated recursively by applying one of two rules for each node: (i) if the current node is a
leaf, the node-tag and the content will be merged by a colon, e.g., <mi>x</mi> will be converted

24The arXiv categories astro-ph (astro physics), cond-mat (condensed matter), and math (mathematics) were still
too large for a single database. Thus, we split those categories into two equally sized parts.

25Sequences are always nested in an <mrow> element.
26https://www.w3.org/TR/MathML3/chapter3.html [accessed 2019-09-01]

74 Chapter 3

Semantification of Mathematical LaTeX

https://www.w3.org/TR/MathML3/chapter3.html

Section 3.2. Semantification with Mathematical Objects of Interest

to mi:x; (ii) otherwise the node-tag wraps parentheses around its content and separates the
children by a comma, e.g.,

<mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow> (3.3)

will be converted to
mrow(mo:(,mi:x,mo:)). (3.4)

Furthermore, the special UTF-8 characters for invisible times (U+2062) and function application
(U+2061) are replaced by ivt and fa, respectively. For example, the gamma function with
argument x + 1, Γ(x + 1) would be represented by

mrow(mi:Γ,mo:ivt,mrow(mo:(,mrow(mi:x,mo:+,mn:1),mo:))). (3.5)

Between Γ and (x+1), there would most likely be the special character for invisible times rather
than for function application, because LATExml is not able to parse Γ as a function. Note that this
string conversion is a bijective mapping. The string representation reduces the verbose XML
format to a more concise presentation. Thus, an equivalence check between two expressions is
more efficient.

3.2.2.2 Complexity of Math

Mathematical expressions can become complex and lengthy. The tree structure of MathML
allows us to introduce a measure that reflects the complexity of mathematical expressions.
More complex expressions usually consist of more extensively nested subtrees in the MathML
data. Thus, we define the complexity of a mathematical expression by the maximum depth of
the MathML tree. In XML the content of a node and its attributes are commonly interpreted as
children of the node. Thus, we define the depth of a single node as 1 rather than 0, i.e., single
identifiers, such as <mi>P</mi>, have a complexity of 1. The Jacobi polynomial from Listing 3.1
has a complexity of 4.

We perform the extraction of subexpressions from MathML in BaseX. The algorithm for the
extraction process is written in XQuery. The algorithm traverses recursively downwards from
the root to the leaves. In each iteration, it checks whether there is an identifier, i.e., <mi>
element, among the descendants of the current node. If there is no such element, the subtree
will be ignored. It seems counterintuitive to start from the root and check if an identifier is
among the descendants rather than starting at each identifier and traversing upwards to the root.
If an XQuery requests a node in BaseX, BaseX loads the entire subtree of the requested node
into the cache (up to a specified size). If the algorithm traverses upwards through the MathML
tree, the XQuery will trigger database requests in every iteration. Hence, the downwards
implementation performs better, since there is only one database request for every expression
rather than for every subexpression.

Since we only minimize the pMML data rather than normalizing it, two identically rendered
expressions may have different complexities. For instance,

<mrow><mi>x</mi></mrow> (3.6)

consists of two distinct subexpressions, but both of them are displayed the same. Another
problem often appears for arrays or similar visually complicated structures. The extracted
expressions are not necessarily logical subexpressions. Wewill consider applyingmore advanced
embedding techniques such as special tokenizers [231], symbol layout trees [92, 407], and a
MathML normalization via MathMLCan [117] in future research to overcome these issues.

Chapter 3

Semantification of Mathematical LaTeX
75

Section 3.2. Semantification with Mathematical Objects of Interest

3.2.3 Frequency Distributions of Mathematical Formulae

By splitting each formula into subexpressions, we generated longer documents and a bias
towards low complexities. Note that, hereafter, we only refer to the mathematical content of
documents. Thus, the length of a document refers to the number of math formulae - here the
number of subexpressions - in the document. After splitting expressions into subexpressions,
arXiv consists of 2.5B and zbMATH of 61M expressions, which raised the average document
length to 2,982.87 for arXiv and 45.47 for zbMATH, respectively.

For calculating frequency distributions, we merged two subexpressions if their string repre-
sentations were identical. Remember, the string representation is unique for each MathML
tree. After merging, arXiv consisted of 350,206,974 unique mathematical subexpressions with a
maximum complexity of 218 and an average complexity of 5.01. For high complexities over 70,
the formulae show some erroneous structures that might be generated from LATExml by mistake.
For example, the expression with the highest complexity is a long sequence of a polynomial
starting with ‘P4(t1, t3, t7, t11) =’ followed by 690 summands. The complexity is caused by
a high number of unnecessarily deeply nested <mrow> nodes. The highest complexity with a
minimum document frequency of two is 39, which is a continued fraction. Since continued
fractions are nested fractions, they naturally have a large complexity. One of the most complex
expressions (complexity 20) with a minimum document frequency of three was the formula⎛⎜⎜⎜⎜⎜⎜⎝

n∑
j1=1

⎛⎜⎜⎜⎜⎝
n∑

j2=1

⎛⎜⎜⎝· · ·
⎛⎝ n∑

jm=1

∣∣∣∣T (
ej1 , . . . , ejm

)∣∣∣∣qm

⎞⎠
qm−1

qm

· · ·

⎞⎟⎟⎠
q2
q3

⎞⎟⎟⎟⎟⎠
q1
q2

⎞⎟⎟⎟⎟⎟⎟⎠

1
q1

≤ CK
m,p,q ‖T‖ . (3.7)

In contrast, zbMATH only consisted of 8,450,496 unique expressions with a maximum complex-
ity of 26 and an average complexity of 3.89. One of the most complex expressions in zbMATH
with a minimum document frequency of three was

Mp(r, f) =
(

1
2π

∫ 2π

0

∣∣∣∣f (
reiθ

)∣∣∣∣p dθ

)1/p

. (3.8)

As we expected, reviews and abstracts in zbMATH were generally shorter and consisted of
less complex mathematical formulae. The dataset also appeared to contain fewer erroneous
expressions, since expressions of complexity 25 are still readable and meaningful.

Figure 3.2 shows the ratio of unique subexpressions for each complexity in both datasets. The
figure illustrates that both datasets share a peak at complexity four. Compared to zbMATH, the
arXiv expressions are slightly more evenly distributed over the different levels of complexities.
Interestingly, complexities one and two are not dominant in either of the two datasets. Single
identifiers only make up 0.03% in arXiv and 0.12% in zbMATH, which is comparable to expres-
sions of complexity 19 and 14, respectively. This finding illustrates the problem of capturing
semantic meanings for single identifiers rather than for more complex expressions [330]. It
also substantiates that entire expressions, if too complex, are not suitable either for capturing
the semantic meanings [214]. Instead, a middle ground is desirable, since the most unique
expressions in both datasets have a complexity between 3 and 5. Table 3.4 summarizes the
statistics of the examined datasets.

76 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

Figure 3.2: Unique subexpressions for each complexity in arXiv and zbMATH.

Table 3.4: Dataset overview. Average Document Length is defined as the average number of
subexpressions per document.

Category arXiv zbMATH

Documents 841,008 1,349,297

Formulae 294,151,288 11,747,860

Subexpressions 2,508,620,512 61,355,307

Unique Subexpressions 350,206,974 8,450,496

Average Document Length 2,982.87 45.47

Average Complexity 5.01 3.89

Maximum Complexity 218 26

3.2.3.1 Zipf’s Law

In linguistics, it is well known that word distributions follow Zipf’s Law [297], i.e., the r-th
most frequent word has a frequency that scales to

f(r) ∝ 1
rα

(3.9)

with α ≈ 1. A better approximation can be applied by a shifted distribution

f(r) ∝ 1
(r + β)α

, (3.10)

where α ≈ 1 and β ≈ 2.7. In a study on Zipf’s law, Piantadosi [297] illustrated that not only
words in natural language corpora follow this law surprisingly accurately, but also many other
human-created sets. For instance, in programming languages, in biological systems, and even
in music. Since mathematical communication has derived as the result of centuries of research,
it would not be surprising if mathematical notations would also follow Zipf’s law. The primary
conclusion of the law illustrates that there are some very common tokens against a large number
of symbols which are not used frequently. Based on this assumption, we can postulate that a
score based on frequencies might be able to measure the peculiarity of a token. The infamous
TF-IDF ranking functions and their derivatives [23, 310] have performed well in linguistics for

Chapter 3

Semantification of Mathematical LaTeX
77

Section 3.2. Semantification with Mathematical Objects of Interest

many years and are still widely used in retrieval systems [30]. However, since we split every
expression into its subexpressions, we generated an anomalous bias towards shorter, i.e., less
complex, formulae. Hence, distributions of subexpressions may not obey Zipf’s law.

(a) Frequency Distributions (b) Complexity Distributions

Figure 3.3: Each figure illustrates the relationship between the frequency ranks (x-axis) and the
normalized frequency (y-axis) in zbMATH (top) and arXiv (bottom). For arXiv, only the first 8
million entries are plotted to be comparable with zbMATH (≈ 8.5 million entries). Subfigure (a)
shades the hexagonal bins from green to yellow using a logarithmic scale according to the
number of math expressions that fall into a bin. The dashed orange line represents Zipf’s
distribution (3.10). The values for α and β are provided in the plots. Subfigure (b) shades the
bins from blue to red according to the maximum complexity in each bin.

Figure 3.3 visualizes a comparison between Zipf’s law and the frequency distributions of math-
ematical subexpressions in arXiv and zbMATH. The dashed orange line visualizes the power
law (3.10). The plots demonstrate that the distributions in both datasets obey this power law.
Interestingly, there is not much difference in the distributions between both datasets. Both dis-
tributions seem to follow the same power law, with α = 1.3 and β = 15.82. Moreover, we can
observe that the developed complexity measure seems to be appropriate, since the complexity
distributions for formulae are similar to the distributions for the length of words [297]. In other

78 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

words, more complex formulae, as well as long words in natural languages, are generally more
specialized and thus appear less frequent throughout the corpus. Note that colors of the bins for
complexities fluctuate for rare expressions because the color represents the maximum rather
than the average complexity in each bin.

3.2.3.2 Analyzing and Comparing Frequencies

Figure 3.4 shows in detail the most frequently used mathematical expressions in arXiv for
the complexities 1 to 7. The orange dashed line visible in all graphs represents the normal
Zipf’s law distribution from Equation (3.9). We explore the total frequency values without any
normalization. Thus, Equation (3.9) was multiplied by the highest frequency for each complexity
level to fit the distribution. The plots in Figure 3.4 demonstrate that even though the parameter
α varies between 0.35 and 0.62, the distributions in each complexity class also obey Zipf’s law.

The plots for each complexity class contain some interesting fluctuations. We can spot a set
of five single identifiers that are most frequently used throughout arXiv: n, i, x, t, and k. Even
though the distributions follow Zipf’s law accurately, we can explore that these five identifiers
are proportionally more frequently used than other identifiers and clearly separate themselves
above the rest (notice the large gap from k to a). All of the five identifiers are known to be used
in a large variety of scenarios. Surprisingly, one might expect that common pairs of identifiers
would share comparable frequencies in the plots. However, typical pairs, such as x and y, or α
and β, possess a large discrepancy.

The plot of complexity two also reveals that two expressions are proportionally more often used
than others: (x) and (t). These two expressions appear more than three times as often in the
corpus than any other expression of the same complexity. On the other hand, the quantitative
difference between (x) and (t) is negligible. We may assume that arXiv’s primary domain,
physics, causes the quantitative disparity between (x), (t), and the other tokens. The primary
domain of the dataset becomes more clearly visible for higher complexities, such as SU(2)
(C327) or kms−1 (C4).

Another surprising property of arXiv is that symmetry groups, such as SU(2), appear to
play an essential role in the majority of articles on arXiv, see SU(2) (C3), SU(2)L (C4), and
SU(2) × SU(2) (C5), among others. The plots of higher complexities28, made this even more
noticeable. Given a complexity of six, for example, the most frequently used expression was
SU(2)L × SU(2)R, and for a complexity of seven it was SU(3) × SU(2) × U(1). Given a
complexity of eight, ten out of the top-12 expressions were from symmetry group calculations.

It is also worthwhile to compare expressions among different levels of complexities. For instance,
(x) and (t) appeared almost six million times in the corpus, but f(x) (at position three in
C3) was the only expression which contained one of these most common expressions. Note
that subexpressions of variations, such as (x0), (t0), or (t − t′), do not match the expression
of complexity two. This may imply that (x), and especially (t), appear in many different
scenarios. Further, we can examine that even though (x) is a part of f(x) in only approximately
3% of all cases, it is still the most likely combination. These results are especially useful for
recommendation systems that make use of math as input. Moreover, plagiarism detection

27We refer to a given complexity n with Cn, i.e., C3 refers to complexity 3.
28More plots showing higher complexities are available at https : / / github . co m /ag - gipp / For m

ulaCloudData [accessed 2021-10-01]

Chapter 3

Semantification of Mathematical LaTeX
79

https://github.com/ag-gipp/FormulaCloudData
https://github.com/ag-gipp/FormulaCloudData

Section 3.2. Semantification with Mathematical Objects of Interest

Figure 3.4: Overview of the most frequent mathematical expressions in arXiv for complexities
1-7. The color gradient from yellow to blue represents the frequency in the dataset. Zipf’s
law (3.9) is represented by a dashed orange line.

80 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

systems may also benefit from such a knowledge base. For instance, it might be evident that
f(x) is a very common expression, but for automatic systems that work on a large scale, it is
not clear whether duplicate occurrences of f(x) or Ξ(x) should be scored differently, e.g., in
the case of plagiarism detection.

Figure 3.4 shows only the most frequently occurring expressions in arXiv. Since we already
explored a bias towards physics formulae in arXiv, it is worth comparing the expressions present
within both datasets. Figure 3.5 compares the 25-top expressions for the complexities one to
six. In zbMATH, we discovered that computer science and graph theory appeared as popular
topics, see for example G = (V, E) (in C3 at position 20) and the Bachmann-Landau notations
in O(log n), O(n2), and O(n3) (C4 positions 2, 3, and 19).

From Figure 3.5, we can also deduce useful information for MathIR tasks which focus on
semantic information. Current semantic extraction tools [330] or LATEX parsers [18] still have
difficulties distinguishing multiplications from function calls. For example as mentioned before,
LATExml [257] adds an invisible times character between f(x) rather than a function application.
Investigating the most frequently used terms in zbMATH in Table 3.5 reveals that u is most likely
considered to be a function in the dataset: u(t) (rank 8), u(x) (rank 13), uxx (rank 16), u(0) (rank
17), |∇u| (rank 22). Manual investigations of extended lists reveal even more hits: u0(x) (rank
30), −Δu (rank 32), and u(x, t) (rank 33). Since all eight terms are among the most frequent
35 entries in zbMATH, it implies that u can most likely be considered to imply a function in
zbMATH. Of course, this does not imply that u must always be a function in zbMATH (see f(u)
on rank 14 in C3), but this allows us to exploit probabilities for improving MathIR performance.
For instance, if not stated otherwise, u could be interpreted as a function by default, which
could help increase the precision of the aforementioned tools.

Figure 3.5 also demonstrates that our two datasets diverge for increasing complexities. Hence, we
can assume that frequencies of less complex formulae are more topic-independent. Conversely,
the more complex a math formula is, the more context-specific it is. In the following, we will
further investigate this assumption by applying TF-IDF rankings on the distributions.

3.2.4 Relevance Ranking for Formulae

Zipf’s law encourages the idea of scoring the relevance of words according to their number
of occurrences in the corpus and in the documents. The family of BM25 ranking functions
based on TF-IDF scores are still widely used in several retrieval systems [30, 310]. Since we
demonstrated that mathematical formulae (and their subexpressions) obey Zipf’s law in large
scientific corpora, it appears intuitive to also use TF-IDF rankings, such as a variant of BM25,
to calculate their relevance.

� Okapi BM25

In its original form [310], Okapi BM25 was calculated as follows

bm25(t, d) := (k + 1) IDF(t) TF(t, d)
TF(t, d) + k

(
1 − b + b|d|

AVGDL

) . (3.11)

Chapter 3

Semantification of Mathematical LaTeX
81

Section 3.2. Semantification with Mathematical Objects of Interest

Figure 3.5: The top-20 and 25 most frequent expressions in arXiv (left) and zbMATH (right) for
complexities 1-6. A line between both sets indicates a matching set. Bold lines indicate that the
matches share a similar rank (distance of 0 or 1).

82 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

Here, TF (t, d) is the term frequency of t in the document d, |d| the length of the document d
(in our case, the number of subexpressions), AVGDL the average length of the documents in
the corpus (see Table 3.4), and IDF (t) is the inverse document frequency of t, defined as

IDF(t) := log
N − n(t) + 1

2
n(t) + 1

2
, (3.12)

where N is the number of documents in the corpus and n(t) the number of documents which
contain the term t. By adding 1

2 , we avoid log 0 and division by 0. The parameters k and b are
free, with b controlling the influence of the normalized document length and k controlling the
influence of the term frequency on the final score. For our experiments, we chose the standard
value k = 1.2 and a high impact factor of the normalized document length via b = 0.95.

As a result of our subexpression extraction algorithm, we generated a bias towards low complex-
ities. Moreover, longer documents generally consist of more complex expressions. As demon-

strated in Section 3.2.2.1, a document that only consists of the single expression P
(α,β)
n (x),

i.e., the document had a length of one, would generate eight subexpressions, i.e., it results in
a document length of eight. Thus, we modify the BM25 score in Equation (3.11) to emphasize
higher complexities and longer documents. First, the average document length is divided by
the average complexity AVGC in the corpus that is used (see Table 3.4), and we calculate the
reciprocal of the document length normalization to emphasize longer documents.

Moreover, in the scope of a single document, we want to emphasize expressions that do not
appear frequently in this document, but are the most frequent among their level of complexity.
Thus, less complex expressions are ranked more highly if the document overall is not very
complex. To achieve this weighting, we normalize the term frequency of an expression t
according to its complexity c(t) and introduce an inverse term frequency according to all
expressions in the document. We define the inverse term frequency as

ITF(t, d) := log
|d| − TF(t, d) + 1

2
TF(t, d) + 1

2
. (3.13)

� Definition of the importance score of a formula in a document

Finally, we define the score s(t, d) of a term t in a document d as

s(t, d) := (k + 1) IDF(t) ITF(t, d) TF(t, d)
max

t′∈d|c(t)
TF(t′, d) + k

(
1 − b + b AVGDL

|d| AVGC

) . (3.14)

The TF-IDF ranking functions and the introduced s(t, d) are used to retrieve relevant documents
for a given search query. However, we want to retrieve relevant subexpressions over a set of
documents.

Chapter 3

Semantification of Mathematical LaTeX
83

Section 3.2. Semantification with Mathematical Objects of Interest

� Definition of the Mathematical BM25

Thus, we define the score of a formula (mBM25) over a set of documents as the maximum
score over all documents

mBM25(t, d) := max
d∈D

s(t, d), (3.15)

where D is a set of documents.

We used Apache Flink [157] to count the expressions and process the calculations. Thus, our
implemented system scales well for large corpora.

Table 3.5: Settings for the retrieval experi-
ments.

arXiv zbMATH
Retrieved Doc. 40 200
Min. Hit Freq. 7 7

Min. DF 50 10
Max. DF 10k 10k

Table 3.6 shows the top-7 scored expressions,
where D is the entire zbMATH dataset. The re-
trieved expressions can be considered as meaning-
ful and real-world examples of MOIs, since most
expressions are known for specific mathematical
concepts, such as Gal(Q/Q), which refers to the
Galois group ofQ overQ, or L2(R2), which refers
to the L2-space (also known as Lebesgue space)
over R2. However, a more topic-specific retrieval
algorithm is desirable. To achieve this goal, we (i)
retrieved a topic-specific subset of documents Dq ⊂ D for a given textual search query q, and
(ii) calculated the scores of all expressions in the retrieved documents. To generate Dq , we
indexed the text sources of the documents from arXiv and zbMATH via Elasticsearch (ES)29

and performed the pre-processing steps: filtering stop words, stemming, and ASCII-folding30.
Table 3.5 summarizes the settings we used to retrieve MOIs from a topic-specific subset of
documents Dq . We also set a minimum hit frequency according to the number of retrieved
documents an expression appears in. This requirement filters out uncommon notations.

Figure 3.6 shows the results for five search queries. We asked a domain expert from the NIST to
annotate the results as related (shown as green dots in Figure 3.6) or non-related (red dots). We
found that the results range from good performances (e.g., for the Riemann zeta function) to
bad performances (e.g., beta function). For instance, the results for the Riemann zeta function
are surprisingly accurate, since we could discover that parts of Riemann’s hypothesis31 were
ranked highly throughout the results (e.g., ζ(1

2 + it)). On the other hand, for the beta function,
we retrieved only a few related hits, of which only one had a strong connection to the beta
function B(x, y). We observed that the results were quite sensitive to the chosen settings (see
Table 3.5). For instance, according to the beta function, the minimum hit frequency has a strong
effect on the results, since many expressions are shared among multiple documents. For arXiv,
the expressions B(α, β) andB(x, y) only appear in one document of the retrieved 40. However,
decreasing the minimum hit frequency would increase noise in the results.

29https://github.com/elastic/elasticsearch [accessed 2019-09-01]. We used version 7.0.0
30This means that non-ASCII characters are replaced by their ASCII counterparts or will be ignored if no such

counterpart exists.
31Riemann proposed that the real part of every non-trivial zero of the Riemann zeta function is 1/2. If this

hypothesis is correct, all the non-trivial zeros lie on the critical line consisting of the complex numbers 1/2 + it.

84 Chapter 3

Semantification of Mathematical LaTeX

https://github.com/elastic/elasticsearch

Section 3.2. Semantification with Mathematical Objects of Interest

Figure 3.6: Top-20 ranked expressions retrieved from a topic-specific subset of documents Dq .
The search query q is given above the plots. Retrieved formulae are annotated by a domain
expert with green dots for relevant and red dots for non-relevant hits. A line is drawn if a hit
appears in both result sets. The line is colored in green when the hit was marked as relevant.

Chapter 3

Semantification of Mathematical LaTeX
85

Section 3.2. Semantification with Mathematical Objects of Interest

Table 3.6: Top s(t, D) scores, where D is the set of all zbMATH documents with a minimum
document frequency of 200, maximum document frequency of 500k, and a minimum complexity
of 3.

C3 C4 C5

114.84 (n!) 129.44 i, j = 1, . . . , n 119.21 Gal
(
Q/Q

)
108.85 φ−1 108.52 xij 112.55

∣∣f(z)
∣∣p

100.19 zn−1 108.50 ẋ = A(t)x 110.52
(
1 + |x|2

)
100.06 (cn) 106.66 |x − x0| 109.19

∣∣f(x)
∣∣p

100.05 B(G) 105.52 S2n+1 106.22 |∇u|2dx

99.87 log2 n 104.91 L2
(
R2

)
102.86 n(n − 1)/2

99.65 ξ (x) 103.70 ẋ = Ax + Bu 101.40 O(n−1)

C6 C7

110.83 (1 + |z|2)α 98.72 div
(
|∇u|p−2 ∇u

)
105.69 f

(
reiθ

)
–

94.14 f(z) = z +
∑∞

n=2 anzn –

92.33
(
|∇u|p−2 ∇u

)
–

87.27
(
log n/ log log n

)
–

78.54 O (n log2 n) –

– –

Even though we asked a domain expert to annotate the results as relevant or not, there is still
plenty of room for discussion. For instance, (x + y) (rank 15 in zbMATH, ‘Beta Function’) is the
argument of the gamma function Γ(x + y) that appears in the definition of the beta function
[98, (5.12.1)] B(x, y) := Γ(x)Γ(y)/Γ(x + y). However, this relation is weak at best, and thus
might be considered as not related. Other examples are Rez and Re(s), which play a crucial
role in the scenario of the Riemann hypothesis (all non-trivial zeroes have Re(s) = 1

2). Again,
this connection is not obvious, and these expressions are often used in multiple scenarios. Thus,
the domain expert did not mark the expressions as being related.

Considering the differences in the documents, it is promising to have observed a relatively high
number of shared hits in the results. Further, we were able to retrieve some surprisingly good
insights from the results, such as extracting the full definition of the Riemann zeta function
[98, (25.2.1)] ζ(s) :=

∑∞
n=1

1
ns . Even though a high number of shared hits seem to substantiate

the reliability of the system, there were several aspects that affected the outcome negatively,
from the exact definition of the search queries to retrieve documents via ES, to the number of
retrieved documents, the minimum hit frequency, and the parameters in mBM25.

86 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

3.2.5 Applications

The presented results are beneficial for a variety of use-cases. In the following, we will demon-
strate and discuss several of the applications that we propose.

Extension of zbMATH’s Search Engine Formula search engines are often counterintuitive
when compared to textual search, since the user must know how the system operates to enter a
search query properly (e.g., does the system supports LATEX inputs?). Additionally, mathematical
concepts can be difficult to capture using only mathematical expressions. Consider, for example,
someone who wants to search for mathematical expressions that are related to eigenvalues. A
textual search query would only retrieve entire documents that require further investigation
to find related expressions. A mathematical search engine, on the other hand, is impractical
since it is not clear what would be a fitting search query (e.g., Av = λv?). Moreover, formula
and textual search systems for scientific corpora are separated from each other. Thus, a textual
search engine capable of retrieving mathematical formulae can be beneficial. Also, many search
engines allow for narrowing down relevant hits by suggesting filters based on the retrieved
results. This technique is known as faceted search. The zbMATH search engine also provides
faceted search, e.g., by authors, or year. Adding facets for mathematical expressions allows
users to narrow down the results more precisely to arrive at specific documents.

Our proposed system for extracting relevant expressions from scientific corpora via mBM25
scores can be used to search for formulae even with textual search queries, and to add more
filters for faceted search implementations. Table 3.7 shows two examples of such an extension
for zbMATH’s search engine. Searching for ‘Riemann Zeta Function’ and ‘Eigenvalue’ retrieved
4,739 and 25,248 documents from zbMATH, respectively. Table 3.7 shows the most frequently
used mathematical expressions in the set of retrieved documents. It also shows the reordered
formulae according to a default TF-IDF score (with normalized term frequencies) and our
proposed mBM25 score. The results can be used to add filters for faceted search, e.g., show
only the documents which contain u ∈ W 1,p

0 (Ω). Additionally, the search system now provides
more intuitive textual inputs even for retrieving mathematical formulae. The retrieved formulae
are also interesting by themselves, since they provide insightful information on the retrieved
publications. As already explored with our custom document search system in Figure 3.6, the
Riemann hypothesis is also prominent in these retrieved documents.

The differences between TF-IDF and mBM25 ranking illustrates the problem of an extensive
evaluation of our system. From a broader perspective, the hit Ax = λBx is highly correlated
with the input query ‘Eigenvalue’. On the other hand, the raw frequencies revealed a prominent
role ofdiv(|∇u|p−2 ∇u). Therefore, the top results of themBM25 ranking can also be considered
as relevant.

Math Notation Analysis A faceted search system allows us to analyze mathematical nota-
tions in more detail. For instance, we can retrieve documents from a specific time period. This
allows one to study the evolution of mathematical notation over time [54], or for identifying
trends in specific fields. Also, we can analyze standard notations for specific authors since it is
often assumed that authors prefer a specific notation style which may vary from the standard
notation in a field.

Chapter 3

Semantification of Mathematical LaTeX
87

Section 3.2. Semantification with Mathematical Objects of Interest

Table 3.7: The top-5 frequent mathematical expressions in the result set of zbMATH for the
search queries ‘Riemann Zeta Function’ (top) and ‘Eigenvalue’ (bottom) grouped by their com-
plexities (left) and the hits reordered according to their relevance scores (right). The TF-IDF
score was calculated with normalized term frequencies.

Riemann Zeta Function

C1 C2 C3 C4

15,051 n 4,663 (s) 1,456 ζ(s) 349 (1
2 + it)

11,709 s 2,460 (x) 340 σ + it 232 (1/2 + it)
9,768 x 2,163 (n) 310

∑∞
n=1 195 (σ + it)

8,913 k 1,485 (t) 275 (log T) 136 1
2 + it

8,634 T 1,415 it 264 1/2 + it 97 s = σ + it

C5 C6 TF-IDF mBM25

203 ζ(1
2 + it) 105

∣∣ζ(1/2 + it)
∣∣ ζ(s) ζ (1/2 + it)

166 ζ(1/2 + it) 88
∣∣∣ζ(1

2 + it)
∣∣∣ ζ(1/2 + it) (1/2 + it)

124 ζ(σ + it) 81
∣∣ζ(σ + it)

∣∣ (1/2 + it) (1
2 + it)

54 ζ(1 + it) 32
∣∣ζ(1 + it)

∣∣ 1
2 + it ζ (1

2 + it)
44 ζ(2n + 1) 22

∣∣ζ(+it)
∣∣ (1

2 + it) (σ + it)

Eigenvalue

C1 C2 C3 C4

45,488 n 12,515 (x) 686 −Δu 218 |∇u|p−2

43,090 x 6,598 (t) 555 (n − 1) 218 −Δpu

37,434 λ 4,377 λ1 521 |∇u| 133 W 1,p
0 (Ω)

35,302 u 2,787 (Ω) 512 aij 127 |∇u|2
22,460 t 2,725 Rn 495 u(x) 97 (aij)

C5 C6 TF-IDF mBM25

139 |∇u|p−2 ∇u 137
(
|∇u|p−2 ∇u

)
Ax = λBx − div

(
|∇u|p−2 ∇u

)
68 −d2/dx2 35 −(py′)′ −Δp div

(
|∇u|p−2 ∇u

)
51 A = (aij) 26 (

∣∣u′∣∣p−2
u′) P (λ) p = N+2

N−2

46 − d2

dx2 18 (φp(u′))′
λk+1

(
φp

(
u′))′

45 u ∈ W 1,p
0 (Ω) 18

∫
Ω |∇u|2 dx λ1 > 0 λ ∈ (0, λ∗)

88 Chapter 3

Semantification of Mathematical LaTeX

Section 3.2. Semantification with Mathematical Objects of Interest

Table 3.8: Suggestions to complete ‘E = m’ and ‘E = {m, c}’ (the right-hand side contains m
and c) with term and document frequency based on the distributions of formulae in arXiv.

Auto-completion for ‘E = m’ Suggestions for ‘E = {m, c}’
Sug. Expression TF DF Sug. Expression TF DF

E = mc2 558 376 E = mc2 558 376

E = m cosh θ 23 23 E = γmc2 39 38

E = mv0 7 7 E = γmec2 41 36

E = m/
√

1 − q̇2 12 6 E = m cosh θ 23 23

E = m/
√

1 − β2 10 6 E = −mc2 35 17

E = mc2γ 6 6 E =
√

m2c4 + p2c2 10 8

Math Recommendation Systems The frequency distributions of formulae can be used to
realize effective math recommendation tasks, such as type hinting or error-corrections. These
approaches require long training on large datasets, but may still generate meaningless results,
such as Gi = {(x, y) ∈ Rn : xi = xi} [400]. We propose a simpler system which takes
advantage of our frequency distributions. We retrieve entries from our result database, which
contain all unique expressions and their frequencies. We implemented a simple prototype that
retrieves the entries via pattern matching. Table 3.8 shows two examples. The left side of
the table shows suggested autocompleted expressions for the query ‘E = m’. The right side
shows suggestions for ‘E =’, where the right-hand side of the equation should contain m and
c in any order. A combination using more advanced retrieval techniques, such as similarity
measures based on symbol layout trees [92, 407], would enlarge the number of suggestions.
This kind of autocomplete and error-correction type-hinting system would be beneficial for
various use-cases, e.g., in educational software or for search engines as a pre-processing step of
the input.

Plagiarism Detection Systems As previously mentioned, plagiarism detection systems
would benefit from a system capable of distinguishing conventional from uncommon nota-
tions [253, 254, 334]. The approaches described by Meuschke et al. [254] outperform existing
approaches by considering frequency distributions of single identifiers (expressions of com-
plexity one). Considering that single identifiers make up only 0.03% of all unique expressions
in arXiv, we presume that better performance can be achieved by considering more complex ex-
pressions. The conferred string representation also provides a simple format to embed complex
expressions in existing learning algorithms.

Expressions with high complexities that are shared among multiple documents may provide
further hints to investigate potential plagiarisms. For instance, the most complex expression
that was shared among three documents in arXiv was Equation (3.7). A complex expression
being identical in multiple documents could indicate a higher likelihood of plagiarism. Further
investigation revealed that similar expressions, e.g., with infinite sums, are frequently used
among a larger set of documents. Thus, the expression seems to be a part of a standard notation
that is commonly shared, rather than a good candidate for plagiarism detection. Resulting from
manual investigations, we could identify the equation as part of a concept called generalized

Hardy-Littlewood inequality and Equation (3.7) appears in the three documents [24, 292, 304]. All

Chapter 3

Semantification of Mathematical LaTeX
89

Section 3.2. Semantification with Mathematical Objects of Interest

Figure 3.7: The top ranked expression for ‘Jacobi polynomial’ in arXiv and zbMATH. For arXiv,
30 documents were retrieved with a minimum hit frequency of 7.

three documents shared one author in common. Thus, this case also demonstrates a correlation
between complex mathematical notations and authorship.

Semantic Taggers and Extraction Systems We previously mentioned that semantic extrac-
tion systems [214, 329, 330] and semantic math taggers [71, 402] have difficulties in extracting
the essential components (MOIs) from complex expressions. Considering the definition of the
Jacobi polynomial in Equation (3.2), it would be beneficial to extract the groups of tokens that

belong together, such as P
(α,β)
n (x) or Γ(α + m + 1). With our proposed search engine for

retrieving MOIs, we are able to facilitate semantic extraction systems and semantic math tag-
gers. Imagine such a system being capable of identifying the term ‘Jacobi polynomial’ from the
textual context. Figure 3.7 shows the top relevant hits for the search query ‘Jacobi polynomial’
retrieved from zbMATH and arXiv. The results contain several relevant and related expres-
sions, such as the constraints α, β > −1 and the weight function for the Jacobi polynomial
(1 − x)α(1 + x)β , which are essential properties of this orthogonal polynomial. Based on
these retrieved MOIs, the extraction systems can adjust its retrieved math elements to improve
precision, and semantic taggers or a tokenizer could re-organize parse trees to more closely
resemble expression trees.

90 Chapter 3

Semantification of Mathematical LaTeX

Section 3.3. Semantification with Textual Context Analysis

3.2.6 Outlook

In this first study, we preserved the core structure of the MathML data which provided insightful
information for the MathML community. However, this makes it difficult to properly merge
formulae. In future studies, we will normalize the MathML data via MathMLCan [117]. In
addition to this normalization, we will include wildcards for investigating distributions of
formula patterns rather than exact expressions. This will allow us to study connections between
math objects, e.g., between Γ(z) andΓ(x+1). This would further improve our recommendation
system andwould allow for the identification of regions for parameters and variables in complex
expressions.

3.3 Semantification with Textual Context Analysis

The results of our math embedding experiments and the introduction of MOI motivates us to
develop a context-sensitive LATEX to CAS translation approach around the MOI concept. In this
section, we briefly discuss our novel approach to perform context-sensitive translations from
LATEX to CAS, which concludes research task II. We focus on three main sources of semantic
information to disambiguate mathematical expressions sufficiently for such translations:

1. the inclusive structural information in the expression itself;

2. the textual context surrounding the expression; and

3. a common knowledge database.

The first source is what most existing translators rely on by concluding the semantics from a
given structure. The second source is rather broad. The necessary information can be given
in the sentences before and after an equation, somewhere in the same article, or even through
references (e.g., hyperlinks in Wikipedia articles or citations in scientific publications). In
this thesis, we will focus on the textual context in a single document, i.e., we do not analyze
references or deep links to other articles yet. The last source can be considered a backup option.
If we cannot retrieve information from the context of a formula, the semantic meaning of a
formula might be considered common knowledge, such as π referring to the mathematical
constant.

We extract knowledge from each of the three sources with different approaches. For the inclusive
structural information, we rely on the semantic LATEX macros developed by Miller [260] for
the DLMF that define standard notation patterns for numerous OPSF. To analyze the textual
context of a formula, we rely on the approach proposed by Schubotz et al. [330], who extracted
noun phrases to enrich identifiers semantically. As a backup common knowledge database, we
use the POM tagger developed by Youssef [402] that relies on manually crafted lexicon files
with several common knowledge annotations for mathematical tokens.

3.3.1 Semantification, Translation & Evaluation Pipeline

Figure 3.8 illustrates the pipeline of the proposed system to convert generic LATEX expressions
to CAS. The figure contains numbered badges that represent the different steps in the system.
Steps 1-4 represent the conversion pipeline, while steps 5-7 are different ways to evaluate the
system.

Chapter 3

Semantification of Mathematical LaTeX
91

Section 3.3. Semantification with Textual Context Analysis

SwitchSwitch

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

Documents

Gold Standard
MML

MML ComparisonMML Comparison

VS

Mathematical
Language Processor

Semantic
LaTeX

Semantic
Enhancement

XML

Mathematical
Objects of Interest

Identifiers & DefiniensIdentifiers & Definiens

π
Ω
ζ

π
Ω
ζ

MOI & DefiniensMOI & Definiens

ζ(z)

Converter

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

POM-Tagger Dictionaries

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

DLMF/DRMF
Macros

LaCASt

®vecteezy.com

Zeta Function
Constant
Electrical Resist.

Constant
Zeta Function
Electrical Resist.

LaTeX2CAS EvaluatorLaTeX2CAS Evaluator

Symbolic
Evaluation

Round-Trip
Tests

Numeric
Evaluation

DLMF Sources

ζ(z)

∑
n=1

∞ 1
nz

ζ ζ ζζζζζζζζ CAS

t

onananananananarriririeri
2

ti

4

DLMLMLMLMMMFF/

3

6

7

MathMLben

Baseline

5

1a

ss

1b

1c

Figure 3.8: Pipeline of the proposed context-sensitive conversion process. The pipeline consists
of four semantification steps (1-4) and three evaluation approaches (5-7).

The conversion pipeline starts with mathosphere32 (step 1a). Mathosphere is the Java frame-
work developed by Schubotz et al. [279, 329, 330] in a sequence of publications to semantically
enrich mathematical identifier with defining phrases from the textual context. First, we will
modify mathosphere so that it extracts MOI-definiens pairs rather than single identifiers (step

1b). For this purpose, we propose the following significant simplification: an isolated mathe-
matical expression in a textual context is considered essential and informative. Hence, isolated
formulae are defined as MOI. Moreover, mathosphere scores identifier-definiens pairs in regard
of their first appearance in a document (since the first declaration of a symbol often remains
valid throughout the rest of the document [394]). We adopt this scoring forMOI with a matching

algorithm that allows us to identify MOI within other MOI in the same document (step 1c).

Step 2 is currently optional and combines the results from the MOI-definiens extraction
process with the common knowledge database of the POM tagger. The information can then
be used to feed existing LATEX to MathML converters with additional semantic information. In
Chapter 2, we created a MathML benchmark, called MathMLben, to evaluate such converters.
We have also shown that, for example, LATExml can adopt additional semantic information via
given semantic macros. Hence, via step 4 (and subsequently step 5) we can evaluate our

semantification so far with the help of existing converters. The steps 2 , 4 , and 5 are not
subject of this thesis but part of upcoming projects.

32https://github.com/ag-gipp/mathosphere [accessed 03-24-2020]

92 Chapter 3

Semantification of Mathematical LaTeX

https://github.com/ag-gipp/mathosphere

Section 3.3. Semantification with Textual Context Analysis

Besides this optional evaluation over MathMLben, we continue our main translation path.
Once we extracted the MOI-definiens pairs, we replace the generic LATEX expressions by their
semantic counterparts (step 3). We do so by indexing semantic LATEX macros so that we can
search for them by textual queries. Afterward, we are able to retrieve semantic LATEX macros by
the previously extracted definiens. Finally, we create replacement patterns so that the generic
LATEX expression can be replaced with the semantic enriched semantic macros from the DLMF.
The result should be semantic LATEX, which enables another evaluation method. Consider we
perform this pipeline on the DLMF, we can compare the generated semantic LATEX with the
original, manually crafted semantic LATEX source in the DLMF to validate its correctness (step
6). Unfortunately, the entire pipeline focuses on the textual context. The DLMF does not
provide sophisticated textual information because semantic information is available via special
infoboxes, through hyperlinks, or in tables and graphs. A more comprehensive evaluation
approach can be enabled by further translating the expressions to the syntax of CAS via LACAST
as we have shown in previous projects [2] (step 7), namely symbolic and numeric evaluations.
Moreover, this evaluation is most desired since it evaluates the entire proposed translation
pipeline, from the semantification via mathosphere and the semantic LATEX macros, and the final
translation via LACAST. The next chapter will aim to realize this proposed pipeline. The steps 1

and 3 are discussed in Chapter 4. The step 7 is subject of Chapter 5. Step 6 has not been

realized due to the reduced amount of textual context within the DLMF. Steps 2 , 4 , and 5

are subject of future work.

Chapter 3

Semantification of Mathematical LaTeX
93

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

The first time someone calls you a horse you punch him on the

nose, the second time someone calls you a horse you call him a

jerk but the third time someone calls you a horse, well then

perhaps it’s time to go shopping for a saddle.

Shlomo - Lucky Number Slevin

CHAPTER 4

From LaTeX to Computer Algebra Systems

Contents

4.1 Context-Agnostic Neural Machine Translation . 96

4.1.1 Training Datasets & Preprocessing . 96

4.1.2 Methodology . 97

4.1.3 Evaluation of the Convolutional Network . 97

4.1.3.1 Results. 98

4.1.3.2 Qualitative Analysis and Discussion . 99

4.2 Context-Sensitive Translation . 101

4.2.1 Motivation . 101

4.2.2 Related Work . 104

4.2.3 Formal Mathematical Language Translations . 104

4.2.3.1 Example of a Formal Translation. 107

4.2.4 Document Pre-Processing . 108

4.2.5 Annotated Dependency Graph Construction . 108

4.2.6 Semantic Macro Replacement Patterns . 110

4.2.6.1 Common Knowledge Pattern Recognition 112

This chapter addresses research tasks III and IV, i.e., implementing a system for automated
semantification and translation of mathematical expressions to CAS syntax. In the previous
chapter, we laid the foundation for a novel context-sensitive semantification approach that
extracts the semantic information from a textual context and semantically enriches a formula
with semantic LATEX macros. In this chapter, we realize this proposed semantification approach
on 104 English Wikipedia articles with 6,337 mathematical expressions. However, before we
continue with this main track, we first apply a novel context-agnostic machine translation
approach for translations from LATEX to Mathematica.

Previously, we have evaluated that rule-based translators are rather limited. Mostly because
the rules are carefully selected and manually crafted. This manual approach makes it difficult
to estimate the level of semantics that can be concluded directly from an expression (due to its
structure, notation style, or the including symbols). Finding patterns in large data is a classic
task for ML solutions. Hence, we will first elaborate the effectiveness of a machine translation
approach in Section 4.1. We will see that the machine translation approach is very effective in
adopting the notation style generated by Mathematica’s LATEX exports but fails to generalize the

95
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_4

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_4&domain=pdf

Section 4.1. Context-Agnostic Neural Machine Translation

trained patterns on real world scenarios or other libraries. A qualitative evaluation on the DLMF
of the same model underlines the inappropriateness of the approach for a general translator.
Nonetheless, the model still outperforms Mathematica’s internal LATEX import function.

The machine translation approach presented in Section 4.1 partially contains excerpts of our1

upcoming submission to the ACL Conference 2023.The Section 4.2 has been accepted for pub-
lication in the upcoming issue of the IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) [11] journal. In order to provide a coherent story line, Section 4.2 only
presents the first half of the TPAMI submission. The second half, the evaluation and discussion
sections, subsequently continues in Chapter 5.

4.1 Context-Agnostic Neural Machine Translation

Mathematical formulae are generally longer compared to natural language sentences. 98% of
the sentences in the Stanford Natural Language Inference (SNLI) entailment task, for example,
contain less than 25 words [48]. In contrast, the average number of Mathematica tokens in the
Mathematical Functions Site (MFS) dataset is 173. Short and long expressions are relatively
rare but have a wider range compared to natural language sentences, e.g., 2.25% contain less
than 25 tokens and 2.1% contain more than 1,024 tokens. Meanwhile, a vocabulary of such a
mathematical language only contains 1k tokens compared to 60k tokens for a news classification
model [410]2.

The most common neural machine translation models are sequence-to-sequence recurrent
neural networks [355], tree-structured recursive neural networks [136], transformer sequence-
to-sequence networks [371], and convolutional sequence-to-sequence networks [130]. For
natural language translation tasks, transformer networks are known to outperform the oth-
ers [130, 277, 371]. In this Section, we use convolutional sequence-to-sequence networks [130]
since they perform better on our mathematical language. In regard of related work, only a few
approaches for mathematical language translations exists [95, 219, 275, 296, 373, 375, 376, 379].

4.1.1 Training Datasets & Preprocessing

We used two datasets for our experiments: the Mathematical Functions Site (MFS)3 and parts
of the DLMF. For the MFS, we fetched all formulea in Mathematica’s InputForm4 and ex-
ported every expression with Mathematica’s internal TeXForm5 export function. This process
generated 307,409 expression pairs in LATEX and Mathematica notation. We do the same for
the DLMF dataset but use LATExml for the conversion from semantic LATEX to LATEX. From the
DLMF, we generated 11,605 pairs in LATEX and semantic LATEX notation. Note that LATExml and
Mathematica’s TeXForm are rule-based translators. Hence, the generated data is limited to the
abilities of the methods we used. Finally, we parsed the data in binary trees in postfix notation
with the help of a custom rule-based tokenizer for LATEX and Mathematica expressions.

1The translator is a project by Felix Petersen and was supervised by Moritz Schubotz and assisted by me. In
particular, I evaluated the model on the DLMF dataset and helped to devise the final paper for publication. The
section has been mostly rewritten and shortened to the main findings for avoiding conflicts.

2Even though more recent discussions argue that such large vocabularies are often not required and can be
significantly reduced in size without a dramatic decrease in the model’s performance [70].

3http://functions.wolfram.com/ [accessed 2021-09-20]
4https://reference.wolfram.com/language/ref/InputForm.html [accessed 2021-09-20]
5https://reference.wolfram.com/language/ref/TeXForm.html [accessed 2021-09-20]

96 Chapter 4

From LaTeX to Computer Algebra Systems

http://functions.wolfram.com/
https://reference.wolfram.com/language/ref/InputForm.html
https://reference.wolfram.com/language/ref/TeXForm.html

Section 4.1. Context-Agnostic Neural Machine Translation

4.1.2 Methodology

Besides our final convolutional sequence-to-sequence model [130], we also experimented with
Long-Short-Term-Memory (LSTM) recurrent networks [369], recurrent, recursive, and trans-
former neural networks [130, 277, 371], and LightConv [397] as an alternative to the classic
convolutional sequence-to-sequence models [130]. However, our model outperformed all other
approaches. In the following, we list the hyperparameters and additional design choices that
performed best for our experiments.

We use

• Learning Rate, Gradient Clipping, Dropout, and Loss: a learning rate of 0.25, applied
gradient clipping on gradients greater than 0.1, and a dropout rate of 0.2, and a label
smoothed cross-entropy for the loss;

• State/Embedding Size(s): a single state size of 512 tokens;

• Number of Layers: 11 layers;

• Batch Size: 48 000 tokens per batch (which is equivalent to a batch size of about 400
formulae); and

• Kernel Size: 3.

Since the MFS dataset contains more than 104 multi-digit numbers (in contrast to less than 103

non-numerical tags), these numbers cannot be interpreted as conventional tags. Thus, numbers
are either split into single digits or replaced by variable tags. Splitting numbers into single
digits causes significantly longer token streams, which degrades performance. Substituting
all multi-digit numbers with tags like <number_01> improved the exact match accuracy of
the validation data set from 92.7% to 95.0%. We use a total of 32 of such placeholder tags as
more than 99% of the formulae have less or equal to 32 multi-digit numbers. We randomly
select the tags that we substitute the numbers with. Since multi-digit numbers basically always
perfectly correspond in the different mathematical languages, we directly replace the tag with
their corresponding numbers after the translation. Lastly, we split the MFS dataset into 97%
training data, 0.5% validation data, 2.5% test data and split the semantic LATEX data set into
90% training data, 5% validation data, and 5% test data since this set is smaller.

4.1.3 Evaluation of the Convolutional Network

In the following, we use three evaluation metrics: Exact Matches (EM), Levenshtein dis-
tance [227], and Bilingual Evaluation Understudy (BLEU) [282]. The EM and the Levenshtein
distance are calculated on the comparison of the sequence of Mathematica and TEX tokens.
Hence even LATEX equivalent expressions, such as E=mcˆ2 and E=mcˆ{2}, are not considered
as an EM. Due to the two additional curly brackets, the Levenshtein distance between both
expressions is 2. We further denote the share of translations that have a Levenshtein distance
of up to 5 by LD≤5, and denote the average Levenshtein Distance by LD.

The BLEU score is a quality measure that compares the machine’s output to a translation by
a professional human translator. It compares the n-grams (specifically n = 1, . . . , 4) between
the prediction and the ground truth. Since the translations in the data sets are ground truth
values instead of human translations, for the back-translation of formulae, this metric reflects
the closeness to the ground truth. BLEU scores range from 0 to 100, with the higher value

Chapter 4

From LaTeX to Computer Algebra Systems
97

Section 4.1. Context-Agnostic Neural Machine Translation

indicating the better result. For a comparison to natural languages, state-of-the-art translators
from English to German reach a 35.0 and from English to French a 45.6 BLEU score [102]. That
the BLEU scores for formula translations are significantly higher than the scores for natural
language can be attributed to the larger vocabularies in natural language and a considerably
higher variability between correct translations.

In addition to this, we also perform round trip experiments from LATEX into Mathematica and
back again on the im2latex-100k6 dataset [95]. This dataset consists about 100k formulae
from papers of arXiv, including their renderings. The im2latex-100k task’s concept was the
conversion of mathematical formulae from images into LATEX via OCR. We use it as an additional
source for more general mathematical expressions instead. For our round trip experiment, we
translate all LATEX expressions into Mathematica with the internal LATEX import function and our
convolutional sequence to sequence model. Afterward, we use Mathematica’s export function
to generate LATEX again. Finally, we compare this round trip translated LATEX with the original
input formula. Note that 66.8% of the equations in the im2latex-100k data set contain tokens
that are not in our model’s vocabulary.

4.1.3.1 Results

Table 4.1 show the results of our convolutional sequence to sequence model for translations to
Mathematica and semantic LATEX evaluated with the EM rate and the BLEU score. We achieved
an EM accuracy of 95.1% and a BLEU score of 99.68 for translations to Mathematica. For
the translation from LATEX to semantic LATEX, we achieved an EM accuracy of 90.7% and a
BLEU score of 96.79. Table 4.2 we compare our model with Mathematica’s internal TEX import
function on the two datasets MFS and im2latex-100k. While the accuracy drops on a new
dataset, our model still outperforms Mathematica’s import function on all metrics. Lastly, for a
more qualitative analysis, we evaluated our model on 100 random samples of DLMF formulae
manually, i.e., we did not check the EM or BLEU score but a human annotator manually checked
if a translation was correct or at least syntactically valid (which is the same as the previously
used Import metric). All 100 samples and the results are available in Table E.1 in Appendix E.1
available in the electronic supplementary material. Table 4.3 show the comparison of our model
with Mathematica’s import function and our previously developed translator LACAST [13]. As
we can see, on these random samples, Mathematica outperforms our model but LACAST performs
best. Nonetheless, LACAST was specifically designed for translations on the DLMF, which allows
LACAST to correctly anticipate the usage of constants, such as i for the imaginary unit or e for
Euler’s number.

Table 4.1: Results for the backward translation.

Metric LATEX → Mathematica LATEX → semantic LATEX

EM 95.1% 90.7%

BLEU 99.68 96.79

6https://paperswithcode.com/dataset/im2latex-100k [accessed 2021-09-21]

98 Chapter 4

From LaTeX to Computer Algebra Systems

https://paperswithcode.com/dataset/im2latex-100k

Section 4.1. Context-Agnostic Neural Machine Translation

Table 4.2: Comparison between Mathematica and our model on backward translation of the
formulae of the MFS and im2latex-100k dataset. Import denotes the fraction of formulae that
can be imported by Mathematica, i.e., the translation was syntactically valid.

Dataset Method EM Import LD≤5 LD

MFS
Mathematica 2.7% 88.5% 16.4% 88.7
Conv. Seq2Seq 95.1% 98.3% 96.7% 0.615

im2latex-100k
Mathematica 15.3% 0.153% 2.30% 18.3
Conv. Seq2Seq 16.3% 0.698% 2.56% 12.9

Table 4.3: Qualitative comparison between Mathematica, LACAST, and our model on 100 random
DLMF samples. � indicate wrong translations. � indicate correct translations. As in Table 4.2,
Import denotes syntactically valid translations. The full dataset is available in Appendix E.1
available in the electronic supplementary material.

Method Import � �

Mathematica 71% 11% 89%
LACAST 57% 22% 78%
Conv. Seq2Seq 45% 5% 95%

4.1.3.2 Qualitative Analysis and Discussion

We constitute that our model successfully outperforms Mathematica on various scenarios. A
good example for this is the following equation7:

℘
(
z; g2, g3

)
= −σ

(
z − z0; g2, g3

)
σ
(
z + z0; g2, g3

)
σ
(
z; g2, g3

)2
σ
(
z0; g2, g3

)2 /;z0 = ℘−1 (0; g2, g3
)

. (4.1)

The symbol ℘ (\wp) is properly interpreted by the model and Mathematica as the Weierstrass’
elliptic function ℘ (WeierstrassP). That is because the symbol ℘ is uniquely tied to the
Weierstrass ℘ function. The inverse of this function, ℘−1 is also properly interpreted by
both systems as the InverseWeierstrassP. However, σ was not properly interpreted by
Mathematica as the WeierstrassSigma presumably due to the ambiguity of σ. Considering
the expression is from the MFS and ℘ appears in the same expressions, we can conclude that
σ is referring to the WeierstrassSigma. Our model was able to capture this connection and
correctly translate the entire expression.

The low scores of Mathematica on their own dataset can be attributed to the fact that Math-
ematica does not attempt to disambiguate its own exported expressions. As we discussed
earlier, an export from a computational language to a presentation language loses semantic
information. Our sequence to sequence model was able to restore the semantic information
under the assumption that the input was generated from the MFS via Mathematica. Hence, our
model performs very well on the trained data but is unable to produce reliable translations on

7Extracted from https : / / functions . wol f ra m .co m /EllipticFunctions / WeierstrassP /
introductions/Weierstrass/04/ [accessed 2021-09-14]

Chapter 4

From LaTeX to Computer Algebra Systems
99

https://functions.wolfram.com/EllipticFunctions/WeierstrassP/introductions/Weierstrass/04/
https://functions.wolfram.com/EllipticFunctions/WeierstrassP/introductions/Weierstrass/04/

Section 4.1. Context-Agnostic Neural Machine Translation

Table 4.4: Examples of our machine translations from LATEX to Mathematica for the same
expressions as in Table 1.2 from the introduction. The columnMM refers to the results of Math-
ematica’s import function from Table 1.2 for comparison. Circled results (�) are syntactically
invalid.

LATEX Rendering Conv. Seq2Seq Translation MM

\int_a^b x dx
∫ b

a xdx Integrate[x^(x,x) � �

\int_a^b x \mathrm{d}x
∫ b

a xdx Integrate[x^x,a] � �

\int_a^b x\, dx
∫ b

a x dx Integrate[x^bx,x] � �

\int_a^b x\; dx
∫ b

a x dx Integrate[x^bx,x] � �

\int_a^b x\, \mathrm{d}x
∫ b

a x dx Integrate[x^a^bx,x] � �

\int_a^b \frac{dx}{x}
∫ b

a
dx
x Integrate[(dx)/x � �

\sum_{n=0}^N n^2
∑N

n=0 n2 Sum[n^2,{n,0,N}] � �

\sum_{n=0}^N n^2 + n
∑N

n=0 n2 + n Sum[n^2+n,{n,0,N}]+n � ?

{n \choose m}
(n

m

)
JacobiSymbol[n, m] � �

\binom{n}{m}
(n

m

)
Binomial[n, m] � �

\int_a^b x dt
∫ b

a xdt Integrate[x,{t,a,b}] �

\int_a^b x^2 dx
∫ b

a x2dx Integrate[x^2,{x,a,b}] �

\int_{a}^{b} x^2 dx
∫ b

a x2dx Integrate[x^2,{a,a,b}] �

unseen, more general expressions. A first hint to this problem can be found in Table 4.3 for
our evaluation on the 100 DLMF formulae. While our model clearly outperforms Mathemat-
ica on the MFS dataset, the internal rule-based import function of Mathematica works more
reliable on unknown expressions. One reason for the low performance of our model on the
DLMF evaluation is our vocabulary. 71 of the 100 expressions contain tokens that are not in
the Mathematica-export vocabulary. Hence, our model was unable to correctly interpret these
expressions. This clearly underlines the limitation of the model. As an approach to mitigate
this effect in the future, we could use multilingual translations [40, 174] which would allow
learning translations and tokens that are not represented in the training data for the respective
language pair.

Additionally, we must note that every dataset we used has a significant bias. The DLMF and
MFS specifically focus on OPSF. The im2latex-100k dataset was created from arXiv articles
in the area of high energy physics8. A general limitation of neural networks is that trained
models inherit biases from training data. For a successful formula translation, this means that
the set of symbols, as well as the style in which the formulae are written, has to be present in
the training data. Rather than learning the actual semantics of an expression, a model is able to
capture the notation flavor / convention another tool produces, such as Mathematica’s export
function or LATExml. The generated LATEX from both Mathematica and LATExml, is limited to a
specific vocabulary and does not allow variation as it is produced by rule-based translators.

8Phenomenology (hep-ph) and Theory (hep-th) specifically.

100 Chapter 4

From LaTeX to Computer Algebra Systems

Section 4.2. Context-Sensitive Translation

Because of the limited vocabularies as well as limited set of LATEX conventions in the data sets,
the translation of mathematical LATEX expressions of different flavors is not possible.

Due to the performance on the MFS and im2latex-100k datasets, we conclude that our model
captures more patterns compared to Mathematica’s internal import methods. On the other
hand, we have also shown that our model is unable to capture the semantic information of
mathematical expressions but concludes semantics from patterns and token structures. Whether
this semantics is correct or consistent with additional contextual information does not matter.
Hence, our translation is rather unpredictable and susceptible to minor visual changes in the
inputs. If we consider the simple examples from Table 1.2 from the introduction, we can see that
our model is unable to correctly translate most expressions similar to Mathematica. Table 4.4
shows the translations for our model. Three of the translations even consists obvious syntax
errors, such as unbalanced brackets. In comparison to the first Table 1.2, we added three more
examples to show that marginal changes may have a significant impact on the final translation.
For example, simply changing the variable of integration from x to t in the first examples
changes the outcome from a syntactically and semantically invalid expression to a correct and
valid translation. Similarly, additional curly brackets around the limits of an integral may cause
a wrong translation and an error that can be difficult to trace back if not immediately noticed9.

Considering the simplicity of the expressions, a machine translation model alone might not
be the correct approach for a reliable LATEX to CAS translator. Especially because such simple
mistakes harms the trustworthiness of the entire engine. Since accuracy and precision are among
the most important aspects in mathematics, our machine translator cannot be considered as
compatible with existing rule-based approaches. A hybrid solution with ML-enhanced pattern
recognition techniques and rule-based translations could be the more promising solution in the
future.

4.2 Context-Sensitive Translation

Since the previous section has shown that machine translations are not as reliable as rule-based
approaches, we continue to develop a more reliable strategy following heuristics that have been
developed over time by studying mathematical notations. Specifically, we want to focus on a
more broad source of mathematical expressions away from the strict notation guidelines in the
DLMF and the less descriptive scientific articles in arXiv. In the following, we will focus on
Wikipedia articles as our primary source for mathematical expressions.

4.2.1 Motivation

Like many other knowledge base systems, Wikipedia encodes mathematical formulae in a rep-
resentational format similar to LATEX [156, 17, 405]. While this representational format is simple
to comprehend by readers possessing the required mathematical training, an additional explicit
knowledge of the semantics associated with each expression in a given formula, could make
mathematical content in Wikipedia even more explainable, unambiguous, and most impor-
tantly, machine-readable. Additionally, making math machine-readable can allow even visually
impaired individuals to receive a semantic description of the mathematical content. Finally,
and crucially, moderating and curating mathematical content in a free and community-driven

9Here the variable of integration switched from x to a in the translated expression due to the redundant curly
brackets around the limits of the integral. This error can be easily overlooked.

Chapter 4

From LaTeX to Computer Algebra Systems
101

Section 4.2. Context-Sensitive Translation

Via the hypergeometric function

The Jacobi polynomials are defined via the hypergeometric function as follows:[2]

where is Pochhammer’s symbol (for the rising factorial). In this case the
series for the hypergeometric function is finite, therefore one obtains the following
equivalent expression:

[edit]

al).
the hypergeometric function is finite, therefore one obta
t ex

Definition: Jacobi polynomial

Pochhammer’s symbol
Hypergeometric function
Factorial

Jacobi polynomial
Computer
Verified

Figure 4.1: Mathematical semantic annotation in Wikipedia.

encyclopedia like Wikipedia, is more time-consuming and error-prone without explicit access
to the semantics of a formula. Wikipedia currently uses the Objective Revision Evaluation Service
(ORES) to predict the damaging or good faith intention of an edit using multiple independent
classifiers trained on different datasets [144]. The primary motivation behind ORES was to
reduce the overwhelming workload of content moderation with machine learning classification
solutions. Until now, the ORES system applies no special care to mathematical content. Estimat-
ing the trustworthiness of an edit in a mathematical expression is significantly more challenging
for human curators and almost infeasible for Artificial Intelligence (AI) classification models
due to the complex nature of mathematics.

In this section, we propose a semantification and translation pipeline that makes the math in
Wikipedia computable via CAS. CAS, such as Maple [36] and Mathematica [393], are complex
mathematical software tools that allow users to manipulate, simplify, plot, and evaluate math-
ematical expressions. Hence, translating mathematics in Wikipedia to CAS syntaxes enables
automatic verification checks on complex mathematical equations [2, 11]. Integrating such
verifications into the existing ORES system can significantly reduce the overload of moder-
ating mathematical content and increasing credibility in the quality of Wikipedia articles at
the same time [359]. Since such a translation is context-sensitive, we also propose a seman-
tification approach for the mathematical content. This semantification uses semantic LATEX
macros [260] from the DLMF [98] and noun phrases from the textual context to semantically
annotate math formulae. The semantic encoding in the DLMF provides additional information
about the components of a formula, the domain, constraints, links to definitions, and improves
searchability and discoverability of the mathematical content [260, 403]. Our semantification
approach enables the features from the DLMF for mathematics inWikipedia. Figure 4.1 provides
an example vision of our semantic annotations and verification results in Wikipedia [17]. Head
et al. [150] recently evaluated that providing readers information on the individual elements
in mathematical expressions on-site [329, 394], such as shown in Figure 4.1, can significantly
support users of all experience levels to read and comprehend articles more efficiently [150].

Mathematics is not a formal language. Its interpretation heavily depends on the context, e.g.,
π(x + y)10 can be interpreted as a multiplication πx + πy or the number of primes less than or
equal to x+y. CAS syntaxes, on the other hand, are unambiguous content languages. Therefore,
the main challenge to enable CAS verifications for mathematical formulae in Wikipedia is a

10In the following, we use this color coding for examples to easily distinguish them from other mathematical
content in this section.

102 Chapter 4

From LaTeX to Computer Algebra Systems

Section 4.2. Context-Sensitive Translation

reliable translation between an ambiguous, context-dependent format and an unambiguous,
context-free CAS syntax. Hence, we derive the following research question:

� ResearchQuestion

What information is required to translate mathematical formulae from natural language
contexts to CAS and how can this information be extracted?

In this section, we present the first context-dependent translation from mathematical LATEX
expressions to CAS, specifically Maple and Mathematica. We show that a combination of
nearby context analysis (extraction of descriptive terms) and a list of standard notations for
common functions provide sufficient semantic information to outperform existing context-
independent translation techniques, such as CAS internal LATEX import functions. We achieve
reliable translations in a four-step augmentation pipeline. These steps are: (1) pre-processing
Wikipedia articles to enable natural language processing on it, (2) constructing an annotated
mathematical dependency graph, (3) generating semantic enhancing replacement patterns, and
(4) performing CAS-specific translations (see Figure 4.2). In addition, we perform automatic
symbolic and numeric computations on the translated expressions to verify equations from
Wikipedia articles [2, 11]. We show that the system is capable of detecting potential errors
in mathematical equations in Wikipedia articles. Future releases could be integrated into the
ORES system to reduce vandalism and improve trust in mathematical articles in Wikipedia.
We demonstrate the feasibility of the translation approach on English Wikipedia articles and
provide access to an interactive demo of our LaTeX to CAS translator (LACAST)11.

For the evaluation of the translations, we focus on the sub-domain of OPSF. OPSF are generally
well-supported by general-purpose CAS [13], which allows us to estimate the full potential
of our proposed translation and verification pipeline. Since CAS syntaxes are programming
languages, one has the option to add new functionality to a CAS, such as defining a new
function. Defining new functions in CAS, however, can vary significantly in complexity. While
translating a generic function like f(x) := x2 is straightforward, defining the prime counting
function from above could be very complex. If a function is explicitly declared in the CAS,
we call a translation to that function direct. General mathematics often does not have such
direct translations. For example, translating the generic function f(x) is meaningless without
considering the actual definition of f(x). Hence, we first focus on translations of OPSF, which
often have direct translations to CAS. In addition, OPSF are highly interconnected, i.e., many
OPSF can be expressed (or even defined) in terms of other OPSF. One of the main tasks for
our future work is to support more non-direct translations enabling our LACAST to handle more
general mathematics.

In this section, we present our pipeline and discuss each of the augmentation steps. Section 4.2.2
discusses related work. In Section 4.2.3, we introduce a formal definition for translating LATEX
to CAS syntaxes. Section 4.2.4 explains necessary pre-processing steps for Wikipedia articles.
Section 4.2.5 introduces our annotated dependency graph. Section 4.2.6 concludes by replacing
generic LATEX subexpressions with semantically enrichedmacros from the DLMF. The evaluation
and discussion subsequently continue in Chapter 5.

11https://tpami.wmflabs.org [accessed 2021-09-01]

Chapter 4

From LaTeX to Computer Algebra Systems
103

https://tpami.wmflabs.org

Section 4.2. Context-Sensitive Translation

4.2.2 Related Work

Our proposed pipeline tangents several well-known tasks from MathIR, namely descriptive en-
tity recognition for mathematical expressions [183, 213, 279, 320, 329], math tokenization [402],
math dependency recognition [14, 214], and automatic verification [2, 11]. Existing approaches
to translate mathematical formulae from presentational languages, e.g., LATEX or MathML, to
content languages, e.g., content MathML or CAS syntax, do not analyze the context of a for-
mula [14, 270, 18]. Hence, existing approaches to translate LATEX to CAS syntaxes are limited to
simple arithmetic expressions [18] or require manual semantic annotations [14]. Some CAS,
such as Mathematica, support LATEX imports. Those functions fall into the first category [18]
and are limited to rather simple expressions. A semantic annotation, on the other hand, can
be directly encoded in LATEX via macros and allows for translations of more complex formu-
lae. Miller et al. [260] developed a set of the previously mentioned semantic macros that link
specific mathematical expressions with definitions in the DLMF [98]. The manually generated
semantic data from the DLMF [403] was successfully translated to and evaluated by CAS with
our proposed framework LACAST [2, 13]. Therefore, our translation pipeline contains two steps:
First, the semantic enhancement process towards the semantic LATEX dialect used by the DLMF.
Second, the translation from semantic LATEX to CAS via LACAST. In this paper, we focus on the
first step. The second phase is largely covered by [2, 11, 13]. A more comprehensive overview
was given in Section 2.4.

4.2.3 Formal Mathematical Language Translations

First, we will introduce an abstract formalized concept for our translation approach followed
by a detailed technical explanation of our system. Inspired by the pattern-matching translation
approaches in compilers [263], we introduce a translation on mathematical expressions as
a sequence of tree transformations. In the following, we mainly distinguish between two
kinds of mathematical languages: presentational languages LP , such as LATEX

12 or presentation
MathML13, and content languages LC , such as content MathML, OpenMath [204], or CAS
syntaxes [36, 393]. Elements of these languages are often referred to as symbol layout trees
for e ∈ LP or operator trees for e ∈ LC [92]. Then we call a context-dependent translation
t : LP × X → LC with t �→ t(e, X) appropriate if the intended semantic meaning of e ∈ LP

is the same as t(e, X) ∈ LC . We further define the context X of an expression e as a set of
facts from the document D the expression e appears in and a set of common knowledge facts
K so that facts from the document may overwrite facts from the common knowledge set

X := {f |f ∈ D ∪ K ∧ (f ∈ K ⇒ f /∈ D)}. (4.2)

A fact f is a tuple (MOI, MC) of a Mathematical Objects of Interest (MOI) [14] and a Mathe-
matical Concept (MC). An MOI m refers to a meaningful mathematical object in a document
and the MC uniquely defines the semantics of that MOI. In particular, from the MC of an MOI
m, we derive a semantic enhanced version m̃ of m so that m̃ ∈ LC . Hence, from f , we derive
a graph transformation rule rf = m → m̃ and define gf (e) as the application e ⇒

rf
ẽ with

e ∈ LP , ẽ ∈ LC .

We split the translation t(e, X) into two steps, a semantification ts(e, X) and a mapping tm(e)
step. The semantification ts(e, X) transforms all subexpressions ē ⊆ e that are not operator

12https://www.latex-project.org/ [accessed 2021-06-29]
13https://www.w3.org/TR/\gls{mathml}3/ [accessed 2021-06-29]

104 Chapter 4

From LaTeX to Computer Algebra Systems

https://www.latex-project.org/
https://www.w3.org/TR/\gls {mathml}3/

Section 4.2. Context-Sensitive Translation

trees, i.e., ē ∈ LP \ LC , to operator tree representations ˜̄e ∈ LC . In the following, we presume
that these subexpressions ē are MOI so that we can derive ˜̄e from a fact f ∈ X . Then we define
the semantification step as the sequence of fact-based graph transformations

ts(e, X) := gf1 ◦ · · · ◦ gfn
(e), (4.3)

with fk ∈ X, k = 1, . . . , n. Again, we call a graph transformation g(e) appropriate if the
intended semantics of the expression e and its transformation g(e) are the same. Further, we
call ts(e, X) complete if all subexpressions e′ ⊆ ts(e, X) are in LC and incomplete otherwise.
Note that graph transformations are not commutative, i.e., there could be f1, f2 ∈ X so that
gf1 ◦ gf2(e) �= gf2 ◦ gf1(e).

The mapping step tm(e) is a sequence of applications on graph transformation rules that replace
a node (or subtree) with the codomain-specific syntax version of the node (or subtree). Hence,
the mapping step is a context-independent translation tm : LC1 → LC2 with LC1 , LC2 ⊂ LC

and a fixed rule set RC1
C2

so that rk = LC1 → LC2 for rk ∈ RC1
C2

, k = 1, . . . , n. Then we define

tm(e) := gr1 ◦ · · · ◦ grn
(e). (4.4)

Note that tm(e) ignores subexpressions ē ⊆ e that are not in LC . For CAS languages LM ⊂ LC ,
certain subtrees of an expression ẽ ⊆ e ∈ LP are operator trees in the target language, ẽ ∈ LM .
Hence, we call tm(e) complete, if all e′ ⊂ e with e′ ∈ LC1 \ LC2 were transformed to LC2 .
Note that a complete tm(e) is not necessarily appropriate because such an e ∈ LP ∩ LC could
have a different semantic meaning in LP and LC (see the π example from the introduction).

� Definition of a Context-Sensitive Translation Function

For a given target CAS language LM ⊂ LC , a set of rules RC
M , and a context X , we

define the two step translation process as

t : LP × X → LC t(e, X) := tm(ts(e, X)). (4.5)

We call t(e, X) complete if ts(e, X) and tm(e) are complete and appropriate.

Splitting the translation t(e, X) into these two steps has the advantage of modularity. Consider-
ing an appropriate and complete semantification, we can translate an expression e to any context
language LM ⊂ LC by using a different set of rules RC

M for tm(e). In previous research, we
developed LACAST [3, 13] as an implementation of tm(e) between the content languages semantic

LATEX [403] (the semantic enhanced LATEX used in the DLMF) and the CAS syntaxes of Maple and
Mathematica. Technically, semantic LATEX is simply normal LATEX, where specific subexpressions
are replaced by semantic enhanced macros. In this paper, we extend LACAST to identify the
subexpressions that can be replaced with these semantic LATEX macros. This semantification is
our first translation step ts(e, X). The results ts(e, X) are in semantic LATEX which is in LC . For
the second step (the mapping), we rely on the original LACAST implementation (from semantic
LATEX to CAS syntaxes) for tm(e) and presume that tm(e) is complete and appropriate [2, 11].

To perform a complete and appropriate semantification, we need to solve three remaining
issues. First, how can we derive sufficiently many facts from a document f ∈ D so that the
transformation rules rf are appropriate and the semantification ts(e, X) is appropriate and

Chapter 4

From LaTeX to Computer Algebra Systems
105

Section 4.2. Context-Sensitive Translation

Dependency
Graph

Math-NP Pairs

Noun Phrases (NP)

Math Expression

Semantic
Macro DB

Search Semantic Macro
Replacement Patterns

Associated Jacobi
Polynomial

\JacobipolyP{#1}{#2}{#3}@{#4}P_{#3}^{(#1,#2)}(#4)
\JacobipolyP{#1}{#2}{#3}@{x}P_{#3}^{(#1,#2)}

Jacobi
Polynomial

\assJacobipolyP{#1}{#2}{#3}@{#4}P_{#3}^{(#1,#2)}(#4;5)
\assJacobipolyP{#1}{#2}{#3}@{x}{c}P_{#3}^{(#1,#2)}

Shifted Jacobi
Polynomial

\shiftJacobipolyG{#1}@{#2}{#3}{#4}G_{#1}(#2,#3,#4)
\shiftJacobipolyG{#1}@{p}{q}{x}G_{#1}

JacobiP[n,\[Alpha],\[Beta],x]

Document Pre-Processing Constructing Annotated
Dependency Graph

\JacobipolyP{\alpha}{\beta}{n}@{-z}

LCT

Perform Replacements &
Translations to CASThe Jacobi

Polynomial

P_n^{(\alpha,\beta)}(-z) = (-1)^n …

JacobiP(n,alpha,beta,x)))
]

Maple

Mathematica

LC
T Semantic LaTeX to

CAS Translator

La
Te

X
De

pe
nd

en
cy

Figure 4.2: The workflow of our context-sensitive translation pipeline from LATEX to CAS syn-
taxes.

complete? Second, since the transformation rules are not commutative, a different order of
facts may result in an inappropriate semantification ts(e, X). Hence, we need to develop a
fact-ranking rk(f) so that the sequence of transformations is performed in an appropriate
order. Third, how can we determine if a translation was appropriate and complete? There is
no general solution available to determine the intended semantic information of an expression
e ∈ LP . In turn, it is probably impossible to certainly determine if a translation is appropriate
for general expressions. Therefore, we propose different evaluation approaches that allow
automatically verifying the appropriateness and completeness of a translation. We performed
the same evaluation approaches on the manually annotated semantic LATEX sources of the DLMF
and successfully identified errors in the DLMF and the two CAS Maple and Mathematica [2,
11]. Hence, we presume the same technique is appropriate to detect errors in Wikipedia too. In
addition to these verification evaluations, we perform a manual evaluation on a smaller test set
for a qualitative analysis.

The number of facts (transformation rules) that we derive from a document D is critical. A
low number of transformation rules may result in an incomplete translation. On the other
hand, too many transformation rules may increase the number of false positives and result
in an inappropriate transformation. To solve this issue, we propose a dependency graph of
mathematical expressions containing the MOI of a document as nodes. A dependency in this
graph describes the subexpression relationship between two MOI. We further annotate each
MOI with textual descriptions from the surrounding context. We interpret these descriptions
as references to the mathematical concepts MC that defines the MOI and rank each description
according to distance and heuristic measures. Since MOI are often compositions of other MOI,
the dependencies allow us to derive relevant facts for an expression e from the subexpressions
e′ ⊆ e. To derive a semantically enhanced version m̃ for an MOI m, we use the semantic
macros from the DLMF. Each semantic macro is a semantically enhanced version m̃ of a
standard representational m. To derive relevant semantic macros, i.e., transformation rules, we
search for the semantic macro’s description that matches the MC of the facts. In turn, we have
a large number of ranked facts with the same MOI m and a ranked list of transformation rules
r1, . . . , rn for each fact f . The rankings allow us to control the number and order of the graph

106 Chapter 4

From LaTeX to Computer Algebra Systems

Section 4.2. Context-Sensitive Translation

transformation gfr
(e) in ts(e, X). In turn, the annotated dependency graph should solve the

mentioned issues one and two. The pipeline is visualized in Figure 4.2. The rest of this section
explains the pipeline in more detail. The third issue, i.e., determining the appropriateness and
completeness of a translation is discussed in Section 5.2 in Chapter 5.

4.2.3.1 Example of a Formal Translation

Consider the example from the introduction π(x + y) in a document D that describes π(x) as
the prime counting function. Hence, we derive the fact

f = (π(x), prime counting function) ∈ D. (4.6)

In our dependency graph, π(x + y) depends on π(x). Hence, we derive the same fact f for
π(x+y). Based on this fact, we find a function in the DLMF described as ‘the number of primes
not exceeding x’ which uses the semantic macro \nprimes@{x} and the presentation π(x).
Hence, we derive the transformation rule

rf = \pi(v1) → \nprimes@{v1}, (4.7)

where v1 is a wildcard for variables. For simplicity reasons, this example only derived a single
transformation rule rf rather than an entire set of ranked rules and facts as described above. Our
final pipeline will derive an entire list of ranked facts and replacement rules that are successively
applied. LACAST defines a translation rule r1 ∈ RC

Mathematica for this function to PrimePi[x] and
a rule r2 ∈ RC

Maple to pi(x) in Maple14, respectively. Hence, the translation to Mathematica
would be performed via r1 as

t(\pi(x+y), X) = tm(ts(\pi(x+y), X)) (4.8)

= gr1(gf (\pi(x+y))) (4.9)

= gr1(\nprimes@{x+y}) (4.10)

= PrimePi[x+y]. (4.11)

For Maple, the translation process is performed via r2 instead

t(\pi(x+y), X) = tm(ts(\pi(x+y), X)) (4.12)

= gr2(gf (\pi(x+y))) (4.13)

= gr2(\nprimes@{x+y}) (4.14)

= pi(x+y). (4.15)

This underlines the modular system of our translation pipeline. Further, LACAST takes care of
additional requirements for successful translations. In this particular example, LACAST informs
a user about the requirement of loading the NumberTheory package in Maple in order to use
the translated expression pi(x+y). Note that the subexpression x + y was not transformed
by gf (e) nor by gr1(e), because x + y ∈ LM ∩ LP . Hence, this translation is complete and
appropriate.

14Maple requires to pre-load the NumberTheory package.

Chapter 4

From LaTeX to Computer Algebra Systems
107

Section 4.2. Context-Sensitive Translation

4.2.4 Document Pre-Processing

For extracting the facts from a document D, we need to identify all MOI and MC. In previous
research [329], we have shown that noun phrases can represent definiens of identifiers. Hence,
we presume noun phrases are good candidates for MCs too. To properly extract noun phrases,
we use CoreNLP [240] as our POS tagger [367, 368]. Since CoreNLP is unable to parse math-
ematics, we replace all math by placeholders first. In a previous project [279], we proposed a
Mathematical Language Processor (MLP) that replaces mathematical expressions with place-
holders. Occasionally, this approach yields wrong annotations. For example, CoreNLP may tag
factorial or polynomial as adjectives when a math token follows, even in cases where they are
clearly naming mathematical objects15. However, the MLP approach works reasonably well in
most cases.

Since Wikipedia articles are written in Wikitext, we use Sweble [99] to parse an article, replace
MOI with placeholders, remove visual templates, and generate a plain text version of an article.
Wikipedia officially recommends encoding in-line mathematics via templates that do not use
LATEX encoding (see Appendix B available in the electronic supplementary material for more
details about math formulae in Wikipedia). In addition, since Wikipedia is community-driven,
many mathematical expressions are not properly annotated as such. This makes it challenging
to detect all MOI in a given document. For example, the Jacobi polynomial article16 contains
several formulae that do not use the math template nor the <math> tag (for LATEX), such as
the single identifier ’’x’’ and the UTF-8 character sequences ε < 0, [ε, {{pi}}-ε], and
0 ≤ φ ≤ 4{{pi}}. As an approach to detect such erroneous math, we consider sequences
of symbols with specific Unicode properties as math. This includes the properties Sm for
math symbols, Sk for symbol modifier, Ps, Pe, Pd, and Po for several forms of punctuation
and brackets, and Greek for Greek letters. In addition, single letters in italic, e.g., ’’x’’, are
interpreted as math as well, which was already successfully used by MLP. Via MLP we also
replace UTF-8 characters by their TEX equivalent. In the end, the erroneous UTF-8 encoded
sequence 0 ≤ φ ≤ 4{{pi}} is replaced by 0 \leq \phi \leq 4\pi and considered as a
single MOI. Using this approach, we detect 27 math-tags, 11 math-templates (including one
numblk), and 13 in-line mathematics with erroneous annotations in the Jacobi polynomials
article. The in-line math contains six single italic letters and seven complex sequences. In one
case, the erroneous math was given in parentheses and the closing parenthesis was falsely
identified as part of the math expression. Every other detection was correct. In the future,
more in-depth studies can be applied to improve the accuracy of in-line math detection in
Wikitext [123, 377].

4.2.5 Annotated Dependency Graph Construction

Retrieving the correct noun phrase (i.e., MC) that correctly describes a single MOI is most likely
infeasible. Instead, we will retrieve multiple noun phrases for each MOI and try to rank them
accordingly. In the following, we construct a mathematical dependency graph for Wikipedia
articles in order to retrieve as many relevant noun phrases for an MOI as possible. As we have
discussed in an earlier project [214], there are multiple valid options to construct a dependency
graph. We decided to use the POM tagger [402] to generate parse trees from LATEX expressions

15For example, ‘The Jacobi polynomial MATH_1 is an orthogonal polynomial.’ Both ‘polynomial’ tokens in this
sentence are tagged as JJ (Adjective) with CoreNLP version 4.2.2.

16https://en.wikipedia.org/wiki/Jacobi_polynomials [accessed 2021-06-07]

108 Chapter 4

From LaTeX to Computer Algebra Systems

https://en.wikipedia.org/wiki/Jacobi_polynomials

Section 4.2. Context-Sensitive Translation

to build a dependency graph. The POM tagger lets us establish dependencies by comparing
annotated, semantic parse trees. Since the POM tagger aims to disambiguate mathematical
expressions in the future, the accuracy of our new dependency graph directly scales with an
increasing amount of semantic information available to the POM tagger. In addition, the more
the POM tagger is able to disambiguate expressions, the more subexpressions ē ⊆ e ∈ LP are
already in our target language ē ∈ LM . Our translator LACAST also relies on the parse tree of the
POM tagger [3, 13]. Technically, this allows us to feed LACAST directly with additional semantic
information via manipulating the parse tree from the POM tagger. For example, consider the
expression a(b+c). In general, LACAST would interpret the expression as a multiplication between
a and (b + c), as most conversion tools would [18]. However, we can easily tag the first token a
as a function in the parse tree and thereby change the translation accordingly without further
programmatic changes. In the following, we only work on the parse tree of the POM tagger,
which can be considered as part of LP .

To establish dependencies between MOI, we introduce the concept of a mathematical stem
(similar to ‘word stems’ in natural languages) that describes the static part of a function that
does not change, e.g., the red tokens in Γ(x) or Pn

(α,β)(x). Mathematical functions often have a

unique identifier as part of the stem that represents the function, such as Γ(x) orP
(α,β)
n (x). The

identification of a stem of an MOI, however, is already context-dependent. As our introduction
example of π(x + y) shows, the location of the stem depends on the identification of π(x + y)
as the prime counting function. At this point in our pipeline, we lack sufficient semantic
information about the MOI to identify the stem. On the other hand, a basic logic is necessary to
avoid erroneous MOI dependencies. We apply the following heuristic for an MOI dependency:
(i) at least one identifier must match in the same position in both MOI and (ii) this identifier is
not embraced by parenthesis. Now, we replace every identifier in an MOI m1 by a wildcard that
matches a sequence of tokens or entire subtrees. If this pattern matches anotherMOI m2 and the
match obeys our heuristics (i) and (ii), we saym2 depends on m1 and define a directed edge from
m1 to m2 in the graph. With the second heuristic, we avoid a dependency between Γ(x) and
π(x) (since x fulfill the first heuristic but not the second). In the future, it would be worthwhile
to study more heuristics on MOI to identify the stem via machine learning algorithms. A more
comprehensive heuristic analysis is desirable, since not every function has a unique identifier
in the stem, e.g., the Pochhammer’s symbol (x)n. Examples of dependencies between MOI can
be found in the Appendix F.2 available in the electronic supplementary material and on our
demo page.

In addition to the new concept for addressing math stems, we also changed our approach for
definition detection. Previously [214], we presumed that every equation symbol declares a
definition for the left-hand side expression. This would have a significant impact on the transla-
tion to CAS. Further, definitions must be translated differently compared to normal equations.
Currently, there is no reliable approach available to distinguish an equation from a definition.
Existing approaches try to classify entire textual sections in a document as definitions [111,
134, 183, 370] but not a single formula. We will elaborate more on this matter in Section 5.2.3.
For now, we only consider an equation symbol as a definition if it is explicitly declared as such
via :=.

For annotating MOIs with textual descriptions, we first used a support vector machine [213] and
later applied distance metrics [279, 329, 330] between single identifiers and textual descriptions.
We were able to reach an F1 score of .36 for annotating single identifiers with textual descrip-

Chapter 4

From LaTeX to Computer Algebra Systems
109

Section 4.2. Context-Sensitive Translation

tions. Since we are working on more complex, less overloaded [14], MOI expressions now, we
can presume an improvement if we apply the same approach again. Hence, we used our latest
improvements [330] and applied some changes to annotate MOI rather than single identifiers
with textual descriptions from the surrounding context. Originally, we considered only nouns,
noun sequences, adjectives followed by nouns, and Wikipedia links as candidates of definiens
(now MC) [329]. However, in the field of OPSF, such descriptions are generally insufficient.
Hence, we include connective possessive endings and prepositions between noun phrases (see
Appendix F.1 available in the electronic supplementary material for further details).

Originally [329], we scored an identifier-definiens pair based on (1) the distance between the
current identifier and its first occurrence in the document, (2) the distance (shortest path in the
parse tree) between the definiens and the identifier, and (3) the distribution of the definiens in
the sentence. We adopt this scoring technique for MOI and MC with slight adjustments. For
condition (2), we declare the first noun in an MC as the representative token in the natural
language parse tree. Therefore, (2) uses the shortest path between anMOI and the representative
token in the parse tree. For condition (1), we need to identify the locations of MOIs throughout
an entire document. Our dependency graph allows us to track the location of an MOI in
the document. Hence, (1) calculates the distance of an MOI and its first occurrence isolated
or as a dependent of another MOI in the document. In addition, we set the score to 1 if a
combination of MOI and noun phrases match the patterns NP MOI or MOI (is|are) DT? NP.
These basic patterns have been proven to be very effective in previous experiments for extracting
descriptions of mathematical expressions [213, 214, 279, 330]. We denote the final score of a
fact f , i.e., of an MOI and MC pair, with sMLP(MOI, MC).

4.2.6 Semantic Macro Replacement Patterns

Now, we derive a rule rf for a fact f so that the MOI m ∈ LP can be replaced by a semantic
enhanced version m̃ ∈ LC of it. The main issue is that we are still unable to identify the stems

of a formula. Consider we have the MOI P
(α,β)
n (z) identified as Jacobi polynomial. How do we

know the stem of a Jacobi polynomial and that n, α, β, and z are parameters and variables? For
an appropriate translation, we even need to identify the right order of these arguments. There
are two approaches, (i) we identify the definition of the formula in the article or (ii) we lookup
a standard notation. The first approach works because with the definition, we can deduce the
stem of a function by identifying which identifiers of the function are reused in the definition.
For example, in Figure 4.1, we see that n, α, β, and z appear in the definition of the Jacobi
polynomial but not P . Hence, we can conclude that the stem of the Jacobi polynomial must
be Pn

(α,β)(x). There are two remaining issues with this approach. First, what if a definition
does not exist in the same article? This happens relatively often for OPSF, since OPSF are
well established with more or less standard notation styles. Second, as previously pointed out,
we cannot distinguish definitions from normal equations yet. As long as there is no reliable
approach to identify definitions, approach (i) is infeasible. As a workaround, we focus on
approach (ii) and leave (i) for future work.

In order to get standard notations and derive patterns of them, we use the semantic macros
in the DLMF [260, 403]. A semantic macro is a semantically enhanced LATEX expression that
unambiguously describes the content of the expression. Hence, we can interpret a semantic
macro as an unambiguous operator subtree m̃ ∈ LC . The rendered version of the macro (i.e.,
the normal LATEX version) is in a presentational format m ∈ LP . Hence, we can derive a fact-

110 Chapter 4

From LaTeX to Computer Algebra Systems

Section 4.2. Context-Sensitive Translation

Table 4.5: Mappings and likelihoods for the semantic LATEX macro of the general hypergeometric
function in the DLMF.

Prob. Semantic Macro LaTeX Rendered

19.7%
\genhyperF{par1}{par2}
@{var1}{var2}{var3}

{}_{par1}F_{par2}
(var1; var2; var3) 2F1(a, b; c; z)

80.3%
\genhyperF{par1}{par2}
@@{var1}{var2}{var3}

{}_{par1}F_{par2}
({var1 \atop var2};var3) 2F1

(
a,b
c ; z

)
0.0%

\genhyperF{par1}{par2}
@@@{a_1,\dots,a_p}{b_1,\dots,b_q}{var3}

{}_{par1}F_{par2}
(var3) 2F1(z)

0.0%
\genhyperF{par1}{par2}
@{a_1,\dots,a_p}{b_1,\dots,b_q}{z}

{}_{par1}F_{par2} 2F1

based rule rf = m → m̃ by finding the appropriate semantic macro for a given mathematical
description (the MC in a fact f). The DLMF defines more than 600 different semantic macros
for OPSF. A single semantic macro may produce multiple rendered forms, e.g., by omitting the
parentheses around the argument in sin x. This allows for fine controlling the visualization of the
formulae. Table 4.5 contains the four different versions for the general hypergeometric function
(controlled by the number of @s). The last version (without variables and no @ symbol) is a special
case, which never appears in the DLMF. However, every semantic macro is also syntactically
valid without arguments. Note also that not every version visualizes all information that is
encoded in a semantic macro. For example, \genhyperF{2}{1}@@@{a,b}{c}{z} omits the
variables a, b, and c. Table 4.5 also shows the LATEX for each version of the macro. By replacing
the arguments with wildcards, we generate a LATEX pattern m that defines a rule m → m̃. If
the LATEX omits information, we fill the missing slots of m̃ with the default arguments denoted
in the definitions of the semantic macros. For example, the default arguments for the general
hypergeometric function are p and q for the parameters and a1, . . . , ap, b1, . . . , bq , and z for
the variables. Hence, the last version in Table 4.5 fills up the slots for the variables with these
default arguments (given in gray). In addition, the default arguments from the DLMF definitions
also tell us if the argument can be a list, i.e., it may contain commas. Hence, we allow the two
wildcards for the first two variables var1 and var2 to match sequences with commas while
the other wildcards are more restrictive and reject sequences with commas.

Since every semantic macro in the DLMF has a description, we can retrieve semantic macros
and also the replacement rule rf , by using the annotations in the dependency graph as search
queries. Currently, every fact has an MLP score sMLP(f). But for each fact, we may retrieve
multiple replacement patterns depending on how well the noun phrase (the MC) matches
semantic macro description in the DLMF. To solve this issue, we develop a cumulated ranking
for each fact rk(f). The first part of the ranking is the MLP score sMLP(f) that ranks the pair of
MOI and description MC. Second, we index all DLMF replacement patterns in an Elasticsearch
(ES)17 database to search for a semantic macro for a given description. ES uses the BM25 score
to retrieve relevant semantic macros for a given query. Hence, the second component of the
ranking function is the ES score (normalized over all retrieved hits) for a retrieved semantic
macro m̃ and the given description MC: sES(f). Lastly, every semantic macro m̃ has multiple
rendered forms, of which some are more frequently used than others in the DLMF, see the

17https://github.com/elastic/elasticsearch [accessed 2021-01-01]

Chapter 4

From LaTeX to Computer Algebra Systems
111

https://github.com/elastic/elasticsearch

Section 4.2. Context-Sensitive Translation

probability in Table 4.5. Hence, we score a rule rf = m → m̃ based on its likelihood of
use in the DLMF. We counted the different versions of each semantic macro in the DLMF to
calculate the likelihood of use. The last two replacement patterns in the Table (the ones omitting
information) never appear in the DLMF and have a probability of 0%. We denote this score
as sDLMF(rf). The ranking for a fact rk(f) is simply the average over the three components
sMLP(f), sES(f), and sDLMF(rf).

4.2.6.1 Common Knowledge Pattern Recognition

Since LACAST was specifically developed for the semantics of the DLMF, it is not aware of general
mathematical notation conventions. We fixed this issue by defining rules as part of the common
knowledge K set of facts. We rank facts from K higher compared to facts from the article A to
perform common knowledge pre-processing transformations prior to the facts derived from
the article. Note that we do not presume that the following rules are always true. However, in
the context of OPSF, we achieved better results by activating them by default and, if applicable,
deactivating them for certain scenarios. This includes that π is always interpreted as the
constant, e is Euler’s number if e is followed by a superscript (power) at least once in the
expression, i is the imaginary unit if it does not appear in a subscript (index), γ is the Euler-
Mascheroni constant if the terms Mascheroni or Euler exists in any f ∈ A. Note that these
heuristics are consistent in an equation, i.e., i is never both an index and the imaginary unit
within one equation. Further, we add rules for derivative notations, such as dy

dx where y is
optional and d can be followed by a superscript with a numeric value. In addition, LACAST
presumes \diff{.} (e.g., for dx) after integrals indicating the end of the argument of an
integral. Hence, we search for d or d18 followed by a letter after integrals to replace it with
\diff{.} (see [11] for a more detailed discussion on this approach). Finally, a letter preceding
parenthesis is tagged as a function in the parse tree, if the expression in parenthesis contains
commas or semicolons or it does not contain arithmetic symbols, such as + or−. Note that once
a symbol is identified as a function following this rule, it is tagged as such everywhere, regardless
of the local situation. For example, in f(x+π) = f(x)wewould tag f as a function even though
the first part f(x + π) violates the mentioned rule. As previously mentioned, this changes the
translation from f*(x+Pi) in Mathematica to f[x+Pi]. We provide a detailed step-by-step
example of the translation pipeline and an interactive demo at: https://tpami.wmflabs.org.

18Note the difference between normal d and the roman typestyle d.

112 Chapter 4

From LaTeX to Computer Algebra Systems

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

https://tpami.wmflabs.org

It is possible to commit no mistakes and still lose.

That is not a weakness, that is life.

Jean-Luc Picard - Star Trek: The Next Generation

CHAPTER 5

Qualitative andQuantitative Evaluations

Contents

5.1 Evaluations on the Digital Library of Mathematical Functions 114

5.1.1 The DLMF dataset . 116

5.1.2 Semantic LaTeX to CAS translation . 117

5.1.2.1 Constraint Handling . 118

5.1.2.2 Parse sums, products, integrals, and limits 119

5.1.2.3 Lagrange’s notation for differentiation and derivatives . . 122

5.1.3 Evaluation of the DLMF using CAS. 123

5.1.3.1 Symbolic Evaluation . 125

5.1.3.2 Numerical Evaluation . 126

5.1.4 Results . 128

5.1.4.1 Error Analysis . 128

5.1.5 Conclude Quantitative Evaluations on the DLMF 131

5.1.5.1 Future Work . 131

5.2 Evaluations on Wikipedia . 132

5.2.1 Symbolic and Numeric Testing . 133

5.2.2 Benchmark Testing . 133

5.2.3 Results . 134

5.2.3.1 Descriptive Term Extractions . 135

5.2.3.2 Semantification. 135

5.2.3.3 Translations from LATEX to CAS . 136

5.2.4 Error Analysis & Discussion . 137

5.2.4.1 Defining Equations . 138

5.2.4.2 Missing Information . 138

5.2.4.3 Non-Matching Replacement Patterns . 139

5.2.5 Conclude Qualitative Evaluations on Wikipedia . 139

This chapter primarily contributes to the research task V, i.e., evaluating the effectiveness of
the semantification and translation system LACAST. In Section 5.1, we also extend LACAST semantic
LATEX translations to support more mathematical operators, including sums, products, integrals,
and limit notations. Hence, this chapter secondarily also contributes to research task IV, i.e.,

113
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_5

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_5&domain=pdf

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

implementing an extension of the semantification approach to provide translations to CAS. We
evaluate LACAST on two different datasets: the DLMF and Wikipedia.

First, we evaluate LACAST on the DLMF to estimate the capabilities and limitations of our rule-
based translator on a semantic enhanced dataset. Translating formulae from the DLMF to CAS
can be considered simpler primarily for three reasons. First, the formulae are manually enhanced
and can be considered unambiguous in most cases. Second, the constraints of formulae are
directly attached to equations and therefore accessible to LACAST. Lastly, parts of equations in the
DLMF are linked to their definitions which allow to resolve substitutions and fetch additional
constraints. This meta information is either not available or given in the surrounding context
in Wikipedia articles which greatly harms the accessibility of this crucial data. Hence, we
presume that we achieve the best possible translations via LACAST on the DLMF. For evaluating
the capabilities of LACAST, we perform numeric and symbolic evaluation techniques to evaluate
a translation [3, 13]. We will further use these evaluation approaches to identify flaws in the
DLMF and CAS computations.

Next, we evaluate LACAST on Wikipedia as the direct successor of the previous Chapter 4. Here,
we use the full and final version of LACAST, including every improvement that has been discussed
throughout the thesis. Specifically, it actively uses all common knowledge pattern recognition
techniques discussed in Section 4.2.6.1, all heuristics for detecting math operators introduced in
Section 5.1.2, and the enhanced symbolic and numeric evaluation pipeline first outlined in [3]
and finally elaborated in Section 5.1.3. In combination with the automatic evaluation, we are
able to perform plausibility checks on complex mathematical formulae in Wikipedia.

This chapter is split in two parts following two main motivations behind them. In Section 5.1,
we elaborate the possibility to use LACAST translations to automatically verify entire DML and
CAS with one another. We specifically focus on the DLMF for our DML and Mathematica
and Maple for our general-purpose CAS. In Section 5.2, we use the final context-sensitive
version of LACAST introduced in Chapter 4, including every improvement introduced in the first
Section 5.1 of this chapter, with the goal to verify equations in Wikipedia articles. This chapter
finalizes the improvements of LACAST for semantic LATEX expressions (Section 5.1) and general
LATEX expressions (Section 5.2).

The content of Section 5.1 was published at the TACAS conference [8]. Some parts in Section 5.2
have also been previously published at the CICM conference [2]. Section 5.2, as the direct
successor of Chapter 4, is part of the aforementioned submission to the TPAMI journal [11].

5.1 Evaluations on the Digital Library of

Mathematical Functions

Digital Mathematical Library (DML) gather the knowledge and results from thousands of years
of mathematical research. Even though pure and applied mathematics are precise disciplines,
gathering their knowledge bases over many years results in issues which every digital library
shares: consistency, completeness, and accuracy. Likewise, CAS1 play a crucial role in the
modern era for pure and applied mathematics, and those fields which rely on them. CAS can be
used to simplify, manipulate, compute, and visualize mathematical expressions. Accordingly,

1In the sequel, the acronyms CAS and DML are used, depending on the context, interchangeably with their
plurals.

114 Chapter 5

Qualitative and Quantitative Evaluations

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

modern research regularly uses DML and CAS together. Nonetheless, DML [2, 10] and CAS [20,
100, 180] are not exempt from having bugs or errors. Durán et al. [100] even raised the rather
dramatic question: “can we trust in [CAS]?”

Existing comprehensive DML, such as the DLMF [98], are consistently updated and frequently
corrected with errata2. Although each chapter of the DLMF and its print analog The NIST

Handbook of Mathematical Functions [276] has been carefully written, edited, validated, and
proofread over many years, errors still remain. Maintaining a DML, such as the DLMF, is a
laborious process. Likewise, CAS are eminently complex systems, and in the case of commercial
products, often similar to black boxes in which the magic (i.e., the computations) happens in
opaque private code [100]. CAS, especially commercial products, are often exclusively tested
internally during development.

An independent examination process can improve testing and increase trust in the systems and
libraries. Hence, we want to elaborate on the following research question.

� ResearchQuestion

How can digital mathematical libraries and computer algebra systems be utilized to
improve and verify one another?

Our initial approach for answering this question is inspired by Cohl et al. [2]. In order to verify
a translation tool from a specific LATEX dialect to Maple , they perform symbolic and numeric
evaluations on equations from the DLMF. This approach presumes that a proven equation in
a DML must be also valid in a CAS. In turn, a disparity in between the DML and CAS would
lead to an issue in the translation process. However, assuming a correct translation, a disparity
would also indicate an issue either in the DML source or the CAS implementation. In turn,
we can take advantage of the same approach proposed by Cohl et al. [2] to improve and even
verify DML with CAS and vice versa. Unfortunately, previous efforts to translate mathematical
expressions from various formats, such as LATEX [3, 10], MathML [18], or OpenMath [152], to
CAS syntax show that the translation will be the most critical part of this verification approach.

In this section, we elaborate on the feasibility and limitations of the translation approach from
DML to CAS as a possible answer to our research question. We further focus on the DLMF as
our DML and the two general-purpose CAS Maple and Mathematica for this first study. This
relatively sharp limitation is necessary in order to analyze the capabilities of the underlying
approach to verify commercial CAS and large DML. The DLMF uses semantic macros internally
in order to disambiguate mathematical expressions [260, 403]. These macros help to mitigate the
open issue of retrieving sufficient semantic information from a context to perform translations
to formal languages [10, 18]. Further, the DLMF and general-purpose CAS have a relatively
large overlap in coverage of special functions and orthogonal polynomials. Since many of those
functions play a crucial role in a large variety of different research fields, we focus in this first
study mainly on these functions.

In particular, we extend the first version of LACAST [3] to increase the number of translatable func-
tions in the DLMF significantly. Current extensions include a new handling of constraints, the
support for the mathematical operators: sum, product, limit, and integral, as well as overcoming

2https://dlmf.nist.gov/errata/ [accessed 2021-05-01]

Chapter 5

Qualitative and Quantitative Evaluations
115

https://dlmf.nist.gov/errata/

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

semantic hurdles associated with Lagrange (prime) notations commonly used for differentia-
tion. Further, we extend its support to include Mathematica using the freely available WED3

(hereafter, with Mathematica, we refer to the WED). These improvements allow us to cover
a larger portion of the DLMF, increase the reliability of the translations via LACAST, and allow
for comparisons between two major general-purpose CAS for the first time, namely Maple and
Mathematica. Finally, we provide open access to all the results contained within this paper4.

The section is structured as follows. Section 5.1.1 explains the data in the DLMF. Section 5.1.2
focus on the improvements of LACAST that had been made to make the translation as comprehen-
sive and reliable as possible for the upcoming evaluation. Section 5.1.3 explains the symbolic
and numeric evaluation pipeline. We will provide an in-depth discussion of that process in
Section 5.1.3. Subsequently, we analyze the results in Section 5.1.4. Finally, we conclude the
findings and provide an outlook for upcoming projects in Section 5.1.5.

Related Work Existing verification techniques for CAS often focus on specific subroutines
or functions [45, 58, 107, 148, 180, 185, 225, 228], such as a specific theorems [218], differential
equations [153], or the implementation of the math.h library [224]. Most common are verifica-
tion approaches that rely on intermediate verification languages [45, 148, 153, 180, 185], such as
Boogie [29, 225] orWhy3 [41, 185], which, in turn, rely on proof assistants and theorem provers,
such as Coq [37, 45], Isabelle [153, 167], or HOL Light [146, 148, 180]. Kaliszyk andWiedijk [180]
proposed on entire new CAS which is built on top of the proof assistant HOL Light so that
each simplification step can be proven by the underlying architecture. Lewis and Wester [228]
manually compared the symbolic computations on polynomials and matrices with seven CAS.
Aguirregabiria et al. [20] suggested to teach students the known traps and difficulties with
evaluations in CAS instead to reduce the overreliance on computational solutions.

We [2] developed the aforementioned translation tool LACAST, which translates expressions from
a semantically enhanced LACAST dialect to Maple. By evaluating the performance and accuracy of
the translations, we were able to discover a sign-error in one the DLMF’s equations [2]. While
the evaluation was not intended to verify the DLMF, the translations by the rule-based translator
LACAST provided sufficient robustness to identify issues in the underlying library. To the best of
our knowledge, besides this related evaluation via LACAST, there are no existing libraries or tools
that allow for automatic verification of DML.

5.1.1 The DLMF dataset

In the modern era, most mathematical texts (handbooks, journal publications, magazines,
monographs, treatises, proceedings, etc.) are written using the document preparation system
LATEX. However, the focus of LATEX is for precise control of the rendering mechanics rather than
for a semantic description of its content. In contrast, CAS syntax is coercively unambiguous
in order to interpret the input correctly. Hence, a transformation tool from DML to CAS
must disambiguate mathematical expressions. While there is an ongoing effort towards such a
process [14, 214, 329, 402, 408], there is no reliable tool available to disambiguate mathematics
sufficiently to date.

3https://www.wolfram.com/engine/ [accessed 2021-05-01]
4https://lacast.wmflabs.org/ [accessed 2021-10-01]

116 Chapter 5

Qualitative and Quantitative Evaluations

https://www.wolfram.com/engine/
https://lacast.wmflabs.org/

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

The DLMF contains numerous relations between functions and many other properties. It is
written in LATEX but uses specific semantic macros when applicable [403]. These semantic
macros represent a unique function or polynomial defined in the DLMF. Hence, the semantic
LATEX used in the DLMF is often unambiguous. For a successful evaluation via CAS, we also
need to utilize all requirements of an equation, such as constraints, domains, or substitutions.
The DLMF provides this additional data too and generally in a machine-readable form [403].
This data is accessible via the i-boxes (information boxes next to an equation marked with the
icon). If the information is not given in the attached i-box or the information is incorrect, the
translation via LACAST would fail. The i-boxes, however, do not contain information about branch
cuts (see Section 5.1.4.1) or constraints. Constraints are accessible if they are directly attached
to an equation. If they appear in the text (or even a title), LACAST cannot utilize them. The test
dataset, we are using, was generated from DLMF Version 1.0.28 (2020-09-15) and contained
9,977 formulae with 1,505 defined symbols, 50,590 used symbols, 2,691 constraints, and 2,443
warnings for non-semantic expressions, i.e., expressions without semantic macros [403]. Note
that the DLMF does not provide access to the underlying LATEX source. Therefore, we added the
source of every equation to our result dataset.

5.1.2 Semantic LaTeX to CAS translation

The aforementioned translator LACAST was first developed by Greiner-Petter et al. [3, 10]. They
reported a coverage of 53.6% translations [3] for a manually selected part of the DLMF to the
CAS Maple. Afterward, they extended LACAST to perform symbolic and numeric evaluations on
the entire DLMF and reported a coverage of 58.8% translations [2]. This version of LACAST serves
as a baseline for our improvements. They reported a success rate of ∼16% for symbolic and
∼12% for numeric verifications.

Evaluating the baseline on the entire DLMF result in a coverage of only 31.6%. Hence, we first
want to increase the coverage of LACAST on the DLMF. To achieve this goal, we first increasing
the number of translatable semantic macros by manually defining more translation patterns
for special functions and orthogonal polynomials. For Maple, we increased the number from
201 to 261. For Mathematica, we define 279 new translation patterns which enables LACAST to
perform translations to Mathematica. Even though the DLMF uses 675 distinguished semantic
macros, we cover∼70% of all DLMF equations with our extended list of translation patterns (see
Zipf’s law for mathematical notations [14]). In addition, we implemented rules for translations
that are applicable in the context of the DLMF, e.g., ignore ellipsis following floating-point
values or \choose always refers to a binomial expression. Finally, we tackle the remaining
issues outlined by Cohl et al. [2] which can be categorized into three groups: (i) expressions of
which the arguments of operators are not clear, namely sums, products, integrals, and limits;
(ii) expressions with prime symbols indicating differentiation; and (iii) expressions that contain
ellipsis. While we solve some of the cases in Group (iii) by ignoring ellipsis following floating-
point values, most of these cases remain unresolved.

In the following, we first introduce the constraint handling via blueprints5. Next, we elaborate
our solutions for (i) in Section 5.1.2.2 and (ii) in Section 5.1.2.3.

5This subsection 5.1.2.1 was previously published by Cohl et al. [2].

Chapter 5

Qualitative and Quantitative Evaluations
117

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

5.1.2.1 Constraint Handling

Correct assumptions about variable domains are essential for CAS systems, and not surprisingly
lead to significant improvements in the CAS ability to simplify. The DLMF provides constraint
(variable domain) metadata for formulae, and we have extracted this formula metadata. We have
incorporated these constraints as assumptions for the simplification process (see Section 5.1.3.1).
Note however, that a direct translation of the constraint metadata is usually not sufficient for a
CAS to be able to understand it. Furthermore, testing invalid values for numerical tests returns
incorrect results (see Section 5.1.3.2).

For instance different symbols must be interpreted differently depending on the usage. One
must be able to interpret correctly certain notations of this kind. For instance, one must be able
to interpret the command a,b\in A, which indicates that both variables a and b are elements
of the set A (or more generally a_1,\dots,a_n\in A). Similar conventions are often used for
variables being elements of other sets such as the sets of rational, real or complex numbers, or
for subsets of those sets.

Also, one must be able to interpret the constraints as variables in sets defined using an equals
notation such as n=0,1,2,\dots, which indicates that the variable n is a integer greater than
or equal to zero, or together n,m=0,1,2,\dots, both the variables n and m are elements of this
set. Since mathematicians who write LATEX are often casual about expressions such as these, one
should know that 0,1,2,\dots is the same as 0,1,\dots. Consistently, one must also be able
to correctly interpret infinite sets (represented as strings) such as =1,2,\dots, =1,2,3,\dots,
=-1,0,1,2,\dots, =0,2,4,\dots, or even =3,7,11,\dots, or =5,9,13,\dots. One must
be able to interpret finite sets such as =1,2, =1,2,3, or =1,2,\dots,N.

An entire language of translation of mathematical notation must be understood in order for
CAS to be able to understand constraints. In mathematics, the syntax of constraints is often
very compact and contains textual explanations. Translating constraints from LATEX to CAS is
a compact task because CAS only allow precise and strict syntax formats. For example, the
typical constraint 0 < x < 1 is invalid if directly translated to Maple, because it would need to
be translated to two separate constraints, namely x > 0 and x < 1.

We have improved the handling and translation of variable constraints/assumptions for simplifi-
cation and numerical evaluation. Adding assumptions about the constrained variables improves
the effectiveness of Maple’s simplify function. Our previous approach for constraint handling
for numerical tests was to extract a pre-defined set of test values and to filter invalid values
according to the constraints. Because of this strategy, there often was no longer any valid values
remaining after the filtering. To overcome this issue, instead, we chose a single numerical value
for a variable that appears in a pre-defined constraint. For example, if a test case contains the
constraint 0 < x < 1, we chose x = 1

2 .

A naive approach for this strategy, is to apply regular expressions to identify a match between
a constraint and a rule. However, we believed that this approach does not scale well when it
comes to more and more pre-defined rules and more complex constraints. Hence, we used the
POM-tagger to create blueprints of the parse trees for pre-defined rules. For the example LATEX
constraint $0 < x < 1$, rendered as 0 < x < 1, our textual rule is given by

0 < var < 1 ==> 1/2.

118 Chapter 5

Qualitative and Quantitative Evaluations

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

The parse tree for this blueprint constraint contains five tokens, where var is an alphanumerical
token that is considered to be a placeholder for a variable.

We can also distinguish multiple variables by adding an index to the placeholder. For example,
the rule we generated for the mathematical LATEX constraint $x,y \in \Real$, where \Real
is the semantic macro which represents the set of real numbers, and rendered as x, y ∈ R, is
given by

var1, var2 \in \Real ==> 3/2,3/2.

A constraint will match one of the blueprints if the number, the ordering, and the type of the
tokens are equal. Allowed matching tokens for the variable placeholders are Latin or Greek
letters and alphanumerical tokens.

5.1.2.2 Parse sums, products, integrals, and limits

Here we consider common notations for the sum, product, integral, and limit operators. For
these operators, one may consider Mathematically Essential Operator Metadata (MEOM). For
all these operators, the MEOM includes argument(s) and bound variable(s). The operators act
on the arguments, which are themselves functions of the bound variable(s). For sums and
products, the bound variables are referred to as indices. The bound variables for integrals6 are
called integration variables. For limits, the bound variables are continuous variables (for limits of
continuous functions) and indices (for limits of sequences). For integrals, MEOM include precise
descriptions of regions of integration (e.g., piecewise continuous paths/intervals/regions). For
limits, MEOM include limit points (e.g., points in Rn or Cn for n∈N), as well as information
related to whether the limit to the limit point is independent or dependent on the direction in
which the limit is taken (e.g., one-sided limits).

For a translation ofmathematical expressions involving the LATEX commands \sum, \int, \prod,
and \lim, we must extract the MEOM. This is achieved by (a) determining the argument of the
operator and (b) parsing corresponding subscripts, superscripts, and arguments. For integrals,
the MEOM may be complicated, but certainly contains the argument (function which will be
integrated), bound (integration) variable(s) and details related to the region of integration. Bound
variable extraction is usually straightforward since it is usually contained within a differential
expression (infinitesimal, pushforward, differential 1-form, exterior derivative, measure, etc.),
e.g., dx. Argument extraction is less straightforward since even though differential expressions
are often given at the end of the argument, sometimes the differential expression appears in the

numerator of a fraction (e.g.,
∫ f(x)dx

g(x)). In which case, the argument is everything to the right of
the \int (neglecting its subscripts and superscripts) up to and including the fraction involving
the differential expression (which may be replaced with 1). In cases where the differential
expression is fully to the right of the argument, then it is a termination symbol. Note that
some scientists use an alternate notation for integrals where the differential expression appears
immediately to the right of the integral, e.g.,

∫
dxf(x). However, this notation does not appear

in the DLMF. If such notations are encountered, we follow the same approach that we used for
sums, products, and limits (see Section 5.1.2.2).

6The notion of integrals includes: antiderivatives (indefinite integrals), definite integrals, contour integrals,
multiple (surface, volume, etc.) integrals, Riemannian volume integrals, Riemann integrals, Lebesgue integrals,
Cauchy principal value integrals, etc.

Chapter 5

Qualitative and Quantitative Evaluations
119

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

Extraction of variables and corresponding MEOM The subscripts and superscripts of
sums, products, limits, and integrals may be different for different notations and are there-
fore challenging to parse. For integrals, we extract the bound (integration) variable from the
differential expression. For sums and products, the upper and lower bounds may appear in
the subscript or superscript. Parsing subscripts is comparable with the problem of parsing
constraints [2] (which are often not consistently formulated). We overcame this complexity
by manually defining patterns of common constraints and refer to them as blueprints (see
Section 5.1.2.1). This blueprint pattern approach allows LACAST to identify the MEOM in the sub-
and superscripts.

For our MEOM blueprints, we define three placeholders: varN for single identifiers or a list
of identifiers (delimited by commas), numL1, and numU1, representing lower and upper bound
expressions, respectively. In addition, for sums and products, we need to distinguish between
including and excluding boundaries, e.g., 1 < k and 1 ≤ k. An excluding relation, such as
0<k <10, must be interpreted as a sum from 1 to 9. Table 5.1 shows the final set of sum/product
subscript blueprints.

Standard notations may not explicitly show infinity boundaries. Hence, we set the default
boundaries to infinity. For limit expressions we need different blueprints to capture the limit
direction. We cover the standard notations with ‘var1 \to numL*’, where * is either +, -,
^+, ^- or absent and the different arrow-notations where \to can be either \downarrow,
\uparrow, \searrow, or \nearrow, specifying one-sided limits. Note that the arrow-notation
(besides \to) is not used in the DLMF and thus, has no effect on the performance of LACAST
in our evaluation. Note further that, while the blueprint approach is very flexible, it cannot
handle every possible scenario, such as the divisor sum

∑
(p−1)|2n 1/p [98, (24.10.1)]. Proper

translations of such complex cases may even require symbolic manipulation, which is currently
beyond the capabilities of LACAST.

Table 5.1: The table contains examples of the blueprints for subscripts of sums/products includ-
ing an example expression that matches the blueprint.

Blueprints Example

numL1 \leq var1 < var2 \leq numU1 0≤n<k ≤10
-\infty < varN < \infty −∞<n<∞

numL1 < varN < numU1 0<n, k <10
numL1 \leq varN < numU1 0≤k <10
numL1 < varN \leq numU1 0<n, k ≤10

varN \leq numU1 n, k ≤N + 5
varN \in numL1 n∈{1, 2, 3}

varN = numL1 n, k, l=1

Identification of operator arguments Once we have extracted the bound variable for
sums, products, and limits, we need to determine the end of the argument. We analyzed all
sums in the DLMF and developed a heuristic that covers all the formulae in the DLMF and
potentially a large portion of general mathematics. Let x be the extracted bound variable. For

120 Chapter 5

Qualitative and Quantitative Evaluations

https://dlmf.nist.gov/24.10.E1

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

sums, we consider a summand as a part of the argument if (I) it is the very first summand
after the operation; or (II) x is an element of the current summand; or (III) x is an element
of the following summand (subsequent to the current summand) and there is no termination
symbol between the current summand and the summand which contains x with an equal or
lower depth according to the parse tree (i.e., closer to the root). We consider a summand as a
single logical construct since addition and subtraction are granted a lower operator precedence
than multiplication in mathematical expressions. Similarly, parentheses are granted higher
precedence and, thus, a sequence wrapped in parentheses is part of the argument if it obeys the
rules (I-III). Summands, and such sequences, are always entirely part of sums, products, and
limits or entirely not.

A termination symbol always marks the end of the argument list. Termination symbols are
relation symbols, e.g., =, �=, ≤, closing parentheses or brackets, e.g.,),], or >, and other
operators with MEOMs, if and only if, they define the same bound variable. If x is part of a
subsequent operation, then the following operator is considered as part of the argument (as
in (II)). However, a special condition for termination symbols is that it is only a termination
symbol for the current chain of arguments. Consider a sum over a fraction of sums. In that
case, we may reach a termination symbol within the fraction. However, the termination symbol
would be deeper inside the parse tree as compared to the current list of arguments. Hence, we
used the depth to determine if a termination symbol should be recognized or not. Consider an
unusual notation with the binomial coefficient as an example

n∑
k=0

(
n

k

)
=

n∑
k=0

∏n
m=1 m∏k

m=1 m
∏n−k

m=1m
. (5.1)

This equation contains two termination symbols, marked red and green. The red termination
symbol = is obviously for the first sum on the left-hand side of the equation. The green
termination symbol

∏
terminates the product to the left because both products run over the

same bound variable m. In addition, none of the other = signs are termination symbols for the
sum on the right-hand side of the equation because they are deeper in the parse tree and thus
do not terminate the sum.

Note that varN in the blueprints also matches multiple bound variable, e.g.,
∑

m,k∈A. In such
cases, x from above is a list of bound variables and a summand is part of the argument if one
of the elements of x is within this summand. Due to the translation, the operation will be
split into two preceding operations, i.e.,

∑
m,k∈A becomes

∑
m∈A

∑
k∈A. Figure 5.1 shows the

extracted arguments for some example sums. The same rules apply for extraction of arguments
for products and limits.

∑N
n=1 c + 2

∑N
n=1 c + c

n

∑N
n=1 c + n2 + N

∑N
n=1 n +

∑N
k=1 k

∑N
n=1 n +

∑n
k=1 k

∑N
n=1 c +

∑N
k=1 k + n

Figure 5.1: Example argument identifications for sums.

Chapter 5

Qualitative and Quantitative Evaluations
121

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

5.1.2.3 Lagrange’s notation for differentiation and derivatives

Another remaining issue is the Lagrange (prime) notation for differentiation, since it does not
outwardly provide sufficient semantic information. This notation presents two challenges. First,
we do not knowwith respect to which variable the differentiation should be performed. Consider
for example theHurwitz zeta function ζ(s, a) [98, §25.11]. In the case of a differentiation ζ ′(s, a),
it is not clear if the function should be differentiated with respect to s or a. To remedy this
issue, we analyzed all formulae in the DLMF which use prime notations and determined which
variables (slots) for which functions represent the variables of the differentiation. Based on
our analysis, we extended the translation patterns by meta information for semantic macros
according to the slot of differentiation. For instance, in the case of the Hurwitz zeta function, the
first slot is the slot for prime differentiation, i.e., ζ ′(s, a) = d

dsζ(s, a). The identified variables
of differentiations for the special functions in the DLMF can be considered to be the standard
slots of differentiations, e.g., in other DML, ζ ′(s, a) most likely refers to d

dsζ(s, a).

The second challenge occurs if the slot of differentiation contains complex expressions rather
than single symbols, e.g., ζ ′(s2, a). In this case, ζ ′(s2, a) = d

d(s2)ζ(s2, a) instead of d
dsζ(s2, a).

Since CAS often do not support derivatives with respect to complex expressions, we use the
inbuilt substitution functions7 in the CAS to overcome this issue. To do so, we use a temporary
variable temp for the substitution. CAS perform substitutions from the inside to the outside.
Hence, we can use the same temporary variable temp even for nested substitutions. Table 5.2
shows the translation performed for ζ ′(s2, a). CAS may provide optional arguments to calculate
the derivatives for certain special functions, e.g., Zeta(n,z,a) in Maple for the n-th derivative
of the Hurwitz zeta function. However, this shorthand notation is generally not supported
(e.g., Mathematica does not define such an optional parameter). Our substitution approach is
more lengthy but also more reliable. Unfortunately, lengthy expressions generally harm the
performance of CAS, especially for symbolic manipulations. Hence, we have a genuine interest
in keeping translations short, straightforward and readable. Thus, the substitution translation
pattern is only triggered if the variable of differentiation is not a single identifier. Note that this
substitution only triggers on semantic macros. Generic functions, including prime notations,
are still skipped.

Table 5.2: Example translations for the prime derivative of the Hurwitz zeta function with
respect to s2.

System ζ ′(s2, a)
DLMF \Hurwitzzeta’@{s^2}{a}

Maple
subs(temp=(s)^(2),

diff(Zeta(0,temp,a),temp$(1)))

D[HurwitzZeta[temp,a],{temp,1}]
Mathematica

/.temp->(s)^(2)

A related problem to MEOM of sums, products, integrals, limits, and differentiations are the
notations of derivatives. The semantic macro for derivatives \deriv{w}{x} (rendered as dw

dx) is

7Note that Maple also support an evaluation substitution via the two-argument eval function. Since our
substitution only triggers on semantic macros, we only use subs if the function is defined in Maple. In turn, as far
as we know, there is no practical difference between subs and the two-argument eval in our case.

122 Chapter 5

Qualitative and Quantitative Evaluations

https://dlmf.nist.gov/25.11

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

often used with an empty first argument to render the function behind the derivative notation,
e.g., \deriv{}{x}\sin@{x} for d

dx sin x. This leads to the same problem we faced above for
identifying MEOMs. In this case, we use the same heuristic as we did for sums, products, and
limits. Note that derivatives may be written following the function argument, e.g., sin(x) d

dx . If
we are unable to identify any following summand that contains the variable of differentiation
before we reach a termination symbol, we look for arguments prior to the derivative according
to the heuristic (I-III).

Wronskians With the support of prime differentiation described above, we are also able
to translate the Wronskian [98, (1.13.4)] to Maple and Mathematica. A translation requires
one to identify the variable of differentiation from the elements of the Wronskian, e.g., z for
W {Ai(z), Bi(z)} from [98, (9.2.7)]. We analyzed all Wronskians in the DLMF and discovered
that most Wronskians have a special function in its argument—such as the example above.
Hence, we can use our previously insertedmetadata information about the slots of differentiation
to extract the variable of differentiation from the semantic macros. If the semantic macro
argument is a complex expression, we search for the identifier in the arguments that appear
in both elements of the Wronskian. For example, in W {Ai(za), ζ(z2, a)}, we extract z as the
variable since it is the only identifier that appears in the arguments za and z2 of the elements.
This approach is also used when there is no semantic macro involved, i.e., from W {za, z2} we
extract z as well. If LACAST extracts multiple candidates or none, it throws a translation exception.

5.1.3 Evaluation of the DLMF using CAS

Digital Library of Mathematical Functions Constraint Blueprintsp

=- \pm\frac12

Numeric Test
Value Filter

LaCASt
Translator

Symbolic
Evaluator

(%)

(%)

Workflow

Constraints
Success
Failure

Mathematica

(%)

4 (%)

%))))

%)

(%)

(%)

%))

%)

(%)

(%)

===-- \\\pmpmpm\\\frac1frac1frac1222
1/2

Numeric
Evaluator

Test Def.

EQRH
S

LH
S

Test Valuesesesest Vtt aTeTeTee

©Wolfram Research, Inc.

©Maplesoft, Inc.©Mapleso

1.
2.

1

: integer
: nonnegative integer

: integer
: nonnegative integer

LHS RHS

LHS EQ RHS

EQ HHHSSSSSS

1.
2.

11.
2.

1

: binomial
coefficient

: factorial
: integer

: nonnegative
integer Ca

se
 A

na
ly

ze
r

Substitutions

alualualueVVVVaaaa sssuuuueee

ConstraintsConstraints

Case Filter

Figure 5.2: The workflow of the evaluation engine and the overall results. Errors and abortions
are not included. The generated dataset contains 9, 977 equations. In total, the case analyzer
splits the data into 10, 930 cases of which 4, 307 cases were filtered. This sums up to a set of
6, 623 test cases in total.

For evaluating the DLMF with Maple and Mathematica, we symbolically and numerically verify
the equations in the DLMF with CAS. If a verification fails, symbolically and numerically, we
identified an issue either in the DLMF, the CAS, or the verification pipeline. Note that an issue
does not necessarily represent errors/bugs in the DLMF, CAS, or LACAST (see the discussion
about branch cuts in Section 5.1.4.1). Figure 5.2 illustrates the pipeline of the evaluation engine.

Chapter 5

Qualitative and Quantitative Evaluations
123

https://dlmf.nist.gov/1.13.E4
https://dlmf.nist.gov/9.2.E7

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

First, we analyze every equation in the DLMF (hereafter referred to as test cases). A case
analyzer splits multiple relations in a single line into multiple test cases. Note that only the
adjacent relations are considered, i.e., with f(z) = g(z) = h(z), we generate two test cases
f(z) = g(z) and g(z) = h(z) but not f(z) = h(z). In addition, expressions with ± and ∓ are
split accordingly, e.g., i±i = e∓π/2 [98, (4.4.12)] is split into i+i = e−π/2 and i−i = e+π/2. The
analyzer utilizes the attached additional information in each line, i.e., the URL in the DLMF,
the used and defined symbols, and the constraints. If a used symbol is defined elsewhere in
the DLMF, it performs substitutions. For example, the multi-equation [98, (9.6.2)] is split into
six test cases and every ζ is replaced by 2

3z3/2 as defined in [98, (9.6.1)]. The substitution is
performed on the parse tree of expressions [10]. A definition is only considered as such, if
the defining symbol is identical to the equation’s left-hand side. That means, z = (3

2ζ)3/2 [98,
(9.6.10)] is not considered as a definition for ζ . Further, semantic macros are never substituted by
their definitions. Translations for semantic macros are exclusively defined by the authors. For
example, the equation [98, (11.5.2)] contains the StruveKν(z) function. SinceMathematica does
not contain this function, we defined an alternative translation to its definition Hν(z)−Yν(z) in
[98, (11.2.5)] with the Struve function Hν(z) and the Bessel function of the second kind Yν(z),
because both of these functions are supported by Mathematica. The second entry in Table E.2
in Appendix E available in the electronic supplementary material shows the translation for this
test case.

Next, the analyzer checks for additional constraints defined by the used symbols recursively.
The mentioned Struve Kν(z) test case [98, (11.5.2)] contains the Gamma function. Since the
definition of the Gamma function [98, (5.2.1)] has a constraint �z > 0, the numeric evaluation
must respect this constraint too. For this purpose, the case analyzer first tries to link the variables
in constraints to the arguments of the functions. For example, the constraint �z > 0 sets a
constraint for the first argument z of the Gamma function. Next, we check all arguments in the
actual test case at the same position. The test case contains Γ(ν + 1/2). In turn, the variable
z in the constraint of the definition of the Gamma function �z > 0 is replaced by the actual
argument used in the test case. This adds the constraint �(ν + 1/2) > 0 to the test case. This
process is performed recursively. If a constraint does not contain any variable that is used in
the final test case, the constraint is dropped.

In total, the case analyzer would identify four additional constraints for the test case [98,
(11.5.2)]8. Note that the constraints may contain variables that do not appear in the actual test
case, such as �ν +k +1 > 0. Such constraints do not have any effect on the evaluation because
if a constraint cannot be computed to true or false, the constraint is ignored. Unfortunately,
this recursive loading of additional constraints may generate impossible conditions in certain
cases, such as |Γ(iy)| [98, (5.4.3)]. There are no valid real values of y such that �(iy) > 0. In
turn, every test value would be filtered out, and the numeric evaluation would not verify the
equation. However, such cases are the minority and we were able to increase the number of
correct evaluations with this feature.

To avoid a large portion of incorrect calculations, the analyzer filters the dataset before trans-
lating the test cases. We apply two filter rules to the case analyzer. First, we filter expressions
that do not contain any semantic macros. Due to the limitations of LACAST, these expressions
most likely result in wrong translations. Further, it filters out several meaningless expressions

8See Table E.2 in Appendix E available in the electronic supplementary material for the applied constraints
(including the directly attached constraint �z > 0 and the manually defined global constraints from Figure 5.3).

124 Chapter 5

Qualitative and Quantitative Evaluations

https://dlmf.nist.gov/4.4.E12
https://dlmf.nist.gov/9.6.E2
https://dlmf.nist.gov/9.6.E1
https://dlmf.nist.gov/9.6.E10
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.2.E5
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/5.2.E1
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/5.4.E3

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

that are not verifiable, such as z = x in [98, (4.2.4)]. The result dataset flag these cases with
‘Skipped - no semantic math’. Note that the result dataset still contains the translations for these
cases to provide a complete picture of the DLMF. Second, we filter expressions that contain
ellipsis9 (e.g., \cdots), approximations, and asymptotics (e.g., O(z2)) since those expressions
cannot be evaluated with the proposed approach. Further, a definition is skipped if it is not a
definition of a semantic macro, such as [98, (2.3.13)], because definitions without an appropriate
counterpart in the CAS are meaningless to evaluate. Definitions of semantic macros, on the
other hand, are of special interest and remain in the test set since they allow us to test if a
function in the CAS obeys the actual mathematical definition in the DLMF. If the case analyzer
(see Figure 5.2) is unable to detect a relation, i.e., split an expression on <, ≤, ≥, >, =, or
�=, the line in the dataset is also skipped because the evaluation approach relies on relations
to test. After splitting multi-equations (e.g., ±, ∓, a = b = c), filtering out all non-semantic
expressions, non-semantic macro definitions, ellipsis, approximations, and asymptotics, we end
up with 6, 623 test cases in total from the entire DLMF.

After generating the test case with all constraints, we translate the expression to the CAS
representation. Every successfully translated test case is then symbolically verified, i.e., the
CAS tries to simplify the difference of an equation to zero. Non-equation relations simplifies
to Booleans. Non-simplified expressions are verified numerically for manually defined test
values, i.e., we calculate actual numeric values for both sides of an equation and check their
equivalence.

5.1.3.1 Symbolic Evaluation

The symbolic evaluation was performed forMaple as described in the following (taken from [2]).
Originally, we used the standalone Maple simplify function directly, to symbolically simplify
translated formulae. See [26, 28, 148, 190] for other examples of where Maple and other CAS
simplification procedures has been used elsewhere in the literature. Symbolic simplification
is performed either on the difference or the division of the left-hand sides and the right-hand
sides of extracted formulae. Thus the expected outcome should be respectively either a 0 or 1.
Note that other outcomes, such as other numerical outcomes, are particularly interesting, since
these may be an indication of errors in the formulae.

In Maple, symbolic simplifications are made using internally stored relations to other functions.
If a simplification is available, then in practice it often has to be performed over multiple defined
relevant relations. Often, this process fails and Maple is unable to simplify the said expression.
We have adopted some techniques which assist Maple in this process. For example, forcing
an expression to be converted into another specific representation, in a pre-processing step,
could potentially improve the odds that Maple is able to recognize a possible simplification.
By trial-and-error, we discovered (and implemented) the following pre-processing steps which
significantly improve the simplification process:

• conversion to exponential representation;

• conversion to hypergeometric representation;

• expansion of expressions (for example (x+y)^2); and

• combined expansion and conversion processes.

9Note that we filter out ellipsis (e.g., \cdots) but not single dots (e.g., \cdot).

Chapter 5

Qualitative and Quantitative Evaluations
125

https://dlmf.nist.gov/4.2.E4
https://dlmf.nist.gov/2.3.13

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

�

Test Values

−1
2−3

2−2 1
2

3
2 2

e
iπ
6

e
2iπ
3

e
−iπ

3
e

−5iπ
6

Special Test Values

n, m, k, �, l, i, j, ε, ε ∈ {1, 2, 3}

Global Constraints

x, α, β > 0
−π < ph(z) < π

x, y, a, b, c, r, s, t, α, β ∈ R

Figure 5.3: The ten numeric test values in the complex plane for general variables. The dashed
line represents the unit circle |z| = 1. At the right, we show the set of values for special variable
values and general global constraints. On the right, i is referring to a generic variable and not
to the imaginary unit.

In comparison to the original approach described in [2], we use the newer version Maple 2020
now. Another feature we added to LACAST is the support of packages in Maple. Some functions
are only available in modules (packages) that must be preloaded, such as QPochhammer in
the package QDifferenceEquations10. The general simplify method in Maple does not
cover q-hypergeometric functions. Hence, whenever LACAST loads functions from the q-hyper-
geometric package, the better performing QSimplify method is used. With the WED and
the new support for Mathematica in LACAST, we perform the symbolic and numeric tests for
Mathematica as well. The symbolic evaluation in Mathematica relies on the full simplification11.
For Maple and Mathematica, we defined the global assumptions x, y ∈ R and k, n, m ∈ N.
Constraints of test cases are added to their assumptions to support simplification. Adding
more global assumptions for symbolic computation generally harms the performance since
CAS internally uses assumptions for simplifications. It turned out that by adding more custom
assumptions, the number of successfully simplified expressions decreases.

5.1.3.2 Numerical Evaluation

Defining an accurate test set of values to analyze an equivalence can be an arbitrarily complex
process. It would make sense that every expression is tested on specific values according to the
containing functions. However, this laborious process is not suitable for evaluating the entire
DML and CAS. It makes more sense to develop a general set of test values that (i) generally
covers interesting domains and (ii) avoid singularities, branch cuts, and similar problematic
regions. Considering these two attributes, we come up with the ten test points illustrated in
Figure 5.3. It contains four complex values on the unit circle and six points on the real axis. The
test values cover the general area of interest (complex values in all four quadrants, negative
and positive real values) and avoid the typical singularities at {0, ±1, ±i}. In addition, several
variables are tied to specific values for entire sections. Hence, we applied additional global
constraints to the test cases.

10https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/
QPochhammer [accessed 2021-05-01]

11https://reference.wolfram.com/language/ref/FullSimplify.html [accessed 2021-05-01]

126 Chapter 5

Qualitative and Quantitative Evaluations

https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://jp.maplesoft.com/support/help/Maple/view.aspx?path=QDifferenceEquations/QPochhammer
https://reference.wolfram.com/language/ref/FullSimplify.html

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

The numeric evaluation engine heavily relies on the performance of extracting free variables
from an expression. Maple does not provide a function to extract free variables from an ex-
pression. Hence, we implemented a custom method first. Variables are extracted by identifying
all names [36]12 from an expression. This will also extract constants which need to be deleted
from the list first. Unfortunately, inbuilt functions in CAS, if available, and our custom im-
plementation for Maple are not very reliable. Mathematica has the undocumented function
Reduce‘FreeVariables for this purpose. However, both systems, the custom solution in
Maple and the inbuilt Mathematica function, have problems distinguishing free variables of
entire expressions from the bound variables in MEOMs, e.g., integration and continuous vari-
ables. Mathematica sometimes does not extract a variable but returns the unevaluated input
instead. We regularly faced this issue for integrals. However, we discovered one example with-
out integrals. For EulerE[n,0] from [98, (24.4.26)], we expected to extract {n} as the set of
free variables but instead received a set of the unevaluated expression itself {EulerE[n,0]}13.
Since the extended version of LACAST handles operators, including bound variables of MEOMs,
we drop the use of internal methods in CAS and extend LACAST to extract identifiers from an
expression. During a translation process, LACAST tags every single identifier as a variable, as
long as it is not an element of a MEOM. This simple approach proves to be very efficient
since it is implemented alongside the translation process itself and is already more powerful as
compared to the existing inbuilt CAS solutions. We defined subscripts of identifiers as a part of
the identifier, e.g., z1 and z2 are extracted as variables from z1 + z2 rather than z.

The general pipeline for a numeric evaluationworks as follows. First, we replace all substitutions
and extract the variables from the left- and right-hand sides of the test expression via LACAST.
For the previously mentioned example of the Struve function [98, (11.5.2)], LACAST identifies two
variables in the expression, ν and z. According to the values in Figure 5.3, ν and z are set to the
general ten values. A numeric test contains every combination of test values for all variables.
Hence, we generate 100 test calculations for [98, (11.5.2)]. Afterward, we filter the test values
that violate the attached constraints. In the case of the Struve function, we end up with 25 test
cases (see also Table E.2 in Appendix E available in the electronic supplementary material).

In addition, we apply a limit of 300 calculations for each test case and abort a computation after
30 seconds due to computational limitations. If the test case generates more than 300 test values,
only the first 300 are used. Finally, we calculate the result for every remaining test value, i.e.,
we replace every variable by their value and calculate the result. The replacement is done by
Mathematica’s ReplaceAll method because the more appropriate method With, for unknown
reasons, does not always replace all variables by their values. We wrap test expressions in
Normal for numeric evaluations to avoid conditional expressions, which may cause incorrect
calculations (see Section 5.1.4.1 for a more detailed discussion of conditional outputs). After
replacing variables by their values, we trigger numeric computation. If the absolute value of
the result is below the defined threshold of 0.001 or true (in the case of inequalities), the test
calculation is considered successful. A numeric test case is only considered successful if and
only if every test calculation was successful. If a numeric test case fails, we store the information
on which values it failed and how many of these were successful.

12A name in Maple is a sequence of one or more characters that uniquely identifies a command, file, variable, or
other entity.

13The bug was reported to and confirmed by Wolfram Research Version 12.0.

Chapter 5

Qualitative and Quantitative Evaluations
127

https://dlmf.nist.gov/24.4.E26
https://dlmf.nist.gov/11.5.E2
https://dlmf.nist.gov/11.5.E2

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

5.1.4 Results

The translations to Maple and Mathematica, the symbolic results, the numeric computations,
and an overview PDF of the reported bugs to Mathematica are available online14. In the fol-
lowing, we mainly focus on Mathematica because of page limitations and because Maple has
been investigated more closely by [2]. The results for Maple are also available online. Com-
pared to the baseline (≈ 31%), our improvements doubled the amount translations (≈ 62%)
for Maple and reach ≈ 71% for Mathematica. The majority of expressions that cannot be
translated contain macros that have no adequate translation pattern to the CAS, such as the
macros for interval Weierstrass lattice roots [98, §23.3(i)] and the multivariate hypergeometric
function [98, (19.16.9)]. Other errors (6% for Maple and Mathematica) occur for several reasons.
For example, out of the 418 errors in translations to Mathematica, 130 caused an error because
the MEOM of an operator could not be extracted, 86 contained prime notations that do not
refer to differentiations, 92 failed because of the underlying LATEX parser [402], and in 46 cases,
the arguments of a DLMF macro could not be extracted.

Out of 4,713 translated expressions, 1,235 (26.2%) were successfully simplified by Mathematica
(1,084 of 4,114 or 26.3% in Maple). For Mathematica, we also count results that are equal to 0
under certain conditions as successful (called ConditionalExpression). We identified 65 of
these conditional results: 15 of the conditions are equal to constraints that were provided in the
surrounding text but not in the info box of the DLMF equation; 30 were produced due to branch
cut issues (see Section 5.1.4.1); and 20 were the same as attached in the DLMF but reformulated,
e.g., z ∈ C\(1, ∞) from [98, (25.12.2)] was reformulated to
z �= 0 ∨ �z < 1. The remaining
translated but not symbolically verified expressions were numerically evaluated for the test
values in Figure 5.3. For the 3,474 cases, 784 (22.6%) were successfully verified numerically by
Mathematica (698 of 2,618 or 26.7% byMaple15). For 1,784 the numeric evaluation failed. In the
evaluation process, 655 computations timed out and 180 failed due to errors in Mathematica. Of
the 1,784 failed cases, 691 failed partially, i.e., therewas at least one successful calculation among
the tested values. For 1,091 all test values failed. The Appendix E, available in the electronic
supplementary material, provides a Table E.2 with the results for three sample test cases. The
first case is a false positive evaluation because of a wrong translation. The second case is valid,
but the numeric evaluation failed due to a bug in Mathematica (see next subsection). The last
example is valid and was verified numerically but was too complex for symbolic verifications.

5.1.4.1 Error Analysis

The numeric tests’ performance strongly depends on the correct attached and utilized informa-
tion. The example [98, (1.4.8)] from the DLMF

d2f

dx2 = d
dx

(
df

dx

)
, (5.2)

illustrates the difficulty of the task on a relatively easy case16. Here, the argument of f was
not explicitly given, such as in f(x). Hence, LACAST translated f as a variable. Unfortunately,

14https://lacast.wmflabs.org/ [accessed 2021-10-01]
15Due to computational issues, 120 cases must have been skipped manually. 292 cases resulted in an error during

symbolic verification and, therefore, were skipped also for numeric evaluations. Considering these skipped cases as
failures, decreases the numerically verified cases to 23% in Maple.

16This is the first example in Table E.2

128 Chapter 5

Qualitative and Quantitative Evaluations

https://dlmf.nist.gov/23.3.i
https://dlmf.nist.gov/19.16.9
https://dlmf.nist.gov/25.12.E2
https://dlmf.nist.gov/1.4.8
https://lacast.wmflabs.org/

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

this resulted in a false verification symbolically and numerically. This type of error mostly
appears in the first three chapters of the DLMF because they use generic functions frequently.
We hoped to skip such cases by filtering expressions without semantic macros. Unfortunately,
this derivative notation uses the semantic macro deriv. In the future, we filter expressions that
contain semantic macros that are not linked to a special function or orthogonal polynomial.

As an attempt to investigate the reliability of the numeric test pipeline, we can run numeric
evaluations on symbolically verified test cases. Since Mathematica already approved a trans-
lation symbolically, the numeric test should be successful if the pipeline is reliable. Of the
1,235 symbolically successful tests, only 94 (7.6%) failed numerically. None of the failed test
cases failed entirely, i.e., for every test case, at least one test value was verified. Manually
investigating the failed cases reveal 74 cases that failed due to an Indeterminate response
from Mathematica and 5 returned infinity, which clearly indicates that the tested numeric
values were invalid, e.g., due to testing on singularities. Of the remaining 15 cases, two were
identical: [98, (15.9.2)] and [98, (18.5.9)]. This reduces the remaining failed cases to 14. We
evaluated invalid values for 12 of these because the constraints for the values were given in the
surrounding text but not in the info boxes. The remaining 2 cases revealed a bug in Mathematica
regarding conditional outputs (see below). The results indicate that the numeric test pipeline is
reliable, at least for relatively simple cases that were previously symbolically verified. The main
reason for the high number of failed numerical cases in the entire DLMF (1,784) are due to
missing constraints in the i-boxes and branch cut issues (see Section 5.1.4.1), i.e., we evaluated
expressions on invalid values.

Bug reports Mathematica has trouble with certain integrals, which, by default, generate
conditional outputs if applicable. With themethodNormal, we can suppress conditional outputs.
However, it only hides the condition rather than evaluating the expression to a non-conditional
output. For example, integral expressions in [98, (10.9.1)] are automatically evaluated to the
Bessel function J0(|z|) for the condition17 z ∈ R rather than J0(z) for all z ∈ C. Setting the
GenerateConditions18 option to None does not change the output. Normal only hides z ∈ R

but still returns J0(|z|). To fix this issue, for example in (10.9.1) and (10.9.4), we are forced to
set GenerateConditions to false.

Setting GenerateConditions to false, on the other hand, reveals severe errors in several other
cases. Consider

∫ ∞
z t−1e−t dt [98, (8.4.4)], which gets evaluated to Γ(0, z) but (condition) for

�z > 0 ∧
z = 0. With GenerateConditions set to false, the integral incorrectly evaluates
to Γ(0, z) + ln(z). This happened with the 2 cases mentioned above. With the same setting,
the difference of the left- and right-hand sides of [98, (10.43.8)] is evaluated to 0.398942 for
x, ν = 1.5. If we evaluate the same expression on x, ν = 3

2 the result is Indeterminate due
to infinity. For this issue, one may use NIntegrate rather than Integrate to compute the
integral. However, evaluating via NIntegrate decreases the number of successful numeric
evaluations in general. We have revealed errors with conditional outputs in (8.4.4), (10.22.39),
(10.43.8-10), and (11.5.2) (in [98]). In addition, we identified one critical error in Mathematica.
For [98, (18.17.47)], WED (Mathematica’s kernel) ran into a segmentation fault (core dumped)

for n > 1. The kernel of the full version of Mathematica gracefully died without returning an
output19.

17J0(x) with x ∈ R is even. Hence, J0(|z|) is correct under the given condition.
18https://reference.wolfram.com/language/ref/GenerateConditions.html [accessed 2021-05-01]
19All errors were reported to and confirmed by Wolfram Research.

Chapter 5

Qualitative and Quantitative Evaluations
129

https://dlmf.nist.gov/15.9.E2
https://dlmf.nist.gov/18.5.9
https://dlmf.nist.gov/10.9.1
https://dlmf.nist.gov/10.9.1
https://dlmf.nist.gov/10.9.4
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/8.4.4
https://dlmf.nist.gov/10.22.39
https://dlmf.nist.gov/10.43.8
https://dlmf.nist.gov/11.5.2
https://dlmf.nist.gov/18.17.47
https://reference.wolfram.com/language/ref/GenerateConditions.html

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

BesidesMathematica, we also identified several issues in the DLMF. None of the newly identified
issues were critical, such as the reported sign error from the previous project [2], but generally
refer to missing or wrong attached semantic information. With the generated results, we can
effectively fix these errors and further semantically enhance the DLMF. For example, some
definitions are not marked as such, e.g., Q(z) =

∫ ∞
0 e−ztq(t) dt [98, (2.4.2)]. In [98, (10.24.4)],

ν must be a real value but was linked to a complex parameter and x should be positive real. An
entire group of cases [98, (10.19.10-11)] also discovered the incorrect use of semantic macros. In
these formulae, Pk(a) and Qk(a) are defined but had been incorrectly marked up as Legendre
functions going all the way back to DLMF Version 1.0.0 (May 7, 2010). In some cases, equations
are mistakenly marked as definitions, e.g., [98, (9.10.10)] and [98, (9.13.1)] are annotated as
local definitions of n. We also identified an error in LACAST, which incorrectly translated the
exponential integrals E1(z), Ei(x) and Ein(z) (defined in [98, §6.2(i)]). A more explanatory
overview of discovered, reported, and fixed issues in the DLMF, Mathematica, and Maple is
provided in Appendix D available in the electronic supplementary material.

Branch cut issues Problems that we regularly faced during evaluation are issues related to
multi-valued functions. Multi-valued functions map values from a domain to multiple values in
a codomain and frequently appear in the complex analysis of elementary and special functions.
Prominent examples are the inverse trigonometric functions, the complex logarithm, or the
square root. A proper mathematical description of multi-valued functions requires the com-
plex analysis of Riemann surfaces. Riemann surfaces are one-dimensional complex manifolds
associated with a multi-valued function. One usually multiplies the complex domain into a
many-layered covering space. The correct properties of multi-valued functions on the complex
plane may no longer be valid by their counterpart functions on CAS, e.g., (1/z)w and 1/(zw)
for z, w ∈ C and z �= 0. For example, consider z, w ∈ C such that z �= 0. Then mathemati-
cally, (1/z)w always equals 1/(zw) (when defined) for all points on the Riemann surface with
fixed w. However, this should certainly not be assumed to be true in CAS, unless very specific
assumptions are adopted (e.g., w ∈ Z, z > 0). For all modern CAS20, this equation is not true.
Try, for instance, w = 1/2. Then (1/z)1/2 − 1/z1/2 �= 0 on CAS, nor for w being any other
rational non-integer number.

In order to compute multi-valued functions, CAS choose branch cuts for these functions so that
they may evaluate them on their principal branches. Branch cuts may be positioned differently
among CAS [84], e.g., arccot(−1

2) ≈ 2.03 in Maple but is ≈ −1.11 in Mathematica. This is
certainly not an error and is usually well documented for specific CAS [108, 171]. However,
there is no central database that summarizes branch cuts in different CAS or DML. The DLMF
as well, explains and defines their branch cuts carefully but does not carry the information
within the info boxes of expressions. Due to complexity, it is rather easy to lose track of
branch cut positioning and evaluate expressions on incorrect values. For example, consider
the equation [98, (12.7.10)]. A path of z(φ) = eiφ with φ ∈ [0, 2π] would pass three different
branch cuts. An accurate evaluation of the values of z(φ) in CAS require calculations on the
three branches using analytic continuation. LACAST and our evaluation frequently fall into the
same trap by evaluating values that are no longer on the principal branch used by CAS. To
solve this issue, we need to utilize branch cuts not only for every function but also for every
equation in the DLMF [10]. The positions of branch cuts are exclusively provided in the text

20The authors are not aware of any example of a CAS which treats multi-valued functions without adopting
principal branches.

130 Chapter 5

Qualitative and Quantitative Evaluations

https://dlmf.nist.gov/2.4.E2
https://dlmf.nist.gov/10.24.E4
https://dlmf.nist.gov/10.19.E10
https://dlmf.nist.gov/9.10.E10
https://dlmf.nist.gov/9.13.E1
https://dlmf.nist.gov/6.2.i
https://dlmf.nist.gov/12.7.10

Section 5.1. Evaluations on the Digital Library of Mathematical Functions

but not in the i-boxes. Adding the information to each equation in the DLMF would be a
laborious process because a branch cut position may change according to the used values (see
the example [98, (12.7.10)] from above). Our result data, however, would provide beneficial
information to update, extend, and maintain the DLMF, e.g., by adding the positions of the
branch cuts for every function. An extended discussion about branch cut issues is available in
Appendix A available in the electronic supplementary material.

5.1.5 ConcludeQuantitative Evaluations on the DLMF

We have presented a novel approach to verify the theoretical digital mathematical library DLMF
with the power of two major general-purpose computer algebra systems Maple and Mathemat-
ica. With LACAST, we transformed the semantically enhanced LATEX expressions from the DLMF
to each CAS. Afterward, we symbolically and numerically evaluated the DLMF expressions in
each CAS. Our results are auspicious and provide useful information to maintain and extend
the DLMF efficiently. We further identified several errors in Mathematica, Maple [2], the DLMF,
and the transformation tool LACAST, proving the profit of the presented verification approach.
Further, we provide open access to all results, including translations and evaluations21.

The presented results show a promising step towards an answer for our initial research question.
By translating an equation from a DML to a CAS, automatic verifications of that equation in
the CAS allows us to detect issues in either the DML source or the CAS implementation. Each
analyzed failed verification successively improves the DML or the CAS. Further, analyzing a
large number of equations from the DML may be used to finally verify a CAS. In addition,
the approach can be extended to cover other DML and CAS by exploiting different translation
approaches, e.g., via MathML [18] or OpenMath [152].

Nonetheless, the analysis of the results, especially for an entire DML, is cumbersome. Minor
missing semantic information, e.g., a missing constraint or not respected branch cut positions,
leads to a relatively large number of false positives, i.e., unverified expressions correct in theDML
and the CAS. This makes a generalization of the approach challenging because all semantics of
an equation must be taken into account for a trustworthy evaluation. Furthermore, evaluating
equations on a small number of discrete values will never provide sufficient confidence to verify
a formula, which leads to an unpredictable number of true negatives, i.e., erroneous equations
that pass all tests.

After all, we conclude that the approach provides valuable information to complement, improve,
and maintain the DLMF, Maple, and Mathematica. A trustworthy verification, on the other
hand, might be out of reach.

5.1.5.1 Future Work

The resulting dataset provides valuable information about the differences between CAS and the
DLMF. These differences had not been largely studied in the past and are worthy of analysis.
Especially a comprehensive and machine-readable list of branch cut positioning in different
systems is a desired goal [84]. Hence, we will continue to work closely together with the
editors of the DLMF to improve further and expand the available information on the DLMF.
Finally, the numeric evaluation approach would benefit from test values dependent on the actual
functions involved. For example, the current layout of the test values was designed to avoid

21https://lacast.wmflabs.org/ [accessed 2021-10-01]

Chapter 5

Qualitative and Quantitative Evaluations
131

https://dlmf.nist.gov/12.7.10
https://lacast.wmflabs.org/

Section 5.2. Evaluations on Wikipedia

problematic regions, such as branch cuts. However, for identifying differences in the DLMF
and CAS, especially for analyzing the positioning of branch cuts, an automatic evaluation of
these particular values would be very beneficial and can be used to collect a comprehensive,
inter-system library of branch cuts. Therefore, we will further study the possibility of linking
semantic macros with numeric regions of interest.

Finally, we used LACAST to perform translations solely on semantic LATEX expressions. Real-world
mathematics, however, is not available in this semantically enriched format. In the previous
chapter, we already developed and discussed a context-sensitive extension for LACAST. This
enables LACAST to translate not only semantic LATEX formulae from the DLMF but, considering
an informative textual context, also general mathematical expressions to multiple CAS. In the
following section, we will evaluate this new extension of LACAST on Wikipedia articles.

5.2 Evaluations on Wikipedia

In the following, resulting from our motivation outlined in Chapter 4 - improving Wikipedia
articles - we use Wikipedia for our test dataset to evaluate our context-sensitive extension of
LACAST. More specifically, we considered every English Wikipedia article that references to the
DLMF via the {{dlmf}} template22. This should limit the domain to OPSF problems that we are
currently examining. The English Wikipedia contains 104 such pages, of which only one page
did not contain any formula (Spheroidal wave function)23. For the entire dataset (the remaining
103Wikipedia pages), we detected 6, 337 formulae in total (including potential erroneous math).

So far, one of our initial three issues from Section 4.2.3 still remains unsolved: how can we
determine if a translation was appropriate and complete? We called a translation appropriate,
if the intended meaning of a presentational expression e ∈ LP is the same as the translated
expression t(e, X) ∈ LC . However, how can we know the intended semantic meaning of a
presentational expression e ∈ LP ? In natural languages, the BLEU score [282] is widely used to
judge the quality of a translation. The effectiveness of the BLEU score, however, is questionable
when it comes to math translations due to the complexity and high interconnectedness of
mathematical formulae. Consider, a translation of the arccotangent function arccot(x) was
performed to arctan(1/(x)) in Maple. This translation is correct and even preferred in certain
situations to avoid issues with so-called branch cuts (see [13, Section 3.2]). Previously, we
developed a new approach that relies on automatic verification checks with CAS [2, 11] to
verify a translation. This approach is very powerful for large datasets. However, it requires a
large and precise amount of semantic data about the involved formulae, including constraints,
domains, the position of branch cuts, and other information to reach high accuracy. In turn, we
perform this automatic verification on the entire 103 Wikipedia pages but additionally created
a benchmark dataset with 95 entries for qualitative analysis. To avoid issues like with the BLEU
score, we manually evaluated each translation of the 95 test cases.

22Templates in Wikitext are placeholders for repetitive information which get resolved by Wikitext parsers. The
DLMF-template, for example, adds the external reference for the DLMF to the article.

23Retrieved from https : / / en . wikipedia . org / wiki / Special : WhatLinksHere by searching for
Template:Dlmf [accessed 2021-01-01]

132 Chapter 5

Qualitative and Quantitative Evaluations

https://en.wikipedia.org/wiki/Special:WhatLinksHere

Section 5.2. Evaluations on Wikipedia

5.2.1 Symbolic and Numeric Testing

The automatic verification approach makes the assumption that a correct equation in the
domain must remain valid in the codomain after a translation. If the equation is incorrect after
a translation, we conclude a translation error. As we have discussed in the previous Section 5.1,
we examined two approaches to verify an equation in a CAS. The first approach tries to
symbolically simplify the difference of the left- and right-hand sides of an equation to zero. If
the simplification returned zero, the equation was symbolically verified by the CAS. Symbolic
simplifications of CAS, however, are rather limited and may even fail on simple equations.
The second approach overcomes this issue by numerically calculating the difference between
the left- and right-hand sides of an equation on specific numeric test values. If the difference
is zero (or below a given threshold due to machine accuracy) for every test calculation, the
equivalence of an equation was numerically verified. Clearly, the numeric evaluation approach
cannot prove equivalence. However, it can prove disparity and therefore detect an error due to
the translation.

In the previous Section 5.1, we saw that the translations by LACAST [13] were so reliable that
the combination of symbolic and numeric evaluations was able to detect errors in the domain
library (i.e., the DLMF) and the codomain systems (i.e., the CAS Maple and Mathematica) [2,
11]. Unfortunately, the number of false positives, i.e., correct equations that were not verified
symbolically nor numerically, is relatively high. The main reason is unconsidered semantic
information, such as constraints for specific variables or the position of branch cuts. Unconsid-
ered semantic information causes the system to test equivalence on invalid conditions, such
as invalid values, and therefore yields inequalities between the left- and right-hand sides of
an equation even though the source equation and the translation were correct. Nonetheless,
the symbolic and numeric evaluation approach proofs to be very useful also for our translation
system. It allows us to quantitatively evaluate a large number of expressions in Wikipedia.
In addition, it enables continuous integration testing for mathematics in Wikipedia article
revisions. For example, an equation previously verified by the system that fails after a revision
could indicate a poisoned revision of the article. This automatic plausibility check might be a
jump start for the ORES system to better maintain the quality of mathematical documents [359].
For changes in math equations, ORES could trigger a plausibility check through our translation
and verification pipeline and adjust the score of good faith of damaging an edit accordingly.

5.2.2 Benchmark Testing

To compensate for the relatively low number of verifiable equations in Wikipedia with the
symbolic and numeric evaluation approach, we crafted a benchmark test dataset to qualitatively
evaluate the translations. This benchmark includes a single equation (the formulae must
contain a top-level equality symbol24, no \text, and no \color macros) randomly picked from
each Wikipedia article from our dataset. For eight articles, no such equation was detected.
Hence, the benchmark contains 95 test expressions. For each formula, we marked the extracted
descriptive terms as irrelevant (0), relevant (1), or highly relevant (2), andmanually translated the
expressions to semantic LATEX and toMaple andMathematica. If the formula contained a function
for which no appropriate semantic macro exists, the semantic LATEX equals the generic (original)
LATEX of this function. In 18 cases, even the human annotator was unable to appropriately

24This excludes equality symbols of deeper levels in the parse tree, e.g., the equality symbols in sums are not
considered as such.

Chapter 5

Qualitative and Quantitative Evaluations
133

Section 5.2. Evaluations on Wikipedia

Table 5.3: The symbolic and numeric evaluations on all 6, 337 expressions from the dataset
with the number of translated expressions (T), the number of started test evaluations (Started),
the success rates (Success), and the success rates on the DLMF dataset for comparison (DLMF).
The DLMF scores refer to the results presented in the previous Section 5.1.

Symbol Evaluation

T Started Success DLMF

Maple 4, 601 1, 747 .113 .264
Mathematica 4, 678 1, 692 .158 .262

Numeric Evaluation

T Started Success DLMF

Maple 4, 601 1, 627 .181 .433
Mathematica 4, 678 1, 516 .236 .429

translate the expressions to the CAS, which underlines the difficulty of the task. The main
reason for a manual translation failure was missing information (the necessary information for
an appropriate translation was not given in the article) or it contained elements for which an
appropriate translation was not possible, such as contour integrals, approximations, or indefinite
lists of arguments with dots (e.g., a1, . . . , an). Note that the domain of orthogonal polynomials
and special functions is a well-supported domain for many general-purpose CAS, like Maple
and Mathematica. Hence, in other domains, such as in group, number, or tensor field theory,
we can expect a significant drop of human-translatable expressions25. Since Mathematica is
able to import LATEX expressions, we use this import function as a baseline for our translations
to Mathematica. We provide full access to the benchmark via our demo website and added an
overview to Appendix F.4 available in the electronic supplementary material.

5.2.3 Results

First, we evaluated the 6, 337 detected formulae with our automatic evaluation via Maple and
Mathematica. Table 5.3 shows an overview of this evaluation. With our translation pipeline, we
were able to translate 72.6% of mathematical expressions into Maple and 73.8% into Mathemat-
ica syntax. From these translations, around 40% were symbolically and numerically evaluated
(the rest was filtered due to missing equation symbols, illegal characters, etc.). We were able to
symbolically verify 11% (Maple) and 15% (Mathematica), and numerically verify 18% (Maple)
and 24% (Mathematica). In comparison, the same tests on the manually annotated semantic
dataset of DLMF equations [403] reached a success rate of 26% for symbolic and 43% for nu-
meric evaluations [11] (see the previous Section 5.1). Since the DLMF is a manually annotated
semantic dataset that provides exclusive access to constraints, substitutions, and other relevant
information, we achieve very promising results with our context-sensitive pipeline. To test a
theoretical continuous integration pipeline for the ORES system in Wikipedia articles, we also
analyzed edits in math equations that have been reverted again. The Bessel’s function contains

25Note that there are numerous specialized CAS that would cover the mentioned domains too, such as GAP [177],
PARI/GP [283], or Cadabra [290].

134 Chapter 5

Qualitative and Quantitative Evaluations

Section 5.2. Evaluations on Wikipedia

such an edit on the equation

Jn(x) = 1
π

∫ π

0
cos(nτ − x sin τ) dτ. (5.3)

Here, the edit26 changed Jn(x) to JZWE(x). Our pipeline was able to symbolically and
numerically verify the original expression but failed on the revision. The ORES system could
profit from this result and adjust the score according to the automatic verification via CAS.

5.2.3.1 Descriptive Term Extractions

Previously, we presumed that our update of the description retrieval approach to MOI would
yield better results. In order to check the ranking of retrieved facts, we evaluate the descriptive
terms extractions and compare the results with our previously reported F1 scores in [330]. We
analyze the performance for a different number of retrieved descriptions and different depths.
Here, the depth refers to the maximum depth of in-going dependencies in the dependency
graph to retrieve relevant descriptions. A depth value of zero does not retrieve additional terms
from the in-going dependencies but only the noun phrases that are directly annotated to the
formula itself. The results for relevance 1 or higher are given in Table 5.4a and for relevance 2
in Table 5.4b. Since we need to retrieve a high number of relevant facts to achieve a complete
translation, we are more interested in retrieving any relevant fact rather than a single but
precise description. Hence, the performance for relevance 1 is more appropriate for our task.
For a better comparison with our previous pipeline [330], we also analyze the performance
only on highly relevant descriptions (relevance 2). As expected, for relevant noun phrases,
we outperform the reported F1 score (.35). For highly relevant entries only, our updated MOI
pipeline achieves similar results with an F1 score of .385.

5.2.3.2 Semantification

Since we split our translation pipeline into two steps, semantification and mapping, we evaluate
the semantification transformations first. To do this, we use our benchmark dataset and perform
tree comparisons of our generated transformed tree ts(e, X) and the semantically enhanced
tree using semantic macros. The number of facts we take into account affects the performance.
Fewer facts and the transformation might be not complete, i.e., there are still subtrees in e
that should be already in LC . Too many facts increase the risk of false positives, that yield
wrong transformations. In order to estimate how many facts we need to retrieve to achieve
a complete transformation, we evaluated the comparison on different depths D and limit the
number of facts with the same MOI, i.e., we only consider the top-ranked facts f for an MOI
according to sMLP(f). In addition, we limit the number of retrieved rules rf per MC. We
observed that an equal limit of retrieved MC per MOI and rf per MC performed best. Consider
we set the limit N to five, we would retrieve a maximum of 25 facts (five rf for each of the five
MC for a single MOI). Typically, the number of retrieved facts f is below this limit because
similar MC yield similar rf . In addition, we found that considering replacement patterns with
a likelihood of 0% (i.e., the rendered version of this macro never appears in the DLMF), harms
performance drastically. This is because semantic macros without any arguments regularly
match single letters, for example, Γ representing the gamma function with the argument (z)

26https://en.wikipedia.org/w/index.php?diff=991994767&oldid=991251002&title=Bessel_
function&type=revision [accessed 2021-06-23]

Chapter 5

Qualitative and Quantitative Evaluations
135

https://en.wikipedia.org/w/index.php?diff=991994767&oldid=991251002&title=Bessel_function&type=revision
https://en.wikipedia.org/w/index.php?diff=991994767&oldid=991251002&title=Bessel_function&type=revision

Section 5.2. Evaluations on Wikipedia

Table 5.4: Performance of description extractions via MLP for low (5.4a) and high (5.4b) rele-
vance. In all tables, D refers to the depth (following ingoing dependencies) in the dependency
graph, N is the maximum number of facts and rf for the same MOI, TP are true positives, and
FP are false positives.

(a) Relevance 1 or higher.

Description Extraction

D N TP FP Prec Rec F1

0 1 59 32 .648 .184 .286
0 3 136 95 .589 .424 .493
0 6 155 150 .508 .483 .495
0 15 167 190 .468 .520 .493
1 1 123 211 .368 .383 .376
1 3 179 602 .229 .558 .325
1 6 210 1107 .159 .654 .256
2 1 122 210 .367 .379 .373
2 3 179 600 .230 .556 .325

(b) Relevance 2.

Description Extraction

D N TP FP Prec Rec F1

0 1 41 59 .451 .210 .287
0 3 82 149 .355 .421 .385
0 6 90 215 .295 .462 .360
0 15 95 262 .266 .487 .344
1 1 82 252 .246 .421 .310
1 3 106 675 .139 .544 .217
1 6 124 1193 .094 .636 .164
2 1 56 227 .198 .287 .234
2 3 88 661 .117 .451 .186

being omitted. Hence, we decided to consider only replacement patterns that exist in the DLMF,
i.e., sDLMF(rf) > 0.

Since certain subtrees ẽ ⊆ e ∈ LP can be already operator trees, i.e., ẽ ∈ LC , we calculate
a baseline (base) that does not perform any transformations, i.e., e = t(e, X). The baseline
achieves a success rate of 16%. To estimate the impact of our manually defined set of common
knowledge facts K, we also evaluated the transformations for X = K and achieve a success
rate of 29% which is already significantly better compared to the baseline. The full pipeline,
as described above, achieves a success rate of 48%. Table 5.5 compares the performance. The
table shows that depth 1 outperforms depth 0, which intuitively contradicts the F1 scores in
Table 5.4a. This underlines the necessity of the dependency graph. We further examine a drop
in the success rate for larger N. This is attributable to the fact that gf (e) is not commutative
and large N retrieve too many false positive facts f with high ranks. We reach the best success
rate for depth 1 and N = 6. Increasing the depth further only has a marginal impact because,
at depth 2, most expressions are already single identifiers, which do not provide significant
information for the translation process.

5.2.3.3 Translations from LATEX to CAS

Mathematica’s ability to import TEX expressions will serve as a baseline. While Mathe-
matica does allow to enter a textual context, it does recognize structural information in

the expression. For example, the Jacobi polynomial P
(α,β)
n (x) is correctly imported as

JacobiP[n,\[Alpha],\[Beta],x] because no other supported function in Mathematica is
linked with this presentation. Table 5.6 compares the performance. The methods base, ck,
full are the same as in Table 5.5, but now refer to translations to Mathematica, rather than
semantic LATEX. Method full uses the optimal setting as shown in Table 5.5. We consider a

136 Chapter 5

Qualitative and Quantitative Evaluations

Section 5.2. Evaluations on Wikipedia

Table 5.5: Performance of semantification from LATEX to semantic LATEX. D refers to the depth
(following ingoing dependencies) in the dependency graph, N is the maximum number of facts
and rf for the same MOI. The methods base refers to no transformations t(e, X) = e, ck
where X = K, and full use the full proposed pipeline. � matches the benchmark entry and
� does not match the entry.

Semantic LaTeX Comparison

Method D N � �

base - - .16 .84
ck - - .29 .71
full 0 3 .36 .64

0 6 .40 .60
0 15 .40 .60
1 3 .43 .57
1 6 .48 .52
1 15 .45 .55
1 20 .44 .56

translation a match (�) if the returned value by Mathematica equals the returned value by the
benchmark. The internal process of Mathematica ensures that the translation is normalized.

We observe that without further improvements, LACAST already outperforms Mathematica’s
internal import function. Activating the general replacement rules further improved perfor-
mance. Our full context-aware pipeline achieves the best results. The relatively high ratio of
invalid translations for full is owed to the fact that semantic macros without an appropriate
translation to Mathematica result in an error during the translation process. The errors ensure
that LACAST only performs translations for semantic LATEX if a translation is unambiguous and
possible for the containing functions [13]. Note that we were not able to appropriately translate
18 expressions (indicated by the human performance in Table 5.6) as discussed before.

5.2.4 Error Analysis & Discussion

In this section, we briefly summarize the main causes of errors in our translation pipeline. A
more extensive analysis can be found in Appendix F.3 (available in the electronic supplementary
material) and on our demo page at: https://tpami.wmflabs.org. In the following, we
may refer to specific benchmark entries with the associated ID. Since the benchmark contains
randomly picked formulae from the articles, it also contains entries that might not have been
properly annotated with math templates or math-tags in the Wikitext. Four entries in the
benchmark (28, 43, 78, and 85) were wrongly detected by our engine and contained only parts
of the entire formula. In the benchmark, we manually corrected these entries. Aside from the
wrong identification, we identified other failure reasons for a translation to semantic LATEX or
CAS. In the following, we discuss the main reasons and possible solutions to avoid them, in
order of their impact on translation performance.

Chapter 5

Qualitative and Quantitative Evaluations
137

https://tpami.wmflabs.org

Section 5.2. Evaluations on Wikipedia

Table 5.6: Performance comparison for translating LATEX to Mathematica. A translation was
successful (ST) if it was syntactically verified by Mathematica (otherwise: FT). � refers to
matches with the benchmark and� to mismatches. The methods are explained in Section 5.2.3.3.

LaTeX Translations to Mathematica

Method ST FT � �

MM_import 57 (.60) 38 (.40) 9 (.09) 48 (.51)
LACAST_base 55 (.58) 40 (.42) 11 (.12) 44 (.46)
LACAST_ck 62 (.65) 33 (.35) 19 (.20) 43 (.45)
LACAST_full 53 (.56) 42 (.44) 26 (.27) 27 (.26)

Theory_def - - +18 (.19) -18 (.19)
Theory_ck - - +3 (.03) -3 (.03)

Human 95 (1.0) 0 (.00) 77 (.81) 18 (.19)

5.2.4.1 Defining Equations

Recognizing an equation as a definition would have a great impact on performance. As a test,
we manually annotated every definition in the benchmark by replacing the equal sign = with
the unambiguous notation := and extended LACAST to recognize such combination as a definition
of the left-hand side27. This resulted in 18 more correct translations (e.g., 66, 68, and 75) and
increased the performance from .28 to .47. The accuracy for this manual improvement is given
as Theory_def in Table 5.6.

The dependency graph may provide beneficial information towards a definition recognition
system for equations. However, rather than assuming that every equation symbol indicates a
definition [214], we propose a more selective approach. Considering one part of an equation
(including multi-equations) as an extra MOI would establish additional dependencies in the
dependency graph, such as a connection between x = sn(u, k) andF (x; k) = u. A combination
with recent advances of definition recognition in NLP [111, 134, 183, 370] may then allow us to
detect x as the defining element. The already established dependency between x and F (x; k) =
u can finally be used to resolve the substitution. Hence, for future research, we will elaborate
on the possibility of integrating existing NLP techniques for definition recognition [111, 134]
into our dependency graph concept.

5.2.4.2 Missing Information

Another problem that causes translations to fail is missing facts. For example, the gamma
function seems to be considered common knowledge in most articles on OPSF because it is
often not specifically declared by name in the context (e.g., 19 or 31). To test the impact of
considering the gamma function as common knowledge, we added a rule rf to K and attached
a low rank to it. The low rank ensures the pattern for the gamma function will be applied
late in the list of transformations. This indeed improved performance slightly, enabling a
successful translation of three more benchmark entries (Theory_ck in Table 5.6). This naive

27The DLMF did not use this notation, hence LACAST was not capable of translating := in the first place.

138 Chapter 5

Qualitative and Quantitative Evaluations

Section 5.2. Evaluations on Wikipedia

approach, emphasizes the importance of knowing the domain knowledge for specific articles. In
combination with article classifications [320], we could activate different common knowledge
sets depending on the specific domain.

5.2.4.3 Non-Matching Replacement Patterns

An issue we would more regularly faced in domains other than OPSF is non-standard nota-
tions. As previously mentioned, without definition detection, we would not be able to derive
transformation rules if the MOI is not given in a standard notation, such as p(a, b, n, z) for the
Jacobi polynomial. This already happens for slight changes that are not covered by the DLMF.
For six entries, for instance, we were unable to appropriately replace hypergeometric functions
because they used the matrix and array environments in their arguments, while the DLMF (as
shown in Table 4.5) only uses \atop for the same visualization. Consequently, none of our
replacement patterns matched even though we correctly identified the expressions as hyper-
geometric functions. A possible solution to this kind of minor representational changes might
be to add more possible presentational variants m for a semantic macro m̃. Previously [14],
we presented a search engine for MOI that allows searching for common notations for a given
textual query. Searching for Jacobi polynomials in arXiv.org shows that different variants of

P
(α,β)
n (x) are highly related or even equivalently used, such as p, H , or R rather than P . There

were also a couple of other minor issues we identified during the evaluation, such as synonyms
for function names, derivative notations, or non-existent translations for semantic macros. This
is also one of the reasons why our semantic LATEX test performed better than the translations to
Mathematica. We provide more information on these cases on our demo page.

Implementing the aforementioned improvements will increase the score from .26 (26 out of 95)
to .495 (47 out of 95) for translations from LATEX toMathematica. We achieved these results based
on several heuristics, such as the primary identifier rules or the general replacement patterns,
which indicates that we may improve results even further with ML algorithms. However,
a missing properly annotated dataset and no appropriate error functions made it difficult to
achieve promising results with ML on mathematical translation tasks in the past [1, 15]. Our
translation pipeline based on LACAST paves the way towards a baseline that can be used to train
ML models in the future. Hence, we will focus on a hybrid approach of rule-based translations
via LACAST on the one hand, and ML-based information extraction on the other hand, to further
push the limits of our translation pipeline.

5.2.5 ConcludeQualitative Evaluations on Wikipedia

We presented LACAST, the first context-sensitive translation pipeline formathematical expressions
to the syntax of two major Computer Algebra Systems (CAS), Maple and Mathematica. We
demonstrated that the information we need to translate is given as noun phrases in the textual
context surrounding a mathematical formula and common knowledge databases that define
notation conventions. We successfully extracted the crucial noun phrases via part-of-speech
tagging. Further, we have shown that CAS can automatically verify the translated expressions
by performing symbolic and numeric computations. In an evaluationwith 104Wikipedia articles
in the domain of orthogonal polynomials and special functions, we verified 358 formulae using
our approach. We identified one malicious edit with this technique, which was reverted by
the community three days later. We have shown that LACAST correctly translates about 27% of
mathematical formulae compared to 9% with existing approaches and a 81% human baseline.

Chapter 5

Qualitative and Quantitative Evaluations
139

Section 5.2. Evaluations on Wikipedia

Further, we demonstrated a potential successful translation rate of 46% if LACAST can identify
definitions correctly and 49% with a more comprehensive common knowledge database.

Our translation pipeline has several practical applications for a knowledge database like
Wikipedia, such as improving the readability [17] and user experience [150], enabling entity
linking for mathematics [320, 17], or allowing for automatic quality checks via CAS [2, 11]. In
turn, we plan to integrate [401] our evaluation engine into the existing ORES system to classify
changes in complex mathematical equations as potentially damaging or good faith. In addition,
the system provides access to different semantic formats of a formula, such as multiple CAS
syntaxes and semantic LATEX [260]. As shown in the DLMF [260], the semantic encoding of a
formula can improve search results for mathematical expressions significantly. Hence, we also
plan to add the semantic information from our mathematical dependency graph to Wikipedia’s
math formulae to improve search results [17].

In future work, we aim to mitigate the issues outlined in Section 5.2.4, primarily focusing
our efforts on definition recognitions for mathematical equations. Advances on this matter
will enable the support for translations beyond OPSF. In particular, we plan to analyze the
effectiveness of associating equations with their nearby context classification [111, 134, 183,
370], assuming a defining equation is usually embedded in a definition context. Apart from
expanding the support beyond OPSF, we further focus on improving the verification accuracy of
the symbolic and numeric evaluation pipeline. In contrast to the evaluations on the DLMF, our
evaluation pipeline currently disregards constraints inWikipedia. While most constraints in the
DLMF directly annotate specific equations, Wikipedia contains constraints in the surrounding
context of the formula. We plan to identify constraints with new pattern matches and distance
metrics, by assuming that constraints are often short equations (and relations) or set definitions
and appear shortly after or before the formula they are applied to. While we made math in
Wikipedia computable, the encyclopedia does not take advantage of this new feature yet. In
future work, we will develop an AI [401] (as an extension to the existing ORES system) that
makes use of this novel capability.

140 Chapter 5

Qualitative and Quantitative Evaluations

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

That can only mean one thing.

And I don’t know what it is.

Sam Diamond - Murder by Death

CHAPTER 6

Conclusion and Future Work

Contents

6.1 Summary. 141

6.2 Contributions and Impact of the Thesis . 150

6.3 Future Work . 153

6.3.1 Improved Translation Pipeline . 154

6.3.2 Improve LaTeX to MathML Converters . 155

6.3.3 Enhanced Formulae in Wikipedia . 156

6.3.4 Language Independence . 158

This chapter summarizes and concludes the contribution of this thesis in Section 6.1 and Sec-
tion 6.2, respectively. Section 6.3 provides an overview of future work projects.

6.1 Summary

In this thesis, we presented novel approaches to translate presentational mathematical en-
codings into computable formats and to evaluate these translations. We focused on LATEX for
the presentational encodings and Computer Algebra Systems (CAS) syntaxes for computable
formats. Primarily, we focused on translations to the two major general-purpose CAS Maple
and Mathematica.

Every mathematical format serves a specific purpose and encodes different amounts of semantic
information into an expression. A presentational format encodes visual information, while
computable formats need to uniquely link elements with specific definitions (i.e., implementa-
tions). There are numerous mathematical formats and conversion tools available. Many roads
leads to Rome, thus there are several translation paths from LATEX to CAS syntaxes available,
including direct translations via CAS import functions (see Table 1.3). The most well-covered
conversion path between mathematical formats is between the standard encodings LATEX and
MathML. Since content MathML explicitely encodes semantic information and many CAS are
able to import content MathML, the easiest approach for translating LATEX to CAS was to use
MathML as an intermediate format. Hence, we developed MathMLben, a MathML benchmark,
to evaluate the quality of the translations of several state-of-the-art LATEX to MathML conversion
tools.

141
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4_6

Supplementary Information The online version contains supplementary material available at
.https://doi.org/10.1007/978-3-658-40473-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-40473-4_6&domain=pdf

Section 6.1. Summary

Our benchmark test revealed that existing LATEX conversion tools only consider the semantic
information that is explicitly encoded in the given expression, e.g., via visual pattern recognition

approaches. For example, Mathematica concludesP
(α,β)
n (x) to be the Jacobi polynomial because

there is no other expression with the same pattern available in Mathematica. Only three of the
nine state-of-the-art converters supported content MathML but with insufficient accuracy. The
conversion tool LATExml performed best and is able translate semantically enriched formulae
in semantic LATEX. Without a manual annotation with semantic macros, however, LATExml also
create wrong and incomplete results. In addition, even though CAS often support MathML
(including content MathML), there is no public mapping between functions in a Content Dictio-
nary (DC) and functions in the CAS available. Hence, a reliable import of MathML is generally
limited to K-141 mathematics.

Prior to this thesis, we developed LACAST, a translator from semantic LATEX to the CAS Maple.
LACAST was the first translator to a CAS syntax that provided additional information about the
translation process and provided alternative translations if a direct mapping was unavailable.
The first version of LACAST laid the foundation to solve translation issues related to differences
in the definitions of functions, e.g., branch cut positioning. However, LACAST required manually
crafted semantic LATEX as it is used in the DLMF. Subsequently, we focused on extending LACAST to
perform a semantification step from LATEX to semantic LATEX based on the information gathered
in the surrounding context of a formula.

The semantification ofmathematical expressions, even though related to otherMathIR tasks, was
newdue to the information needs for a translation to computable formats. Other tasks inMathIR,
such as the search for relevant or similar formulae, rarely need to understand the structure of
mathematical objects in an expression. For a translation to computable formats, a conversion
tool needs to identify the subexpressions representing a specific formula, determine which
formula it represents, what parts of the subexpression are variable or fixed (stem), and how the
formula is declared in the context. Existing approaches to semantically enhance mathematical
expressions with information from a textual context can be categorized into two groups. The
first group takes single identifiers (or other single tokens) and attaches information from the
context to these identifiers. The second group annotates entire mathematical expressions. Both
approaches, however, ignore informative and crucial subexpressions.

As a first approach for a semantification process, we explored the capabilities of word embed-
ding techniques. These models generally perform well on several natural language processing
tasks and are able to capture co-occurrences of tokens in large corpora. These co-occurrences
seem to model semantic relationships, as it is often shown in the infamous king-queen rela-
tionship2. Unfortunately, we were unable to achieve similar results for math embeddings due
to fundamental issues in existing embedding approaches. While natural language sentences are
a sequential order of words, math formulae are deeply nested structures in which only a few
tokens are fixed. However, distinguishing fixed from variable tokens, i.e., identifying the stem
of a mathematical function, is context-dependent. In order to overcome these representational
issues of mathematical expressions, we introduced a new nested concept for mathematical
expressions, MOI.

1Kindergarten to early college.
2The relationship between king and man is very similar (in terms of cosine difference between the vector

representations) to the relationship between queen and woman.

142 Chapter 6

Conclusion and Future Work

Section 6.1. Summary

Expression
Layer

Identifier
Layer

Function
Layer

Figure 6.1: Layers of a mathematical expression with mathematical objects (MOI). MOI in the
function layer can be semantically enhanced by semantic LATEX macros. The red tokens are
fixed tokens of the MOI and the gray tokens are variable (variables and parameters).

A Mathematical Objects of Interest (MOI) represents a meaningful mathematical subexpression
(math object) which might be composed of other MOI. Figure 6.1 shows different layers of
mathematical objects within the defining formula of Jacobi polynomials. As previously men-
tioned, most MathIR approaches focus on the context-independent elements in the expression
or identifier layer. For translating equations from LATEX to CAS syntaxes, however, the elements
in the layers in between both extremes are generally most crucial. If we want to translate an
equation to the syntax of CAS, we need to primarily translate MOI in the function layer because
those elements are mapped to unique keywords in the CAS. As an approach to explore the
usability of the new MOI concept, we performed the first large-scaled notation study of over
2.5 billion mathematical subexpressions in 2 million documents from arXiv and zbMATH. We
have shown that the distribution of mathematical subexpressions is similar to words in natural
language corpora. Following the idea that mathematical expressions are more comparable to
sentences in natural languages, we analyzed the effectiveness of distribution scores, such as
BM25, to retrieve MOI for given textual descriptions and achieved good results.

Consequently, we developed a novel semantification pipeline based on the MOI concept in
which we presume that every isolated mathematical expression in a text is considered to be
meaningful. The connections between MOI are modeled by a mathematical dependency graph
that links two MOI if one is a subexpression of the other (following a specific heuristic to allow
matches between Γ(x) and Γ(z)). Each MOI (now a node in the dependency graph) is tagged
with descriptions extracted from the textual context. With these descriptions, we can retrieve
semantic LATEX macros that represent the MOI. In addition, the dependency graph allows re-
trieving semantic LATEX macros for each meaningful subexpression too. Finally, we semantically
enhance the original LATEX expression by replacing each MOI with the correpsonding semantic
LATEX macro. The resulted enhanced expression can be further translated to CAS syntaxes with
LACAST. Figure 6.2 shows the relevant annotations and dependencies of the defining formula of
Jacobi polynomials in the English Wikipedia article. In order to replace LATEX with semantic
LATEX macros, we retrieve all textual descriptions (green boxes) surrounding the formula and all
dependent MOI (blue boxes).

Chapter 6

Conclusion and Future Work
143

Section 6.1. Summary

Jacobi polynomials
From Wikipedia, the free encyclopedia

For Jacobi polynomials of several variables, see Heckman-Opdam polynomials.

are a class of classical orthogonal polynomials. They are orthogonal with
respect to the weight on the interval . The Gegenbauer
polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are
special cases of the Jacobi polynomials.

Definitions
Via the hypergeometric function
The Jacobi polynomials are defined via the hypergeometric function as follows:

where is the Pochhammer‘s symbol (for the rising factorial). In this case, the
series for the hypergeometric function is finite, therefore one obtains the following
equivalent expression:

[edit]

[edit]

In mathematics, Jacobi polynomial (occasionally called hypergeometric polynomials)

The Jacobi polynomials were introduced by Carl Gustav Jacob Jacobi

mathematics, Jacobi polynomial hypergeometric polynomials)

class of classical orthogonal polynomials
.

Figure 6.2: The annotated defining formula of Jacobi polynomials (yellow) in the English
Wikipedia article. The defining formula depends on two other MOI (blue) in the same article:

P
(α,β)
n (x) and (α + 1)n. Hence, in order to properly translate the defining formula, we need to

translate the dependent MOI. This can be achieved by retrieving textual annotations (green)
from the surrounding context.

The proposed semantification approach requires a semantic LATEXmacro to semantically enhance
an MOI. The semantic macros were developed for the DLMF andmostly covered OPSF. General-
purpose CAS, like Maple and Mathematica, natively support functions from this area in general.
Hence, there is a significant overlap between the functions that have a semantic macro in the
DLMF and are natively supported by CAS. Translating general expressions to CAS is often
not possible and may require entire new subroutines in the CAS. Consider the prime counting
function π(x) does not exist inMaple. In this case, translating π(x) toMaple is impossible unless
we are able to automatically generate subroutines that are able to compute this function. Often,
however, general functions are much simpler and may be represented by known functions, e.g.,
f(x) := sin2(x). In this case, we need to identify the definition of f(x) in order to properly
translate it. Translating f(x)−g(x), for instance, is meaningless without knowing the definition
of f(x) and g(x). However, determining whether an equation declares a definition remains an
open research task for future work.

As an alternative to the new context-sensitive translation pipeline for LACAST, we also exper-
imented with machine translation approaches for LATEX to CAS conversions. We discovered
that our machine translation approach is very powerful in adapting conversion rules of other
converters, e.g., the LATEX export function of Mathematica or the conversion process by LATExml.
Here, we achieved up to 95.1% exact match accuracy for undoing an export conversion by
Mathematica and 90.7% accuracy for undoing a conversion by LATExml. However, we also iden-
tified that such machine translations are very unreliable when it comes to general mathematical
expressions. On 100 random selected samples from the DLMF, our machine translation ap-
proach correctly translated only 5% of the expressions, compared to 11% by Mathematica or 7$
by SymPy. Our rule-based translator LACAST achieved 22%. If LACAST performs translations on the
original semantic LATEX source of the 100 samples from the DLMF, LACAST achieves 51% accuracy.
On non-semantic enhanced cases from Wikipedia articles, our new context-sensitive version of

144 Chapter 6

Conclusion and Future Work

Section 6.1. Summary

LACAST correctly translated 27% compared to the state-of-the-art 9% by Mathematica. We have
also shown that a proper definition detection system and an improved common knowledge
datatset would boost the number of correct translated expressions to 47%. In comparison, a
human annotator was able to translate 81% of the expressions manually.

For determining if a translation was correct or not, one cannot directly adapt established mea-
sures for natural language translations. The known BLEU score, for instance, is inappropriate
since two entire different mathematical expressions can still be equivalent. Hence, we developed
a novel evaluation system based on the fact that a translated expression can be further computed
by CAS. Consider an equation, which mathematicians manually proved, such as

sin2(z) + cos2(z) = 1. (6.1)

If the translation of this expression was correct, the equation must be valid in the syntax of the
CAS too. Most CAS are powerful enough to verify such simple equivalence, e.g., via symbolic
simplifications. In combination with a comprehensive library of proven equations, such as the
DLMF, we could semantically evaluate translations by LACAST.

There is a catch to this evaluation technique. Verifying an equation to be correct can become
arbitrarily complex (consider the infamous Riemann hypothesis or Fermat’s last conjecture, for
example). Hence, automatically verifying an equation with CAS is limited. Nonetheless, CAS
are powerful and flexible tools, especially when it comes to numeric evaluations. We developed
a two-step evaluation approach to verify an equation in CAS. First, we symbolically simplify
the difference of the left- and right-hand sides of an equation to zero. If the result is zero, the
equation is considered symbolically verified. Second, we numerically calculate the difference
between the left- and right-hand sides for actual numeric test values if the symbolic verification
failed. An equation is numerically verified if the difference is close to zero for all test values
(due to machine accuracy). While the numeric evaluation approach never proves equivalence,
it can detect disparity. A symbolically or numerically verified equation can be considered as
correctly translated by LACAST.

It turns out that the translations of LACAST are so reliable on DLMF equations that this evaluation
technique not only detects issues in the translation process but in the source and target systems
as well. Consider there is an error in a test equation, such as in

Q−1/2
ν (cos θ) = −

(
π

2 sin θ

)1/2 cos
((

ν + 1
2

)
θ

)
ν + 1

2
. (6.2)

The numeric evaluation would fail for most test values indicating that there was an error either
in the source equation, i.e., the DLMF, the translator LACAST, or in the target CAS. Hence, we
evaluated the entire DLMF with this evaluation technique and identified numerous of issues
in the DLMF, Wikipedia, Maple, and Mathematica. Via LACAST translations and evaluations, for
example, we identified the sign error (the red marked minus) in equation (6.2) in the DLMF [98,
(14.5.14)]. This error was fixed with version 1.0.16 in the DLMF. Most notable error reports
include this sign error and incorrect semantic annotations in the DLMF, wrong calculations
for specific integrals and bugs in a variable extraction algorithm in Mathematica, incorrect
symbolic computations in Maple, and malicious edits in Wikipedia articles3.

3An overview of discovered, reported, and fixed issues in CAS, DLMF, and in the Wikipedia articles is available
in Appendix D available in the electronic supplementary material.

Chapter 6

Conclusion and Future Work
145

https://dlmf.nist.gov/14.5.14

Section 6.1. Summary

Note that, even with our novel semantification approach, LACAST cannot be considered as a
finished project (see Section 6.3). Several improvements could be achieved in the future. A
crucial issue occur, for instance, if a function is not following the DLMF standard notation, e.g.,

p(n, α, β, x) for the Jacobi polynomial rather than P
(α,β)
n (x). In that case, LACAST is incapable of

translating the expression. There is, however, no easy solution to this problem. Such a custom
notation raise the question about the order of the arguments. For example, in p(a, b, c, d), we
cannot determine if c is referring to the degree of the Jacobi polynomial and should be mapped
to the first argument in Mathematica syntax or to any other position. One possible workaround
is to fetch and analyze the definition of p(a, b, c, d), supposed the definition is available in the
context. By comparing the definition in the context with the actual Jacobi polynomial definition
in the DLMF or the CAS, we could map each argument with their respective semantics, e.g., c
to the degree of the polynomial. Such a comparison would introduce its own challenges. For
example, what if the definition is not exactly the same as in the DLMF? Moreover, as we pointed
out earlier, determining an equation as a defining formula is also an open research question.
Recently, a similar issue gained interest among the NLP community with the goal to determine
the semantic classification of paragraphs and text spans, such as definitions, theorems, or
examples [111, 134, 183, 209, 370]. Most of the remaining issues of LACAST come along with open
research questions. Some examples are:

• How can we distinguish an equation from a defining formula?

• How can we determine the stem of a function by a given definition?

• How can we identify constraints and their scopes in natural language contexts?

• Are there specific numeric values an equation should be tested on to increase the trust-
worthiness in positive numeric evaluation results?

• How can a translation process overcome different branch cut positions between domain
and co-domain representations?

Nonetheless, LACAST, in its current state, already outperforms existing presentational-to-
computational translation solutions, improves the scientific work cycle of experimenting and
publishing, and even helps to correct issues in DML and CAS. LACAST increases the trustwor-
thiness in translation with a transparent communication about the translation decisions [13].
In combination with direct access to CAS’ kernels, LACAST also performs automatic verification
checks on its translations, the source formula, and the system computations. This capability
was successfully demonstrated on the DLMF in which we were able to identify numerous
issues, from missing or incorrect semantic annotations to wrong constraints and sign errors [2].
With the same evaluation approach, LACAST helps discover bugs in the commercial CAS, Maple
and Mathematica [8]. In Wikipedia, LACAST computations allow for detecting malicious edits and
the performed semantic enhancements potentially improve the readability and accessibility of
mathematical content [11].

In addition, several of the projects on the way to the final version of LACAST contributed towards
multiple MathIR tasks. The developed MathML benchmark: MathMLben, for instance, is used
for research in mathematical entity linking [321]. Our math embedding experiments enabled
new approaches, such as centroid search queries and similarity measures for mathematical
expressions [15, 323, 332, 404]. Our study about the frequency distributions of mathematical
subexpressions in large corpora [14] enabled a new search engine for zbMATH [16], an auto-

146 Chapter 6

Conclusion and Future Work

Section 6.1. Summary

completion for mathematical inputs, new approaches for plagiarism detection systems4, and
literature recommendation systems that will, for the first time, take mathematical content into
account [50]. The mathematical dependency graph generated by LACAST can be embedded in
Wikipedia to provide additional semantic information about a formula in a pop-up information
window [17]. Lastly, LACAST is currently planned to be integrated into future versions of the DLMF
to provide static translations for all DLMF equations and a live interface for general expressions.
The source of LACAST is publicly available on https://github.com/gipplab/LaCASt since
February 2022.

LACAST Translation Examples To conclude with the examples from the introduction of the
thesis, LACAST correctly translates every expression in Table 1.2 to Maple, Mathematica, and
SymPy. On 100 random selected formulae from the DLMF, LACAST correctly translated 22% and
significantly outperforms existing converters, such as Mathematica (11%), SymPy (7%), and
machine translations (5%). For the semantic LATEX source, LACAST correctly translated 51% of the
100 samples. LACAST addresses the issues of branch cuts and differences in definitions between
the system by providing additional information and a transparent decision process. For instance,
arccot(z) is translated to Maple with arccot(z) but LACAST warns about the differences in the
positioning of branch cuts and informs the user about alternative translation patterns, such
as I/2*ln(($0-I)/($0+I)) or arctan(1/($0)). Additionally, LACAST provides links to the
definitions of the function, the domains, and the constraints, if available. By providing a textual

context that declares P
(α,β)
n (x) as the Jacobi polynomial and Γ(z) as the Gamma function,

LACAST also correctly translates equation (1.1) from the introduction. No CAS import functions
nor alternative translations via MathML (followed by an import to the CAS) are capable of
correctly translating equation (1.1), all expressions in Table 1.2, or π(x + y) in various contexts.
Further, no system, besides LACAST, informs the user about potential issues, such as the different
branch cuts of arccot(z).

To provide a more sophisticated example that underlines the capabilities of LACAST, consider
Bailey’s transformation of very-well-poised 8φ7 from the DLMF [98, (17.9.16)]

8φ7

⎛⎝ a, qa
1
2 , −qa

1
2 , b, c, d, e, f

a
1
2 , −a

1
2 , aq/b, aq/c, aq/d, aq/e, aq/f

; q,
a2q2

bcdef

⎞⎠
=

(
aq, aq/(de), aq/(df), aq/(ef); q

)
∞(

aq/d, aq/e, aq/f, aq/(def); q
)

∞
4φ3

(
aq/(bc), d, e, f

aq/b, aq/c, def/a
; q, q

)

+

(
aq, aq/(bc), d, e, f, a2q2/(bdef), a2q2/(cdef); q

)
∞(

aq/b, aq/c, aq/d, aq/e, aq/f, a2q2/(bcdef), def/(aq); q
)

∞

× 4φ3

(
aq/(de), aq/(df), aq/(ef), a2q2/(bcdef)

a2q2/(bdef), a2q2/(cdef), aq2/(def) ; q, q

)
.

(6.3)

No CAS nor other translation approaches are capable of interpreting and translating this ex-
pression correctly with (or without) semantic annotations or textual descriptions. Mathematica,
for example, cannot interpret leading indexes correctly, such as in 8φ7, and is unable to un-
derstand (a, b; q)n because the multiple q-pochhammer symbol does not exist in Mathematica.

4See the DFG (German Research Foundation) fund: Analyzing Mathematics to Detect Disguised Academic Plagia-

rism (https://gepris.dfg.de/gepris/projekt/437179652 [accessed 2021-09-08])

Chapter 6

Conclusion and Future Work
147

https://github.com/gipplab/LaCASt
https://dlmf.nist.gov/17.9.16
https://gepris.dfg.de/gepris/projekt/437179652

Section 6.1. Summary

Since the DLMF source uses semantic macros to unambiguously describe the expression, LACAST
translates this complicated equation from the DLMF to Mathematica effortlessly by exploit-
ing the definition of the multiple q-pochhammer symbol. Additionally, LACAST provides useful
information about the internal decision process (see Figure 6.3). Outside of the DLMF, e.g.,
in Wikipedia, LACAST would require a context that explains the functions in equation (6.3) to
properly disambiguate the components.

�
A short example context that enables LACAST to properly understand equa-

tion (6.3)

The basic hypergeometric function 2φ2

(
a,b
c,d ; q, z

)
and the multiple q-pochhamer symbol

(a, b; q)n describes Bailey’s transformation of very-well-poised 8φ7.

In combination with this context, LACAST identifies the function patterns and semantically en-
hances the input expression with DLMF macros. Consequently, LACAST correctly translates the
expression to Mathematica, as it did for the original DLMF source equation, and provides the
same useful information about the translation decisions, see Figure 6.3. Unfortunately, the
equation is too complex for our automatic evaluation approach.

Performing a manual translation for such significant expressions is very exhaustive and requires
a deep understanding of the CAS. Simple mistakes, such as a sign error or a switched order of
arguments, can lead to errors that are very difficult to detect. Additionally, even performing
translations to appropriate counterparts in the CAS can quickly yield to undesired behaviour
(as we haven seen for translations of arccot(−1)). By providing information about the internal
translation decisions, LACAST translations are more trustworthy and comprehensible. LACAST
notifies a user about potential issues in regard of branch cut positions or questionable translation
decisions, mitigating the chance of wrong, untracable errors. For instance, LACAST is aware
of the issue that the q-multi-pochhammer symbol is not natively supported by Mathematica
but performs an alternative translation instead. Further, LACAST sensitizes users for potential
ambiguity issues, such as the use of abbreviations5 or the ambiguity6 of e.

�
Translation of Bailey’s Transformation of Very-Well-Poised 8φ7 (see equa-

tion (6.3) and [98, (17.9.16)])

QHypergeometricPFQ [{a, q*(a)^(Divide [1,2]),-q*(a)^(Divide [1,2]) ,b,c,d,e,f },{(
a)^(Divide [1,2]), -(a)^(Divide [1,2]),a*q/ b,a *q/ c,a *q/ d,a *q/ e,a *q/f} ,q,
Divide [(a)^ (2) *(q)^ (2) ,b*c*d*e*f]]

== Divide [Product [QPochhammer [Part [{a* q,a *q/(d*e),a*q/(d*f),a*q/(e*f)},i] ,q,
Infinity],{ i,1, Length [{a* q,a *q/(d*e) ,a*q/(d*f),a*q/(e*f)}]}], Product [

QPochhammer [Part [{a*q/ d,a *q/ e,a *q/ f,a *q/(d*e*f)},i] ,q, Infinity],{ i,1,
Length [{a*q/ d,a *q/ e,a *q/ f,a *q/(d*e*f)}]}]]* QHypergeometricPFQ [{a*q/(b*c
) ,d,e,f },{a*q/ b,a *q/ c,d *e*f/a} ,q,q]

+ Divide [Product [QPochhammer [Part [{a* q,a *q/(b*c) ,d,e,f, (a)^ (2) *(q)^ (2) /(b*d*
e*f),(a)^ (2) *(q)^ (2) /(c*d*e*f)},i] ,q, Infinity],{ i,1, Length [{a* q,a *q/(b
*c) ,d,e,f, (a)^ (2) *(q)^ (2) /(b*d*e*f),(a)^ (2) *(q)^ (2) /(c*d*e*f)}]}],
Product [QPochhammer [Part [{a*q/ b,a *q/ c,a *q/ d,a *q/ e,a *q/f,(a)^ (2) *(q)^ (2) /
(b*c*d*e*f),d*e*f/(a*q)},i] ,q, Infinity],{ i,1, Length [{a*q/ b,a *q/ c,a *q/
d,a *q/e, a*q/f,(a)^ (2) *(q)^ (2) /(b*c*d*e*f),d*e*f/(a*q)}]}]]

* QHypergeometricPFQ [{a*q/(d*e) ,a*q/(d*f), a*q/(e*f),(a)^ (2) *(q)^ (2) /(b*c*d*
e*f)},{(a)^ (2) *(q)^ (2) /(b*d*e*f),(a)^ (2) *(q)^ (2) /(c*d*e*f), a*(q)^ (2) /(d
*e*f)} ,q,q]

Linebreaks are manually added to improve readability.

5An abbreviation may refer to a single variable. For instance, def may refers to a variable definition earlier in
the article. However, an interpretation of three individual variables (i.e., d, e, and f) is often more reasonable.

6The letter e is commonly used for the Euler’s number but can also simply refer to a Latin letter variable.

148 Chapter 6

Conclusion and Future Work

https://dlmf.nist.gov/17.9.16

Section 6.1. Summary

	 Free Variables

a, b, c, d, e, f, q

	 Abbreviation Warning

Found a potential abbreviation: def.
This program cannot translate abbrevi-
ations. Hence the expression was inter-
preted as a sequence of multiplications,
e.g., etc -> e*t*c.

	 Math Constant e

You used a typical letter for a constant
(the mathematical constant e, known
as Napier’s constant with a value of
2.71828182845 . . .). We keep it like it
is! But you should know that Mathe-
matica uses E for this constant. If you
want to translate it as the constant, use
the corresponding DLMF macro \expe.

	 Translation Information for rφs

Name: Basic hypergeometric (or q-hypergeometric) function
Example: \qgenhyperphi{r }{ s }@@@{a_1,...,a_r }{ b_1 ,..., b_s }{ q }{ z }

Translation Pattern: QHypergeometricPFQ[{$2},{$3},$4,$5]

Relevant Links

DLMF: http://dlmf.nist.gov/17.4#E1
Mathematica: https://reference.wolfram.com/language/ref/QHypergeometricPFQ.html

	 Translation Information for (x; q)n

Name: q-Multi-Pochhammer symbol
Example: \qmultiPochhammersym{a_1,\ldots,a_n}{q }{ n}

Translation pattern unavailable. Use alternative translation pattern instead.
Alternative Translation Pattern:

Product[QPochhammer[Part[{$0},i],$1,$2],{i,1,Length[{$0}]}]

Relevant Links

DLMF: http://dlmf.nist.gov/17.2.E5
Mathematica: unavailable

Figure 6.3: Translation information about the translation of Bailey’s transformation of very-
well-poised 8φ7 to Mathematica of equation (6.3) with LACAST (see also the DLMF [98, (17.9.16)]).
Since the q-Multi-Pochhammer symbol is not natively supported in Mathematica, LACAST uses
the alternative translation pattern based on the definition of the function [98, (17.2.5)]. The
information about abbreviations and name of constants are fetched from the POM tagger’s
lexicon files [402] that LACAST relies on.

Chapter 6

Conclusion and Future Work
149

http://dlmf.nist.gov/17.4#E1
https://reference.wolfram.com/language/ref/QHypergeometricPFQ.html
http://dlmf.nist.gov/17.2.E5
https://dlmf.nist.gov/17.9.16
https://dlmf.nist.gov/17.2.5

Section 6.2. Contributions and Impact of the Thesis

6.2 Contributions and Impact of the Thesis

This thesis made three main contributions:

1. It presented a novel semantification process that replaces MOI with semantic enhanced
LATEXmacros based on information extracted from a near-by textual context and a common
knowledge database;

2. It demonstrated the first context-sensitive LATEX to CAS translator LACAST, which performs
manually crafted rule-based translations to multiple CAS syntaxes from semantic LATEX
expressions generated by the previously developed semantification process; and

3. It showcased the efficiency and usability of LACAST with a novel evaluation approach that
symbolically and numerically verifies equations from a source database, e.g., the DLMF
or Wikipedia, with the power of CAS.

These contributions resulted in 14 peer-reviewed publications [1, 2, 3, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18] with 2 doctoral program participations [4, 5], and 2 invited talks [6, 7]. The
publications were 63 times cited7 overall. In addition, 3,782 commits8 to a variety of different
open source projects were performed during the time of the thesis. In the following, we briefly
summarize the contributions of this thesis for each of the five research tasks that were defined
in the introduction, Section 1.3.

� Research Tasks I

Analyze the strengths and weaknesses of existing semantification approaches for trans-
lating mathematical expressions to computable formats.

Contributing Publications: [1, 9, 12, 18]

To analyze the strengths and weaknesses of existing translation tools, we performed a new
evaluation on nine state-of-the-art LATEX to MathML converters, including Mathematica as
CAS. We developed a new benchmark for MathML, called MathMLben, to evaluate translations
against a manually crafted golden dataset. All converters solely rely on the semantic information
that can be retrieved from the structure of an expression, e.g., by pattern matching approaches.
In addition, only three converters supported content MathML with an unsatisfactory accuracy.

The main identified weakness of all analyzed tools was the lack of taking local contextual
information into account for the translation process. Through our evaluation, we were able
to significantly improve LATExml translations by manually annotating LATEX expressions with
semantic information via semantic LATEX macros. This performance improvement underlines
the need for a semantification process that automatically performs semantic annotations based
on information from a given context. The poor accuracy of all evaluated conversion tools
showed, that translations from LATEX over MathML to CAS have no advantages compared to
other translation paths, e.g., over semantic LATEX. Since, semantic LATEX translations to Maple
were successfully implemented with the first version of LACAST, and the accuracy of LATExml
significantly improved by semantic annotations with semantic macros, we choosed semantic
LATEX as an intermediate format to translate expressions from LATEX to CAS syntaxes.

7According to Google Scholar evaluated on 2021-09-16.
8According to github.com evaluated on 2021-19-08.

150 Chapter 6

Conclusion and Future Work

https://scholar.google.com/citations?user=Mq2B9ogAAAAJ
https://github.com/AndreG-P/

Section 6.2. Contributions and Impact of the Thesis

� Research Tasks II

Develop a semantification process that will improve on the weaknesses of current ap-
proaches. Contributing Publications: [10, 14, 15]

We accomplished this research task by developing a novel semantification process that relies
on the textual information in the nearby context of a formula combined with a set of standard
knowledge information. As a first attempt at creating a new common knowledge dataset, we
studied math embeddings (i.e., word embeddings for mathematical expressions) to retrieve
common co-occurrences between math objects and textural descriptions. This attempt was
unsuccessful due to the flexible and nested nature of mathematical notations. Instead, we relied
on the DLMF and the lexicon files of the POM tagger for our common knowledge database.

To analyze the nearby textual context, we retrieve noun phrases as descriptions for mathe-
matical objects. Since the concept of mathematical objects was barely studied in the past, we
introduced a new concept of so-called Mathematical Objects of Interest (MOI). The idea behind
MOI is that every mathematical subexpression is potentially meaningful. Previous research
efforts in theMathIR area only focused either on single identifiers or entire mathematical expres-
sions, ignoring the interconnectivity between subexpressions in math formulae. The new MOI
concept has proven successful on a variety of different tasks in MathIR. Consequentially, we
developed a novel semantification process based on MOI. The semantification process generates
a mathematical dependency graph of MOI and annotates each MOI with textual descriptions
from their textual context. The dependencies provide access to relevant descriptions of an MOI
and its subexpression (which are also MOI). With these descriptions, we retrieve semantic
LATEX macros from the DLMF that replace the original LATEX subexpression. This semantification
gradually transforms the original LATEX expression into the semantically enhance semantic LATEX
encoding.

� Research Tasks III

Implement a system for the automated semantification of mathematical expressions in
scientific documents. Contributing Publications: [11, 16, 17]

We achieved this research task by relying on the results of several previous research projects. The
nearby textual analysis was performed with a modified version of the mathosphere system [279,
329, 330] which was initially designed to retrieve identifier-definiens pairs from a mathematical
text. We updated the system to retrieve facts, i.e., pairs of MOI and textual descriptions, from
a given text. We further generated the dependency graph of MOI in a document with the
approaches outlined by Kristianto et al. [214]. Finally, we extended the POM tagger [402] to
create tree patterns of semantic LATEX macros from the DLMF.

This new semantification pipeline is performed in four steps. First, we analyze a given text,
e.g., a Wikipedia page, to identify all MOI and noun phrases. Second, we build a mathematical
dependency graph by defining directed edges between MOI if an MOI is a subexpression of
another MOI. Further, each MOI is annotated with noun phrases taken from the same sentence
the MOI appears in (including subexpression appearances). Third, we use the noun phrases of
an MOI and the noun phrases of dependant MOI to determine replacement patterns to semantic

Chapter 6

Conclusion and Future Work
151

Section 6.2. Contributions and Impact of the Thesis

DLMF LATEX macros. This replaces generic LATEX subexpressions by semantic LATEX macros.
Fourth, the resulted semantic LATEX expression will be translated towards the target CAS syntax
by LACAST (see the next research task).

For this research task, we also elaborated the capabilities of machine translation techniques.
We discovered that our sequence-to-sequence model outperforms other machine translation
models and achieves very good scores on undoing conversions of rule-based translators, such
as Mathematica’s LATEX export function and LATExml translations of semantic LATEX. However, we
also show that ourmachine translation are unreliable on other general mathematical expressions
that have not been generated by Mathematica or LATExml. We constitute that our machine
translation model in its current form is, therefore, unsuitable for performing LATEX to CAS
translations.

� Research Tasks IV

Implement an extension of the system to provide translations to computer algebra sys-
tems. Contributing Publications: [3, 11, 13]

We accomplished the research task IV with the previously developed translator LACAST. LACAST
was originally implemented as a rule-based translator for semantic LATEX expressions in the
DLMF and solely supported Maple as a target CAS. In this thesis, we extended LACAST to support
more CAS, especially focusing our efforts on Mathematica and (more recently) on SymPy.
Further, we implemented additional semantification heuristics in order to correctly translate
the mathematical operators for integrals, sums, products, and limits. With a study of the prime
notations (for derivatives) in the DLMF, we further expand the coverage of LACAST translations
specifically for functions in the DLMF.

Lastely, we added the previously developed semantification pipeline to LACAST which finally
turns LACAST into the first context-sensitive LATEX to CAS translator. LACAST is currently able to
parse the context of a given English Wikipedia article. However, the pipeline currently allows
analyzing any English text document that encodes mathematical formulae in LATEX.

� Research Tasks V

Evaluate the effectiveness of the developed semantification and translation system.

Contributing Publications: [2, 8, 11]

We accomplished the research task V with a combination of a qualitative and quantitative
evaluation pipeline. For the qualitative evaluation of LACAST, we manually crafted a benchmark
dataset of 95 equations from English Wikipedia articles about OPSF. LACAST was able to correctly
transform LATEX into semantic LATEX for 48% of the equations and achieved 27% correct trans-
lations to Mathematica overall. In comparison, Mathematica’s LATEX import function correctly
imported 9% of the expressions and a human annotator was able to translate 81% of the equa-
tions to Mathematica. We were able to show that a theoretical concept of definition detection
and a domain-dependent common knowledge database (rather than a fixed common knowledge
database) would increase the number of correct translations via LACAST to Mathematica from 27%
to 49%. Performing translations from the semantic LATEX dataset DLMF underlines that the most

152 Chapter 6

Conclusion and Future Work

Section 6.3. Future Work

pressing issue still remains in a reliable semantification pipeline. LACAST was able to translate
62.9% and 72% of all DLMF equations to Maple and Mathematica, respectively. To evaluate
the semantification, we further analyzed LACAST’s ability to retrieve relevant descriptions from
the context of a given formula and achieved an F1 score of .495 (.508 precision and .483 recall
respecitvely).

Further, we developed a new concept to verify a translated expression based on the assump-
tion that a correct equation in the source database must remain valid after translating to the
target system. The computational ability of CAS allows us to perform verification checks on
translated equations enable us to evaluate large datasets. In particular, we performed two novel
approaches, symbolic and numeric evaluations. The symbolic evaluation tries to simplify the
difference between the left- and right-hand sides of an equation to zero. The numeric evaluation
performs actual numeric calculations on test values and numerically checks the equivalence of
an equation’s left- and right-hand sides. On the DLMF, LACAST was able to symbolically verify
26.3% and 26.2% translations to Maple and Mathematica, respectively. Symbolically unverified
expressions were further evaluated numerically. LACAST achieved a numeric verification rate
of 26.7% for Maple and 22.6% for Mathematica. In combination, both evaluation techniques
verified 43.3% translations for Maple and 42.9% translations for Mathematica. Performing
the same techniques on the Wikipedia articles resulted in an overall evaluation of 18.1% and
23.6% for Maple and Mathematica respectively.

The novel verification approach has proven to be very successful and even identified issues in
the source database, i.e., Wikipedia articles and the DLMF, and bugs in the commercial target
CAS, Maple and Mathematica. With the automatic evaluations from LACAST, we identified bugs
regarding integrals and the variable extraction function in Mathematica, discovered numerous
minor issues in the DLMF including a sign error and incorrect semantic annotations, and
detected a malicious edit in the Wikipedia edit history in the domain of OPSF. The errors in the
Mathematica and the DLMF has been reported and mostly fixed9. An overview of the reports
are available in Appendix D available in the electronic supplementary material.

6.3 Future Work

The research advances in MathIR and the development of LACAST in this thesis motivates several
follow-up projects. Current plans include to incorporate LACAST into the DLMF for providing
translations, automatic evaluation results, and peculiarities compared to multiple CAS for
each equation. Additionally, plans are made for including LACAST as a translation-as-a-service
endpoint. The developed semantification process is also planned to find its way into MediaWiki
to semantically enhance mathematical content in Wikipedia pages. LACAST has not been open
source due to its dependency to the POM tagger [402] and the semantic LATEX macros [260],
when the research on this thesis took place. Since February 2022, the source code is publicly
available at https://github.com/gipplab/LaCASt.

In this section, we provide a brief overview of four specific projects for our future work. Sec-
tion 6.3.1 discusses ideas to improve the shortcomings of LACAST and related open research
questions that motivate follow-up projects. Section 6.3.2 discusses how we plan to improve
existing LATEX to MathML converters with our semantification pipeline. Section 6.3.3 explains
the Wikipedia extension for semantic enhanced mathematical expressions. This section was

9As of 2021-10-01.

Chapter 6

Conclusion and Future Work
153

https://github.com/gipplab/LaCASt

Section 6.3. Future Work

published as a poster together with M. Schubotz [17]. In Section 6.3.4, we discuss a potential
multilingual support of LACAST. The multilingual research project will be part of a DAAD-funded
post-doctoral scholarship.

6.3.1 Improved Translation Pipeline

The performance of the presented context-sensitive translator LACAST leaves some room for
improvements and even motivates entire new research projects. The most pressing shortcoming
of LACAST is the lack of generalizability beyond OPSF. The main reason for this shortcoming is
the open research task of identifying equations as definitions. Recent advances of definition
detections in natural languages [111, 134, 183, 370] may pave the way to a reliable classification
of mathematical equations in the near future. An equation tagged as definition enables correct
translations of dependant formulae in the same document. This enables LACAST to translate
general functions, such as f(x), which are not directly defined in the CAS. Further, a definition
detection of equations may help to build a comprehensive definition library across entire
scientific corpora with numerous use cases for the mathematical community.

Another issue that remains woefully neglected by our translation tool is the positioning of
branch cuts for multi-valued functions. The main reason for that shortcoming is that there is
no database or standard available to store and describe branch cuts uniformly across multiple
systems and libraries. While branch cuts are openly discussed and presented, their description is
often embedded in natural language text descriptions, which harms the machine readability and
consequentially the accessibility of the information. In order to consider branch cut positions
for a more reliable translation, we need to develop a standard to describe positions uniformly in
a machine-readable format. Subsequently, a manual analysis across multiple CAS and libraries,
including the DLMF, is required to build a comprehensive database that stores this information.
Translation tools may finally use the database to either provide additional information during
a translation process or automatically perform alternative translations based on the stored
positioning of branch cuts. The latter, while considerately more difficult, is beneficial to improve
the verification of equations in the DLMF further.

Lastly, the powerful numeric evaluation approach used to verify a translated expression heavily
relies on the chosen numeric test values. LACAST currently uses the same ten numeric test values
for all tested equations and filters invalid combinations regarding the constraints. While easy
to maintain for many test cases, this approach ignores function-specific attributes such as
domains, branch cuts, singularities, and other essential characteristics. Testing functions on
specific values of interest enable several valuable applications. For example, numeric calculations
specifically along the defined branch cuts of the involved functions could help to automatically
detect definition disparity on branch cuts between the systems, e.g., evaluating arccot(−1). In
addition, testing values of interest potentially increases the trustworthiness of a numerically
verified equation significantly. However, no study about values of interest for functions has
been undertaken to the best of our knowledge. It might even be questioned if such values exist
for all functions in the DLMF. Further, the value of interest may change depending on the actual
argument of the functions. In this case, LACAST would need to automatically adjust the tested
values accordingly, which increases the complexity of the task even further.

154 Chapter 6

Conclusion and Future Work

Section 6.3. Future Work

SwitchSwitch

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

Documents

Gold Standard
MML

MML ComparisonMML Comparison

VS

Mathematical
Language Processor

Semantic
LaTeX

Semantic
Enhancement

XML

Mathematical
Objects of Interest

Identifiers & DefiniensIdentifiers & Definiens

π
Ω
ζ

π
Ω
ζ

MOI & DefiniensMOI & Definiens

ζ(z)

Converter

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

POM-Tagger Dictionaries

~~~~~~~~~~
~~~~~~~
~~~~~~~~

~~~~~~~~~~
~~~~~~~
~~~~~~~~

DLMF/DRMF
Macros

LaCASt

®vecteezy.com

Zeta Function
Constant
Electrical Resist.

Constant
Zeta Function
Electrical Resist.

LaTeX2CAS EvaluatorLaTeX2CAS Evaluator

Symbolic
Evaluation

Round-Trip
Tests

Numeric
Evaluation

DLMF Sources

ζ(z)

∑
n=1

∞ 1
nz

ζ ζ ζζζζζζζζ CAS

t

onananananananarririririer
2

ti

4

DLMLMLMLMMMFFF/

3

6

7

MathMLben

Baseline

5

1a

ss

1b

1c

Figure 6.4: Proposed pipeline to improve existing LATEX to MathML converters.

6.3.2 Improve LaTeX to MathML Converters

As we have described in Section 3.3 in Chapter 3, our outlined translation pipeline can also
be used to improve existing LATEX to MathML translators. Figure 6.4 highlights this additional
remaining pipeline. In this thesis, we primarily focused on the main pipeline along 1 , 2 , 3 ,

and 7 . However, the information we gathered in the steps 1 and 2 can also be forwarded
to a MathML converter. In Chapter 2, we developed MathMLben, the MathML benchmark, with
the help of LATExml, a LATEX to XML converter. We manually added semantic annotations to the
source expression in order to improve the conversion by LATExml. For example, the first entry
contains the expression about Van der Waerden numbers W (2, k). Here, we manually added
the link to the corresponding Wikidata ID Q7913892 for W , which (together with additional
scripts) enabled LATExml to generate a proper, annotated content MathML representation of the
expression.

We can now use our semantification steps to automate the annotation process. In combination
with existing Wikidata entity linking approaches [320, 321, 327], we can also annotate the
original expressions withWikidata IDs as we did manually forMathMLben. While this semantic
enrichment process through Wikidata IDs was developed specifically for LATExml, other LATEX to
MathML converters can also profit from such annotations. SnuggleTeX, for example, is a LATEX
to XML converter that allows users to pre-define the semantics of symbols in order to improve
the so-called upconversion10 process. One option in particular is the assumeSymbol command.

10SnuggleTeX uses this term for referring to a conversion process that requires semantic enrichment steps, e.g.,
from LATEX to content MathML or Maxima syntax.

Chapter 6

Conclusion and Future Work
155

https://mathmlben.wmflabs.org/Q7913892

Section 6.3. Future Work

Besides annotating single symbols, e.g., via

\assumeSymbol{e}{exponentialNumber} e, (6.4)

we can also define generic functions, such as

\assumeSymmbol{f_{n_k}}{function} $f_{n_k}(x)$. (6.5)

These pre-defined assumptions enable SnuggleTeX to perform a correct conversion to content
MathML or the CAS Maxima.

6.3.3 Enhanced Formulae in Wikipedia

Recently11, we deployed a feature that enables enhancing mathematical formulae in Wikipedia
with semantics from Wikidata [308]. For instance, the wikitext code

� Annotated Wikitext Formula

1 $E=mc^2$

now connects the formula E = mc2 to the correspondingWikidata item by creating a hyperlink
from the formula to the special page shown in Figure 6.512. The special page displays the
formulae together with its name, description, and type, which the page fetches from Wikidata.
This information is available for most formulae in all languages. Moreover, the page displays
elements of the formula modeled as has part annotations of the Wikidata item.

The has part annotation is not limited to individual identifiers but also applicable to complex
terms, such as 1

2m0v2, i.e., the kinetic energy approximation for slow velocities13. For example,
we demonstrated using the annotation for the Grothendieck–Riemann–Roch theorem14

ch(f!F•)td(Y) = f∗(ch(F•)td(X)). (6.6)

The smooth quasi-projective schemesX andY in the theorem lackWikipedia articles. However,
dedicated articles on quasi-projective variety and smooth scheme exist. We proposed modeling
this situation by creating the newWikidata item smooth quasi-projective scheme15, which links to
the existing articles as subclasses. To create a clickable link from theWikidata item toWikipedia,
we could create a new Wikipedia article on smooth quasi-projective scheme. Alternatively, we
could add a new section on smooth quasi-projective scheme to the article on quasi-projective

variety and create a redirect from the Wikidata item to the new section.

Aside from implementing the new feature, defining a decision-making process for the integra-
tion of math rendering features into Wikipedia was equally important. For this purpose, we

11A. Greiner-Petter: Link Wikipedia Articles from Specialpage Math Formula Information, GitHub Commit to
mediawiki-extensions-math on 27th November 2020: https :/ / github .co m /wiki media / mediawiki -
extensions-Math/commit/912866b976fbdcd94fda3062244d23a34c5e7a76

12https://en.wikipedia.org/wiki/Special:MathWikibase?qid=Q35875 [accessed 2021-08-18]
13https://en.wikipedia.org/w/index.php?oldid=939835125#Mass\T1\textendashvelocity_

relationship [accessed 2021-08-18]
14https://en.wikipedia.org/w/index.php?title=Special:MathWikibase&qid=Q1899432 [accessed

2021-08-18]
15https://www.wikidata.org/wiki/Q85397895 [accessed 2021-08-18]

156 Chapter 6

Conclusion and Future Work

https://www.wikidata.org/wiki/Q35875
https://github.com/wikimedia/mediawiki-extensions-Math/commit/912866b976fbdcd94fda3062244d23a34c5e7a76
https://github.com/wikimedia/mediawiki-extensions-Math/commit/912866b976fbdcd94fda3062244d23a34c5e7a76
https://en.wikipedia.org/wiki/Special:MathWikibase?qid=Q35875
https://en.wikipedia.org/w/index.php?oldid=939835125#Mass\T1\textendash velocity_relationship
https://en.wikipedia.org/w/index.php?oldid=939835125#Mass\T1\textendash velocity_relationship
https://en.wikipedia.org/w/index.php?title=Special:MathWikibase&qid=Q1899432
https://www.wikidata.org/wiki/Q85397895

Section 6.3. Future Work

founded the Wikimedia Community Group Math16 as an international steering committee with
authority to decide on future features of the math rendering component of Wikipedia.

mass-energy equivalence
physical law

Math Formula Information
Formula:

Name: mass-energy equivalence

Type: physical law

Description: mass and energy are proportionate
measures of the same underlying property of an object

Elements of the Formula
energy quantitative physical property transferred

to objects to perform heating or work on
them

mass measure of the resistance of a physical
body and its susceptibility to gravitational
attraction

speed
of light

speed at which all massless particles and
associated fields travel in a vacuum

Figure 6.5: Semantic enhancement of the
formula E = mc2.

The new feature helps Wikipedia users to better
understand the meaning of mathematical formu-
lae by providing details on the elements of for-
mulae. Because the new feature is available in all
language editions of Wikipedia, all users benefit
from the improvement. Rolling out the feature for
all languages was important to us because using
Wikipedia for more in-depth investigations is sig-
nificantly more prevalent in languages other than
English [226]. Nevertheless, also in the English
Wikipedia, fewer than one percent of the arti-
cles have a quality rating of good or higher [299].
Providing better tool support to editors can help
in raising the quality of articles. In that regard,
our semantic enhancements of mathematical for-
mulae will flank other semi-automated methods,
such as recommending sections [299] and related
articles [337].

To stimulate the wide-spread adoption of seman-
tic annotations formathematical formulae, we are
currently working on tools that support editors in

creating the annotations and, therefore, successively determing the ground truth of mathematics
in Wikipedia. With AnnoMathTex [319], we are developing a tool that facilitates annotating
mathematical formulae by providing a graphical user interface that includes machine learning
assisted suggestions [14] for annotations. Moreover, we will integrate a field into the visual
wikitext editor that will suggest Wikipedia authors to link the Wikidata id of a formula if the
formula is in the Wikidata database. Improved tool support will particularly enable smaller lan-
guage editions of Wikipedia to benefit from the new feature because the annotations performed
in any language will be available in all languages automatically.

Additionally, our recent advances with LACAST on the Wikipedia dataset allows us to automat-
ically verify equations in Wikipedia to some degree. We currently working on a system that
automatically triggers the verification engine on edits in mathematical content. This would
allow us to generate a live feed of verified and not verified mathematical edits in the entire
Wikipedia. While this presumably generates a lot of interesting data for numerous of projects,
it will also serve as a proof-of-concept to integrate the system into existing quality control
mechanisms. On the long run, we hope to integrate the verification technique into the exist-
ing Objective Revision Evaluation Service (ORES) [144], such as other recently ermeged ORES
extensions [359, 401].

16https://meta.wikimedia.org/wiki/Wikimedia_Community_User_Group_Math [accessed 2021-08-18]

Chapter 6

Conclusion and Future Work
157

https://meta.wikimedia.org/wiki/Wikimedia_Community_User_Group_Math

Section 6.3. Future Work

6.3.4 Language Independence

The multilingual aspect of our translator becomes more and more important with the focus on
Wikipedia. Since Wikipedia is a multilingual encyclopedia, providing a language-independent
semantification process is a desired task. In general, the concept of our developed semantifi-
cation approach is language independent. The pipeline relies on a POS tagger to tag tokens
and generate parse trees of the sentences. The score of an MOI-description pair is calculated
based on the distance between both tokens in the parse tree. Consequentially, we can presume
that our semantification pipeline works for other languages too, as long as there is a reliable
POS tagger for that language available. However, we already noticed minor issues with the
well-developed CoreNLP’s POS tagger for the English language when using the MLP approach.
As a reminder, the MLP approach suggested masking mathematical elements by placeholders
before using a POS tagger on the sentence. For example, in the following sentence

� Example sentence including math

1 The Jacobi polynomial P
(α,β)
n (x) is an orthogonal polynomial .

the mathematical expressions is replaced by a placeholder MATH_1.

� Example sentence with masked math

1 The Jacobi polynomial MATH_1 is an orthogonal polynomial .

While this approach works well in many cases, in this particular example, CoreNLP’s POS
tagger17 tags both polynomial tokens as adjactives (JJ) while both should be tagged as nouns
(NN).

The underlying issue is that the MLP approach presumes math expressions to represent noun
tokens. However, the mathematical language is generally more complex compared to that
simple scheme [138]. This language can become quite different from general natural language
communication. The mathematical language introduces a technical terminology with entirely
new terms, such as ‘functor’, changes the meaning of existing vocabulary, such as ‘group’
or ‘ring’, and even define entire phrases to represent math concepts, such as ‘without loss of
generality’ or ‘almost surely’. All these specifics need to be adopted by a POS tagger. Math
notation is often part of a natural language sentence but does not necessarily represent a
logical token. In addition, we presume that mathematical expressions are generally language-
independent. However, its notation style may change from language to language, even for
simple cases. For example, while the US or Germany uses ≥ to express a greater or equal
relation, the notation � is more common in Japan. Considering the sheer amount of different
math notations, it might not be obvious to a student from Japan that ≥ and � refer to the same
relation. Yet, these symbols are so basic that most authors, even in educational literature, would
probably not explicitly declare their meaning in the context. This issue grows with a more and
more educated audience. For example, math educational books written for math students in
universities rarely mention the specific meanings of logic symbols (e.g. ∧, ∨), quantifiers (e.g.
∀, ∃), or set notations (e.g. ∩ and ∪).

17Tested with CoreNLP’s version 4.2.2.

158 Chapter 6

Conclusion and Future Work

Section 6.3. Future Work

Unfortunately, the multilingual aspects of mathematics have barely been studied in the past.
D. Halbach [143] recently tried to take advantage of the multilingual versions of Wikipedia
articles to identify defining formulae of that article. A defining formula of an article is the

mathematical expression that is the main subject of that article. For example, P
(α,β)
n (x) can be

considered as the defining formula of the article about Jacobi polynomials. D. Halbach assumed
that a mathematical expression that appears in multiple language versions of the same article
is a good candidate for such a defining formula. Unfortunately, it turned out that different
languages tend to use different visualizations of the same formula. For example, he showed that
Schwarz’s theorem in the Polish, English, German and French Wikipedia articles use different
mathematical formulae for the same concept. This result indicates that the semantification
approach we developed in this thesis may not be easily generalized for other languages. In
addition, there is no POS tagger available that is specialized in mathematical content.

In combination with researchers from the National Institute of Standards and Technology (NIST)
in the US, the National Institute of Informatics (NII) in Japan, and the University of Wuppertal
in Germany, we plan to study the multilingual aspects of mathematical languages to analyze
language-specific notation and declaration differences. This project is part of a post-doctoral
DAAD scholarship and includes training a math-specific NLP model for better POS tagging of
mathematical content articles.

Chapter 6

Conclusion and Future Work
159

This Chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/).

BACK MATTER

Glossary

Symbols

X = {f |f ∈ D ∪ K ∧ (f ∈ K ⇒ f /∈ D)}
Our definition of a mathematical context X defined in (4.2) on page 104. A context is a
set of facts f in a document D and a set of common knowledge facts K so that document
facts overwrite common knowledge facts. 106, 107, 138

LC — Mathematical Content Languages

Denotes mathematical content languages (CL), such as semantic LATEX, content MathML,
or CAS syntaxes. 106, 107, 112, 134, 137, 138

LM — Computer Algebra System Languages

Refers to CAS languages in general, such as the syntax of Mathematica, Maple, or SymPy
inputs.. 107, 109, 110

LP — Mathematical Presentation Languages

Denotes mathematical presentational languages (PL), such as presentation MathML or
LATEX. 106, 107, 109–112, 134, 138

mBM25(t, d) = max
d∈D

(k + 1) IDF(t) ITF(t, d) TF(t, d)
max

t′∈d|c(t)
TF(t′, d) + k

(
1 − b + b AVGDL

|d| AVGC

)
Our mathematical BM25 ranking to measure the importance of a given MOI t in a doc-
ument d ∈ D which is part of a corpora D. IDF(t) is the inverse-document frequency,
ITF(t, d) the inverse-term frequency of t in d, TF(t, d) the term frequency of t in d,
AVGDL the average document length (number of terms) in D, AVGC the average com-
plexity of terms in D, c(t) the complexity of t, and b, k are parameters. 85

sDLMF(rf):
The probability score for a replacement rule rf = m → m̃. This score is the probability
that m̃ is rendered as m in the DLMF. For example, the general hypergeometric function
never omits arguments, such as in 2F1(z) in the DLMF. Hence, the probability of 2F1(z)
is 0. In contrast, in 19.7%, the function uses the linear rendered form 2F1(a, b; c; z). 114,
137

sES(f) = sES(MLP, MC)
The normalized Elasticsearch score for a retrieved semantic macro m̃ for the given MC ∈
f . This score is higher if MC better matches the description of the semantic macro m̃.
Since ES provide absolute scores, this score is normalized to the best fitting hit, i.e., the
first retrieved result is always scored 1. 113, 114

sMLP(f) = sMLP(MLP, MC)
The score of the MLP engine [330] for a given fact f which depends on (1) the distance
between the MOI and its first occurrence in the document D, (2) the distance in the

161
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4

natural language syntax tree between the MOI and the MC, and (3) if the MOI and MC
matches pre-defined patterns. 112–114, 137

t(e, X) = tm(ts(e, X))
Our translator function follows a two step strategy of which the first step is a semantifi-
cation ts(e, X) followed by a rule-based transformation tm(e). 106, 107, 134, 138

tm(e) = gr1 ◦ · · · ◦ grn
(e)

A rule-based translation function that performs translations on a set of rules rk ∈
RC1

C2
, k = 1, . . . , n from a content language C1 to another content language C2. Similar

to the semantification function, it performs graph transformations gr based on the rules.
Example implementations are LACAST or SymPy’s latex2sympy function. 106, 107

ts(e, X) = gf1 ◦ · · · ◦ gfn
(e)

A fact-based semantification translation function takes an expression e and a context X
to perform a series of graph transformations gf defined by the facts f to semantically
enhance subtrees of e. 106–108, 137

A

AI — Artificial Intelligence

A broad research field with the focus on machine (artificial) intelligence. 103, 142

AJIM — Aslib Journal of Information Management

An international journal with an 5-year IF of 2.653 in library and information science
with focus on information and data management. According to https://academic-
accelerator.com/5-Year-Impact-Factor/Aslib-Journal-of-Information-
Management [accessed 2021-10-01] it is placed 33 of 227 journals in the field of library
and information sciences. 9, 15, 163

arXiv:

Is a pre-print archive for scientific papers in a variaty of different fields, such as math-
ematics, physics, or computer science. See arxiv.org [accessed 2021-10-01] for more
information. 40, 62–66, 68, 70, 71, 73–75, 78–84, 86, 91, 92, 99, 101, 103, 144, 192

arXMLiv:

An HTML5 (including MathML) dataset based on the arXiv articles. The HTML5 was
generated via LATExml and is available at https : / / sig m athling . kwarc . in f o /
resources/arxmliv-dataset-2020/ [accessed 2021-10-01] [132]. 65, 74

Axiom:

Is a free, general-purpose CAS first developed by IBM around 1965 (named Scratchpad at
that time). Since 2001, Axiom is open source under a moified BSD license and available
on GitHub at https://github.com/daly/axiom [accessed 2021-10-01] [173]. 5, 34, 35

B

BLEU — Bilingual Evaluation Understudy

Is an algorithm to measure the quality of translated texts first described by Papineni et
al. [282] in 2001. The algorithm presumes the closer (more sharing n-grams) a translation
is to human translations the better it is. 14, 99, 100, 134, 146

162 Glossary

https://academic-accelerator.com/5-Year-Impact-Factor/Aslib-Journal-of-Information-Management
https://academic-accelerator.com/5-Year-Impact-Factor/Aslib-Journal-of-Information-Management
https://academic-accelerator.com/5-Year-Impact-Factor/Aslib-Journal-of-Information-Management
arxiv.org
https://sigmathling.kwarc.info/resources/arxmliv-dataset-2020/
https://sigmathling.kwarc.info/resources/arxmliv-dataset-2020/
https://github.com/daly/axiom

BM25 — Okapi BM25

Is a ranking function to calculate the relevance of results in a search engine [310]. The
underlying idea of BM25 is that words that appear regularly only in a few documents are
more important for that document than words that appear everywhere across the entire
corpora. 12, 73, 83, 85, 113, 145

C

CAS — Computer Algebra System(s)

A mathematical software that allows one to work with mathematical expressions, e.g., by
manipulating, computing, or ploting them. The acronym CAS, in this thesis, is referring
to a single or multiple systems depending on the context. ix, xi, xii, 1–8, 10, 13–15, 19–22,
24–36, 38, 40–43, 47, 52, 55, 58–60, 93, 95, 97, 103–108, 111, 115–120, 123–129, 131–136,
138, 139, 141, 143–150, 152, 154–156, 158, 163–165, 168, 171, 174, 175, 180, 193

CD — Content Dictionary

Content dictionaries are structured documents that contain the definition of mathematical
concepts. See the OpenMath specification for more details [53]. 23–26, 31, 57, 58, 143

CICM — Conference on Intelligent Computer Mathematics

An annual international conference on mathematical computation and information sys-
tems (has a CORE rank of C since 2021). 9, 10, 15, 116

CL — Content Language

Content languages are languages that encode mainly semantic (content) information,
such as content MathML, OpenMath, or CAS syntaxes. 43

CLEF — Conference and Labs of the Evaluation Forum

An annual international conference for systematic evaluation of information access sys-
tems. 9

cMML — Content MathML

Content MathML encodes the meaning of mathematical notations. For more information
see the explanations about MathML. 22, 23

CORE — Computing Research and Education Association of Australasia

Is an association of university departments that provide assessments of major conferences
in the computing disciplines. The main categories are A* (flagship), A (excellent), B good
to very good, and C for other ranked conferences that meet minimum standards, see
http://portal.core.edu.au/conf-ranks/ [accessed 2021-10-01]. 8, 9

CoreNLP:

CoreNLP is a Java library for natural language processing tasks developed by Stanford
NLP Group and includes tokenizer, POS taggers, lemmatizers and more [240]. 109, 110,
160, 185, 186

D

DBOW-PV — Distributed Bag-of-Words of Paragraph Vectors

An approach to embed entire paragraphs into single vectors introduced by Le and
Mikolov [222]. 67–69

Glossary 163

http://portal.core.edu.au/conf-ranks/

DL — Deep Learning

Is a broad family of machine learning methods that uses neural networks for learning
features. 61

DLMF — Digital Library of Mathematical Functions

A digital version [98] of NIST’s Handbook of Mathematical Functions [276]. The DLMF (or
the book respectively) is a standard reference for OPSF and provides access to numerous
of definitions, identities, plots, and more. ix, x, xii, 1, 4, 5, 8, 12, 14, 15, 17, 25, 28, 30–33, 35,
40, 46, 47, 49–51, 56, 58, 62, 63, 65, 66, 93–95, 97, 98, 100, 101, 103–109, 112–119, 121–126,
129–137, 139–142, 144–156, 163–165, 168, 174–183, 190–192

DML — Digital Mathematical Library

A general digital library that specifically focuses on mathematics. 63, 115–118, 123, 128,
132, 133, 148, 164

DRMF — Digital Library of Mathematical Formulae

An outgrowth of the DLMF project [77, 78]. 30, 32

E

EMNLP — Empirical Methods in Natural Language Processing

An annual international conference on natural language processing (has a CORE rank of
A). 9

ES — Elasticsearch

A search engine written in Java that uses the open-source search engine library Apache
Lucene, see https : / / www . elastic . co/ and https : / / lucene . apache . org/
[accessed 2021-07-02]. 86, 88, 113, 193

G

GUI — Graphical User Interface

A visual interface that allows for interacting with data or software. 48, 49

H

HTML — HyperText Markup Language

The standard markup language for web documents. 23, 74

I

ICMS — International Congress on Mathematical Software

A bi-annual congress that gathers the mathematicians, scientists and programmers who
are interested in the development of mathematical sofware. 9, 13, 60

J

JCDL — Joint Conference on Digital Libraries

An annual major conference in the field of digital libraries (had a CORE rank of A* until
it was unranked in 2021 because the CORE committee removed the entire digital library
domain from their ranking scheme). 9, 10, 14, 19, 163, 166

164 Glossary

https://www.elastic.co/
https://lucene.apache.org/

L

LACAST — LATEX to CAS translator

Is the name of the framework we developed in this thesis to translate mathematical
LATEX to CAS. The first version of LACAST was part of the author’s Master’s thesis and
supported translations only from semantic LATEX to Maple [3, 13]. Within this thesis,
we extended LACAST by supporting general LATEX [11] expressions and additional CAS [8],
such as Mathematica. The source of LACAST is publicly available on https://github.
com/gipplab/LaCASt since February 2022.. ix–xii, 7, 8, 10, 14–17, 28–30, 32, 58, 95, 100,
101, 105–107, 109–111, 114–119, 121, 122, 124–134, 139, 141, 144–152, 154–156, 159, 163,
168, 171, 174, 180, 191

LATEX:

Is an extension of the typesetting system TEX used for document preparation. LATEX
provides additional macros on top of TEX allowing the writer to focus more on the content
of a document rather than on the exact layout. Since this thesis focus on mathematical
expressions in LATEX, there is not much difference between TEX and LATEX. ix, xi, 1–3, 5–8,
10, 13, 19–22, 24, 25, 27–35, 37–42, 45–54, 56–60, 74, 83, 88, 93, 94, 97–100, 102–108, 110,
112, 113, 116, 118, 121, 129, 132, 135, 138–141, 143–146, 152–154, 156, 157, 166, 174–180,
188–193

LATExml:

Is a tool developed by B. Miller to convert LATEX documents to a variaty of other formats,
such as XML or HTML. The tool can also be used to transform single mathematical LATEX
expressions to math specific formats, such as MathML, or image formats, such as SVG.
More infomation can be found at LaTeXML: A LATEX to XML/HTML/MathML Converter,
https://dlmf.nist.gov/LaTeXML/ [accessed 2021-10-01]. 11, 32, 33, 38, 46–51, 53,
58, 74, 75, 77, 78, 83, 94, 98, 102, 143, 146, 152, 154, 157

M

Maple:

One of the major general-purpose CAS [36] developed by Maplesoft. If not stated other-
wise, we refer to the version 2020.2. ix, xii, 1, 2, 4–8, 10, 15, 20, 21, 26, 28, 31, 32, 34, 35,
38, 43, 52, 58, 103, 104, 107–109, 115–120, 123–125, 127–136, 141, 143–145, 147–149, 152,
154, 155, 164, 165, 168, 169, 180, 189, 193

Mathematica:

One of the major general-purpose CAS [393] developed byWolfram Research. If not stated
otherwise, we refer to version 12.1.1. ix, xii, 1–6, 8, 10, 15, 20, 21, 26, 28–31, 35, 41, 42, 52,
97–105, 107–109, 114, 115, 117, 119, 124, 125, 127–136, 138–141, 143, 145–152, 154, 155,
164, 169–174, 180, 181, 189, 193

MathIR — Mathematical Information Retrieval

Is a sub-field of the Information Retrieval (IR) research area and as such focusing on
obtaining information (mostly semantics) or retrieving relevantmathematical expressions.
Note that MIR is another common acronym for mathematical information retrieval. In
this thesis, we stick with the less overloaded and more precise abbreviation MathIR. ix,
xi, 1, 6, 8, 11, 19, 39, 40, 54, 55, 59–63, 65, 71–73, 83, 105, 144, 148, 153, 155

Glossary 165

https://github.com/gipplab/LaCASt
https://github.com/gipplab/LaCASt
https://dlmf.nist.gov/LaTeXML/

MathML — Mathematical Markup Language

An XML structured standard for representing mathematical notations in web pages and
other digital documents [169]. MathML allows to encode the meaning of mathematical
notations to some degree, which is often referred to content MathML. In contrast, pre-
sentational MathML refers only on the visual encoding of math formulae. In case a math
formula is encoded in presentational and content MathML at the same time, it is often
called parallel markup MathML. 2, 4, 6–8, 10–12, 19–28, 32–35, 37, 39, 41, 43–47, 49–53,
57, 58, 62, 63, 65, 74–78, 92, 94, 105, 106, 117, 133, 143, 144, 148, 149, 152, 156–158, 166

MathMLben — MathML Benchmark

We developed MathMLben as a benchmark dataset for measuring the quality of MathML
markup of mathematical formulae appearing in a textual context. See Section 2.3.2 on
page 43 for further details. 10, 11, 45, 46, 51, 67, 94, 143, 148, 152, 157

MATLAB:

Is one of the major proprietary CAS with a specific focus on numeric computations
developed by MathWorks. MATLAB is also the name of the underlying programming
language the CAS MATLAB uses [164, 246]. 1, 5, 10, 35

Maxima:

Is an open source general-purpose CAS first released in 1982 (originally developed as
a branch of the predecessor CAS Macsyma [264]) and is still actively maintained [324].
2–4, 28, 29, 35, 157, 158

mBM25 — Mathematical Okapi BM25

Our extension of the BM25 score for mathematical expressions. 85, 88–90

MC —Mathematical Concept

Is a term referring to the concept that defines a mathematical expression including its
visual appearance, underlying definition, constraints, domains, and other semantic in-
formation [9]. In the context of this thesis, we simplify this concept and presume that a
name (or noun phrase) sufficiently specifies a concept so that the name (or noun phrase)
is considered a representative MC. 106, 108–113, 137, 185

MEOM —Mathematically Essential Operator Metadata

Describes the metadata, i.e., argument(s) and bound variable(s), in sums, products, inte-
grals, and limit operators. 120–122, 124, 128, 129

MFS — Mathematical Functions Site

A dataset of mathematical functions and relations maintained by Wolfram Research. The
dataset is available at https://functions.wolfram.com/ [accessed 2021-10-01].
98–102

MKM —Mathematical Knowledge Management

Is the general study of harvesting, maintaining, or managing mathematical information
in literature and databases. 61, 62, 65

ML — Machine Learning

Is a computer science research field (often described as a subfield of artifical intelligence)
with the relatively broad goal of making predections for unseen data based on trained
data. 40, 61, 63, 69–71, 97, 103

166 Glossary

https://functions.wolfram.com/

MLP — Mathematical Language Processing

Mathematical language processing describes to the technical process of analyzing math-
ematical texts. A specific MLP task is the mapping of textual descriptions to components
of mathematical formulae (see Schubotz et al. [279]), such as mathematical identifier. 61,
62, 65, 72, 110, 137, 160, 185, 186, 188

MOI — Mathematical Objects of Interest

Is a term referring to subexpressions inmathematical formulaewith a specificmeaning [9].
One can consider these parts as elements of general interest. 12, 13, 60, 73, 76, 86, 91–94,
106, 108–113, 136–138, 140, 144–146, 152–154, 160, 185–188, 191, 192

N

NIST — National Institute of Standards and Technology

An US government research institution. 30, 86, 161

NLP — Natural Language Processing

Is a research field with the focus on analyzing and processing natural languages in texts,
images, videos, or audio formats. In this thesis, we mainly refer to natural language
processing on texts rather than other multimedia formats. 39, 61, 64, 65, 72, 148, 161

NN — Neural Network

A graph network that aims to mathematically mimic biological neural networks. 61

O

OCR — Optical Character Recognition

Is a research field that focuses on identifying text and other symbols in images or videos.
28, 39, 99

OMDoc — Open Mathematical Document

Is a markup format developed by Michael Kohlhase [198] to describe mathematical docu-
ments. 22, 23, 26, 27, 32, 33, 36

OpenMath:

Is a markup language similar to MathML which uses an XML format to encode semantic
information of mathematical expressions. The standard is maintained by the OpenMath
Society. See http://openmath.org/ [accessed 2021-10-01] for more information. 6, 7,
19, 21–27, 34–37, 41, 58, 62, 106, 117, 133

OPSF — Orthogonal Polynomials and Special Functions

The set of orthogonal polynomials and special functions. Special functions are functions
that, due to their general importance in certain fields, have specific names and standard
notations. Note that there is no formal definition of the term special function. The
NIST Handbook of Mathematical Functions [276] is a standard resource that covers a
comprehensive set of functions (and orthogonal polynomials) that are widely accepted
as special. 1, 3, 31–33, 35, 93, 101, 105, 111, 112, 114, 133, 140, 141, 145, 154–156, 185

ORES — Objective Revision Evaluation Service

A system used by Wikipedia to classify edits in potential damaging changes or changes
made in good faith [144]. 103–105, 135, 136, 141, 142, 159

Glossary 167

http://openmath.org/

P

PL — Presentation Language

Presentation languages are languages that encode mainly visual information, such as
LATEX or presentation MathML. 43, 51

pMML — Presentation MathML

Presentational MathML refers only to the visual encoding of math formulae. For more
information see the explanations about MathML. 22, 23, 75–77

POM — Part-of-Math

Is a LATEX parser developed by Abdou Youssef [402] that tags each token in the parse tree
with additional information similar to Part-of-Speech (POS) taggers in natural languages.
28, 32, 38, 52, 56, 93, 94, 110, 111, 151, 153, 155

POS — Part-of-Speech

Part-of-Speech tagging describes the process of tagging words in text with grammatical
properties of the word. 45, 109, 160, 161, 185

R

Reduce:

Probably the first CAS from 1963 by Anthony C. Hearn [151] with a large impact on any
other CAS that followed after. Since 2008, Reduce is open-source under the BSD license.
5, 34, 35, 164

S

Scientometrics:

An international journal with an 5-year IF of 3.702 for quantitative aspects of the science
of science, communication in science and science policy. According to https://academ
ic - accelerator . co m /5 - Year - I m pact - Factor / Sciento m etrics [accessed
2021-10-01] it is placed 18 of 227 journals in the field of library and information sciences.
9, 19, 60

SCSCP — Symbolic Computation Software Composability Protocol

Is a protocol to communicate mathematical formulae between mathematical software,
specifically CAS. It was developed as part of the SCIEnce project funded with 3 Million
Euro by the Euorpean Union. More information can be found in the two publications
about the project [119, 361]. 24, 26, 35, 36, 58

semantic LATEX:

Refers to mathematical expressions that uses semantic macros developed by B. Miller
for the DLMF. Each of these LATEX macros is tied to a specific definition in the DLMF.
Hence, a semantic LATEX macro represents a unique unambiguous mathematical function
as defined in the DLMF. An alternative name for semantic LATEX is content LATEX. ix, xi,
2, 7, 8, 10, 12, 15, 19, 22, 28, 30–33, 35, 38, 58, 93–95, 97–100, 115, 116, 133, 138, 143–146,
149, 152–155, 174

Semantification:

Refers to a process that semantically enhances mathematical expressions. Other authors

168 Glossary

https://academic-accelerator.com/5-Year-Impact-Factor/Scientometrics
https://academic-accelerator.com/5-Year-Impact-Factor/Scientometrics

may also refer to this via semantic enrichment [71, 270, 402]. ix, xi, 7–11, 13, 24, 54, 57–59,
94, 95, 97, 103, 104, 106, 107, 115, 138, 144, 145, 147, 152–157, 160, 161, 193

SIGIR — Special Interest Group on Information Retrieval

A premier annual international conference on research and development in information
retrieval (has a CORE rank of A*). 9, 11, 19

SnuggleTeX:

Is an open source Java program for converting LATEX to XML, mainlyMathML. SnuggleTeX
is one of the rare converters that offer a semantic enrichment process to content MathML
and the only LATEX to CAS converter (supportsMaxima) that is not part of a CAS itself [251].
SnuggleTeX is no longer developed with the most recent version 1.2.2 from 2010. See also
https://www2.ph.ed.ac.uk/snuggletex [accessed 2021-10-01]. 2–4, 28, 29, 157, 158

STEM — Science, Technology, Engineering, and Mathematics

A group of academic disciplines. ix, xi, 2, 20, 27

STEX — Semantic TEX

Semantic extension of TEX developed by Michael Kohlhase [200]. 19, 22, 30, 32, 33

SVG — Scalable Vector Graphics

An XML vector image format. 38, 49, 51, 52

SymPy:

An open-source CAS [252] written in Python. 2, 4, 5, 10, 15, 28–30, 34, 35, 146, 149, 154,
164, 174

T

t-SNE — t-distributed Stochastic Neighbor Embedding

Is a statistical method to visualize high-dimensional data in more convenient and easy
to analyze one-, two-, or three-dimensional plots. t-SNE uses a nonlinear dimensional
reduction method that tries to preserve structural groups of data. The method was first
introduced by Hinton and Roweis [154]. 69, 70

TACAS — Tools and Alg. for the Construction and Analysis of Systems

TACAS is a forum for researchers, developers and users interested in rigorously based
tools and algorithms for the construction and analysis of systems (has a CORE rank of
A). 9, 15, 116, 163, 168, 180

TF-IDF — Term Frequency-Inverse Document Frequency

Is a statistical measure intend to reflect the importance of tokens (e.g., words) to a docu-
ment in a larger corpus. The underlying assumption behind the measure is that frequent
tokens across an entire corpus are less important compared to tokens that appear fre-
quently in single documents but rarely somewhere else. The BM25 ranking function
bases on the principle of TF-IDF scores. 79, 83, 85, 89, 90

TPAMI — Transactions on Pattern Analysis and Machine Intelligence

An IEEE published top monthly journal with an 5-year IF of 25.816 and a focus on
pattern analysis and recognition and related fields. According to https://academic-
accelerator . co m /5 - Year - I m pact - Factor / jp / IEEE - Transactions - on -

Glossary 169

https://www2.ph.ed.ac.uk/snuggletex
https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence
https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence
https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence

Pattern-Analysis-and-Machine-Intelligence [accessed 2021-10-01] it is the top
journal in three categories and 2nd in 2 additional categories. 9, 13, 16, 97, 116, 163

V

VMEXT — Visual Tool for Mathematical Expression Trees

A visualization tool for mathematical expression trees developed by Schubotz et al. [331].
37, 46, 49, 50

W

W3C —World Wide Web Consortium

Is an international organization for standards for the world wide web. See www.w3.org
[accessed 2021-06-09]. 23, 24

WED —Wolfram Engine for Developers

Is a free interface for the Wolfram engine (the engine behind Mathematica). Since 2019,
this interface allows developers to interact and use most of Mathematica’s core features
without purchasing a full license. More information are available at https://www.wolf
ram.com/engine/ [accessed 2021-09-07] first. 117, 127, 131

WSDM —Web Search and Data Mining

A premier conference on web-inspired research involving search and data mining (has a
CORE rank of A*). 9, 97

WWW— The Web Conference

An annual major conference with the focus on the world wide web (has a CORE rank of
A*). 9, 12, 60

X

XML — Extensible Markup Language

A markup language mainly used for the representation of many different data structures.
20, 23–25, 27, 32, 33, 37, 43, 47, 51, 52, 74, 76, 77, 157

XSLT — Extensible Stylesheet Language (SLT) Transformation

A language to transform XML documents. 23, 24, 26

Z

zbMATH — Zentralblatt MATH

Is an international reviewing service for abstracts and articles in mathematics. zbMATH
provide access to the abstracts and reviews of research articles mostly in the field of pure
and applied mathematics, see also https://zbmath.org/ [accessed 2021-10-01]. 13,
73–75, 78–80, 83, 84, 86, 88–90, 92, 144, 148

170 Glossary

https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence
https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence
https://academic-accelerator.com/5-Year-Impact-Factor/jp/IEEE-Transactions-on-Pattern-Analysis-and-Machine-Intelligence
www.w3.org
https://www.wolfram.com/engine/
https://www.wolfram.com/engine/
https://zbmath.org/

BACK MATTER

Bibliography of Publications,

Submissions & Talks

[1] T. Asakura, A. Greiner-Petter, A. Aizawa, and Y. Miyao. “Towards Grounding of Formulae”. In: Proceed-
ings of the First Workshop on Scholarly Document Processing (SDP@EMNLP). Online: ACL, 2020, pp. 138–
147. doi: 10/gjzg2r. url: https://www.aclweb.org/anthology/2020.sdp- 1.16 (visited on
2021-08-02) (cit. on pp. 9, 54, 139, 150).

[2] H. S. Cohl, A. Greiner-Petter, and M. Schubotz. “Automated Symbolic and Numerical Testing of DLMF
Formulae Using Computer Algebra Systems”. In: Proc. Conf. Intelligent Computer Mathematics (CICM).
Vol. 11006. Hagenberg, Austria: Springer International Publishing, 2018, pp. 39–52. doi: 10/ggv8dn. url:
https://arxiv.org/abs/2109.08899 (visited on 2021-09-08) (cit. on pp. 6, 9, 14, 93, 102–106, 114–117,
120, 125, 126, 128, 130–133, 140, 146, 150, 152).

[3] H. S. Cohl, M. Schubotz, A. Youssef, A. Greiner-Petter, J. Gerhard, B. V. Saunders, M. A. McClain, J. Bang,
and K. Chen. “Semantic Preserving Bijective Mappings of Mathematical Formulae Between Document
Preparation Systems and Computer Algebra Systems”. In: Proc. Conf. Intelligent Computer Mathematics

(CICM). Vol. 10383. Edinburgh, UK: Springer, 2017, pp. 115–131. doi: 10.1007/978-3-319-62075-6_9.
url: https://arxiv.org/abs/2109.08655 (visited on 2021-09-08) (cit. on pp. 5, 9, 10, 14, 26, 27, 29,
36, 41, 49, 55, 105, 109, 114, 115, 117, 150, 152, 165).

[4] A. Greiner-Petter. “Automatic Mathematical Information Retrieval to Perform Translations up to Com-
puter Algebra Systems”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 2307. Hagenberg,
Austria: CEUR-WS.org, 2018. url: http://ceur-ws.org/Vol-2307/DP1.pdf (cit. on p. 150).

[5] A. Greiner-Petter. “Automatic Mathematical Information Retrieval to Perform Translations up to Com-
puter Algebra Systems”. In: Bulletin of IEEE Technical Committee on Digital Libraries (TCDL) 15.1 (2019).
url: https://arxiv.org/pdf/2011.14616.pdf (cit. on p. 150).

[6] A. Greiner-Petter. “Comparative Verification of Digital Mathematical Libraries and Computer Algebra
Systems”. Invited talk. SIGMathLing - Seminar. 2021-03-29. url: https://sigmathling.kwarc.info/
seminar/ (cit. on p. 150).

[7] A. Greiner-Petter. “Semantic Preserving Translations between NIST’s Digital Library of Mathematical
Functions and Computer Algebra Systems”. Invited talk. NIST Applied and Computational Mathematics
Division (ACMD) Seminar Series. 2021-07-20. url: https://www.nist.gov/itl/math/acmd-semi
nar-semantic-preserving-translations-between-nists-digital-library-mathematical
(cit. on p. 150).

[8] A. Greiner-Petter, H. S. Cohl, A. Youssef, M. Schubotz, A. Trost, R. Dey, A. Aizawa, and B. Gipp. “Com-
parative Verification of the Digital Library of Mathematical Functions and Computer Algebra Systems”. In:
Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, (TACAS).
Munich, Germany: Springer, 2022-04, pp. 87–105. doi: 10 . 1007/ 978 - 3 - 030 - 99524 - 9 _ 5. url:
https://arxiv.org/abs/2201.09488 (cit. on pp. 2, 6, 9, 15, 29, 34, 114, 146, 150, 152, 165).

[9] A. Greiner-Petter, T. Ruas, M. Schubotz, A. Aizawa, W. I. Grosky, and B. Gipp. “Why Machines Cannot
Learn Mathematics, Yet”. In: Proc. Workshop on Bibliometric-Enhanced Information Retrieval and Natural

Language Processing (BIRNDL@SIGIR). Vol. 2414. Paris, France: CEUR-WS.org, 2019. url: http://ceur-
ws.org/Vol-2414/paper14.pdf (cit. on pp. 9, 11, 18, 26, 35, 38, 59, 71, 150, 166, 167).

[10] A. Greiner-Petter, M. Schubotz, A. Aizawa, and B. Gipp. “Making Presentation Math Computable:
Proposing a Context Sensitive Approach for Translating LaTeX to Computer Algebra Systems”. In: Inter-
national Congress of Mathematical Software (ICMS). Vol. 12097. Braunschweig, Germany: Springer, 2020,
pp. 335–341. doi: 10/gn3sv2. url: https://link.springer.com/content/pdf/10.1007%2F978-
3-030-52200-1_33.pdf (visited on 2021-07-30) (cit. on pp. 9, 13, 59, 115, 117, 124, 130, 150, 151).

171
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4

https://doi.org/10/gjzg2r
https://www.aclweb.org/anthology/2020.sdp-1.16
https://doi.org/10/ggv8dn
https://arxiv.org/abs/2109.08899
https://doi.org/10.1007/978-3-319-62075-6_9
https://arxiv.org/abs/2109.08655
http://ceur-ws.org/Vol-2307/DP1.pdf
https://arxiv.org/pdf/2011.14616.pdf
https://sigmathling.kwarc.info/seminar/
https://sigmathling.kwarc.info/seminar/
https://www.nist.gov/itl/math/acmd-seminar-semantic-preserving-translations-between-nists-digital-library-mathematical
https://www.nist.gov/itl/math/acmd-seminar-semantic-preserving-translations-between-nists-digital-library-mathematical
https://doi.org/10.1007/978-3-030-99524-9_5
https://arxiv.org/abs/2201.09488
http://ceur-ws.org/Vol-2414/paper14.pdf
http://ceur-ws.org/Vol-2414/paper14.pdf
https://doi.org/10/gn3sv2
https://link.springer.com/content/pdf/10.1007%2F978-3-030-52200-1_33.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-52200-1_33.pdf

[11] A. Greiner-Petter, M. Schubotz, C. Breitinger, P. Scharpf, A. Aizawa, and B. Gipp. “Do the Math: Making
Mathematics in Wikipedia Computable”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI) (2022). In Press, pp. 1–12. issn: 0162-8828. doi: 10.1109/TPAMI.2022.3195261 (cit. on pp. 4,
9, 13, 21, 96, 102–106, 112, 114, 132–134, 140, 146, 150–152, 165).

[12] A. Greiner-Petter, M. Schubotz, H. S. Cohl, and B. Gipp. “MathTools: An Open API for Convenient
MathML Handling”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 11006. Hagenberg,
Austria: Springer International Publishing, 2018, pp. 104–110. doi: 10.1007/978-3-319-96812-4_9.
url: https://arxiv.org/abs/2109.08539 (visited on 2021-09-14) (cit. on pp. 9, 150).

[13] A. Greiner-Petter, M. Schubotz, H. S. Cohl, and B. Gipp. “Semantic Preserving Bijective Mappings for
Expressions Involving Special Functions between Computer Algebra Systems and Document Preparation
Systems”. In: Aslib Journal of Information Management 71.3 (2019-05-20), pp. 415–439. issn: 2050-3806.
doi: 10/ggv8gx. url: https://arxiv.org/abs/1906.11485 (visited on 2021-09-06) (cit. on pp. 5, 6,
9, 14, 15, 20, 21, 26, 27, 29, 36, 55, 98, 103–105, 109, 114, 132, 133, 137, 146, 150, 152, 165).

[14] A. Greiner-Petter, M. Schubotz, F. Müller, C. Breitinger, H. Cohl, A. Aizawa, and B. Gipp. “Discovering
Mathematical Objects of Interest — A Study of Mathematical Notations”. In: Proceedings of The Web

Conference (WWW). Taipei, Taiwan: ACM, 2020-04-20, pp. 1445–1456. doi: 10/ggv8gw. url: https:
//arxiv.org/abs/2002.02712 (visited on 2021-07-30) (cit. on pp. 6, 9, 12, 59, 104, 110, 116, 117, 139,
146, 150, 151, 157).

[15] A. Greiner-Petter, A. Youssef, T. Ruas, B. R. Miller, M. Schubotz, A. Aizawa, and B. Gipp. “Math-Word
Embedding in Math Search and Semantic Extraction”. In: Scientometrics 125.3 (2020-12), pp. 3017–3046.
issn: 0138-9130, 1588-2861. doi: 10/gg2cx9. url: https://link.springer.com/10.1007/s11192-
020-03502-9 (visited on 2021-06-30) (cit. on pp. 9, 12, 18, 21, 26, 37, 38, 59, 60, 63, 139, 146, 150, 151).

[16] P. Scharpf, M. Schubotz, A. Greiner-Petter, M. Ostendorff, O. Teschke, and B. Gipp. “ARQMath Lab: An
Incubator for Semantic Formula Search in zbMATH Open?” In: Working Notes of (CLEF) 2020 - Conference

and Labs of the Evaluation Forum. Vol. 2696. Thessaloniki, Greece: CEUR-WS.org, 2020. url: http:
//ceur-ws.org/Vol-2696/paper_200.pdf (cit. on pp. 9, 146, 150, 151).

[17] M. Schubotz, A. Greiner-Petter, N. Meuschke, O. Teschke, and B. Gipp. “Mathematical Formulae in
Wikimedia Projects 2020”. In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL).
Virtual Event, China: ACM, 2020-08, pp. 447–448. doi: 10/ghn2t2. url: https://arxiv.org/abs/
2003.09417 (visited on 2021-08-02) (cit. on pp. 9, 14, 36, 101, 102, 140, 147, 150, 151, 154).

[18] M. Schubotz, A. Greiner-Petter, P. Scharpf, N. Meuschke, H. S. Cohl, and B. Gipp. “Improving the
Representation and Conversion of Mathematical Formulae by Considering Their Textual Context”. In:
Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (JCDL). Fort Worth, Texas, USA:
ACM, 2018-05-23, pp. 233–242. doi: 10.1145/3197026.3197058. url: https://arxiv.org/abs/
1804.04956 (visited on 2021-09-06) (cit. on pp. 2, 9, 10, 18–21, 37, 39, 61, 65, 68, 72, 81, 104, 109, 115, 131,
150).

172 Bibliography of Publications, Submissions & Talks

https://doi.org/10.1109/TPAMI.2022.3195261
https://doi.org/10.1007/978-3-319-96812-4_9
https://arxiv.org/abs/2109.08539
https://doi.org/10/ggv8gx
https://arxiv.org/abs/1906.11485
https://doi.org/10/ggv8gw
https://arxiv.org/abs/2002.02712
https://arxiv.org/abs/2002.02712
https://doi.org/10/gg2cx9
https://link.springer.com/10.1007/s11192-020-03502-9
https://link.springer.com/10.1007/s11192-020-03502-9
http://ceur-ws.org/Vol-2696/paper_200.pdf
http://ceur-ws.org/Vol-2696/paper_200.pdf
https://doi.org/10/ghn2t2
https://arxiv.org/abs/2003.09417
https://arxiv.org/abs/2003.09417
https://doi.org/10.1145/3197026.3197058
https://arxiv.org/abs/1804.04956
https://arxiv.org/abs/1804.04956

BACK MATTER

Bibliography

[19] J. Abbott, A. Díaz, and R. S. Sutor. “A Report on OpenMath: A Protocol for the Exchange of Mathematical
Information”. In: ACM SIGSAM Bulletin 30.1 (1996-03), pp. 21–24. issn: 0163-5824. doi: 10/ctnngk (cit. on
pp. 18, 20, 23, 24).

[20] J. M. Aguirregabiria, A. Hernández, M. Rivas, and D. Donnelly. “Are We Careful Enough When Using
Computer Algebra?” In: Computers in Physics 8.1 (1994), p. 56. issn: 0894-1866. doi: 10/gn3svw (cit. on
pp. 5, 115, 116).

[21] A. Aizawa, M. Kohlhase, and I. Ounis. “NTCIR-10 Math Pilot Task Overview”. In: Proc. Conf. Evaluation of

Information Access Technologies (NTCIR-10). Tokyo, Japan: National Institute of Informatics (NII), 2013. url:
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/OVERVIEW/
01-NTCIR10-OV-MATH-AizawaA.pdf (visited on 2021-08-19) (cit. on pp. 52, 70).

[22] A. Aizawa, M. Kohlhase, I. Ounis, and M. Schubotz. “NTCIR-11 Math-2 Task Overview”. In: Proc. Conf.
Evaluation of Information Access Technologies (NTCIR-11). Tokyo, Japan: National Institute of Informatics
(NII), 2014, pp. 88–98. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings
11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf (visited on 2021-08-19) (cit. on pp. 43,
52, 70).

[23] A. N. Aizawa. “An information-theoretic perspective of tf-idf measures”. In: Inf. Process. Manage. 39.1
(2003), pp. 45–65. doi: 10.1016/S0306-4573(02)00021-3 (cit. on p. 77).

[24] G. Araujo and D. Pellegrino. “On the constants of the Bohnenblust-Hille inequality and Hardy–Littlewood
inequalities”. In: CoRR abs/1407.7120 (2014). url: https://arxiv.org/abs/1407.7120 (cit. on p. 89).

[25] A. Asperti, H. Geuvers, and R. Natarajan. “Social Processes, Program Verification and All That”. In:
Mathematical Structures in Computer Science 19.5 (2009-10), pp. 877–896. issn: 1469-8072. doi: 10/c3st7r
(cit. on p. 23).

[26] D. H. Bailey, J. M. Borwein, and A. D. Kaiser. “Automated Simplification of Large Symbolic Expressions”.
In: Journal of Symbolic Computation 60 (2014-01), pp. 120–136. issn: 0747-7171. doi: 10/f5kzhg (cit. on
p. 125).

[27] J. B. Baker, A. P. Sexton, and V. Sorge. “MaxTract: Converting PDF to LaTeX, MathML and Text”. In: Proc.
Conf. Intelligent Computer Mathematics (CICM). Vol. 7362. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 422–426. doi: 10.1007/978-3-642-31374-5_29 (cit. on pp. 19, 22).

[28] C. Ballarin, K. Homann, and J. Calmet. “Theorems and Algorithms: An Interface between Isabelle and
Maple”. In: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation - ISSAC

’95. Montreal, Quebec, Canada: ACM Press, 1995, pp. 150–157. doi: 10/fd8b67 (cit. on pp. 20, 34, 125).

[29] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. “Boogie: A Modular Reusable Verifier
for Object-Oriented Programs”. In: 8th International Symposium of Formal Methods for Components and

Objects. Vol. 4111. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 364–387. doi: 10/bjst7m
(cit. on p. 116).

[30] J. Beel, B. Gipp, S. Langer, and C. Breitinger. “Research-Paper Recommender Systems: A Literature Survey”.
In: International Journal on Digital Libraries 17.4 (2016), pp. 305–338. issn: 1432-5012. doi: 10/gddp66
(cit. on pp. 6, 78, 81).

[31] J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and A. Nuernberger. “Research Paper Recommender
System Evaluation: A Quantitative Literature Survey”. In: Proceedings of the Workshop on Reproducibility

and Replication in Recommender Systems Evaluation (RepSys) at the ACM Recommender System Conference

(RecSys). 2013. doi: 10/ggv8d7 (cit. on p. 6).

173
© The Author(s) 2023
A. Greiner-Petter, Making Presentation Math Computable,
https://doi.org/10.1007/978-3-658-40473-4

https://doi.org/10/ctnngk
https://doi.org/10/gn3svw
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/OVERVIEW/01-NTCIR10-OV-MATH-AizawaA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/OVERVIEW/01-NTCIR10-OV-MATH-AizawaA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
https://doi.org/10.1016/S0306-4573(02)00021-3
https://arxiv.org/abs/1407.7120
https://doi.org/10/c3st7r
https://doi.org/10/f5kzhg
https://doi.org/10.1007/978-3-642-31374-5_29
https://doi.org/10/fd8b67
https://doi.org/10/bjst7m
https://doi.org/10/gddp66
https://doi.org/10/ggv8d7

[32] R. Behrends, K. Hammond, V. Janjic, et al. “HPC-GAP: Engineering a 21st-Century High-Performance
Computer Algebra System”. In: Concurrency and Computation: Practice and Experience 28.13 (2016),
pp. 3606–3636. doi: 10/f82fwp (cit. on p. 32).

[33] Y. Bengio, R. Ducharme, and P. Vincent. “A Neural Probabilistic Language Model”. In: Proc. Ann. Conf.
Neural Information Processing Systems (NeurIPS). MIT Press, 2000, pp. 932–938. url: https://proce
edings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
(visited on 2021-09-05) (cit. on p. 59).

[34] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. “A Neural Probabilistic Language Model”. In: Journal of
Machine Learning Research 3 (2003), pp. 1137–1155. url: http://jmlr.org/papers/v3/bengio03a.
html (visited on 2021-09-05) (cit. on p. 59).

[35] K. Bercic, J. Carette, W. Farmer, et al. The Space of Mathematical Software Systems - A Survey of Paradigmatic

Systems. 2020. url: https://arxiv.org/abs/2002.04955 (cit. on p. 6).

[36] L. Bernardin, P. Chin, P. DeMarco, et al. Maple 2016 Programming Guide. Maplesoft, a division of Waterloo
Maple Inc., 2016. isbn: 978-1-926902-46-3 (cit. on pp. 2, 4, 5, 18, 19, 32, 33, 102, 104, 127, 165).

[37] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Texts in Theoretical
Computer Science An EATCS Series. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. isbn: 978-3-
642-05880-6. doi: 10.1007/978-3-662-07964-5 (cit. on pp. 18, 116).

[38] J. Betzendahl and M. Kohlhase. “Translating the IMPS Theory Library to MMT/OMDoc”. In: Proc. Conf. In-
telligent Computer Mathematics (CICM). Vol. 11006. Hagenberg, Austria: Springer International Publishing,
2018, pp. 7–22. doi: 10.1007/978-3-319-96812-4_2 (cit. on p. 25).

[39] G. Bilbeisi, S. Ahmed, and R. Majumdar. “DeepEquaL: Deep Learning Based Mathematical Equation to
Latex Generation”. In: International Conference on Neural Information Processing. Vol. 1333. Cham: Springer
International Publishing, 2020, pp. 324–332. doi: 10/gn3sx7 (cit. on pp. 18, 19).

[40] G.W. Blackwood, M. Ballesteros, and T.Ward. “Multilingual NeuralMachine Translation with Task-Specific
Attention”. In: Proceedings of the 27th International Conference on Computational Linguistics, COLING 2018,

Santa Fe, New Mexico, USA, August 20-26, 2018. Association for Computational Linguistics, 2018, pp. 3112–
3122. url: https://aclanthology.org/C18-1263/ (visited on 2021-09-10) (cit. on p. 100).

[41] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd Your Herd of Provers”. In: Boogie
2011: First International Workshop on Intermediate Verification Languages (2011-05), pp. 53–64. url: https:
//hal.inria.fr/hal-00790310/document (cit. on p. 116).

[42] J. Böhm, W. Decker, S. Keicher, and Y. Ren. “Current Challenges in Developing Open Source Computer
Algebra Systems”. In: Mathematical Aspects of Computer and Information Sciences (MACIS). Vol. 9582.
Berlin, Germany: Springer, 2015, pp. 3–24. doi: 10.1007/978-3-319-32859-1_1 (cit. on p. 33).

[43] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. “Enriching Word Vectors with Subword Information”.
In: Trans. Assoc. Comput. Linguistics 5 (2017), pp. 135–146. doi: 10/gfw9cs (cit. on pp. 59, 61, 62).

[44] K. Bosa. SCSCP4Mathematica. Version 0.1. Research Institute for Symbolic Computation, 2011. url:
https://www3.risc.jku.at/projects/science/jra/ (cit. on pp. 25, 33).

[45] S. Boulmé, T. Hardin, D. Hirschkoff, V. Ménissier-Morain, and R. Rioboo. “On the Way to Certify Computer
Algebra Systems”. In: Electronic Notes in Theoretical Computer Science 23.3 (1999), pp. 370–385. issn:
1571-0661. doi: 10/bqv3xz (cit. on p. 116).

[46] Y. Bouzidi, A. Quadrat, and F. Rouillier. “Computer Algebra Methods for Testing the Structural Stability of
Multidimensional Systems”. In: 2015 IEEE 9th International Workshop on Multidimensional (nD) Systems

(nDS). Vila Real, Portugal: IEEE, 2015-09, pp. 1–6. doi: 10/gn3swg (cit. on p. 32).

[47] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. “A Large Annotated Corpus for Learning Natural
Language Inference”. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Lisbon, Portugal: The Association for Computational Linguistics, 2015, pp. 632–642.
doi: 10/gf74f9 (cit. on p. 70).

[48] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts. “A Fast Unified Model for
Parsing and Sentence Understanding”. In: Proc. Ann. Meeting Association for Computational Linguistics

(ACL). The Association for Computer Linguistics, 2016. doi: 10/gfw97m (cit. on p. 96).

174 Bibliography

https://doi.org/10/f82fwp
https://proceedings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/728f206c2a01bf572b5940d7d9a8fa4c-Abstract.html
http://jmlr.org/papers/v3/bengio03a.html
http://jmlr.org/papers/v3/bengio03a.html
https://arxiv.org/abs/2002.04955
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-319-96812-4_2
https://doi.org/10/gn3sx7
https://aclanthology.org/C18-1263/
https://hal.inria.fr/hal-00790310/document
https://hal.inria.fr/hal-00790310/document
https://doi.org/10.1007/978-3-319-32859-1_1
https://doi.org/10/gfw9cs
https://www3.risc.jku.at/projects/science/jra/
https://doi.org/10/bqv3xz
https://doi.org/10/gn3swg
https://doi.org/10/gf74f9
https://doi.org/10/gfw97m

[49] R. Breh and V. Kumar. “Making Mathematical Problem Solving Exploratory and Social-Synergizing Com-
puter Algebra Systems with Semantic and Web-2.0 Technology”. In: Proceedings of the Third Annual ACM
Bangalore Conference on - COMPUTE ’10. Bangalore, India: ACM Press, 2010, pp. 1–7. doi: 10/chxtdw
(cit. on p. 32).

[50] C. Breitinger and H. Reiterer. “Visualizing Feature-based Similarity for Research Paper Recommendation”.
In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2021. Online: ACM, 2021. doi:
10/gn3sxc (cit. on pp. 6, 72, 147).

[51] C. Bright, I. Kotsireas, and V. Ganesh. “Applying Computer Algebra Systems with SAT Solvers to the
Williamson Conjecture”. In: Journal of Symbolic Computation 100 (2020-09), pp. 187–209. issn: 0747-7171.
doi: 10/gn3sx2 (cit. on pp. 6, 32).

[52] C. Bright, I. Kotsireas, and V. Ganesh. “SAT Solvers and Computer Algebra Systems: A Powerful Combi-
nation for Mathematics”. In: Proceedings of the 29th Annual International Conference on Computer Science

and Software Engineering. USA: IBM Corp., 2019-11-04, pp. 323–328. doi: 10.5555/3370272.3370309
(cit. on p. 6).

[53] S. Buswell, O. Caprotti, D. Carlisle, M. C. Dewar, M. Gaëtano, and M. Kohlhase. The OpenMath Standard

Version 2.0. 2004-06. url: http://openmath.org/standard/om20-2004-06-30/ (visited on 2021-10-
06) (cit. on pp. 6, 23, 163).

[54] F. Cajori. A History of Mathematical Notations. Vol. 1 and 2. 2 vols. New York: Dover Publications, 1993.
451 pp. isbn: 978-0-486-67766-8 (cit. on pp. 4, 45, 58, 87).

[55] J. Camacho-Collados, M. T. Pilehvar, and R. Navigli. “A Unified Multilingual Semantic Representation of
Concepts”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). The Association for
Computer Linguistics, 2015, pp. 741–751. doi: 10/gn3sxf (cit. on p. 63).

[56] O. Caprotti and D. Carlisle. “OpenMath and MathML: Semantic Markup for Mathematics”. In: XRDS:
Crossroads, The ACM Magazine for Students 6.2 (1999-11), pp. 11–14. issn: 1528-4972, 1528-4980. doi:
10/bbpk38 (cit. on p. 24).

[57] O. Caprotti and A. M. Cohen. “Connecting Proof Checkers and Computer Algebra Using OpenMath”. In:
Theorem Proving in Higher Order Logics. Vol. 1690. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 109–112. doi: 10.1007/3-540-48256-3_8 (cit. on pp. 6, 20, 21, 25, 34, 39).

[58] J. Carette andM. Kucera. “Partial Evaluation ofMaple”. In: Science of Computer Programming 76.6 (2011-06),
pp. 469–491. issn: 0167-6423. doi: 10/fnkpct (cit. on p. 116).

[59] D. Carlisle. “OpenMath, MathML, and XSL”. In: ACM SIGSAM Bulletin 34.2 (2000-06), pp. 6–11. issn:
0163-5824. doi: 10/bwsggv (cit. on pp. 6, 21–24).

[60] D. Carlisle, P. Ion, and R. Miner. Mathematical Markup Language (MathML) Version 3.0, 2nd Edition. W3C
Recommendation. World Wide Web Consortium (W3C), 2014-04-10. url: https://www.w3.org/TR/
MathML3/ (visited on 2021-09-06) (cit. on pp. 6, 18, 21).

[61] D. Carlisle and M. Wang. Web-Xslt: A Collection of XSLT Stylesheets Designed for Processing MathML.
2021-05-03. url: https://github.com/davidcarlisle/web-xslt (visited on 2021-09-22) (cit. on
pp. 21, 22).

[62] M. M. Carneiro. “Conversion of HOL Light Proofs into Metamath”. In: Journal of Formalized Reasoning 9.1
(2016), pp. 187–200. doi: 10/gn3swz (cit. on p. 21).

[63] H. Caselles-Dupré, F. Lesaint, and J. Royo-Letelier. “Word2vec Applied to Recommendation: Hyperparam-
eters Matter”. In: Proceedings of the 12th ACM Conference on Recommender Systems, RecSys 2018, Vancouver,

BC, Canada, October 2-7, 2018. ACM, 2018, pp. 352–356. doi: 10/ggbpnn (cit. on p. 64).

[64] J. B. Cassel. “Wolfram|Alpha: A Computational Knowledge “Search” Engine”. In: Google It. New York, NY:
Springer New York, 2016, pp. 267–299. isbn: 978-1-4939-6415-4. doi: 10.1007/978-1-4939-6415-4_11
(cit. on p. 27).

[65] D. Cer, Y. Yang, S.-y. Kong, et al. “Universal Sentence Encoder for English”. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing (EMNLP). Brussels, Belgium: Association
for Computational Linguistics, 2018, pp. 169–174. doi: 10/ghjqhk (cit. on pp. 59, 61, 63).

[66] B. B. Chaudhuri and U. Garain. “Automatic Detection of Italic, Bold and All-Capital Words in Document
Images”. In: Fourteenth International Conference on Pattern Recognition, ICPR 1998, Brisbane, Australia,

16-20 August, 1998. IEEE Computer Society, 1998, pp. 610–612. doi: 10/bmz7zg (cit. on p. 37).

Bibliography 175

https://doi.org/10/chxtdw
https://doi.org/10/gn3sxc
https://doi.org/10/gn3sx2
https://doi.org/10.5555/3370272.3370309
http://openmath.org/standard/om20-2004-06-30/
https://doi.org/10/gn3sxf
https://doi.org/10/bbpk38
https://doi.org/10.1007/3-540-48256-3_8
https://doi.org/10/fnkpct
https://doi.org/10/bwsggv
https://www.w3.org/TR/MathML3/
https://www.w3.org/TR/MathML3/
https://github.com/davidcarlisle/web-xslt
https://doi.org/10/gn3swz
https://doi.org/10/ggbpnn
https://doi.org/10.1007/978-1-4939-6415-4_11
https://doi.org/10/ghjqhk
https://doi.org/10/bmz7zg

[67] R. Chauhan, I. Murray, and R. Koul. “Audio Rendering of Mathematical Expressions for Blind Students:
A Comparative Study between MathML and Latex”. In: IEEE International Conference on Engineering,

Technology and Education, TALE 2019, Yogyakarta, Indonesia, December 10-13, 2019. IEEE, 2019, pp. 1–5.
doi: 10/gn3sx5 (cit. on p. 22).

[68] C. Chelba, T. Mikolov, M. Schuster, et al. “One Billion Word Benchmark for Measuring Progress in
Statistical Language Modeling”. In: INTERSPEECH 2014, 15th Annual Conference of the International Speech

Communication Association, Singapore, September 14-18, 2014. ISCA, 2014, pp. 2635–2639. url: http:
//www.isca-speech.org/archive/interspeech%5C%5C_2014/i14%5C%5C_2635.html (visited on
2021-09-05) (cit. on p. 70).

[69] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, and D. Inkpen. “Enhanced LSTM for Natural Language
Inference”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). Association for
Computational Linguistics, 2017, pp. 1657–1668. doi: 10/gf5hs2 (cit. on p. 59).

[70] W. Chen, Y. Su, Y. Shen, Z. Chen, X. Yan, andW. Y.Wang. “How Large a Vocabulary Does Text Classification
Need? A Variational Approach to Vocabulary Selection”. In: Proceedings of the 2019 Conference of the North.
Minneapolis, Minnesota: Association for Computational Linguistics, 2019, pp. 3487–3497. doi: 10/gn3sv8
(cit. on p. 96).

[71] P.-Y. Chien and P.-J. Cheng. “Semantic Tagging of Mathematical Expressions”. In: Proceedings of the 24th
International Conference on World Wide Web (WWW). Florence, Italy: ACM, 2015-05-18, pp. 195–204. doi:
10/gmjqgn (cit. on pp. 6, 26, 36, 53, 54, 58, 71, 90, 169).

[72] J. P. C. Chiu and E. Nichols. “Named Entity Recognition with Bidirectional LSTM-CNNs”. In: Trans. Assoc.
Comput. Linguistics 4 (2016), pp. 357–370. doi: 10/ggj7fx (cit. on p. 59).

[73] K. Cho, B. van Merrienboer, Ç. Gülçehre, et al. “Learning Phrase Representations Using RNN Encoder-
Decoder for Statistical Machine Translation”. In: Proceedings of the 2014 Conference on Empirical Methods

in Natural Language Processing (EMNLP). Doha, Qatar: ACL, 2014, pp. 1724–1734. doi: 10/gddmvq (cit. on
pp. 59, 61).

[74] S. P. Chowdhury, S. Mandal, A. K. Das, and B. Chanda. “Automated Segmentation of Math-Zones from
Document Images”. In: 7th International Conference on Document Analysis and Recognition (ICDAR 2003),

2-Volume Set, 3-6 August 2003, Edinburgh, Scotland, UK. IEEE Computer Society, 2003, pp. 755–759. doi:
10/bqjkk9 (cit. on p. 36).

[75] C. Clark and M. Gardner. “Simple and Effective Multi-Paragraph Reading Comprehension”. In: Proc. Ann.
Meeting Association for Computational Linguistics (ACL). Association for Computational Linguistics, 2018,
pp. 845–855. doi: 10/ggvxfb (cit. on p. 59).

[76] J. S. Cohen. Computer Alegebra and Symbolic Computation: Mathematical Methods. Natick, Mass: AK
Peters, 2003. 448 pp. isbn: 978-1-56881-159-8 (cit. on p. 32).

[77] H. S. Cohl, M. A. McClain, B. V. Saunders, M. Schubotz, and J. C. Williams. “Digital Repository of Math-
ematical Formulae”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 8543. Springer, 2014,
pp. 419–422. doi: 10.1007/978-3-319-08434-3_30 (cit. on pp. 29, 43, 164).

[78] H. S. Cohl, M. Schubotz, M. A. McClain, et al. “Growing the Digital Repository of Mathematical Formulae
with Generic Sources”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 9150. Springer, 2015,
pp. 280–287. doi: 10.1007/978-3-319-20615-8_18 (cit. on pp. 29, 43, 164).

[79] Colt - Open Source Libraries for High Performance Scientific and Technical Computing in Java. Version 1.2.0.
CERN - European Organization for Nuclear Research, 2004. url: https://dst.lbl.gov/ACSSoftware/
colt/ (visited on 2021-09-23) (cit. on pp. 18, 32).

[80] Computable Document Format (CDF). Wolfram Research. url: https://www.wolfram.com/cdf/ (visited
on 2021-10-06) (cit. on p. 25).

[81] Computer Algebra Systems: A Practical Guide. New York: Wiley, 1999. 436 pp. isbn: 978-0-471-98353-8
(cit. on pp. 19, 32).

[82] T. Cool. The Disappointment and Embarrassment of MathML. General Economics and Teaching JEL A00.
University Library of Munich, Germany, 2000-04-16. url: https://econpapers.repec.org/paper/
wpawuwpgt/0004002.htm (visited on 2021-08-13) (cit. on pp. 19, 23).

[83] R. M. Corless and D. J. Jeffrey. “Graphing Elementary Riemann Surfaces”. In: ACM SIGSAM Bulletin 32.1
(1998-03), pp. 11–17. issn: 0163-5824. doi: 10/dcpb9j (cit. on pp. 5, 34).

176 Bibliography

https://doi.org/10/gn3sx5
http://www.isca-speech.org/archive/interspeech%5C%5C_2014/i14%5C%5C_2635.html
http://www.isca-speech.org/archive/interspeech%5C%5C_2014/i14%5C%5C_2635.html
https://doi.org/10/gf5hs2
https://doi.org/10/gn3sv8
https://doi.org/10/gmjqgn
https://doi.org/10/ggj7fx
https://doi.org/10/gddmvq
https://doi.org/10/bqjkk9
https://doi.org/10/ggvxfb
https://doi.org/10.1007/978-3-319-08434-3_30
https://doi.org/10.1007/978-3-319-20615-8_18
https://dst.lbl.gov/ACSSoftware/colt/
https://dst.lbl.gov/ACSSoftware/colt/
https://www.wolfram.com/cdf/
https://econpapers.repec.org/paper/wpawuwpgt/0004002.htm
https://econpapers.repec.org/paper/wpawuwpgt/0004002.htm
https://doi.org/10/dcpb9j

[84] R. M. Corless, D. J. Jeffrey, S. M. Watt, and J. H. Davenport. ““According to Abramowitz and Stegun” or
Arccoth Needn’t Be Uncouth”. In: ACM SIGSAM Bulletin 34.2 (2000-06), pp. 58–65. issn: 0163-5824. doi:
10/cc53nd (cit. on pp. 5, 34, 130, 131).

[85] H. Cuypers, A. M. Cohen, J. W. Knopper, R. Verrijzer, andM. Spanbroek. “MathDox, a System for Interactive
Mathematics”. In: Association for the Advancement of Computing in Education (AACE), 2008-06-30,
pp. 5177–5182. isbn: 978-1-880094-65-5. url: https://www.learntechlib.org/primary/p/29092/
(visited on 2021-06-10) (cit. on pp. 6, 25).

[86] P. Dadure, P. Pakray, and S. Bandyopadhyay. “An Analysis of Variable-Size Vector Based Approach for
Formula Searching”. In: Working Notes of CLEF 2020 - Conference and Labs of the Evaluation Forum,

Thessaloniki, Greece, September 22-25, 2020. Vol. 2696. CEUR-WS.org, 2020. url: http://ceur-ws.org/
Vol-2696/paper_150.pdf (visited on 2021-09-12) (cit. on p. 21).

[87] Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov. “Transformer-XL: Attentive
Language Models beyond a Fixed-Length Context”. In: Proc. Ann. Meeting Association for Computational

Linguistics (ACL). Association for Computational Linguistics, 2019, pp. 2978–2988. doi: 10/gf8zxx (cit. on
p. 63).

[88] A. Dakkak, T. Wickham-Jones, and W.-m. Hwu. “The Design and Implementation of the Wolfram Lan-
guage Compiler”. In: Proceedings of the 18th ACM/IEEE International Symposium on Code Generation and

Optimization. San Diego CA USA: ACM, 2020-02-22, pp. 212–228. doi: 10/gn3sv3 (cit. on pp. 20, 33).

[89] S. Dalmas, M. Gaëtano, and S. Watt. “An OpenMath 1.0 Implementation”. In: Proceedings of the 1997
International Symposium on Symbolic and Algebraic Computation - ISSAC ’97. Kihei, Maui, Hawaii, United
States: ACM Press, 1997, pp. 241–248. doi: 10/fhs7ng (cit. on p. 23).

[90] J. H. Davenport. “On Writing OpenMath Content Dictionaries”. In: ACM SIGSAM Bulletin 34.2 (2000-06),
pp. 12–15. issn: 0163-5824. doi: 10/fr42qr (cit. on p. 24).

[91] J. H. Davenport. “The Challenges of Multivalued “Functions””. In: Proc. Conf. Intelligent Computer

Mathematics (CICM). Vol. 6167. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 1–12. doi:
10.1007/978-3-642-14128-7_1 (cit. on pp. 5, 34).

[92] K. Davila and R. Zanibbi. “Layout and Semantics: Combining Representations for Mathematical Formula
Search”. In: Proc. ACM SIGIR. Shinjuku, Tokyo: ACM, 2017, pp. 1165–1168. doi: 10.1145/3077136.
3080748 (cit. on pp. 6, 72, 75, 89, 104).

[93] K. Davila, R. Zanibbi, A. Kane, and F. W. Tompa. “Tangent-3 at the NTCIR-12 MathIR Task”. In: Proc. Conf.
Evaluation of Information Access Technologies (NTCIR-12). Tokyo, Japan: National Institute of Informatics
(NII), 2016. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/
ntcir/MathIR/06-NTCIR12-MathIR-DavilaK.pdf (visited on 2021-08-19) (cit. on pp. 36, 52, 53).

[94] P. Dehaye, M. Iancu, M. Kohlhase, et al. “Interoperability in the OpenDreamKit Project: The Math-in-the-
Middle Approach”. In: 2016, pp. 117–131. doi: 10.1007/978-3-319-42547-4_9 (cit. on p. 42).

[95] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush. “Image-to-Markup Generation with Coarse-to-Fine
Attention”. In: Proceedings of the 34th International Conference on Machine Learning. Vol. 70. Sydney, NSW,
Australia: PMLR, 2017, pp. 980–989. url: http://proceedings.mlr.press/v70/deng17a.html
(visited on 2021-09-10) (cit. on pp. 96, 98).

[96] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proc. Conf. North American Chapter Association for Computaitonal

Linguistics: Human Language Technology (NAACL-HLT). Association for Computational Linguistics, 2019,
pp. 4171–4186. doi: 10/ggbwf6 (cit. on p. 63).

[97] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. M. Schwartz, and J. Makhoul. “Fast and Robust Neural Network
Joint Models for Statistical Machine Translation”. In: Proc. Ann. Meeting Association for Computational

Linguistics (ACL). The Association for Computer Linguistics, 2014, pp. 1370–1380. doi: 10/ggnw4r (cit. on
p. 59).

[98] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.25 of 2019-12-15.
F. W. J. Olver, et al. eds. (cit. on pp. 1, 24, 28, 41, 43, 54, 60, 62, 71, 86, 102, 104, 115, 120, 122–125, 127–131,
145, 147–149, 164).

Bibliography 177

https://doi.org/10/cc53nd
https://www.learntechlib.org/primary/p/29092/
http://ceur-ws.org/Vol-2696/paper_150.pdf
http://ceur-ws.org/Vol-2696/paper_150.pdf
https://doi.org/10/gf8zxx
https://doi.org/10/gn3sv3
https://doi.org/10/fhs7ng
https://doi.org/10/fr42qr
https://doi.org/10.1007/978-3-642-14128-7_1
https://doi.org/10.1145/3077136.3080748
https://doi.org/10.1145/3077136.3080748
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/06-NTCIR12-MathIR-DavilaK.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/06-NTCIR12-MathIR-DavilaK.pdf
https://doi.org/10.1007/978-3-319-42547-4_9
http://proceedings.mlr.press/v70/deng17a.html
https://doi.org/10/ggbwf6
https://doi.org/10/ggnw4r
http://dlmf.nist.gov/

[99] H. Dohrn and D. Riehle. “Design and Implementation of the Sweble Wikitext Parser: Unlocking the
Structured Data of Wikipedia”. In: Proceedings of the 7th International Symposium on Wikis and Open

Collaboration - WikiSym ’11. Mountain View, California: ACM Press, 2011, p. 72. doi: 10/c6g63f (cit. on
p. 108).

[100] A. Durán, M. Pérez, and J. Varona. “The Misfortunes of a Trio of Mathematicians Using Computer Algebra
Systems. Can We Trust in Them?” In: Notices of the AMS 61.10 (2014), pp. 1249–1252. url: https:
//www.ams.org/notices/201410/rnoti-p1249.pdf (cit. on pp. 5, 115).

[101] J. Earley. “An Efficient Context-Free Parsing Algorithm”. In: Communications of the ACM 13.2 (1970-02),
pp. 94–102. issn: 0001-0782, 1557-7317. doi: 10/csjctz (cit. on p. 35).

[102] S. Edunov, M. Ott, M. Auli, and D. Grangier. “Understanding Back-Translation at Scale”. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing (EMNLP). Brussels, Belgium:
Association for Computational Linguistics, 2018, pp. 489–500. doi: 10/gf6rn5 (cit. on p. 98).

[103] A. M. Elizarov, S. Khaydarov, and E. K. Lipachev. “The Formation Method of Recommendations in the
Process of Scientific Peer Review of Mathematical Papers”. In: Proceedings of the 21st Conference on

Scientific Services & Internet (SSI-2019). Novorossiysk-Abrau, Russia: CEUR-WS.org, 2019, p. 10. url:
http://ceur-ws.org/Vol-2543/rpaper12.pdf (cit. on p. 6).

[104] A. M. Elizarov, A. Kirillovich, E. K. Lipachev, and O. Nevzorova. “Digital Ecosystem OntoMath: Mathe-
matical Knowledge Analytics and Management”. In: Data Analytics and Management in Data Intensive

Domains - XVIII International Conference, DAMDID/RCDL 2016, Ershovo, Moscow, Russia, October 11-14,

2016, Revised Selected Papers. Vol. 706. 2016, pp. 33–46. doi: 10/gjnf52 (cit. on pp. 67, 69).

[105] A. M. Elizarov, A. Kirillovich, E. K. Lipachev, and O. Nevzorova. “OntoMath Digital Ecosystem: Ontologies,
Mathematical Knowledge Analytics and Management”. In: CoRR abs/1702.05112 (2017). url: http:
//arxiv.org/abs/1702.05112 (visited on 2021-09-05) (cit. on pp. 67, 69).

[106] A. M. Elizarov, E. K. Lipachev, and S. Khaydarov. “Recommender System in the Process of Scientific
Peer Review in Mathematical Journal”. In: Russian Digital Libraries Journal 23.4 (2020), pp. 708–732. doi:
10/gn3szc (cit. on p. 6).

[107] D. Elphick, M. Leuschel, and S. Cox. “Partial Evaluation of MATLAB”. In: Generative Programming and

Component Engineering. Vol. 2830. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 344–363. doi:
10/b6wtqf (cit. on p. 116).

[108] M. England, E. Cheb-Terrab, R. Bradford, J. H. Davenport, and D. Wilson. “Branch Cuts in Maple 17”.
In: ACM Communications in Computer Algebra 48.1/2 (2014-07-10), pp. 24–27. issn: 1932-2240. doi:
10/gknppb (cit. on pp. 34, 130).

[109] M. England, E. S. Cheb-Terrab, R. J. Bradford, J. H. Davenport, and D. J. Wilson. “Branch cuts in Maple 17”.
In: ACM Comm. Comp. Algebra 48.1/2 (2014), pp. 24–27. doi: 10.1145/2644288.2644293 (cit. on p. 41).

[110] L. Eskor, M. Lepp, and E. Tonisson. “Automatic Translation of Computer Algebra Systems’ Worksheets”.
In: 2011 International Conference on Computational Science and Its Applications. Santander, Spain: IEEE,
2011-06, pp. 118–123. doi: 10/cv8n44 (cit. on pp. 6, 33, 39).

[111] L. Espinosa Anke and S. Schockaert. “Syntactically Aware Neural Architectures for Definition Extraction”.
In: Proc. Ann. Meeting Association forComputational Linguistics (ACL). NewOrleans, Louisiana: Association
for Computational Linguistics, 2018, pp. 378–385. doi: 10/ggwczd (cit. on pp. 109, 138, 140, 146, 154).

[112] K.-C. Fan and C. H. Huang. “Italic Detection and Rectification”. In: Journal of Information Science and

Engineering 23.2 (2007), pp. 403–419. url: https://jise.iis.sinica.edu.tw/JISESearch/pages/
View/PaperView.jsf?keyId=47_798 (cit. on p. 37).

[113] K.-C. Fan, C. H. Huang, and T. C. Chuang. “Italic Detection and Rectification”. In: Proceedings of the 2005
International Conference on Image Processing, ICIP 2005, Genoa, Italy, September 11-14, 2005. IEEE, 2005,
pp. 530–533. doi: 10/cdqqp5 (cit. on p. 37).

[114] R. Fateman. A Critique of OpenMath and Thoughts on Encoding Mathematics, January, 200. 2001-01-17.
url: https://people.eecs.berkeley.edu/~fateman/papers/openmathcrit.pdf (visited on
2021-10-06) (cit. on p. 23).

[115] R. Fateman. “Partitioning of Algebraic Subexpressions in Computer Algebra Systems: An Alternative to
Matching with an Application to Symbolic Integration”. In: ACM Communications in Computer Algebra

49.2 (2015-08-14), pp. 38–47. issn: 1932-2240. doi: 10/gn3swj (cit. on p. 32).

178 Bibliography

https://doi.org/10/c6g63f
https://www.ams.org/notices/201410/rnoti-p1249.pdf
https://www.ams.org/notices/201410/rnoti-p1249.pdf
https://doi.org/10/csjctz
https://doi.org/10/gf6rn5
http://ceur-ws.org/Vol-2543/rpaper12.pdf
https://doi.org/10/gjnf52
http://arxiv.org/abs/1702.05112
http://arxiv.org/abs/1702.05112
https://doi.org/10/gn3szc
https://doi.org/10/b6wtqf
https://doi.org/10/gknppb
https://doi.org/10.1145/2644288.2644293
https://doi.org/10/cv8n44
https://doi.org/10/ggwczd
https://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=47_798
https://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=47_798
https://doi.org/10/cdqqp5
https://people.eecs.berkeley.edu/~fateman/papers/openmathcrit.pdf
https://doi.org/10/gn3swj

[116] C. Fellbaum. “A Semantic Network of English: The Mother of All WordNets”. In: Comput. Humanit. 32.2-3
(1998), pp. 209–220. doi: 10/dcz9jc (cit. on p. 69).

[117] D. Formánek, M. Líska, M. Ruzicka, and P. Sojka. “Normalization of Digital Mathematics Library Content”.
In: Proc. of OpenMath/MathUI/CICM-WiP. Vol. 921. Bremen, Germany: CEUR-WS.org, 2012, pp. 91–103.
url: http://ceur-ws.org/Vol-921/wip-05.pdf (visited on 2021-07-01) (cit. on pp. 73, 75, 91).

[118] D. S. Foundation. Django 1.7 - The Django Template Language. The Django template language. 2017-
02-24. url: https://django.readthedocs.io/en/1.7.x/topics/templates.html (visited on
2021-09-08) (cit. on p. 19).

[119] S. Freundt, P. Horn, A. Konovalov, S. Linton, and D. Roozemond. “Symbolic Computation Software
Composability”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 5144. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 285–295. doi: 10/fj2cr2 (cit. on pp. 6, 7, 33, 168).

[120] S. Freundt and S. Lesseni. KANT 4 SCSCP Package. Version 1.2.1. 2010. url: http://page.math.tu-
berlin.de/~kant/kantscscp.html (visited on 2021-09-23) (cit. on p. 33).

[121] L. Gao, Z. Jiang, Y. Yin, K. Yuan, Z. Yan, and Z. Tang. Preliminary Exploration of Formula Embedding for

Mathematical Information Retrieval: Can Mathematical Formulae Be Embedded like a Natural Language?

2017-08-29. url: http://arxiv.org/abs/1707.05154 (visited on 2021-06-30) (cit. on pp. 11, 26, 37, 38,
52, 53, 59, 62, 67).

[122] L. Gao, Y. Wang, L. Hao, and Z. Tang. “ICST Math Retrieval System for NTCIR-11 Math-2 Task”. In:
Proc. Conf. Evaluation of Information Access Technologies (NTCIR-11). Tokyo, Japan: National Institute of
Informatics (NII), 2014. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings
11/pdf/NTCIR/Math-2/02-NTCIR11-MATH-GaoL.pdf (visited on 2021-08-19) (cit. on p. 53).

[123] L. Gao, X. Yi, Y. Liao, Z. Jiang, Z. Yan, and Z. Tang. “A Deep Learning-Based Formula Detection Method
for PDF Documents”. In: 2017 14th IAPR International Conference on Document Analysis and Recognition

(ICDAR). Kyoto: IEEE, 2017-11, pp. 553–558. doi: 10/ghpj5q (cit. on p. 108).

[124] L. Gao, K. Yuan, Y. Wang, Z. Jiang, and Z. Tang. “The Math Retrieval System of ICST for NTCIR-12
MathIR Task”. In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-12). Tokyo, Japan:
National Institute of Informatics (NII), 2016. url: http://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings12/pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf (visited on 2021-08-19)
(cit. on p. 53).

[125] U. Garain. “Identification of Mathematical Expressions in Document Images”. In: 10th International

Conference on Document Analysis and Recognition, ICDAR 2009, Barcelona, Spain, 26-29 July 2009. IEEE
Computer Society, 2009, pp. 1340–1344. doi: 10/fnf89r (cit. on p. 36).

[126] U. Garain, B. B. Chaudhuri, and A. R. Chaudhuri. “Identification of Embedded Mathematical Expressions
in Scanned Documents”. In: 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge,

UK, August 23-26, 2004. IEEE Computer Society, 2004, pp. 384–387. doi: 10/cqv5wb (cit. on p. 36).

[127] A. Gárate-García, L. Márquez-Martínez, J. Cuesta-García, and E. García-Ramírez. “A Computer Algebra
System for Analysis and Control of Nonlinear Time-Delay Systems”. In: Advances in Engineering Software

65 (2013-11), pp. 138–148. issn: 0965-9978. doi: 10/gn3sv7 (cit. on p. 32).

[128] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. 3rd ed. Cambridge: Cambridge University
Press, 2013. 795 pp. isbn: 978-1-107-03903-2 (cit. on pp. 18–20, 32).

[129] A. Gaudeul. “Do Open Source Developers Respond to Competition?: The LATEX Case Study”. In: Review of

Network Economics 6 (2 2007-06), pp. 239–263. doi: 10.2202/1446-9022.1119 (cit. on pp. 2, 19, 25, 72).

[130] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. “Convolutional Sequence to Sequence
Learning”. In: Proceedings of the 34th International Conference on Machine Learning ICML. Vol. 70. Sydney,
NSW, Australia: PMLR, 2017, pp. 1243–1252. url: http://proceedings.mlr.press/v70/gehring
17a.html (visited on 2021-09-10) (cit. on pp. 96, 97).

[131] J. Giceva, C. Lange, and F. Rabe. “Integrating Web Services into Active Mathematical Documents”. In: Proc.
Conf. Intelligent Computer Mathematics (CICM). Vol. 5625. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 279–293. doi: 10/cmwkfx (cit. on pp. 6, 25).

[132] D. Ginev. arXMLiv:08.2018 dataset, an HTML5 conversion of arXiv.org. SIGMathLing – Special Interest
Group on Math Linguistics. 2018. url: https://sigmathling.kwarc.info/resources/arxmliv/
(cit. on pp. 64, 73, 162).

Bibliography 179

https://doi.org/10/dcz9jc
http://ceur-ws.org/Vol-921/wip-05.pdf
https://django.readthedocs.io/en/1.7.x/topics/templates.html
https://doi.org/10/fj2cr2
http://page.math.tu-berlin.de/~kant/kantscscp.html
http://page.math.tu-berlin.de/~kant/kantscscp.html
http://arxiv.org/abs/1707.05154
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/02-NTCIR11-MATH-GaoL.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/02-NTCIR11-MATH-GaoL.pdf
https://doi.org/10/ghpj5q
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf
https://doi.org/10/fnf89r
https://doi.org/10/cqv5wb
https://doi.org/10/gn3sv7
https://doi.org/10.2202/1446-9022.1119
http://proceedings.mlr.press/v70/gehring17a.html
http://proceedings.mlr.press/v70/gehring17a.html
https://doi.org/10/cmwkfx
https://sigmathling.kwarc.info/resources/arxmliv/

[133] D. Ginev and B. R. Miller. LaTeXML 2012 - A Year of LaTeXML. 2014-04-25. url: http://arxiv.org/
abs/1404.6549 (visited on 2021-08-19) (cit. on pp. 26, 30, 36).

[134] D. Ginev and B. R. Miller. “Scientific Statement Classification over arXiv.Org”. In: Proceedings of The 12th
Language Resources and Evaluation Conference, LREC 2020, Marseille, France, May 11-16, 2020. European
Language Resources Association, 2020, pp. 1219–1226. url: https://aclanthology.org/2020.lrec-
1.153/ (visited on 2021-08-15) (cit. on pp. 109, 138, 140, 146, 154).

[135] D. Ginev, H. Stamerjohanns, B. R. Miller, and M. Kohlhase. “The LaTeXML Daemon: Editable Math on the
Collaborative Web”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 6824. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 292–294. doi: 10.1007/978-3-642-22673-1_25 (cit. on pp. 26,
36, 44).

[136] C. Goller and A. Küchler. “Learning Task-Dependent Distributed Representations by Backpropagation
through Structure”. In: Proceedings of International Conference on Neural Networks (ICNN’96). Washington,
DC, USA: IEEE, 1996, pp. 347–352. doi: 10/d5q65t (cit. on p. 96).

[137] Y. Gong, H. Luo, and J. Zhang. “Natural Language Inference over Interaction Space”. In: 6th International

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference

Track Proceedings. OpenReview.net, 2018. url: https://openreview.net/forum?id=r1dHXnH6-
(visited on 2021-09-05) (cit. on p. 59).

[138] T. Gowers, J. Barrow-Green, and I. Leader. “The Language and Grammar of Mathematics”. In: The Princeton
Companion to Mathematics. Princeton: Princeton University Press, 2008, pp. 8–16. isbn: 978-0-691-11880-2
(cit. on pp. 36, 158).

[139] M. Grigore, M. Wolska, and M. Kohlhase. “Towards Context-Based Disambiguation of Mathematical
Expressions”. In: Joint Conference ASCM and MACIS: Asian Symposium on Computer Mathematics and

Mathematical Aspects of Computer and Information Sciences. 2009, pp. 262–271. url: file : / / /C :
/Users / andre / Zotero / storage / UBJCMNIU / 43bfae6781b11f906db53c3bfd24a7da62278e48 .
html#paper-header (visited on 2021-09-13) (cit. on pp. 12, 22, 23, 53–55, 58).

[140] C. Grün, S. Gath, A. Holupirek, and M. Scholl. “XQuery Full Text Implementation in BaseX”. In: Database
and XML Technologies. Springer Berlin, 2009, pp. 114–128 (cit. on p. 72).

[141] F. Guidi and C. Sacerdoti Coen. “A Survey on Retrieval of Mathematical Knowledge”. In: Mathematics in

Computer Science 10.4 (2016-12), pp. 409–427. issn: 1661-8270, 1661-8289. doi: 10/gfj4mz (cit. on pp. 6,
37, 51, 70).

[142] S. A. Gutnik and V. A. Sarychev. “Application of Computer Algebra Methods to Investigate the Dynamics
of the System of Two Connected Bodies Moving along a Circular Orbit”. In: Programming and Computer

Software 45.2 (2019-03), pp. 51–57. issn: 0361-7688. doi: 10/gn3swd (cit. on p. 32).

[143] D. T. Halbach. “Mathematical World Knowledge Contained in the Multilingual Wikipedia Project”. In:
Mathematical Software – ICMS 2020. Vol. 12097. Cham: Springer International Publishing, 2020, pp. 353–
361. doi: 10.1007/978-3-030-52200-1_35 (cit. on p. 159).

[144] A. Halfaker and R. S. Geiger. “ORES: Lowering Barriers with ParticipatoryMachine Learning inWikipedia”.
In: Proceedings of the ACM on Human-Computer Interaction 4 (CSCW2 2020-10-14), 148:1–148:37. doi:
10/ghf4vb (cit. on pp. 102, 157, 167).

[145] R. Hambasan, M. Kohlhase, and C.-C. Prodescu. “MathWebSearch at NTCIR-11”. In: Proc. Conf. Evaluation
of Information Access Technologies (NTCIR-11). Tokyo, Japan: National Institute of Informatics (NII), 2014.
url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-
2/05-NTCIR11-MATH-HambasanR.pdf (visited on 2021-08-19) (cit. on p. 53).

[146] J. Harrison. “HOL Light: A Tutorial Introduction”. In: Formal Methods in Computer-Aided Design (FMCAD).
Vol. 1166. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 265–269. doi: 10/dtgcxg (cit. on
pp. 25, 34, 116).

[147] J. Harrison, J. Urban, and F. Wiedijk. “History of Interactive Theorem Proving”. In: Handbook of the History
of Logic. Vol. 9. Elsevier, 2014, pp. 135–214. isbn: 978-0-444-51624-4. doi: 10.1016/B978-0-444-
51624-4.50004-6 (cit. on pp. 19, 34).

[148] J. R. Harrison and L. Théry. “A Skeptic’s Approach to Combining HOL andMaple”. In: Journal of Automated

Reasoning 21.3 (1998), pp. 279–294. issn: 0168-7433. doi: 10/bn4tnw (cit. on pp. 34, 116, 125).

180 Bibliography

http://arxiv.org/abs/1404.6549
http://arxiv.org/abs/1404.6549
https://aclanthology.org/2020.lrec-1.153/
https://aclanthology.org/2020.lrec-1.153/
https://doi.org/10.1007/978-3-642-22673-1_25
https://doi.org/10/d5q65t
https://openreview.net/forum?id=r1dHXnH6-
file:///C:/Users/andre/Zotero/storage/UBJCMNIU/43bfae6781b11f906db53c3bfd24a7da62278e48.html#paper-header
file:///C:/Users/andre/Zotero/storage/UBJCMNIU/43bfae6781b11f906db53c3bfd24a7da62278e48.html#paper-header
file:///C:/Users/andre/Zotero/storage/UBJCMNIU/43bfae6781b11f906db53c3bfd24a7da62278e48.html#paper-header
https://doi.org/10/gfj4mz
https://doi.org/10/gn3swd
https://doi.org/10.1007/978-3-030-52200-1_35
https://doi.org/10/ghf4vb
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/05-NTCIR11-MATH-HambasanR.pdf
https://doi.org/10/dtgcxg
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10/bn4tnw

[149] L. He, K. Lee, M. Lewis, and L. Zettlemoyer. “Deep Semantic Role Labeling: What Works andWhat’s Next”.
In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). Association for Computational
Linguistics, 2017, pp. 473–483. doi: 10/ggv89s (cit. on p. 59).

[150] A. Head, K. Lo, D. Kang, et al. “Augmenting Scientific Papers with Just-in-Time, Position-Sensitive Defini-
tions of Terms and Symbols”. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems. Yokohama Japan: ACM, 2021-05-06, pp. 1–18. doi: 10/gksmrc (cit. on pp. 6, 13, 25, 102, 140).

[151] A. C. Hearn. “REDUCE: The First Forty Years”. In: Algorithmic Algebra and Logic. Proceedings of the {A3L};

Conference in Honor of the 60th Birthday of Volker Weispfenning. Books on Demand, 2005, pp. 19–24. url:
http://www.reduce-algebra.com/reduce40.pdf (cit. on pp. 5, 33, 168).

[152] J. Heras, V. Pascual, and J. Rubio. “Using Open Mathematical Documents to Interface Computer Algebra
and Proof Assistant Systems”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 5625. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 467–473. doi: 10/frfjbc (cit. on pp. 6, 20, 21, 23, 25,
34, 115, 131).

[153] T. Hickman, C. P. Laursen, and S. Foster. Certifying Differential Equation Solutions from Computer Algebra

Systems in Isabelle/HOL. 2021-02-04. url: http://arxiv.org/abs/2102.02679 (visited on 2021-08-19)
(cit. on pp. 6, 116).

[154] G. E. Hinton and S. T. Roweis. “Stochastic Neighbor Embedding”. In: Proc. Ann. Conf. Neural Information

Processing Systems (NeurIPS). MIT Press, 2002, pp. 833–840. url: https://proceedings.neurips.cc/
paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html (visited on 2021-09-05)
(cit. on pp. 66, 169).

[155] P. Horn. MuPAD OpenMath Package. 2009. url: http://mupad.symcomp.org/ (visited on 2021-09-23)
(cit. on p. 33).

[156] X. Hu, L. Gao, X. Lin, Z. Tang, X. Lin, and J. B. Baker. “WikiMirs: A Mathematical Information Retrieval
System for Wikipedia”. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries -

JCDL ’13. Indianapolis, Indiana, USA: ACM Press, 2013, p. 11. doi: 10/ggwj8v (cit. on p. 101).

[157] F. Hueske and T. Walther. “Apache Flink”. In: Encyclopedia of Big Data Technologies. Cham: Springer
International Publishing, 2018, pp. 1–8. isbn: 978-3-319-63962-8. doi: 10.1007/978-3-319-63962-
8_303-1 (cit. on p. 84).

[158] I. Huseyinov and F. S. Tabak. “The Evaluation of Computer Algebra Systems Using Fuzzy Multi-Criteria
Decision-Making Models: Fuzzy AHP and Fuzzy TOPSIS”. In: International Journal of Software Innovation
8.1 (2020-01), pp. 1–16. issn: 2166-7160. doi: 10/gn3swq (cit. on p. 32).

[159] S. Hussain, S. Bai, and S. A. Kohja. “Rule Based Conversion of LaTeX Math Equations into Content MathML
(CMML)”. In: Journal of Information Science and Engineering 36.5 (2020), pp. 1021–1034 (cit. on pp. 6, 19,
21–23, 26, 52, 54).

[160] I. Iacobacci, M. T. Pilehvar, and R. Navigli. “Embeddings for Word Sense Disambiguation: An Evaluation
Study”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). The Association for
Computer Linguistics, 2016. doi: 10/ggv7nk (cit. on pp. 59, 63).

[161] I. Iacobacci, M. T. Pilehvar, and R. Navigli. “SensEmbed: Learning Sense Embeddings for Word and
Relational Similarity”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). The
Association for Computer Linguistics, 2015, pp. 95–105. doi: 10/gfzt8q (cit. on p. 63).

[162] M. Iancu, C. Jucovschi, M. Kohlhase, and T. Wiesing. “System Description: MathHub.Info”. In: Proc.
Conf. Intelligent Computer Mathematics (CICM). Vol. 8543. Cham: Springer International Publishing, 2014,
pp. 431–434. doi: 10/gn3szf (cit. on pp. 6, 25).

[163] M. Iancu, M. Kohlhase, F. Rabe, and J. Urban. “The Mizar Mathematical Library in OMDoc: Translation and
Applications”. In: Journal of Automated Reasoning 50.2 (2013-02), pp. 191–202. issn: 0168-7433, 1573-0670.
doi: 10/gn3sxq (cit. on pp. 6, 25).

[164] “Introduction to Matlab”. In: B. Radi and A. El Hami. Advanced Numerical Methods with Matlab 2.
Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018-05-25, pp. 179–188. isbn: 978-1-119-49223-8. doi:
10.1002/9781119492238.app1 (cit. on pp. 32, 33, 166).

[165] P. D. F. Ion and S. M. Watt. “The Global Digital Mathematical Library and the International Mathematical
Knowledge Trust”. In: CICM, Edinburgh, UK. Vol. 10383. 2017, pp. 56–69 (cit. on p. 43).

Bibliography 181

https://doi.org/10/ggv89s
https://doi.org/10/gksmrc
http://www.reduce-algebra.com/reduce40.pdf
https://doi.org/10/frfjbc
http://arxiv.org/abs/2102.02679
https://proceedings.neurips.cc/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html
https://proceedings.neurips.cc/paper/2002/hash/6150ccc6069bea6b5716254057a194ef-Abstract.html
http://mupad.symcomp.org/
https://doi.org/10/ggwj8v
https://doi.org/10.1007/978-3-319-63962-8_303-1
https://doi.org/10.1007/978-3-319-63962-8_303-1
https://doi.org/10/gn3swq
https://doi.org/10/ggv7nk
https://doi.org/10/gfzt8q
https://doi.org/10/gn3szf
https://doi.org/10/gn3sxq
https://doi.org/10.1002/9781119492238.app1

[166] V. Irtegov and T. Titorenko. “On the Study of the Motion of a System of Two Connected Rigid Bodies
by Computer Algebra Methods”. In: International Workshop on Computer Algebra in Scientific Computing

(CASC). Vol. 12291. Linz, Austria: Springer, 2020, pp. 266–281. doi: 10.1007/978-3-030-60026-6_15
(cit. on p. 32).

[167] Isabelle/HOL - A ProofAssistant forHigher-Order Logic. Vol. 2283. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002. isbn: 978-3-540-43376-7. doi: 10.1007/3-540-45949-9
(cit. on pp. 21, 116).

[168] ISO. ISO/IEC 29124:2010: Information technology — Programming languages, their environments and system

software interfaces — Extensions to the C++ Library to support mathematical special functions. Technical
report. 2010. url: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=50511 (visited on 2021-09-23) (cit. on pp. 18, 32).

[169] ISO. ISO/IEC 40314:2016: Mathematical Markup Language (MathML) Version 3.0 2nd Edition. Technical
report. 2016, p. 403. url: https://www.iso.org/standard/58439.html (visited on 2021-09-23)
(cit. on pp. 21, 166).

[170] ISO. ISO/IEC 60559:2020: Information technology — Microprocessor Systems — Floating-Point arithmetic.
Technical report. 2020, p. 74. url: https : / / www . iso . org / standard / 80985 . html (visited on
2021-09-23) (cit. on p. 5).

[171] D. J. Jeffrey and A. C. Norman. “Not Seeing the Roots for the Branches: Multivalued Functions in Computer
Algebra”. In: ACM SIGSAM Bulletin 38.3 (2004-09), pp. 57–66. issn: 0163-5824. doi: 10/bzw56h (cit. on
pp. 34, 130).

[172] D. J. Jeffrey. “Multivalued Elementary Functions in Computer-Algebra Systems”. In: Artificial Intelligence
and Symbolic Computation. Vol. 8884. Cham: Springer International Publishing, 2014, pp. 157–167. doi:
10.1007/978-3-319-13770-4_14 (cit. on pp. 5, 34).

[173] R. D. Jenks and R. S. Sutor. Axiom: The Scientific Computation System. Berlin, Heidelberg: Springer-Verlag,
1992. 742 pp. isbn: 978-0-387-97855-0 (cit. on pp. 5, 18, 162).

[174] M. Johnson, M. Schuster, Q. V. Le, et al. “Google’s Multilingual Neural Machine Translation System:
Enabling Zero-Shot Translation”. In: Transactions of the Association for Computational Linguistics 5.0
(2017), pp. 339–351. issn: 2307-387X. doi: 10/gfzt8s (cit. on p. 100).

[175] D. Joyner. “AMS Special Session on SAGE and Mathematical Research Using Open Source Software”.
In: ACM Communications in Computer Algebra 43.1/2 (2009-09-09), pp. 49–54. issn: 1932-2240. doi:
10/fs4nvd (cit. on p. 18).

[176] D. Joyner. “Open Source Computer Algebra Systems: Axiom”. In: ACM Communications in Computer

Algebra 42.1-2 (2008-07-25), pp. 39–47. issn: 1932-2240. doi: 10/c67rv6 (cit. on pp. 18, 33).

[177] D. Joyner. “Open Source Computer Algebra Systems: GAP”. In: ACM Communications in Computer Algebra

43.3/4 (2010-06-24), pp. 110–118. issn: 1932-2240. doi: 10/d58v72 (cit. on pp. 18, 33, 134).

[178] D. Joyner, O. Čertík, A. Meurer, and B. E. Granger. “Open Source Computer Algebra Systems: SymPy”.
In: ACM Communications in Computer Algebra 45.3/4 (2012-01-23), pp. 225–234. issn: 1932-2240. doi:
10/fzb6dm (cit. on pp. 18, 33).

[179] N. Kajler and N. Soiffer. “A Survey of User Interfaces for Computer Algebra Systems”. In: Journal of
Symbolic Computation 25.2 (1998-02), pp. 127–159. issn: 0747-7171. doi: 10/ctkv49 (cit. on p. 20).

[180] C. Kaliszyk and F. Wiedijk. “Certified Computer Algebra on Top of an Interactive Theorem Prover”. In:
Towards Mechanized Mathematical Assistants. Vol. 4573. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 94–105. doi: 10.1007/978-3-540-73086-6_8 (cit. on pp. 115, 116).

[181] S. Kamali and F. W. Tompa. “A New Mathematics Retrieval System”. In: Proceedings of the 19th ACM

International Conference on Information and Knowledge Management - CIKM ’10. Toronto, ON, Canada:
ACM Press, 2010, p. 1413. doi: 10/ckfzxp (cit. on pp. 6, 72).

[182] S. Kamali and F. W. Tompa. “Retrieving Documents with Mathematical Content”. In: Proceedings of the
36th International ACM SIGIR Conference on Research and Development in Information Retrieval. Dublin
Ireland: ACM, 2013-07-28, pp. 353–362. doi: 10/gn3szd (cit. on pp. 6, 72).

182 Bibliography

https://doi.org/10.1007/978-3-030-60026-6_15
https://doi.org/10.1007/3-540-45949-9
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50511
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50511
https://www.iso.org/standard/58439.html
https://www.iso.org/standard/80985.html
https://doi.org/10/bzw56h
https://doi.org/10.1007/978-3-319-13770-4_14
https://doi.org/10/gfzt8s
https://doi.org/10/fs4nvd
https://doi.org/10/c67rv6
https://doi.org/10/d58v72
https://doi.org/10/fzb6dm
https://doi.org/10/ctkv49
https://doi.org/10.1007/978-3-540-73086-6_8
https://doi.org/10/ckfzxp
https://doi.org/10/gn3szd

[183] D. Kang, A. Head, R. Sidhu, K. Lo, D. Weld, and M. A. Hearst. “Document-Level Definition Detection in
Scholarly Documents: Existing Models, Error Analyses, and Future Directions”. In: Proceedings of the
First Workshop on Scholarly Document Processing. Online: Association for Computational Linguistics, 2020,
pp. 196–206. doi: 10/gjzg7z (cit. on pp. 4, 53–55, 104, 109, 138, 140, 146, 154).

[184] N. P. Karampetakis and A. I. G. Vardulakis. “Special Issue on the Use of Computer Algebra Systems for
Computer Aided Control System Design”. In: International Journal of Control 79.11 (2006-11), pp. 1313–
1320. issn: 0020-7179, 1366-5820. doi: 10/fbft5v (cit. on pp. 2, 6).

[185] M. T. Khan. “Formal Specification and Verification of Computer Algebra Software”. PhD thesis. Linz
Austria: Johannes Kepler University Linz, 2014-04. 188 pp. url: https : / / www3 . risc . jku . at /
publications/download/risc_4981/main.pdf (cit. on p. 116).

[186] Y. Kim. “Convolutional Neural Networks for Sentence Classification”. In: Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar: ACL, 2014, pp. 1746–1751.
doi: 10/gf6d4z (cit. on p. 59).

[187] D. E. Knuth. “Literate Programming”. In: The Computer Journal 27.2 (1984-02-01), pp. 97–111. issn:
0010-4620, 1460-2067. doi: 10/c73jjw (cit. on pp. 26, 36).

[188] D. E. Knuth. “Semantics of Context-Free Languages”. In: Mathematical Systems Theory 2.2 (1968-06),
pp. 127–145. issn: 0025-5661, 1433-0490. doi: 10/fmtcmt (cit. on p. 35).

[189] D. E. Knuth. Digital Typography. Vol. 78. CSLI Lecture Notes. Stanford, Calif: Cambridge University Press,
1999. 685 pp. isbn: 978-1-57586-010-7 (cit. on p. 25).

[190] W. Koepf. “On Two Conjectures of M. S. Robertson”. In: Complex Variables, Theory and Application: An

International Journal 16.2-3 (1991-04), pp. 127–130. issn: 0278-1077. doi: 10/c2gs3m (cit. on p. 125).

[191] A. Kohlhase. “Factors for Reading Mathematical Expressions”. In: Proceedings of the Conference "Lernen,
Wissen, Daten, Analysen", LWDA 2018, Mannheim, Germany, August 22-24, 2018. Vol. 2191. Mannheim,
Germany: CEUR-WS.org, 2018, pp. 195–202. url: http://ceur-ws.org/Vol-2191/paper24.pdf
(cit. on p. 71).

[192] A. Kohlhase and M. Fürsich. “Understanding Mathematical Expressions: An Eye-Tracking Study”. In:
Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 1785. Bialystok, Poland: CEUR-WS.org, 2016,
pp. 42–50. doi: 10/gn3szj (cit. on p. 35).

[193] A. Kohlhase, M. Kohlhase, and M. Fürsich. “Visual Structure in Mathematical Expressions”. In: Proc. Conf.
Intelligent Computer Mathematics (CICM). Edinburgh, UK: Springer, 2017, pp. 208–223. doi: 10.1007/
978-3-319-62075-6_15 (cit. on p. 71).

[194] A. Kohlhase, M. Kohlhase, and C. Lange. “Dimensions of Formality: A Case Study for MKM in Software
Engineering”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 6167. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 355–369. doi: 10/ckpnmz (cit. on p. 30).

[195] A. Kohlhase, M. Kohlhase, and C. Lange. “sTeX+: A System for Flexible Formalization of Linked Data”.
In: Proceedings of the 6th International Conference on Semantic Systems - I-SEMANTICS ’10. Graz, Austria:
ACM Press, 2010, p. 1. doi: 10/d8gqrz (cit. on pp. 21, 30, 31).

[196] A. Kohlhase, M. Kohlhase, andT. Ouypornkochagorn. “Discourse Phenomena inMathematicalDocuments”.
In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 11006. Hagenberg, Austria: Springer, 2018,
pp. 147–163. doi: 10.1007/978-3-319-96812-4_14 (cit. on p. 71).

[197] M. Kohlhase. “Math Object Identifiers - Towards Research Data in Mathematics”. In: Lernen, Wissen, Daten,

Analysen (LWDA) Conference Proceedings, Rostock, Germany, September 11-13, 2017. Vol. 1917. CEUR-
WS.org, 2017, p. 241. url: http://ceur-ws.org/Vol-1917/paper33.pdf (visited on 2021-09-05)
(cit. on p. 61).

[198] M. Kohlhase. OMDoc – AnOpenMarkup Format forMathematical Documents [Version 1.2]. Vol. 4180. Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. isbn: 978-3-540-37898-3.
doi: 10.1007/11826095 (cit. on pp. 20, 21, 23, 25, 167).

[199] M. Kohlhase. “OMDoc: An Infrastructure for OpenMath Content Dictionary Information”. In: ACM
SIGSAM Bulletin 34.2 (2000-06), pp. 43–48. issn: 0163-5824. doi: 10/b6kd75 (cit. on p. 25).

[200] M. Kohlhase. “Using LaTeX as a Semantic Markup Format”. In: Mathematics in Computer Science 2.2
(2008-12), pp. 279–304. issn: 1661-8270, 1661-8289. doi: 10/d8f56x (cit. on pp. 18, 20, 30, 31, 169).

Bibliography 183

https://doi.org/10/gjzg7z
https://doi.org/10/fbft5v
https://www3.risc.jku.at/publications/download/risc_4981/main.pdf
https://www3.risc.jku.at/publications/download/risc_4981/main.pdf
https://doi.org/10/gf6d4z
https://doi.org/10/c73jjw
https://doi.org/10/fmtcmt
https://doi.org/10/c2gs3m
http://ceur-ws.org/Vol-2191/paper24.pdf
https://doi.org/10/gn3szj
https://doi.org/10.1007/978-3-319-62075-6_15
https://doi.org/10.1007/978-3-319-62075-6_15
https://doi.org/10/ckpnmz
https://doi.org/10/d8gqrz
https://doi.org/10.1007/978-3-319-96812-4_14
http://ceur-ws.org/Vol-1917/paper33.pdf
https://doi.org/10.1007/11826095
https://doi.org/10/b6kd75
https://doi.org/10/d8f56x

[201] M. Kohlhase, J. Corneli, C. David, et al. “The Planetary System: Web 3.0 & Active Documents for STEM”.
In: Procedia Computer Science 4 (2011), pp. 598–607. issn: 1877-0509. doi: 10/fhcbcr (cit. on pp. 6, 25, 33).

[202] M. Kohlhase and M. Iancu. “Discourse-Level Parallel Markup and Meaning Adoption in Flexiformal Theory
Graphs”. In: Mathematical Software – ICMS 2014. Vol. 8592. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, pp. 36–40. doi: 10.1007/978-3-662-44199-2_7 (cit. on p. 22).

[203] M. Kohlhase, B. A. Matican, and C.-C. Prodescu. “MathWebSearch 0.5: Scaling an Open Formula Search
Engine”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Bremen, Germany: Springer Berlin
Heidelberg, 2012, pp. 342–357. doi: 10.1007/978-3-642-31374-5_23 (cit. on p. 6).

[204] M. Kohlhase and F. Rabe. “Semantics of OpenMath and MathML3”. In: Mathematics in Computer Science

6.3 (2012-09), pp. 235–260. issn: 1661-8289. doi: 10/gn3sw5 (cit. on pp. 22, 23, 104).

[205] M. Kohlhase, F. Rabe, and M. Wenzel. “Making Isabelle Content Accessible in Knowledge Representation
Formats”. In: 25th International Conference on Types for Proofs and Programs, TYPES 2019, June 11-14,

2019, Oslo, Norway. Vol. 175. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 1:1–1:24. doi:
10/gn3sw3 (cit. on pp. 20, 21).

[206] A. Konovalov and S. Linton. Symbolic Computation Software Composability Protocol - GAP Package. Ver-
sion 2.3.1. 2020. url: https://www.gap- system.org/Manuals/pkg/SCSCP/doc/chap0.html
(visited on 2021-09-23) (cit. on p. 33).

[207] I. S. Kotsireas and E. Martínez-Moro. Applications of Computer Algebra. Vol. 198. Springer Proceedings in
Mathematics & Statistics. Cham: Springer International Publishing, 2017. 515 pp. isbn: 978-3-319-56930-7.
doi: 10.1007/978-3-319-56932-1 (cit. on pp. 1, 2).

[208] G. Y. Kristianto and A. Aizawa. “Linking Mathematical Expressions to Wikipedia”. In: Proceedings of the 1st
Workshop on Scholarly Web Mining - SWM ’17. Cambridge, United Kingdom: ACM Press, 2017, pp. 57–64.
doi: 10/gn3szb (cit. on pp. 6, 52, 53).

[209] G. Y. Kristianto, M.-Q. Nghiem, Y. Matsubayashi, and A. Aizawa. “Extracting Definitions of Mathematical
Expressions in Scientific Papers”. In: Proceedings of The Japanese Society for Artificial Intelligence. The
Japanese Society for Artificial Intelligence, 2012. doi: 10/gn3sxh (cit. on pp. 52, 58, 146).

[210] G. Y. Kristianto, G. Topic, and A. Aizawa. “MCAT Math Retrieval System for NTCIR-12 MathIR Task”.
In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-12). Tokyo, Japan: National Institute
of Informatics (NII), 2016. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedin
gs12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf (visited on 2021-08-19) (cit. on
p. 53).

[211] G. Y. Kristianto, G. Topic, F. Ho, and A. Aizawa. “The MCAT Math Retrieval System for NTCIR-11
Math Track”. In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-11). Tokyo, Japan:
National Institute of Informatics (NII), 2014. url: http://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings11/pdf/NTCIR/Math-2/06-NTCIR11-MATH-KristiantoGY.pdf (visited on
2021-08-19) (cit. on pp. 6, 53, 72).

[212] G. Y. Kristianto, G. Topić, and A. Aizawa. “Entity Linking for Mathematical Expressions in Scientific
Documents”. In: Digital Libraries: Knowledge, Information, and Data in an Open Access Society. Vol. 10075.
Cham: Springer International Publishing, 2016, pp. 144–149. doi: 10/gn3sx8 (cit. on pp. 6, 53).

[213] G. Y. Kristianto, G. Topić, and A. Aizawa. “Extracting Textual Descriptions of Mathematical Expressions in
Scientific Papers”. In: D-Lib Magazine 20.11/12 (2014-11). issn: 1082-9873. doi: 10/ggwj88 (cit. on pp. 58,
61, 104, 109, 110).

[214] G. Y. Kristianto, G. Topić, and A. Aizawa. “Utilizing Dependency Relationships between Math Expressions
in Math IR”. In: Information Retrieval Journal 20.2 (2017-04), pp. 132–167. issn: 1386-4564, 1573-7659. doi:
10/ggv8gd (cit. on pp. 4, 12, 53–55, 63, 71, 76, 90, 104, 108–110, 116, 138, 151).

[215] K. Krstovski and D. M. Blei. Equation Embeddings. 2018-03-24. url: http://arxiv.org/abs/1803.
09123 (visited on 2021-06-30) (cit. on pp. 11, 26, 37, 38, 52, 53, 59, 62, 70).

[216] D. S. Kulyabov. “Using Two Types of Computer Algebra Systems to Solve Maxwell Optics Problems”. In:
Programming and Computer Software 42.2 (2016-03), pp. 77–83. issn: 0361-7688. doi: 10/gn3swk (cit. on
p. 32).

[217] S. Lai, K. Liu, S. He, and J. Zhao. “How to Generate a Good Word Embedding”. In: IEEE Intelligent Systems

31.6 (2016-11), pp. 5–14. issn: 1541-1672. doi: 10/gg3jbp (cit. on p. 59).

184 Bibliography

https://doi.org/10/fhcbcr
https://doi.org/10.1007/978-3-662-44199-2_7
https://doi.org/10.1007/978-3-642-31374-5_23
https://doi.org/10/gn3sw5
https://doi.org/10/gn3sw3
https://www.gap-system.org/Manuals/pkg/SCSCP/doc/chap0.html
https://doi.org/10.1007/978-3-319-56932-1
https://doi.org/10/gn3szb
https://doi.org/10/gn3sxh
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/06-NTCIR11-MATH-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/06-NTCIR11-MATH-KristiantoGY.pdf
https://doi.org/10/gn3sx8
https://doi.org/10/ggwj88
https://doi.org/10/ggv8gd
http://arxiv.org/abs/1803.09123
http://arxiv.org/abs/1803.09123
https://doi.org/10/gn3swk
https://doi.org/10/gg3jbp

[218] L. Lamban, J. Rubio, F. J. Martin-Mateos, and J. L. Ruiz-Reina. “Verifying the Bridge between Simplicial
Topology and Algebra: The Eilenberg-Zilber Algorithm”. In: Logic Journal of IGPL 22.1 (2014-02-01),
pp. 39–65. issn: 1367-0751, 1368-9894. doi: 10/gn3sxb (cit. on p. 116).

[219] G. Lample and F. Charton. “Deep Learning For Symbolic Mathematics”. In: 8th International Conference

on Learning Representations. Addis Ababa, Ethiopia: OpenReview.net, 2020. url: https://openreview.
net/forum?id=S1eZYeHFDS (visited on 2021-09-10) (cit. on p. 96).

[220] L. Lamport. LaTeX: A Document Preparation System. Reading, Mass: Addison-Wesley Pub. Co, 1986. 242 pp.
isbn: 978-0-201-15790-1 (cit. on pp. 2, 18, 25).

[221] J. H. Lau and T. Baldwin. “An Empirical Evaluation of Doc2vec with Practical Insights into Document Em-
bedding Generation”. In: Proceedings of the 1stWorkshop on Representation Learning for NLP, Rep4NLP@ACL

2016, Berlin, Germany, August 11, 2016. Association for Computational Linguistics, 2016, pp. 78–86. doi:
10/ggv7nm (cit. on p. 64).

[222] Q. V. Le and T. Mikolov. “Distributed Representations of Sentences and Documents”. In: Proceedings of
the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. Vol. 32.
JMLR.org, 2014, pp. 1188–1196. url: http://proceedings.mlr.press/v32/le14.html (visited on
2021-09-05) (cit. on pp. 59, 62, 64, 65, 163).

[223] K. Lee, L. He, M. Lewis, and L. Zettlemoyer. “End-to-End Neural Coreference Resolution”. In: Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, (EMNLP). Copenhagen, Denmark:
Association for Computational Linguistics, 2017, pp. 188–197. doi: 10/gfwtnp (cit. on p. 59).

[224] W. Lee, R. Sharma, and A. Aiken. “On Automatically Proving the Correctness of Math.h Implementations”.
In: Proceedings of the ACM on Programming Languages 2.47 (2018-01), pp. 1–32. issn: 2475-1421. doi:
10/gn3sw9 (cit. on p. 116).

[225] K. R. M. Leino. “Program Proving Using Intermediate Verification Languages (IVLs) like Boogie andWhy3”.
In: ACM SIGAda Ada Letters 32.3 (2012-11-29), pp. 25–26. issn: 1094-3641. doi: 10/gn3sw8 (cit. on p. 116).

[226] F. Lemmerich, D. Sáez-Trumper, R. West, and L. Zia. “Why the World Reads Wikipedia: Beyond English
Speakers”. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.
Melbourne VIC Australia: ACM, 2019-01-30, pp. 618–626. doi: 10/fgnn (cit. on p. 157).

[227] V. I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and Reversals”. In: Soviet
Physics Doklady 10.8 (1966). url: https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
(cit. on p. 97).

[228] R. H. Lewis and M. Wester. “Comparison of Polynomial-Oriented Computer Algebra Systems”. In: ACM
SIGSAM Bulletin 33.4 (1999-12), pp. 5–13. issn: 0163-5824. doi: 10/bbgvz8 (cit. on p. 116).

[229] J. Li and D. Jurafsky. “Do Multi-Sense Embeddings Improve Natural Language Understanding?” In: Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Lisbon,
Portugal: The Association for Computational Linguistics, 2015, pp. 1722–1732. doi: 10/gfzmfk (cit. on
p. 63).

[230] X. Lin, L. Gao, Z. Tang, X. Hu, and X. Lin. “Identification of Embedded Mathematical Formulas in PDF
Documents Using SVM”. In: Document Recognition and Retrieval XIX, Part of the IS&T-SPIE Electronic

Imaging Symposium, Burlingame, California, USA, January 25-26, 2012, Proceedings. Vol. 8297. SPIE, 2012,
p. 82970D. doi: 10/bs8gkt (cit. on p. 36).

[231] A. Lipani, L. Andersson, F. Piroi, M. Lupu, and A. Hanbury. “TUW-IMP at the NTCIR-11 Math-2”. In:
Proc. Conf. Evaluation of Information Access Technologies (NTCIR-11). Tokyo, Japan: National Institute of
Informatics (NII), 2014. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings
11/pdf/NTCIR/Math-2/09-NTCIR11-MATH-LipaniA.pdf (cit. on pp. 72, 75).

[232] M. Líska, P. Sojka, and M. Ruzicka. “Similarity Search for Mathematics: Masaryk University Team at the
NTCIR-10 Math Task”. In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-10). Tokyo,
Japan: National Institute of Informatics (NII), 2013. url: http://research.nii.ac.jp/ntcir/
workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf (visited on
2021-08-19) (cit. on p. 53).

[233] J. Liu, H. Li, S. Zhang, and W. Liang. “A Novel Italic Detection and Rectification Method for Chinese
Advertising Images”. In: 2011 International Conference on Document Analysis and Recognition, ICDAR 2011,

Beijing, China, September 18-21, 2011. IEEE Computer Society, 2011, pp. 698–702. doi: 10/fmqzm6 (cit. on
p. 37).

Bibliography 185

https://doi.org/10/gn3sxb
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=S1eZYeHFDS
https://doi.org/10/ggv7nm
http://proceedings.mlr.press/v32/le14.html
https://doi.org/10/gfwtnp
https://doi.org/10/gn3sw9
https://doi.org/10/gn3sw8
https://doi.org/10/fgnn
https://nymity.ch/sybilhunting/pdf/Levenshtein1966a.pdf
https://doi.org/10/bbgvz8
https://doi.org/10/gfzmfk
https://doi.org/10/bs8gkt
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/09-NTCIR11-MATH-LipaniA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/09-NTCIR11-MATH-LipaniA.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/06-NTCIR10-MATH-LiskaM.pdf
https://doi.org/10/fmqzm6

[234] X. Liu, Y. Shen, K. Duh, and J. Gao. “Stochastic Answer Networks for Machine Reading Comprehension”.
In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). Association for Computational
Linguistics, 2018, pp. 1694–1704. doi: 10/gkz6nx (cit. on p. 59).

[235] Y. Liu, M. Ott, N. Goyal, et al. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: CoRR
abs/1907.11692 (2019). url: http://arxiv.org/abs/1907.11692 (visited on 2021-09-05) (cit. on p. 63).

[236] A. Lohia, K. Sinha, S. Vadapalli, and K. Karlapalem. “An Architecture for Searching and Indexing Latex
Equations in Scientific Literature”. In: Proc. COMAD. Goa, India: Computer Society of India, 2005, pp. 122–
130. url: http://comad2005.persistent.co.in/COMAD2005Proc/pages122-130.pdf (cit. on
pp. 6, 72).

[237] H. Makishita. “Practice with Computer Algebra Systems in Mathematics Education and Teacher Training
Courses”. In: Proceedings of the International Conference on Mathematical Software (ICMS). Vol. 8592. Seoul,
South Korea: Springer, 2014, pp. 594–600. doi: 10/gn3swr (cit. on pp. 2, 32).

[238] M. Mancini, J. Camacho-Collados, I. Iacobacci, and R. Navigli. “Embedding Words and Senses Together
via Joint Knowledge-Enhanced Training”. In: Proceedings of the 21st Conference on Computational Natural

Language Learning (CoNLL 2017), Vancouver, Canada, August 3-4, 2017. Association for Computational
Linguistics, 2017, pp. 100–111. doi: 10/gn3sxd (cit. on p. 63).

[239] J. Mannes. Facebook’s fastText library is now optimized for mobile. https://techcrunch.com/2017/05/
02/facebooks-fasttext-library-is-now-optimized-for-mobile/ [Accessed: 21st Sep. 2019].
2017 (cit. on p. 59).

[240] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. “The Stanford CoreNLP Natural
Language Processing Toolkit”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL).
Baltimore, Maryland: Association for Computational Linguistics, 2014, pp. 55–60. doi: 10/gf3xhp (cit. on
pp. 108, 163).

[241] B. Mansouri, A. Agarwal, D. W. Oard, and R. Zanibbi. “Advancing Math-Aware Search: The ARQMath-2
Lab at CLEF 2021”. In: Advances in Information Retrieval - 43rd European Conference on IR Research, ECIR

2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part II. Vol. 12657. Springer, 2021, pp. 631–638.
doi: 10/gn3sxk (cit. on p. 52).

[242] B. Mansouri, S. Rohatgi, D. W. Oard, J. Wu, C. L. Giles, and R. Zanibbi. “Tangent-CFT: An Embedding
Model for Mathematical Formulas”. In: Proceedings of the 2019 ACM SIGIR International Conference on

Theory of Information Retrieval, ICTIR 2019, Santa Clara, CA, USA, October 2-5, 2019. ACM, 2019, pp. 11–18.
doi: 10/ghp438 (cit. on pp. 11, 21, 36, 52).

[243] Maple SCSCP Client. Version Maple 16. Maplesoft. url: https://www.maplesoft.com/products/
maple/new_features/maple16/connectivity.aspx (visited on 2021-09-23) (cit. on pp. 25, 33).

[244] N. Marshall, C. Buteau, D. H. Jarvis, and Z. Lavicza. “Do Mathematicians Integrate Computer Algebra
Systems in University Teaching? Comparing a Literature Review to an International Survey Study”. In:
Computers & Education 58.1 (2012-01), pp. 423–434. issn: 0360-1315. doi: 10/c72gss (cit. on p. 32).

[245] R. Martinez. Latex2mathml. 2018. url: https://github.com/roniemartinez/latex2mathml (visited
on 2021-09-23) (cit. on pp. 49, 54).

[246] MATLAB. Version R2021a. MathWorks, 2021. url: https://www.mathworks.com/products/matlab.
html (visited on 2021-09-23) (cit. on pp. 2, 5, 166).

[247] T. Matsuzaki, H. Iwane, H. Anai, and N. H. Arai. “The Most Uncreative Examinee: A First Step toward
Wide Coverage Natural Language Math Problem Solving”. In: Proceedings of the Twenty-Eighth AAAI

Conference on Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. AAAI Press, 2014,
pp. 1098–1104. url: http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8524
(visited on 2021-09-05) (cit. on p. 69).

[248] D. Matthews. “Craft Beautiful Equations in Word with LaTeX”. In: Nature 570.7760 (2019-06), pp. 263–264.
issn: 0028-0836, 1476-4687. doi: 10/gf3wdq (cit. on pp. 2, 19).

[249] A. Mazzei, M. Monticone, and C. Bernareggi. “Using NLG for Speech Synthesis of Mathematical Sentences”.
In: Proceedings of the 12th International Conference on Natural Language Generation, INLG 2019, Tokyo,

Japan, October 29 - November 1, 2019. Association for Computational Linguistics, 2019, pp. 463–472. doi:
10/gn3sww (cit. on p. 21).

186 Bibliography

https://doi.org/10/gkz6nx
http://arxiv.org/abs/1907.11692
http://comad2005.persistent.co.in/COMAD2005Proc/pages122-130.pdf
https://doi.org/10/gn3swr
https://doi.org/10/gn3sxd
https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://doi.org/10/gf3xhp
https://doi.org/10/gn3sxk
https://doi.org/10/ghp438
https://www.maplesoft.com/products/maple/new_features/maple16/connectivity.aspx
https://www.maplesoft.com/products/maple/new_features/maple16/connectivity.aspx
https://doi.org/10/c72gss
https://github.com/roniemartinez/latex2mathml
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8524
https://doi.org/10/gf3wdq
https://doi.org/10/gn3sww

[250] B. McCann, J. Bradbury, C. Xiong, and R. Socher. “Learned in Translation: Contextualized Word Vectors”.
In: Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS). 2017, pp. 6294–6305. url: https://
proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.
html (visited on 2021-09-05) (cit. on p. 59).

[251] D. McKain. SnuggleTeX. Version 1.2.2. The University of Edinburgh, 2010. url: https://www2.ph.ed.
ac.uk/snuggletex (visited on 2021-09-23) (cit. on pp. 3, 4, 26, 49, 54, 169).

[252] A. Meurer, C. P. Smith, M. Paprocki, et al. “SymPy: Symbolic Computing in Python”. In: PeerJ Computer

Science 3 (2017-01-02), e103. issn: 2376-5992. doi: 10/gfb682 (cit. on pp. 2, 4, 5, 18, 32, 33, 169).

[253] N. Meuschke, M. Schubotz, F. Hamborg, T. Skopal, and B. Gipp. “Analyzing Mathematical Content to
Detect Academic Plagiarism”. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge

Management. Singapore Singapore: ACM, 2017-11-06, pp. 2211–2214. doi: 10/cf9g (cit. on pp. 6, 42, 72,
89).

[254] N. Meuschke, V. Stange, M. Schubotz, M. Kramer, and B. Gipp. “Improving Academic Plagiarism Detection
for STEM Documents by Analyzing Mathematical Content and Citations”. In: 2019 ACM/IEEE Joint

Conference on Digital Libraries (JCDL). Champaign, IL, USA: IEEE, 2019-06, pp. 120–129. doi: 10/ggv8jd
(cit. on pp. 6, 72, 89).

[255] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word Representations in Vector
Space”. In: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,

May 2-4, 2013, Workshop Track Proceedings. 2013. url: http://arxiv.org/abs/1301.3781 (visited on
2021-09-05) (cit. on pp. 59, 64).

[256] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed Representations of Words and
Phrases and Their Compositionality”. In: Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS).
Lake Tahoe, Nevada, USA: Curran Associates Inc., 2013, pp. 3111–3119. url: https://proceedings.
neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html (visited
on 2021-09-05) (cit. on pp. 11, 37, 59, 61–64).

[257] B. R. Miller. LaTeXML: A LATEX to XML Converter. http://dlmf.nist.gov/LaTeXML/. Accessed:
2019-09-01. url: http://dlmf.nist.gov/LaTeXML/ (cit. on pp. 20–22, 26, 30, 31, 36, 44, 49, 54, 73, 81).

[258] B. R. Miller. “RFC: DLMF Content Dictionaries”. In: Proc. Conf. Intelligent Computer Mathematics (CICM).
Vol. 2307. Hagenberg, Austria, 2018. url: http://ceur-ws.org/Vol-2307/paper52.pdf (cit. on
pp. 24, 29).

[259] B. R. Miller. “Strategies for Parallel Markup”. In: Proc. Conf. Intelligent Computer Mathematics (CICM).
Vol. 9150. Cham: Springer International Publishing, 2015, pp. 203–210. doi: 10/gn3sxx (cit. on pp. 22, 23,
52, 54).

[260] B. R. Miller and A. Youssef. “Technical Aspects of the Digital Library ofMathematical Functions”. In: Annals
of Mathematics and Artificial Intelligence 38.1/3 (2003), pp. 121–136. issn: 1012-2443. doi: 10.1023/A:
1022967814992 (cit. on pp. 18, 20, 28, 29, 47, 91, 102, 104, 110, 115, 140, 153).

[261] G. A. Miller. “WordNet: A Lexical Database for English”. In: Commun. ACM 38.11 (1995), pp. 39–41. doi:
10/d2hsft (cit. on pp. 54, 69).

[262] M. Minimair. “Collaborative Computer Algebra Systems”. In: ACM Communications in Computer Algebra.
Springer Proceedings in Mathematics & Statistics 49.2 (2017), pp. 56–57. doi: 10/gn3swm (cit. on pp. 2, 32).

[263] P.-E. Moreau, C. Ringeissen, and M. Vittek. “A Pattern Matching Compiler for Multiple Target Languages”.
In: Compiler Construction. Vol. 2622. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 61–76. doi:
10/d5325w (cit. on p. 104).

[264] J. Moses. “Macsyma: A Personal History”. In: Journal of Symbolic Computation 47.2 (2012-02), pp. 123–130.
issn: 0747-7171. doi: 10/fkvt9t (cit. on pp. 33, 166).

[265] A. Navarro and V. Vassiliadis. “Computer Algebra Systems Coming of Age: Dynamic Simulation and
Optimization of DAE Systems in Mathematica™”. In: Computers & Chemical Engineering 62 (2014-03),
pp. 125–138. issn: 0098-1354. doi: 10/f5q9pj (cit. on p. 32).

[266] M. S. Nawaz, M. Malik, Y. Li, M. Sun, and M. I. U. Lali. A Survey on Theorem Provers in Formal Methods.
2019-12-06. url: http://arxiv.org/abs/1912.03028 (visited on 2021-08-19) (cit. on pp. 18, 19, 34).

Bibliography 187

https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/20c86a628232a67e7bd46f76fba7ce12-Abstract.html
https://www2.ph.ed.ac.uk/snuggletex
https://www2.ph.ed.ac.uk/snuggletex
https://doi.org/10/gfb682
https://doi.org/10/cf9g
https://doi.org/10/ggv8jd
http://arxiv.org/abs/1301.3781
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/9aa42b31882ec039965f3c4923ce901b-Abstract.html
http://dlmf.nist.gov/LaTeXML/
http://dlmf.nist.gov/LaTeXML/
http://ceur-ws.org/Vol-2307/paper52.pdf
https://doi.org/10/gn3sxx
https://doi.org/10.1023/A:1022967814992
https://doi.org/10.1023/A:1022967814992
https://doi.org/10/d2hsft
https://doi.org/10/gn3swm
https://doi.org/10/d5325w
https://doi.org/10/fkvt9t
https://doi.org/10/f5q9pj
http://arxiv.org/abs/1912.03028

[267] A. Nazemi, I. Murray, and D. A. McMeekin. “Mathematical Information Retrieval (MIR) from Scanned
PDF Documents and MathML Conversion”. In: IPSJ Transactions on Computer Vision and Applications 6.0
(2014), pp. 132–142. issn: 1882-6695. doi: 10/gn3sx3 (cit. on pp. 19, 22, 26).

[268] A. Neelakantan, J. Shankar, A. Passos, and A. McCallum. “Efficient Non-parametric Estimation of Multiple
Embeddings per Word in Vector Space”. In: Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP). Doha, Qatar: ACL, 2014, pp. 1059–1069. doi: 10/ggwj6j (cit. on
p. 63).

[269] M.-Q. Nghiem, G. Y. Kristianto, and A. Aizawa. “Mining Coreference Relations between Formulas and
Text Using Wikipedia”. In: Proceedings of 2nd Workshop on NLP Challenges in the Information Explosion

Era (NLPIX). 2010, pp. 69–74 (cit. on p. 54).

[270] M.-Q. Nghiem, G. Y. Kristianto, and A. Aizawa. “Using MathML Parallel Markup Corpora for Semantic
Enrichment of Mathematical Expressions”. In: IEICE Transactions on Information and Systems E96.D.8
(2013), pp. 1707–1715. issn: 0916-8532, 1745-1361. doi: 10/gbdkh3 (cit. on pp. 6, 18, 20, 22, 52, 54, 104,
169).

[271] M.-Q. Nghiem, G. Y. Kristianto, Y. Matsubayashi, and A. Aizawa. “Automatic Approach to Understanding
Mathematical Expressions Using Mathml Parallel Markup Corpora”. In: Proceedings of the 26th Annu. Conf.
of the Japanese Society for Artificial Intelligence. 2012. url: http://inftyreader.org/inftyreader-
kb/Automatic%20Approach%20to%20Understanding%20Mathematical%20Expressions%20Using
%20MathML%20Parallel%20Markup%20Corpora.pdf (cit. on pp. 42, 54).

[272] M. Nickel and D. Kiela. “Poincaré Embeddings for Learning Hierarchical Representations”. In: Proc. Ann.
Conf. Neural Information Processing Systems (NeurIPS). 2017, pp. 6338–6347. url: https://proceedings.
neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html (visited
on 2021-09-05) (cit. on p. 59).

[273] G. Nishizawa, J. Liu, Y. Diaz, A. Dmello, W. Zhong, and R. Zanibbi. “MathSeer: A Math-Aware Search
Interface with Intuitive Formula Editing, Reuse, and Lookup”. In: Advances in Information Retrieval.
Vol. 12036. Cham: Springer International Publishing, 2020, pp. 470–475. doi: 10.1007/978-3-030-
45442-5_60 (cit. on pp. 32, 53).

[274] S. Ohashi, G. Y. Kristianto, G. Topic, and A. Aizawa. “Efficient Algorithm for Math Formula Semantic
Search”. In: IEICE Transactions 99-D.4 (2016), pp. 979–988. doi: 10.1587/transinf.2015DAP0023
(cit. on pp. 6, 72).

[275] A. Ohri and T. Schmah. “Machine Translation of Mathematical Text”. In: IEEE Access 9 (2021), pp. 38078–
38086. issn: 2169-3536. doi: 10/gnbwh7 (cit. on p. 96).

[276] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST Handbook of Mathematical Functions.
Cambridge New York: Cambridge University Press NIST, 2010. 968 pp. isbn: 9780521192255 (cit. on pp. 5,
29, 115, 164, 167).

[277] M. Ott, S. Edunov, D. Grangier, and M. Auli. “Scaling Neural Machine Translation”. In: Proceedings
of the Third Conference on Machine Translation: Research Papers. Belgium, Brussels: Association for
Computational Linguistics, 2018, pp. 1–9. doi: 10/ggcmmz (cit. on pp. 96, 97).

[278] L. Padovani. “On the Roles of LATEX and MathML in Encoding and Processing Mathematical Expressions”.
In: Mathematical Knowledge Management (MKM), Bertinoro, Italy. Vol. 2594. 2003, pp. 66–79. isbn: 3-540-
00568-4. doi: 10.1007/3-540-36469-2_6 (cit. on p. 42).

[279] R. Pagel andM. Schubotz. “Mathematical Language Processing Project”. In: Proc. Conf. Intelligent Computer

Mathematics (CICM). Vol. 1186. CEUR-WS.org, 2014. url: http://ceur-ws.org/Vol-1186/paper-
23.pdf (visited on 2021-08-19) (cit. on pp. 12, 52–55, 63, 92, 104, 108–110, 151, 167).

[280] S. Pakin. The Comprehensive LaTeX Symbol List. 2021-05-05, p. 422. url: https://ftp.kddilabs.jp/
CTAN/info/symbols/comprehensive/symbols-a4.pdf (cit. on p. 31).

[281] M. Palmer, P. R. Kingsbury, and D. Gildea. “The Proposition Bank: An Annotated Corpus of Semantic
Roles”. In: Comput. Linguistics 31.1 (2005), pp. 71–106. doi: 10.1162/0891201053630264 (cit. on p. 70).

[282] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “BLEU: A Method for Automatic Evaluation of Machine
Translation”. In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). Philadelphia,
Pennsylvania: Association for Computational Linguistics, 2001, p. 311. doi: 10/dmgshg (cit. on pp. 14, 97,
132, 162).

188 Bibliography

https://doi.org/10/gn3sx3
https://doi.org/10/ggwj6j
https://doi.org/10/gbdkh3
http://inftyreader.org/inftyreader-kb/Automatic%20Approach%20to%20Understanding%20Mathematical%20Expressions%20Using%20MathML%20Parallel%20Markup%20Corpora.pdf
http://inftyreader.org/inftyreader-kb/Automatic%20Approach%20to%20Understanding%20Mathematical%20Expressions%20Using%20MathML%20Parallel%20Markup%20Corpora.pdf
http://inftyreader.org/inftyreader-kb/Automatic%20Approach%20to%20Understanding%20Mathematical%20Expressions%20Using%20MathML%20Parallel%20Markup%20Corpora.pdf
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/59dfa2df42d9e3d41f5b02bfc32229dd-Abstract.html
https://doi.org/10.1007/978-3-030-45442-5_60
https://doi.org/10.1007/978-3-030-45442-5_60
https://doi.org/10.1587/transinf.2015DAP0023
https://doi.org/10/gnbwh7
https://doi.org/10/ggcmmz
https://doi.org/10.1007/3-540-36469-2_6
http://ceur-ws.org/Vol-1186/paper-23.pdf
http://ceur-ws.org/Vol-1186/paper-23.pdf
https://ftp.kddilabs.jp/CTAN/info/symbols/comprehensive/symbols-a4.pdf
https://ftp.kddilabs.jp/CTAN/info/symbols/comprehensive/symbols-a4.pdf
https://doi.org/10.1162/0891201053630264
https://doi.org/10/dmgshg

[283] PARI/GP. Version 2.11.2. University of Bordeaux: The PARI Group, 2019. url: http://pari.math.u-
bordeaux.fr/ (visited on 2021-09-23) (cit. on pp. 33, 134).

[284] B. Parisse. Compiling LATEX to Computer Algebra-Enabled HTML5. 2017-07-05. url: http://arxiv.
org/abs/1707.01271 (visited on 2021-07-01) (cit. on p. 6).

[285] A. Patel, S. Bhattamishra, and N. Goyal. “Are NLP Models Really Able to Solve Simple Math Word
Problems?” In: Proc. Conf. North American Chapter Association for Computaitonal Linguistics: Human

Language Technology (NAACL-HLT). ACL, 2021, pp. 2080–2094. url: https://www.aclweb.org/
anthology/2021.naacl-main.168/ (cit. on p. 53).

[286] N. Pattaniyil and R. Zanibbi. “Combining TF-IDF Text Retrieval with an Inverted Index over Symbol Pairs
in Math Expressions: The Tangent Math Search Engine at NTCIR 2014”. In: Proc. Conf. Evaluation of

Information Access Technologies (NTCIR-11). Tokyo, Japan: National Institute of Informatics (NII), 2014.
url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-
2/08-NTCIR11-MATH-PattaniyilN.pdf (visited on 2021-08-19) (cit. on p. 36).

[287] L. C. Paulson. “Isabelle: The next Seven Hundred Theorem Provers”. In: 9th International Conference on

Automated Deduction. Vol. 310. Berlin/Heidelberg: Springer-Verlag, 1988, pp. 772–773. doi: 10.1007/
BFb0012891 (cit. on pp. 18, 34).

[288] M. Pawlik and N. Augsten. “RTED: A Robust Algorithm for the Tree Edit Distance”. In: CoRR abs/1201.0230
(2012). url: http://arxiv.org/abs/1201.0230 (cit. on pp. 48, 50).

[289] K. Peeters. Cadabra. Version 2.3.5. 2020-11-17. url: https://cadabra.science/ (visited on 2021-09-23)
(cit. on p. 33).

[290] K. Peeters. “Cadabra: A Field-Theory Motivated Symbolic Computer Algebra System”. In: Computer

Physics Communications 176.8 (2007-04), pp. 550–558. issn: 0010-4655. doi: 10/c7mpdq (cit. on pp. 33,
134).

[291] K. Peeters. Introducing Cadabra: A Symbolic Computer Algebra System for Field Theory Problems. 2018-04-03.
url: http://arxiv.org/abs/hep-th/0701238 (visited on 2021-08-23) (cit. on p. 33).

[292] D. Pellegrino. “A short communication on the constants of the multilinear Hardy–Littlewood inequality”.
In: CoRR abs/1510.00367 (2015). url: https://arxiv.org/abs/1510.00367 (cit. on p. 89).

[293] J. Pennington, R. Socher, and C. D. Manning. “Glove: Global Vectors for Word Representation”. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha,
Qatar: ACL, 2014, pp. 1532–1543. doi: 10/gfshwg (cit. on pp. 59, 61–63).

[294] A. S. Perminov and E. D. Kuznetsov. “The Implementation of Hori–Deprit Method to the Construction
Averaged Planetary Motion Theory by Means of Computer Algebra System Piranha”. In: Mathematics in

Computer Science 14.2 (2020-06), pp. 305–316. issn: 1661-8270. doi: 10/gn3swf (cit. on p. 32).

[295] M. E. Peters, M. Neumann, M. Iyyer, et al. “Deep Contextualized Word Representations”. In: Proc. Conf.
North American Chapter Association for Computaitonal Linguistics: Human Language Technology (NAACL-

HLT). Association for Computational Linguistics, 2018, pp. 2227–2237. doi: 10/gft5gf (cit. on pp. 59, 61,
62).

[296] F. Petersen, M. Schubotz, and B. Gipp. “Towards Formula Translation Using Recursive Neural Networks”.
In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 2307. CEUR-WS.org, 2018. url: http:
//ceur-ws.org/Vol-2307/WiP3.pdf (visited on 2021-09-23) (cit. on pp. 38, 54, 96).

[297] S. T. Piantadosi. “Zipf’s word frequency law in natural language: A critical review and future directions”.
In: Psychonomic Bulletin & Review 21.5 (2014-03), pp. 1112–1130. doi: 10.3758/s13423-014-0585-6
(cit. on pp. 71, 77, 78).

[298] M. Piastra and R. Bolognesi. “An Efficient Context-Free Parsing Algorithm with Semantic Actions”. In:
Trends in Artificial Intelligence. Vol. 549. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 271–280.
doi: 10.1007/3-540-54712-6_239 (cit. on p. 35).

[299] T. Piccardi, M. Catasta, L. Zia, and R. West. “Structuring Wikipedia Articles with Section Recommenda-
tions”. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.
Ann Arbor MI USA: ACM, 2018-06-27, pp. 665–674. doi: 10/gkktmc (cit. on p. 157).

[300] E. Pietriga. MathML Content2Presentation Transformation (MathMLc2p). Version Version 2007-05-22. The
JEuclid Project. url: http://jeuclid.sourceforge.net/content.html (visited on 2021-09-23)
(cit. on p. 21).

Bibliography 189

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/
http://arxiv.org/abs/1707.01271
http://arxiv.org/abs/1707.01271
https://www.aclweb.org/anthology/2021.naacl-main.168/
https://www.aclweb.org/anthology/2021.naacl-main.168/
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
https://doi.org/10.1007/BFb0012891
https://doi.org/10.1007/BFb0012891
http://arxiv.org/abs/1201.0230
https://cadabra.science/
https://doi.org/10/c7mpdq
http://arxiv.org/abs/hep-th/0701238
https://arxiv.org/abs/1510.00367
https://doi.org/10/gfshwg
https://doi.org/10/gn3swf
https://doi.org/10/gft5gf
http://ceur-ws.org/Vol-2307/WiP3.pdf
http://ceur-ws.org/Vol-2307/WiP3.pdf
https://doi.org/10.3758/s13423-014-0585-6
https://doi.org/10.1007/3-540-54712-6_239
https://doi.org/10/gkktmc
http://jeuclid.sourceforge.net/content.html

[301] M. T. Pilehvar, J. Camacho-Collados, R. Navigli, and N. Collier. “Towards a Seamless Integration of
Word Senses into Downstream NLP Applications”. In: Proc. Ann. Meeting Association for Computational

Linguistics (ACL). Association for Computational Linguistics, 2017, pp. 1857–1869. doi: 10/gfzt8r (cit. on
p. 63).

[302] M. T. Pilehvar and N. Collier. “De-Conflated Semantic Representations”. In: Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing (EMNLP). Austin, Texas, USA: The
Association for Computational Linguistics, 2016, pp. 1680–1690. doi: 10/ggwj6n (cit. on p. 63).

[303] H. Prieto, S. Dalmas, and Y. Papegay. “Mathematica as an OpenMath Application”. In: ACM SIGSAM

Bulletin 34.2 (2000-06), pp. 22–26. issn: 0163-5824. doi: 10/b8pq3h (cit. on pp. 6, 7, 21, 25, 39).

[304] J. R. Campos, W. Cavalcante, V. V. Fávaro, D. Nuñez-Alarcón, D. Pellegrino, and D. M. Serrano-Rodríguez.
“Polynomial and multilinear Hardy–Littlewood inequalities: analytical and numerical approaches”. In:
CoRR abs/1503.00618 (2015). url: https://arxiv.org/abs/1503.00618 (cit. on p. 89).

[305] A. Raganato, C. D. Bovi, andR. Navigli. “Neural Sequence LearningModels forWord SenseDisambiguation”.
In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, (EMNLP).
Copenhagen, Denmark: Association for Computational Linguistics, 2017, pp. 1156–1167. doi: 10/gn3sv4
(cit. on p. 59).

[306] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. “SQuAD: 100, 000+ Questions forMachine Comprehension
of Text”. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Austin, Texas, USA: The Association for Computational Linguistics, 2016, pp. 2383–2392. doi:
10/ghnmj5 (cit. on p. 70).

[307] R. Řehůřek and P. Sojka. “Software Framework for Topic Modelling with Large Corpora”. English. In:
Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. http://is.muni.cz/
publication/884893/en. Valletta, Malta: ELRA, 2010-05, pp. 45–50 (cit. on p. 64).

[308] M. Reschop. “Wissenschaftler Der Uni Wuppertal Entwickeln Funktionserweiterung Für Wikipedia”. In:
Pressestelle Bergische Universität Wuppertal (2020-01-24), p. 1. url: https://idw- online.de/de/
news730459 (visited on 2021-09-08) (cit. on p. 156).

[309] W. Research. Wolfram|Alpha. WolframAlpha LLC, 2021. url: https://www.wolframalpha.com/
(visited on 2021-09-30) (cit. on p. 27).

[310] S. E. Robertson and H. Zaragoza. “The Probabilistic Relevance Framework: BM25 and Beyond”. In:
Foundations and Trends in Information Retrieval 3.4 (2009), pp. 333–389. doi: 10.1561/1500000019
(cit. on pp. 71, 77, 81, 163).

[311] D. Roozemond. Macaulay2 SCSCP Support. Version 0.2.1. url: https://faculty.math.illinois.
edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/SCSCP/html/index.html (visited
on 2021-09-23) (cit. on p. 33).

[312] T. Ruas, W. I. Grosky, and A. Aizawa. “Multi-Sense Embeddings through a Word Sense Disambiguation
Process”. In: Expert Syst. Appl. 136 (2019), pp. 288–303. doi: 10/gf4wc6 (cit. on pp. 63, 64).

[313] M. R. Rudolph, F. J. R. Ruiz, S. Athey, and D. M. Blei. “Structured Embedding Models for Grouped Data”.
In: Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS). 2017, pp. 251–261. url: https://
proceedings.neurips.cc/paper/2017/hash/bd686fd640be98efaae0091fa301e613-Abstract.
html (visited on 2021-09-05) (cit. on p. 61).

[314] M. Ruzicka, P. Sojka, and M. Líska. “Math Indexer and Searcher under the Hood: Fine-tuning Query
Expansion and Unification Strategies”. In: Proc. Conf. Evaluation of Information Access Technologies

(NTCIR-12). Tokyo, Japan: National Institute of Informatics (NII), 2016. url: http://research.nii.
ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05- NTCIR12- MathIR-
RuzickaM.pdf (visited on 2021-08-19) (cit. on p. 53).

[315] M. Ruzicka, P. Sojka, and M. Líska. “Math Indexer and Searcher under the Hood: History and Development
of a Winning Strategy”. In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-11). Tokyo,
Japan: National Institute of Informatics (NII), 2014. url: http://research.nii.ac.jp/ntcir/
workshop/OnlineProceedings11/pdf/NTCIR/Math-2/07-NTCIR11-MATH-RuzickaM.pdf (visited
on 2021-08-19) (cit. on p. 53).

[316] T. Sáez and A. Hogan. “Automatically Generating Wikipedia Info-boxes from Wikidata”. In: Companion

of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. Lyon, France: ACM Press, 2018,
pp. 1823–1830. doi: 10/gnd6fm (cit. on pp. 6, 53).

190 Bibliography

https://doi.org/10/gfzt8r
https://doi.org/10/ggwj6n
https://doi.org/10/b8pq3h
https://arxiv.org/abs/1503.00618
https://doi.org/10/gn3sv4
https://doi.org/10/ghnmj5
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://idw-online.de/de/news730459
https://idw-online.de/de/news730459
https://www.wolframalpha.com/
https://doi.org/10.1561/1500000019
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/SCSCP/html/index.html
https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.15/share/doc/Macaulay2/SCSCP/html/index.html
https://doi.org/10/gf4wc6
https://proceedings.neurips.cc/paper/2017/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/bd686fd640be98efaae0091fa301e613-Abstract.html
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/05-NTCIR12-MathIR-RuzickaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/07-NTCIR11-MATH-RuzickaM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/07-NTCIR11-MATH-RuzickaM.pdf
https://doi.org/10/gnd6fm

[317] The Sage Developers. SageMath, the Sage Mathematics Software System (Version x.y.z). Version 9.4. 2021.
doi: 10.5281/zenodo.593563 (cit. on p. 33).

[318] P. Sandhu. “Chapter 11: Using MathML for Computations”. In: The MathML Handbook. 1st ed. Hingham,
Mass: Charles River Media, 2003, p. 127. isbn: 978-1-58450-249-4. url: https://flylib.com/books/
en/4.532.1.69/1/ (visited on 2021-09-06) (cit. on pp. 6, 7, 20–23).

[319] P. Scharpf, I. Mackerracher, M. Schubotz, J. Beel, C. Breitinger, and B. Gipp. “AnnoMathTeX - a Formula
Identifier Annotation Recommender System for STEM Documents”. In: Proceedings of the 13th ACM

Conference on Recommender Systems. Copenhagen Denmark: ACM, 2019-09-10, pp. 532–533. doi: 10/
ggv8jt (cit. on pp. 6, 52, 157).

[320] P. Scharpf, M. Schubotz, H. S. Cohl, and B. Gipp. “Towards Formula Concept Discovery and Recogni-
tion”. In: Proc. Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing

(BIRNDL@SIGIR). Vol. 2414. CEUR-WS.org, 2019, pp. 108–115. url: http://ceur- ws.org/Vol-
2414/paper11.pdf (visited on 2021-09-09) (cit. on pp. 104, 139, 140, 155).

[321] P. Scharpf, M. Schubotz, and B. Gipp. “Fast Linking of MathematicalWikidata Entities inWikipedia Articles
Using Annotation Recommendation”. In: Companion Proceedings of the Web Conference 2021. Ljubljana
Slovenia: ACM, 2021-04-19, pp. 602–609. doi: 10/gk5d3d (cit. on pp. 6, 52, 53, 146, 155).

[322] P. Scharpf, M. Schubotz, and B. Gipp. “Representing Mathematical Formulae in Content MathML Using
Wikidata”. In: Proc. Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language

Processing (BIRNDL@SIGIR). Vol. 2132. CEUR-WS.org, 2018, pp. 46–59. url: http://ceur-ws.org/Vol-
2132/paper5.pdf (cit. on p. 6).

[323] P. Scharpf, M. Schubotz, A. Youssef, F. Hamborg, N.Meuschke, and B. Gipp. “Classification andClustering of
arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language”.
In: Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020. Virtual Event China: ACM,
2020-08, pp. 137–146. doi: 10/gn3sx4 (cit. on p. 146).

[324] W. Schelter. Maxima. Version 5.45.1. The Maxima Group, 2021. url: https://maxima.sourceforge.io
(visited on 2021-09-30) (cit. on pp. 3, 26, 33, 166).

[325] C. Scholl, A. Konrad, A. Mahzoon, D. Grobe, and R. Drechsler. “Verifying Dividers Using Symbolic
Computer Algebra and Don’t Care Optimization”. In: 2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE). Grenoble, France: IEEE, 2021-02-01, pp. 1110–1115. doi: 10/gn3swb (cit. on p. 32).

[326] M. Schubotz. “Augmenting Mathematical Formulae for More Effective Querying & Efficient Presentation”.
PhD thesis. Technische Universität Berlin, 2017. isbn: 978-3-7450-6208-3. doi: 10.14279/depositonce-
6034 (cit. on pp. 42, 52).

[327] M. Schubotz. “Generating OpenMath Content Dictionaries from Wikidata”. In: Proc. Conf. Intelligent
Computer Mathematics (CICM). Vol. 2307. CEUR-WS.org, 2018. url: http://ceur- ws.org/Vol-
2307/paper51.pdf (visited on 2021-09-16) (cit. on pp. 24, 155).

[328] M. Schubotz. “Implicit Content Dictionaries in the NIST Digital Repository of Mathematical Formulae”.
English. Talk presented at the OpenMath workshop CICM. Bialystok, Poland, 2016. url: http://cicm-
conference.org/2016/cicm.php?event=&menu=talks#O3 (visited on 2016-10-03) (cit. on p. 44).

[329] M. Schubotz, A. Grigorev, M. Leich, et al. “Semantification of Identifiers in Mathematics for Better Math
Information Retrieval”. In: Proceedings of the 39th International ACM SIGIR Conference on Research and

Development in Information Retrieval. Pisa Italy: ACM, 2016-07-07, pp. 135–144. doi: 10/ggv8jm (cit. on
pp. 4, 12, 42, 43, 52–55, 58, 61, 63, 71, 90, 92, 102, 104, 108–110, 116, 151).

[330] M. Schubotz, L. Krämer, N. Meuschke, F. Hamborg, and B. Gipp. “Evaluating and Improving the Extraction
of Mathematical Identifier Definitions”. In: Experimental IR Meets Multilinguality, Multimodality, and

Interaction. Vol. 10456. Cham: Springer International Publishing, 2017, pp. 82–94. doi: 10/gn3sxn (cit. on
pp. 12, 42, 52–55, 61, 63, 65, 67, 68, 76, 81, 90–92, 109, 110, 135, 151, 161).

[331] M. Schubotz, N. Meuschke, T. Hepp, H. S. Cohl, and B. Gipp. “VMEXT: A Visualization Tool for Mathe-
matical Expression Trees”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 10383. Cham:
Springer International Publishing, 2017, pp. 340–355. doi: 10/gkj7fk (cit. on pp. 12, 24, 35, 44, 170).

[332] M. Schubotz, P. Scharpf, O. Teschke, A. Kühnemund, C. Breitinger, and B. Gipp. “AutoMSC: Automatic
Assignment of Mathematics Subject Classification Labels”. In: Proc. Conf. Intelligent Computer Mathematics

(CICM). Vol. 12236. Cham: Springer International Publishing, 2020, pp. 237–250. doi: 10.1007/978-3-
030-53518-6_15 (cit. on p. 146).

Bibliography 191

https://doi.org/10.5281/zenodo.593563
https://flylib.com/books/en/4.532.1.69/1/
https://flylib.com/books/en/4.532.1.69/1/
https://doi.org/10/ggv8jt
https://doi.org/10/ggv8jt
http://ceur-ws.org/Vol-2414/paper11.pdf
http://ceur-ws.org/Vol-2414/paper11.pdf
https://doi.org/10/gk5d3d
http://ceur-ws.org/Vol-2132/paper5.pdf
http://ceur-ws.org/Vol-2132/paper5.pdf
https://doi.org/10/gn3sx4
https://maxima.sourceforge.io
https://doi.org/10/gn3swb
https://doi.org/10.14279/depositonce-6034
https://doi.org/10.14279/depositonce-6034
http://ceur-ws.org/Vol-2307/paper51.pdf
http://ceur-ws.org/Vol-2307/paper51.pdf
http://cicm-conference.org/2016/cicm.php?event=&menu=talks#O3
http://cicm-conference.org/2016/cicm.php?event=&menu=talks#O3
https://doi.org/10/ggv8jm
https://doi.org/10/gn3sxn
https://doi.org/10/gkj7fk
https://doi.org/10.1007/978-3-030-53518-6_15
https://doi.org/10.1007/978-3-030-53518-6_15

[333] M. Schubotz and O. Teschke. “Four Decades of TeX at zbMATH”. In: EMS Newsletter 2019–6.112 (2019-06-
06), pp. 50–52. issn: 1027-488X. doi: 10/ggv8mq (cit. on p. 73).

[334] M. Schubotz, O. Teschke, V. Stange, N. Meuschke, and B. Gipp. “Forms of Plagiarism in Digital Mathe-
matical Libraries”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 11617. Cham: Springer
International Publishing, 2019, pp. 258–274. doi: 10.1007/978-3-030-23250-4_18 (cit. on pp. 6, 72,
89).

[335] M. Schubotz and G.Wicke. “Mathoid: Robust, Scalable, Fast and Accessible Math Rendering forWikipedia”.
In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 8543. Springer, 2014, pp. 224–235. doi:
10.1007/978-3-319-08434-3_17 (cit. on pp. 22, 26, 47, 49).

[336] M. Schubotz, A. Youssef, V. Markl, H. S. Cohl, and J. J. Li. “Evaluation of Similarity-Measure Factors for
Formulae Based on the NTCIR-11 Math Task”. In: Proc. Conf. Evaluation of Information Access Technologies

(NTCIR-11). Tokyo, Japan: National Institute of Informatics (NII), 2014. url: http://research.nii.
ac . jp / ntcir / workshop / OnlineProceedings11 / pdf / NTCIR / Math - 2 / 04 - NTCIR11 - MATH -
SchubotzM.pdf (visited on 2021-08-19) (cit. on pp. 44, 48).

[337] M. Schwarzer, M. Schubotz, N. Meuschke, C. Breitinger, V. Markl, and B. Gipp. “Evaluating Link-based
Recommendations for Wikipedia”. In: Proceedings of the 16th ACM/IEEE-CS on Joint Conference on Digital

Libraries. Newark New Jersey USA: ACM, 2016-06-19, pp. 191–200. doi: 10/ggv7ns (cit. on p. 157).

[338] O. Seddiki. “Linking HOL Light to Mathematica Using OpenMath”. Montréal, Canada: Concordia Univer-
sity, 2014. 90 pp. url: http://hvg.ece.concordia.ca/Publications/Thesis/Thesis-Ons2.pdf
(visited on 2021-06-08) (cit. on pp. 6, 20, 21, 25, 34, 39).

[339] R. Shan and A. Youssef. “Towards Math Terms Disambiguation Using Machine Learning”. In: Proc. Conf.
Intelligent Computer Mathematics (CICM). Vol. 12833. Timisoara, Romania: Springer, 2021, pp. 90–106.
doi: 10/gn3sv9 (cit. on pp. 52, 53).

[340] K. Slind and M. Norrish. “A Brief Overview of HOL4”. In: Theorem Proving in Higher Order Logics (TPHOL).
Vol. 5170. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 28–32. doi: 10/bcqt9j (cit. on pp. 18,
25, 34).

[341] G. G. Smith and D. Ferguson. “Diagrams and math notation in e-learning: growing pains of a new
generation”. In: International Journal of Mathematical Education in Science and Technology 35 (5 2004),
pp. 681–695. doi: 10.1080/0020739042000232583 (cit. on p. 72).

[342] C. M. So and S. M. Watt. “On the Conversion between Content MathML and OpenMath”. In: Proc. Conf.
Communicating Mathematics in the Digital Era. Aveiro, Portugal, 2006, pp. 169–182. doi: 10/dv5m7r
(cit. on pp. 6, 20–24).

[343] L. A. Sobreviela. “A Reduce-Based OpenMath ↔ MathML Translator”. In: ACM SIGSAM Bulletin 34.2
(2000-06), pp. 31–32. issn: 0163-5824. doi: 10/ckp4qs (cit. on pp. 7, 22–25).

[344] R. Socher, A. Perelygin, J. Wu, et al. “Recursive Deep Models for Semantic Compositionality Over a
Sentiment Treebank”. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing (EMNLP). Seattle, Washington, USA: ACL, 2013, pp. 1631–1642. url: https://aclanthology.
org/D13-1170/ (visited on 2021-09-05) (cit. on p. 59).

[345] P. Sojka. “Exploiting Semantic Annotations in Math Information Retrieval”. In: Proceedings of the Fifth
Workshop on Exploiting Semantic Annotations in Information Retrieval - ESAIR ’12. Maui, Hawaii, USA:
ACM Press, 2012, p. 15. doi: 10.1145/2390148.2390157 (cit. on p. 22).

[346] P. Sojka and M. Líaka. “The Art of Mathematics Retrieval”. In: Proceedings of the 11th ACM Symposium

on Document Engineering - DocEng ’11. Mountain View, California, USA: ACM Press, 2011, p. 57. doi:
10/b5667d (cit. on p. 52).

[347] P. Sojka and M. Líška. “Indexing and Searching Mathematics in Digital Libraries”. In: Proc. Conf. Intelligent
Computer Mathematics (CICM). Vol. 6824. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 228–
243. doi: 10.1007/978-3-642-22673-1_16 (cit. on p. 22).

[348] P. Sojka, M. Růžička, and V. Novotný. “MIaS: Math-Aware Retrieval in Digital Mathematical Libraries”. In:
Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino
Italy: ACM, 2018-10-17, pp. 1923–1926. doi: 10.1145/3269206.3269233 (cit. on p. 22).

192 Bibliography

https://doi.org/10/ggv8mq
https://doi.org/10.1007/978-3-030-23250-4_18
https://doi.org/10.1007/978-3-319-08434-3_17
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/04-NTCIR11-MATH-SchubotzM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/04-NTCIR11-MATH-SchubotzM.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/04-NTCIR11-MATH-SchubotzM.pdf
https://doi.org/10/ggv7ns
http://hvg.ece.concordia.ca/Publications/Thesis/Thesis-Ons2.pdf
https://doi.org/10/gn3sv9
https://doi.org/10/bcqt9j
https://doi.org/10.1080/0020739042000232583
https://doi.org/10/dv5m7r
https://doi.org/10/ckp4qs
https://aclanthology.org/D13-1170/
https://aclanthology.org/D13-1170/
https://doi.org/10.1145/2390148.2390157
https://doi.org/10/b5667d
https://doi.org/10.1007/978-3-642-22673-1_16
https://doi.org/10.1145/3269206.3269233

[349] A. Souza and D. Freitas. “Towards a Prosodic Model for Synthesized Speech of Mathematical Expressions
in MathML”. In: 9th International Conference on Software Development and Technologies for Enhancing

Accessibility and Fighting Info-exclusion. Online Portugal: ACM, 2020-12-02, pp. 105–110. doi: 10/gn3swx
(cit. on pp. 21, 22).

[350] K. Stacey, P. Flynn, and L. Berenson. “Pushing the Pen or Pushing the Button : A Catalyst for Debate over
Future Goals for Mathematical Proficiency in the CAS Age”. In: Australian Senior Mathematics Journal

16.2 (2002), pp. 7–19. issn: 0819-4564. doi: 10.3316/aeipt.129371 (cit. on p. 32).

[351] H. Stamerjohanns, D. Ginev, C. David, D. Misev, V. Zamdzhiev, and M. Kohlhase. “MathML-aware Article
Conversion from LaTeX”. In: Towards a Digital Mathematics Library. Grand Bend, Ontario, Canada. 2009,
pp. 109–120. url: http://eudml.org/doc/220017 (cit. on pp. 18, 20, 42).

[352] P. S. Stanimirović, Y. Wei, D. Kolundžija, J. R. Sendra, and J. Sendra. “An Application of Computer Algebra
and Dynamical Systems”. In: Algebraic Informatics. Vol. 11545. Cham: Springer International Publishing,
2019, pp. 225–236. doi: 10/gn3swp (cit. on p. 32).

[353] Y. Stathopoulos and S. Teufel. “Mathematical Information Retrieval Based on Type Embeddings and Query
Expansion”. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:

Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee, 2016, pp. 2344–2355. doi:
10/gn3sx6 (cit. on p. 37).

[354] G. Sutcliffe and C. Suttner. “Evaluating General Purpose Automated Theorem Proving Systems”. In:
Artificial Intelligence 131.1-2 (2001-09), pp. 39–54. issn: 0004-3702. doi: 10/ft88fr (cit. on pp. 18, 19, 34).

[355] I. Sutskever, O. Vinyals, and Q. V. Le. “Sequence to Sequence Learning with Neural Networks”. In: Proc.
Ann. Conf. Neural Information Processing Systems (NeurIPS). Montreal, Quebec, Canada, 2014, pp. 3104–
3112. url: https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c
3c743d2-Abstract.html (visited on 2021-09-10) (cit. on p. 96).

[356] S. Takato, A. McAndrew, J. A. Vallejo, and M. Kaneko. “Collaborative Use of KeTCindy and Free Computer
Algebra Systems”. In: Mathematics in Computer Science 11.3-4 (2017-12), pp. 503–514. issn: 1661-8270.
doi: 10/gn3swn (cit. on p. 32).

[357] S. D. Team. LaTeX Parsing Caveats - Sympy 1.8 Documentation. Parsing. url: https://docs.sympy.
org/latest/modules/parsing.html#mathrm-latex-parsing-caveats (visited on 2021-09-12)
(cit. on p. 26).

[358] T. M. Team. MathJax. Version 3.2.0. American Mathematical Society (AMS) and Society for Industrial and
Applied Mathematics (SIAM), 2021. url: https://www.mathjax.org (visited on 2021-09-23) (cit. on
p. 21).

[359] N. TeBlunthuis. Measuring Wikipedia Article Quality in One Dimension by Extending ORES with Ordinal

Regression. 2021-08-31. doi: 10/gn3sw7 (cit. on pp. 102, 133, 157).

[360] A. Thawani, J. Pujara, and P. A. Szekely. “Representing Numbers in NLP: A Survey and a Vision”. In: Proc.
Conf. North American Chapter Association for Computaitonal Linguistics: Human Language Technology

(NAACL-HLT). ACL, 2021, pp. 644–656. url: https://www.aclweb.org/anthology/2021.naacl-
main.53/ (cit. on pp. 26, 37, 53).

[361] The SCIEnce project. “Symbolic Computation Software Composability Protocol and Its Implementations”.
In: ACM Communications in Computer Algebra 44.3/4 (2011-01-28), pp. 210–212. issn: 1932-2240. doi:
10/bs3m5n (cit. on pp. 6, 7, 20, 21, 23, 33, 168).

[362] D. Tidwell. XSLT. 1st ed. Cambridge [Mass.]: O’Reilly, 2001. 460 pp. isbn: 978-0-596-00053-0 (cit. on
pp. 21, 22).

[363] P. G. Tiffany. “Effectively Melding Computer Algebra Systems into the Calculus Curriculum”. In: ACM
Communications in Computer Algebra 49.2 (2015-08-14), pp. 49–50. issn: 1932-2240. doi: 10/gn3swh
(cit. on pp. 2, 32).

[364] I. Toloaca and M. Kohlhase. “Notation-Based Semantification”. In: Proc. Conf. Intelligent Computer

Mathematics (CICM). Vol. 1785. CEUR-WS.org, 2016, pp. 73–81. url: http://ceur- ws.org/Vol-
1785/M6.pdf (visited on 2021-08-20) (cit. on pp. 20–22, 52, 54).

[365] E. Tonisson. “Students’ Comparison of Their Trigonometric Answers with the Answers of a Computer
Algebra System”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 7961. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 216–229. doi: 10/gn3swt (cit. on pp. 2, 32).

Bibliography 193

https://doi.org/10/gn3swx
https://doi.org/10.3316/aeipt.129371
http://eudml.org/doc/220017
https://doi.org/10/gn3swp
https://doi.org/10/gn3sx6
https://doi.org/10/ft88fr
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://doi.org/10/gn3swn
https://docs.sympy.org/latest/modules/parsing.html#mathrm-latex-parsing-caveats
https://docs.sympy.org/latest/modules/parsing.html#mathrm-latex-parsing-caveats
https://www.mathjax.org
https://doi.org/10/gn3sw7
https://www.aclweb.org/anthology/2021.naacl-main.53/
https://www.aclweb.org/anthology/2021.naacl-main.53/
https://doi.org/10/bs3m5n
https://doi.org/10/gn3swh
http://ceur-ws.org/Vol-1785/M6.pdf
http://ceur-ws.org/Vol-1785/M6.pdf
https://doi.org/10/gn3swt

[366] G. Topic, G. Y. Kristianto, M.-Q. Nghiem, and A. Aizawa. “The MCAT Math Retrieval System for NTCIR-10
Math Track”. In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-10). Tokyo, Japan:
National Institute of Informatics (NII), 2013. url: http://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings10/pdf/NTCIR/MATH/05-NTCIR10-MATH-TopicG.pdf (visited on 2021-08-19)
(cit. on p. 53).

[367] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. “Feature-Rich Part-of-Speech Tagging with a Cyclic
Dependency Network”. In: Proc. Conf. North American Chapter Association for Computaitonal Linguistics:

Human Language Technology (NAACL-HLT). The Association for Computational Linguistics, 2003. doi:
10/b8gqkd (cit. on p. 108).

[368] K. Toutanvoa and C. D. Manning. “Enriching the Knowledge Sources Used in a Maximum Entropy Part-
of-Speech Tagger”. In: Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

Very Large Corpora (EMNLP). Hong Kong: Association for Computational Linguistics, 2000, pp. 63–70.
doi: 10/cnnbnt (cit. on p. 108).

[369] T. H. Trinh, A. M. Dai, T. Luong, and Q. V. Le. “Learning Longer-term Dependencies in RNNs with Auxiliary
Losses”. In: Proceedings of the 35th International Conference on Machine Learning. Vol. 80. Stockholm,
Sweden: PMLR, 2018, pp. 4972–4981. url: http://proceedings.mlr.press/v80/trinh18a.html
(visited on 2021-09-10) (cit. on p. 97).

[370] N. Vanetik, M. Litvak, S. Shevchuk, and L. Reznik. “Automated Discovery of Mathematical Definitions
in Text”. In: Proceedings of The 12th Language Resources and Evaluation Conference, LREC 2020, Marseille,

France, May 11-16, 2020. European Language Resources Association, 2020, pp. 2086–2094. url: https:
//aclanthology.org/2020.lrec-1.256/ (visited on 2021-08-15) (cit. on pp. 109, 138, 140, 146, 154).

[371] A. Vaswani, N. Shazeer, N. Parmar, et al. “Attention Is All You Need”. In: Proc. Ann. Conf. Neural

Information Processing Systems (NeurIPS). Long Beach, CA, USA, 2017, pp. 5998–6008. url: https://
proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.
html (visited on 2021-09-10) (cit. on pp. 96, 97).

[372] J. A. M. Vermaseren. Symbolic Manipulation with FORM. Amsterdam: CAN (ComputerAlgebra Netherland),
1991. 258 pp. isbn: 978-90-74116-01-5 (cit. on p. 33).

[373] J. Wang, Y. Sun, and S. Wang. “Image To Latex with DenseNet Encoder and Joint Attention”. In: 2018
International Conference on Identification, Information and Knowledge in the Internet of Things. Vol. 147.
Beijing, China: Elsevier, 2018, pp. 374–380. doi: 10/ghcf4v (cit. on pp. 36, 96).

[374] K. Wang, X. Li, and X. Tian. “On Ambiguity Issues of Converting LaTeX Mathematical Formula to Content
MathML”. In: Collaborative Computing: Networking, Applications, and Worksharing - 11th International

Conference, CollaborateCom 2015, Wuhan, China, November 10-11, 2015. Proceedings. Vol. 163. Springer,
2015, pp. 289–295. doi: 10/gn3sxw (cit. on pp. 19, 22, 23, 26, 52, 54).

[375] Q. Wang, C. Brown, C. Kaliszyk, and J. Urban. “Exploration of Neural Machine Translation in Autofor-
malization of Mathematics in Mizar”. In: Proceedings of the 9th ACM SIGPLAN International Conference

on Certified Programs and Proofs. New Orleans LA USA: ACM, 2020-01-20, pp. 85–98. doi: 10/gn3sxr
(cit. on pp. 6, 96).

[376] Q. Wang, C. Kaliszyk, and J. Urban. “First Experiments with Neural Translation of Informal to Formal
Mathematics”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 11006. Hagenberg, Austria:
Springer, 2018, pp. 255–270. doi: 10/gn3sw4 (cit. on p. 96).

[377] X. Wang, Z. Wang, and J.-C. Liu. “Bigram Label Regularization to Reduce Over-Segmentation on Inline
Math Expression Detection”. In: 2019 International Conference on Document Analysis and Recognition

(ICDAR). Sydney, Australia: IEEE, 2019-09, pp. 387–392. doi: 10/ghp886 (cit. on p. 108).

[378] Z. Wang and J.-C. Liu. “PDF2LaTeX: A Deep Learning System to Convert Mathematical Documents from
PDF to LaTeX”. In: Proceedings of the ACM Symposium on Document Engineering 2020. Virtual Event CA
USA: ACM, 2020-09-29, pp. 1–10. doi: 10/ghp44g (cit. on p. 19).

[379] Z.Wang and J.-C. Liu. “TranslatingMath Formula Images to LaTeX Sequences Using Deep Neural Networks
with Sequence-Level Training”. In: International Journal on Document Analysis and Recognition (IJDAR)

24.1-2 (2021-06), pp. 63–75. issn: 1433-2833, 1433-2825. doi: 10/ghpj5t (cit. on pp. 19, 96).

[380] S. M. Watt. “Exploiting implicit mathematical semantics in conversion between TeX and MathML”. In:
Proc. Internet Accessible Math. Commun. (IAMC) (2002) (cit. on p. 42).

194 Bibliography

http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/05-NTCIR10-MATH-TopicG.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings10/pdf/NTCIR/MATH/05-NTCIR10-MATH-TopicG.pdf
https://doi.org/10/b8gqkd
https://doi.org/10/cnnbnt
http://proceedings.mlr.press/v80/trinh18a.html
https://aclanthology.org/2020.lrec-1.256/
https://aclanthology.org/2020.lrec-1.256/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10/ghcf4v
https://doi.org/10/gn3sxw
https://doi.org/10/gn3sxr
https://doi.org/10/gn3sw4
https://doi.org/10/ghp886
https://doi.org/10/ghp44g
https://doi.org/10/ghpj5t

[381] S. M. Watt. “How to Build a Global Digital Mathematics Library”. In: 2016 18th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). Timisoara, Romania: IEEE, 2016-09,
pp. 37–40. doi: 10.1109/SYNASC.2016.019 (cit. on pp. 22, 29).

[382] M. Wattenberg, F. Viégas, and I. Johnson. “How to Use T-SNE Effectively”. In: Distill 1.10 (2016-10-13),
10.23915/distill.00002. doi: 10/gffk7g (cit. on p. 66).

[383] E. Weisstein. “Computable Data, Mathematics, and Digital Libraries in Mathematica and Wolfram|Alpha”.
In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 8543. Cham: Springer International Publish-
ing, 2014, pp. 26–29. doi: 10/gn3svt (cit. on p. 27).

[384] N. White, S. Matthews, and R. Chapman. “Formal Verification: Will the Seedling Ever Flower?” In:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375.2104
(2017-10-13), p. 20150402. issn: 1364-503X, 1471-2962. doi: 10/gfgq2v (cit. on pp. 18, 19, 34).

[385] A. N. Whitehead and B. A. Russell. Principia Mathematica. 2nd ed. Cambridge University Press, 1927. url:
https://cds.cern.ch/record/268025 (cit. on p. 34).

[386] A. M. Wigmore, G. Hunter, E. Pflügel, and J. Denholm-Price. “Talkmaths: A Speech User Interface for
DictatingMathematical Expressions into Electronic Documents”. In: ISCA InternationalWorkshop on Speech

and Language Technology in Education, SLaTE 2009, Warwickshire, England, UK, September 3-5, 2009. ISCA,
2009, pp. 125–128. url: http://www.eee.bham.ac.uk/SLaTE2009/papers/SLaTE2009-07-v2.pdf
(visited on 2021-09-13) (cit. on p. 21).

[387] A.M.Wigmore, G. Hunter, E. Pflügel, J. Denholm-Price, andV. Binelli. “"Let ThemTalkMaths!" - Developing
an Intelligent System to Assist Disabled People to Learn and Use Mathematics on Computers through a
Speech Interface: The TalkMaths and VoiceCalc Systems”. In: Proceedings of the 5th International Conference
on Intelligent Environments. Vol. 2. Barcelona, Spain: IOS Press, 2009, pp. 25–33. doi: 10/gn3sxz (cit. on
pp. 21, 22).

[388] S. Wiseman, A. M. Rush, and S. M. Shieber. “Learning Global Features for Coreference Resolution”. In:
Proc. Conf. North American Chapter Association for Computaitonal Linguistics: Human Language Technology

(NAACL-HLT). The Association for Computational Linguistics, 2016, pp. 994–1004. doi: 10/gn3sxg
(cit. on p. 59).

[389] W. Wojas and J. Krupa. “Supporting Education in Algorithms of Computational Mathematics by Dynamic
Visualizations Using Computer Algebra System”. In: Computational Science – ICCS 2020. Vol. 12143.
Amsterdam, Netherlands: Springer, 2020, pp. 634–647. doi: 10/gn3swc (cit. on pp. 2, 32).

[390] W. Wojas and J. Krupa. “Teaching Students Nonlinear Programming with Computer Algebra System”. In:
Mathematics in Computer Science 13.1-2 (2019-06), pp. 297–309. issn: 1661-8270. doi: 10/gn3sws (cit. on
pp. 2, 32).

[391] Wolfram. Wolfram Language & System: Importing and Exporting. Importing and Exporting. url: https:
/ / reference . wolfram . com / language / tutorial / ImportingAndExporting . html (visited on
2021-09-12) (cit. on pp. 20, 21, 26, 54).

[392] S. Wolfram. What We’ve Built Is a Computational Language. 2019-05-09. url: https://writings.
stephenwolfram.com/2019/05/what- weve- built- is- a- computational- language- and-
thats-very-important/ (visited on 2021-07-29) (cit. on pp. 19, 33, 36).

[393] Wolfram Mathematica. [Accessed: 2021-06-10]. url: http://www.wolfram.com/mathematica (cit. on
pp. 2–5, 18, 19, 32, 33, 102, 104, 165).

[394] M. Wolska and M. Grigore. “Symbol Declarations in Mathematical Writing - A Corpus Study”. In: Towards
a Digital Mathematics Library. Paris, France: Masaryk University Press, 2010, pp. 119–127. doi: 10338.
dmlcz/702580 (cit. on pp. 4, 58, 68, 92, 102).

[395] Word. Version 2107. Microsoft, 2021-08-23 (cit. on p. 32).

[396] L. Wörteler, M. Grossniklaus, C. Grün, and M. Scholl. “Function inlining in XQuery 3.0 optimization”. In:
Proc. 15th DBLP. Pittsburgh, PA, USA: ACM, 2015, pp. 45–48. doi: 10.1145/2815072.2815079 (cit. on
p. 72).

[397] F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli. “Pay Less Attention with Lightweight and Dynamic
Convolutions”. In: 7th International Conference on Learning Representations. New Orleans LA USA: Open-
Review.net, 2019. url: https://openreview.net/forum?id=SkVhlh09tX (visited on 2021-09-10)
(cit. on p. 97).

Bibliography 195

https://doi.org/10.1109/SYNASC.2016.019
https://doi.org/10/gffk7g
https://doi.org/10/gn3svt
https://doi.org/10/gfgq2v
https://cds.cern.ch/record/268025
http://www.eee.bham.ac.uk/SLaTE2009/papers/SLaTE2009-07-v2.pdf
https://doi.org/10/gn3sxz
https://doi.org/10/gn3sxg
https://doi.org/10/gn3swc
https://doi.org/10/gn3sws
https://reference.wolfram.com/language/tutorial/ImportingAndExporting.html
https://reference.wolfram.com/language/tutorial/ImportingAndExporting.html
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
https://writings.stephenwolfram.com/2019/05/what-weve-built-is-a-computational-language-and-thats-very-important/
http://www.wolfram.com/mathematica
https://doi.org/10338.dmlcz/702580
https://doi.org/10338.dmlcz/702580
https://doi.org/10.1145/2815072.2815079
https://openreview.net/forum?id=SkVhlh09tX

[398] S. Yamazaki, F. Furukori, Q. Zhao, K. Shirai, and M. Okamoto. “Embedding a Mathematical OCR Module
into OCRopus”. In: 2011 International Conference on Document Analysis and Recognition, ICDAR 2011,

Beijing, China, September 18-21, 2011. IEEE Computer Society, 2011, pp. 880–884. doi: 10/b8khqf (cit. on
p. 36).

[399] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le. “XLNet: Generalized Autoregressive
Pretraining for Language Understanding”. In: Proc. Ann. Conf. Neural Information Processing Systems

(NeurIPS). 2019, pp. 5754–5764. url: https://proceedings.neurips.cc/paper/2019/hash/
dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html (visited on 2021-09-05) (cit. on p. 63).

[400] M. Yasunaga and J. D. Lafferty. “TopicEq: A Joint Topic and Mathematical Equation Model for Scientific
Texts”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu, Hawaii, USA: AAAI
Press, 2019-07-17, pp. 7394–7401. doi: 10/ghkj9w (cit. on pp. 6, 11, 21, 26, 37, 52, 53, 59, 62, 70, 89).

[401] Z. Ye, X. Yuan, S. Gaur, A. Halfaker, J. Forlizzi, and H. Zhu. “Wikipedia ORES Explorer: Visualizing
Trade-offs For Designing Applications With Machine Learning API”. In: Designing Interactive Systems

Conference 2021. Virtual Event USA: ACM, 2021-06-28, pp. 1554–1565. doi: 10/gn3sw6 (cit. on pp. 140,
157).

[402] A. Youssef. “Part-of-Math Tagging and Applications”. In: Proc. Conf. Intelligent Computer Mathematics

(CICM). Vol. 10383. Cham: Springer International Publishing, 2017, pp. 356–374. doi: 10/ggv8nf (cit. on
pp. 2, 6, 19, 25–27, 29, 36, 42, 49, 53, 54, 58, 61, 69, 90, 91, 104, 108, 116, 128, 149, 151, 153, 168, 169).

[403] A. Youssef and B. R. Miller. “A Contextual and Labeled Math-Dataset Derived from NIST’s DLMF”. In:
Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 12236. Cham: Springer International Publishing,
2020, pp. 324–330. doi: 10/gn3sv6 (cit. on pp. 2, 28, 29, 102, 104, 105, 110, 115, 117, 134).

[404] A. Youssef and B. R. Miller. “Explorations into the Use of Word Embedding in Math Search and Math
Semantics”. In: Proc. Conf. Intelligent Computer Mathematics (CICM). Vol. 11617. Cham: Springer
International Publishing, 2019, pp. 291–305. doi: 10/gn3szg (cit. on pp. 11, 21, 26, 37, 53, 59, 146).

[405] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis, G. Topic, and K. Davila. “NTCIR-12 MathIR Task Overview”.
In: Proc. Conf. Evaluation of Information Access Technologies (NTCIR-12). Tokyo, Japan: National Institute
of Informatics (NII), 2016. url: http://research.nii.ac.jp/ntcir/workshop/OnlineProceeding
s12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf (visited on 2021-08-19) (cit. on
pp. 52, 63, 70, 101).

[406] R. Zanibbi and D. Blostein. “Recognition and Retrieval of Mathematical Expressions”. In: International
Journal on Document Analysis and Recognition (IJDAR) 15.4 (2012-12), pp. 331–357. issn: 1433-2833, 1433-
2825. doi: 10/c7qf6r (cit. on pp. 18–22, 26, 36).

[407] R. Zanibbi, K. Davila, A. Kane, and F. W. Tompa. “Multi-Stage Math Formula Search: Using Appearance-
Based SimilarityMetrics at Scale”. In: Proceedings of the 39th International ACM SIGIR Conference on Research

and Development in Information Retrieval. Pisa Italy: ACM, 2016-07-07, pp. 145–154. doi: 10/ggv8nj
(cit. on pp. 72, 75, 89).

[408] R. Zanibbi, D. W. Oard, A. Agarwal, and B. Mansouri. “Overview of ARQMath 2020: CLEF Lab on Answer
Retrieval for Questions on Math”. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction

- 11th International Conference of the CLEF Association, CLEF 2020, Thessaloniki, Greece, September 22-25,

2020, Proceedings. Vol. 12260. Springer, 2020, pp. 169–193. doi: 10/gn3sxm (cit. on pp. 52, 116).

[409] D. Zhang, L. Wang, L. Zhang, B. T. Dai, and H. T. Shen. “The Gap of Semantic Parsing: A Survey on
Automatic Math Word Problem Solvers”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence

42.9 (2020-09-01), pp. 2287–2305. issn: 0162-8828, 2160-9292, 1939-3539. doi: 10/gn3sxs (cit. on p. 53).

[410] X. Zhang, J. J. Zhao, and Y. LeCun. “Character-Level Convolutional Networks for Text Classification”. In:
Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS). Vol. 28. Montreal, Quebec, Canada, 2015,
pp. 649–657. url: http://arxiv.org/abs/1509.01626 (visited on 2021-09-20) (cit. on p. 96).

[411] D. Zhelezniakov, V. Zaytsev, and O. Radyvonenko. “Online Handwritten Mathematical Expression Recog-
nition and Applications: A Survey”. In: IEEE Access 9 (2021), pp. 38352–38373. issn: 2169-3536. doi:
10/gn3sxv (cit. on pp. 19, 20, 26, 36).

[412] J. Zhou and W. Xu. “End-to-End Learning of Semantic Role Labeling Using Recurrent Neural Networks”.
In: Proc. Ann. Meeting Association for Computational Linguistics (ACL). The Association for Computer
Linguistics, 2015, pp. 1127–1137. doi: 10/ggv89w (cit. on p. 59).

196 Bibliography

https://doi.org/10/b8khqf
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
https://doi.org/10/ghkj9w
https://doi.org/10/gn3sw6
https://doi.org/10/ggv8nf
https://doi.org/10/gn3sv6
https://doi.org/10/gn3szg
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
https://doi.org/10/c7qf6r
https://doi.org/10/ggv8nj
https://doi.org/10/gn3sxm
https://doi.org/10/gn3sxs
http://arxiv.org/abs/1509.01626
https://doi.org/10/gn3sxv
https://doi.org/10/ggv89w

[413] K. Zotos. “Computer Algebra Systems – New Strategies and Techniques”. In: Applied Mathematics and

Computation 198.1 (2008-04), pp. 123–127. issn: 0096-3003. doi: 10/ft93rj (cit. on pp. 19, 32).

[414] E. Zulkoski, C. Bright, A. Heinle, I. Kotsireas, K. Czarnecki, and V. Ganesh. “Combining SAT Solvers with
Computer Algebra Systems to Verify Combinatorial Conjectures”. In: Journal of Automated Reasoning 58.3
(2017-03), pp. 313–339. issn: 1573-0670. doi: 10/gnd3vg (cit. on pp. 6, 32).

[415] E. Zulkoski, V. Ganesh, andK. Czarnecki. “MATHCHECK: AMathAssistant via a Combination of Computer
Algebra Systems and SAT Solvers”. In: Proceedings of the Twenty-Fifth International Joint Conference on

Artificial Intelligence. IJCAI/AAAI Press, 2016, pp. 4228–4233. url: http://www.ijcai.org/Abstract/
16/636 (visited on 2021-08-19) (cit. on p. 6).

Bibliography 197

https://doi.org/10/ft93rj
https://doi.org/10/gnd3vg
http://www.ijcai.org/Abstract/16/636
http://www.ijcai.org/Abstract/16/636

	Contents
	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Acknowledgements
	CHAPTER 1Introduction
	1.1 Motivation & Problem
	1.2 Research Gap
	1.3 Research Objective
	1.4 Thesis Outline
	1.4.1 Publications
	1.4.2 Research Path

	CHAPTER 2Mathematical Information Retrieval
	2.1 Background and Overview
	2.2 Mathematical Formats and Their Conversions
	2.2.1 Web Formats
	2.2.1.1 MathML
	2.2.1.2 OpenMath
	2.2.1.3 OMDoc

	2.2.2 Word Processor Formats
	2.2.2.1 LATEX
	2.2.2.2 Semantic/Content LaTeX
	2.2.2.3 sTeX
	2.2.2.4 Template Editors

	2.2.3 Computable Formats
	2.2.3.1 Computer Algebra Systems
	2.2.3.2 Theorem Prover

	2.2.4 Images and Tree Representations
	2.2.5 Math Embeddings

	2.3 From Presentation to Content Languages
	2.3.1 Background
	2.3.1.1 Related Work

	2.3.2 Benchmarking MathML
	2.3.2.1 Collection
	2.3.2.2 Gold Standard
	2.3.2.3 Evaluation Metrics

	2.3.3 Evaluation of Context-Agnostic Conversion Tools
	2.3.3.1 Tool Selection
	2.3.3.2 Testing framework
	2.3.3.3 Results

	2.3.4 Summary of MathML Converters

	2.4 Mathematical Information Retrieval for LaTeX Translations

	CHAPTER 3Semantification of Mathematical LaTeX
	3.1 Semantification via Math-Word Embeddings
	3.1.1 Foundations and Related Work
	3.1.1.1 Word Embedding

	3.1.2 Semantic Knowledge Extraction
	3.1.2.1 Evaluation of Math-Embedding-Based Knowledge Extraction
	3.1.2.2 Improvement by Considering the Context
	3.1.2.3 Visualizing Our Model

	3.1.3 On Overcoming the Issues of Knowledge Extraction Approaches
	3.1.4 The Future of Math Embeddings

	3.2 Semantification with Mathematical Objects of Interest
	3.2.1 Related Work
	3.2.2 Data Preparation
	3.2.2.1 Data Wrangling
	3.2.2.2 Complexity of Math

	3.2.3 Frequency Distributions of Mathematical Formulae
	3.2.3.1 Zipf’s Law
	3.2.3.2 Analyzing and Comparing Frequencies

	3.2.4 Relevance Ranking for Formulae
	3.2.5 Applications
	3.2.6 Outlook

	3.3 Semantification with Textual Context Analysis
	3.3.1 Semantification, Translation & Evaluation Pipeline

	CHAPTER 4From LaTeX to Computer Algebra Systems
	4.1 Context-Agnostic Neural Machine Translation
	4.1.1 Training Datasets & Preprocessing
	4.1.2 Methodology
	4.1.3 Evaluation of the Convolutional Network
	4.1.3.1 Results
	4.1.3.2 Qualitative Analysis and Discussion

	4.2 Context-Sensitive Translation
	4.2.1 Motivation
	4.2.2 Related Work
	4.2.3 Formal Mathematical Language Translations
	4.2.3.1 Example of a Formal Translation

	4.2.4 Document Pre-Processing
	4.2.5 Annotated Dependency Graph Construction
	4.2.6 Semantic Macro Replacement Patterns
	4.2.6.1 Common Knowledge Pattern Recognition

	CHAPTER 5Qualitative and Quantitative Evaluations
	5.1 Evaluations on the Digital Library ofMathematical Functions
	5.1.1 The DLMF dataset
	5.1.2 Semantic LaTeX to CAS translation
	5.1.2.1 Constraint Handling
	5.1.2.2 Parse sums, products, integrals, and limits
	5.1.2.3 Lagrange’s notation for differentiation and derivatives

	5.1.3 Evaluation of the DLMF using CAS
	5.1.3.1 Symbolic Evaluation
	5.1.3.2 Numerical Evaluation

	5.1.4 Results
	5.1.4.1 Error Analysis

	5.1.5 Conclude Quantitative Evaluations on the DLMF
	5.1.5.1 Future Work

	5.2 Evaluations on Wikipedia
	5.2.1 Symbolic and Numeric Testing
	5.2.2 Benchmark Testing
	5.2.3 Results
	5.2.3.1 Descriptive Term Extractions
	5.2.3.2 Semantification
	5.2.3.3 Translations from LATEX to CAS

	5.2.4 Error Analysis & Discussion
	5.2.4.1 Defining Equations
	5.2.4.2 Missing Information
	5.2.4.3 Non-Matching Replacement Patterns

	5.2.5 Conclude Qualitative Evaluations on Wikipedia

	CHAPTER 6Conclusion and FutureWork
	6.1 Summary
	6.2 Contributions and Impact of the Thesis
	6.3 Future Work
	6.3.1 Improved Translation Pipeline
	6.3.2 Improve LaTeX to MathML Converters
	6.3.3 Enhanced Formulae in Wikipedia
	6.3.4 Language Independence

	Glossary
	Bibliography of Publications,Submissions & Talks
	Bibliography

