23 research outputs found

    Optimierung der Rechenleistung pro Fläche von Prozessorarchitekturen durch Rekonfiguration von Funktionseinheiten

    Get PDF
    Viele eingebettete Systeme, wie Smartphones, PDAs, MP3-Player und zahlreiche weitere, werden zur Miniaturisierung, Kostenreduktion und Steigerung der Robustheit zunehmend als System-on-a-Chip, also auf nur einem Stück Silizium, gefertigt. In solchen Systemen arbeiten sowohl Prozessoren und Speicher, wie auch mannigfaltige andere Peripherieeinheiten, welche spezialisierte Aufgaben des jeweiligen Einsatzgebietes des Systems übernehmen. Einige dieser Einheiten sind jedoch nicht durchgängig im Einsatz, wie beispielsweise ein GSM-Modulator bei Smartphones oder ein Hardware MPEG-Dekoder im PDA. Aufgrund der benötigten Flexibilität und des einfacheren Entwurfsprozesses wird es zunehmend populärer, Systems-on-a-Chip mit Field Programmable Gate Arrays (FPGAs), frei programmierbaren Logikbausteinen, zu realisieren. Aktuelle Bausteine erlauben dynamische partielle Rekonfiguration. Sie können also Teile ihrer Logik ersetzen, während andere weiter in Betrieb bleiben. Die Ressourcen nicht aktiver Einheiten des Systems können somit dynamisch für andere Zwecke benutzt werden. Diese Arbeit schlägt eine Prozessorarchitektur vor, deren Rechenleistung sich durch zeitlich variable Hinzunahme und Abgabe von zur Verfügung stehenden Ressourcen der programmierbaren Logik anpasst. Zusätzliche Ressourcen werden, um dies zu erreichen, durch zusätzliche Funktionseinheiten für den Prozessor belegt. Deren Einbindung in die Berechnungen wird durch parallel ausführbare, den Prinzipien des Explicitly Parallel Instruction Computings genügende Instruktionen erreicht. Werden die belegten Ressourcen des Prozessors an anderer Stelle wieder benötigt, werden schrittweise Funktionseinheiten abgetreten, bis ein Minimum an Rechenleistung des Prozessors erreicht ist. Durch diesen Ansatz werden die zeitweise ungenutzten Ressourcen des Prozessors sinnvoll verwendet. Zudem bietet die vorgeschlagene Architektur die Fähigkeit, sich selbst an die auszuführenden Berechnungen anzupassen und sie somit schneller auszuführen. Ziel dieser Arbeit ist es, eine solche Klasse neuer Prozessoren zu definieren, ihren möglichen Nutzen zu quantifizieren und ihre technische Umsetzbarkeit nachzuweisen. Die mögliche Beschleunigung durch eine solche Architektur wird durch simulative Zuordnung von Befehlen potentieller Traces von Programmen auf Funktionseinheiten ermittelt. Die technische Machbarkeit des Ansatzes wird durch prototypische Implementierungen der kritischen Elemente der Architektur, vor allem im Bereich der partiellen Rekonfiguration von FPGAs, gezeigt

    Dynamisch und partiell rekonfigurierbare Hardwarearchitektur mit adaptivem hardwaregestützten Routing zur Laufzeit

    Get PDF
    Die Vorliegende Arbeit befasst sich mit der Entwicklung einer rekonfigurierbaren Hardwarearchitektur für dynamische Funktionsmuster. Hierbei war die Zielsetzung neue und bestehende adaptive Konzepte in einer neuen Hardwarearchitektur, der HoneyComb-Architektur, zu vereinen und die Machbarkeit zu präsentieren. Zu den neuen Features dieser Architektur gehören Multikontextfähigkeiten, multigranulare Datentypen, programmierbare Ein-/Ausgabelogik und adaptives Routing zur Laufzeit

    Methoden und Werkzeuge zum Einsatz von rekonfigurierbaren Akzeleratoren in Mehrkernsystemen

    Get PDF
    Rechensysteme mit Mehrkernprozessoren werden häufig um einen rekonfigurierbaren Akzelerator wie einen FPGA erweitert. Die Verlagerung von Anwendungsteilen in Hardware wird meist von Spezialisten vorgenommen. Damit Anwender selbst rekonfigurierbare Hardware programmieren können, ist mein Beitrag die komponentenbasierte Programmierung und Verwendung mit automatischer Beachtung der Datenlokalität. So lässt sich auch bei datenintensiven Anwendungen Nutzen aus den Akzeleratoren erzielen

    Methoden zur applikationsspezifischen Effizienzsteigerung adaptiver Prozessorplattformen

    Get PDF
    General-Purpose Prozessoren sind für den durchschnittlichen Anwendungsfall optimiert, wodurch vorhandene Ressourcen nicht effizient genutzt werden. In der vorliegenden Arbeit wird untersucht, in wie weit es möglich ist, einen General-Purpose Prozessor an einzelne Anwendungen anzupassen und so die Effizienz zu steigern. Die Adaption kann zur Laufzeit durch das Prozessor- oder Laufzeitsystem anhand der jeweiligen Systemparameter erfolgen, um eine Effizienzsteigerung zu erzielen

    Modellbasierte Effizienzanalyse grobgranularer rekonfigurierbarer Prozessorarchitekturen

    Get PDF
    Die vorliegende Arbeit befasst sich mit Analysemethoden für grobgranulare rekonfigurierbare Prozessorarchitekturen. Es wird ein modellbasiertes Verfahren vorgestellt, mit dessen Hilfe derartige Hardwarestrukturen auf einfache Weise bezüglich ihres Flächenbedarfs, der Datenrate und des Energieverbrauchs charakterisiert werden können. Weiterhin werden Untersuchungsergebnisse dargestellt, die einen Vergleich grobgranularer Architekturen mit anderen Implementierungsformen ermöglichen. Field-Programmable Gate-Arrays (FPGAs) stellen aufgrund der Rekonfigurierbarkeit auf Bitebene flexible Bausteine mit hoher Verarbeitungsgeschwindigkeit dar, allerdings auf Kosten eines enormen Flächenoverheads und hohen Energieverbrauches. Demgegenüber enthalten grobgranulare Architekturen komplexere, anwendungsspezifisch optimierte Datenpfade, die eine Rekonfigurierbarkeit auf Wortebene gestatten. Es ist ein parametrisierbares Modell für eine grobgranulare rekonfigurierbare Architektur entwickelt worden. Angenommen wird ein zweidimensionales Feld, dessen Basiszellen über lokale Datenleitungen, sowie über segmentierbare Busse miteinander kommunizieren können. Weiterhin sind auf lineare Algorithmen hin optimierte Prozessorelemente unterschiedlicher Komplexität entwickelt worden. Anhand von physikalischen Modellen zur Ermittlung des Flächenbedarfs, der maximalen Taktfrequenz und des Energieverbrauches werden die VLSI-Eigenschaften der Modelle abgeschätzt, und denen von FPGAs, DSPs und Semi-Custom-Entwürfen gegenübergestellt. Die Ergebnisse zeigen, dass grobgranulare Architekturen im Vergleich zu FPGAs je nach Implementierung eine 7 bis 20 mal höhere Flächen- und Energieeffizienz aufweisen. Die Datenrate beider Varianten liegt dabei etwa in der gleichen Größenordnung. Bei Abbildung von Algorithmen, für welche die grobgranularen Datenpfade nicht optimiert wurden, sinkt die Effizienz dagegen erwartungsgemäß deutlich ab

    Trusted Computing für adaptive Automobilsteuergeräte im Umfeld der Inter-Fahrzeug-Kommunikation

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Sicherheit (Security) von Automobilelektronik, speziell der Kommunikation zwischen Fahrzeugen für Safety-Anwendungen. Hierzu wird die Absicherung der Kommunikation über digitale Signaturen betrachtet und eine prototypische Implementierung auf rekonfigurierbarer Hardware vorgestellt. Darüber hinaus wird die Absicherung der Kommunikationsplattform selbst über die Anwendung von Trusted Computing für rekonfigurierbare Systeme sichergestellt

    Trusted Computing für adaptive Automobilsteuergeräte im Umfeld der Inter-Fahrzeug-Kommunikation

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Sicherheit (Security) von Automobilelektronik, speziell der Kommunikation zwischen Fahrzeugen für Safety-Anwendungen. Hierzu wird die Absicherung der Kommunikation über digitale Signaturen betrachtet und eine prototypische Implementierung auf rekonfigurierbarer Hardware vorgestellt. Darüber hinaus wird die Absicherung der Kommunikationsplattform selbst über die Anwendung von Trusted Computing für rekonfigurierbare Systeme sichergestellt

    Realisierungsmethodik von applikationsspezifischen Softcore FPGA-Lösungen: in Abhänigkeit von algorithmischen Anforderungen im Einsatzgebiet eingebetteter Systeme

    Get PDF
    Die vorliegende Dissertation befasst sich mit Prinzipien, Methodiken, Techniken und Realisierungen zur systematischen Entwicklung von komplexen eingebetteten Systemen unter Verwendung von Softcore Prozessoren. Die adressierte Aufgabendomäne ist vor allem die echtzeitkritische Daten- und Bildverarbeitung. Notwendig sind neue Lösungen aufgrund immer leistungsfähigerer eingebetteter Systeme, mit deren Hilfe Aufgabenfelder bedient werden können, die bisher mit diesen Systemen nicht umsetzbar waren. Aufbauend auf den Darstellungen bereits existierender Modelle und Verfahren, wie z. B. dem V-Modell oder dem Hardware-Software Co-Design, wird eine spezielle Realisierungsmethodik für applikationsspezifische Softcore FPGA-Lösungen in Abhängigkeit von algorithmischen Anforderungen in der Aufgabendomäne erarbeitet. In diesem Zusammenhang wird eine Softcore-Bibliothek mit an diese Domäne angepassten Eigenschaften konzipiert und umgesetzt. Das dabei verwendete modellbasierte Vorgehen ermöglicht durch eine hierarchische Beschreibung und Validierung eine zeit- und kosteneffiziente Entwicklung komplexer Systeme. Für jede Abstraktionsebene werden Modelle vorgestellt, die jeweils auf dieser alle notwendigen Anforderungen zur frühzeitigen Fehlererkennung und Fehlervermeidung sowie eine automatisierte Codegenerierung und Optimierungen sinnvoll umsetzen. Durch gezielte Festlegung einzuhaltender Kriterien und Entwicklungsschritte wird dabei in jeder Komponente der Toolchain eine bestmögliche Kombination von zeit- und kosteneffizienter Entwicklung mit der Sicherstellung der Einhaltung harter Echtzeiteigenschaften sowie einer Maximierung der Wiederverwendbarkeit, erreicht. Dabei spielt die Anpassbarkeit der eingebetteten Systeme mit Hilfe von partieller Rekonfiguration, mit der das dynamische Austauschen von Teilen des Softcores oder sogar ganzer Softcore Prozessoren zur Laufzeit ermöglicht wird, eine wichtige Rolle. Es erfolgen ein praktischer Nachweis der Funktionalität der erarbeiteten Modelle sowie ausführliche Experimente über die zeitlichen Anforderungen bei der partiellen Rekonfiguration von Softcore Prozessoren. Die praktischen Ergebnisse der Arbeit zeigen deutlich die Effizienz der Entwicklung von Lösungen mit der konzipierten und umgesetzten Toolchain sowie die Relevanz und Einsetzbarkeit der partiellen Rekonfiguration in diesem Gebiet.This dissertation focuses on principles, methods, techniques and realizations for the systematic development of complex embedded systems using softcore processors. The addressed domain is primarily real-time-critical data and image processing. New solutions are needed due to the increasing performance of embedded systems, allowing for a range of applications that were previously not solvable with these systems. Building on the concepts of already existing models and methods, e.g. the V-model or hardware-software-co-design, a special realization methodology for application-specific softcore FPGA solutions is developed, in conjunction with algorithmic requirements in the addressed domain. In this context, a softcore library with characteristics tailored to this domain is designed and implemented. Through a hierarchical description and validation, the model-based approach used in this thesis enables the time- and cost-efficient development of complex systems. For each abstraction level, models are presented that provide all necessary requisites for early error detection and prevention, as well as mostly automated code generation and code optimization. By defining relevant criteria and development steps, a parsimonious development with respect to time and cost is achieved in each component of the toolchain. This ensures strict adherence to the hard real-time properties and maximizes the reusability of the modules implemented for a specific project. The adaptability of the embedded systems through using partial reconfiguration plays an important role. Partial reconfiguration enables dynamic replacement of parts of the softcore or even entire softcore processors at runtime. A practical evaluation of the functionality of the developed models as well an extensive array of experiments concerning the time requirements for the partial reconfiguration of softcore processors are presented. The practical results of this thesis clearly demonstrate the efficiency of developing solutions with the designed and realized toolchain, as well as the relevance and applicability of partial reconfiguration in the addressed domain

    Softwareframework für Prozessoren mit variablen Befehlssatzarchitekturen

    Get PDF
    Die Kahrisma-Architektur erlaubt mittels grobgranularer Rekonfiguration der Mikroarchitektur das Umschalten zwischen einfacher und komplexer Prozessoren. Eine effiziente Umsetzung dieser Flexibilität erfordert allerdings die Verwendung einer rekonfigurierbaren Befehlssatzarchitektur (ISA). Daher wurde innerhalb dieser Arbeit ein mixed-ISA Softwareframework realisiert, das die Programmierung von C/C++-Anwendungen mit variablen ISAs ermöglicht und anhand der Kahrisma-Architektur demonstriert

    Zertifizierbarer Entwicklungsprozess für komplexe Informationsverarbeitungssysteme in der Wägetechnik

    Get PDF
    The dissertation is about principles, methods and techniques during the systematic development of embedded systems in the domain of measurement techniques. The considered domain contains fields of application with challenging and specific requirements of the information processing system. E.g. the dynamic weighing systems need solutions with very high resolution and lowest achievable measurement uncertainty in order to perform high-speed-measurements in a mechanically disturbed environment. In particular, the abilities for official calibration and metrologic reliability are considered. The complex and high-performance functions are required to guarantee measurement results. FPGA-based systems are used for the implementation of these functions.The especially designed certifiable development process (ZEfIRA) provides a procedural method for the development of complex embedded systems. The metrologic reliability, the legal requirements like calibratability, the validation and the verification are included as a general criteria in the entire development process. ZEfIRA is based on the 3W-model and is designed in an evolutionary manner. This process starts with the analysis of a predecessor system followed by the model-based development of a prototype, which leads into an optimized and application-specific product solution.The study emphasizes the influence of challenging requirements on the measurement system. It will be presented, how these can be integrated into the modelling level during the design and the implementation on a FPGA-based target platform. The stages of the functional and technical design of the system are analysed, whereas the realization of the partitions “FPGA logic” and “FPGA softcore solutions” are discussed in detail.Based on the preliminary design of the information processing in an electromagnetic force compensation (EMC) scale, the applicability of the process ZEfIRA and its developed methods and principles are proved. On the one hand, the optimal system-specific algorithms of signal processing, control and safety and on the other hand whose technical implementation are essential. This was realized with different performance parameters. In addition, the prototype allows the possible comprehensive analysis for embedding system. In the conclusion, the performance of ZEfIRA based on the prototype development is evaluated.Die Dissertation befasst sich mit Prinzipien, Methoden und Techniken der systematischen Entwicklung von komplexen Eingebetteten Systemen. Die betrachtete Domäne besitzt Anwendungsbereiche mit anspruchsvollen und besonderen Anforderungen an die Informationsverarbeitung. In der dynamischen Wägetechnik sind z.B. Lösungen mit sehr hohen Auflösungen und kleiner Messunsicherheit bei schnellen Messungen in einem mechanisch gestörten Umfeld notwendig. Die Anforderungen an die Eichfähigkeit und die Metrologische Sicherheit sind Besonderheiten. Es werden komplexe und hochleistungsfähige Funktionen zur Erzeugung der Messergebnisse verlangt. In der Arbeit werden dafür vorwiegend FPGA-basierte Eingebettete Systeme verwendet. Der entworfene zertifizierbare Prozess (ZEfIRA) bietet eine Vorgehensweise für die Entwicklung von Eingebetteten Systemen. Die Metrologische Sicherheit, die Eichfähigkeit, die Validier- und der Verifizierbarkeit werden als Kriterien im gesamten Entwurfsprozess berücksichtigt. ZEfIRA basiert auf einem 3W-Modell und ist evolutionär angelegt. Innerhalb des Prozesses werden die Analyse eines eventuellen Vorläufersystems sowie die modellbasierte prototypische Entwicklung bis hin zu einer produzierbaren Lösung (Produkt) durchgeführt. Die Arbeit verdeutlicht den großen Einfluss der spezifischen Anforderungen an das Messsystem. Es wird gezeigt, wie diese bereits zu der Entwurfszeit auf Modellebene und im Weiteren bei der Implementierung in einer FPGA-basierten Zielplattform berücksichtigt werden. Es werden verschiedene Schritte des funktionalen und technischen Systementwurfs untersucht und ausführlich die Realisierungspartitionen „FPGA-Logik“ und „FPGA-Softcore-Lösungen“ betrachtet. Als Beispiel zum Nachweis der Anwendbarkeit des Prozesses ZEfIRA dient die prototypische Entwicklung des Informationsverarbeitungssystems einer elektromagnetischen Kraftkompensationswaage (EMKW). Ausschlaggebend sind die optimal an das Gesamtsystem angepassten Signalverarbeitungs-, Regelungs- und Sicherheitsalgorithmen und deren technische Umsetzung. Dieses wurde mit verschiedenen Leistungsparametern, wie z.B. Latenz, Verarbeitungskomplexität und Genauigkeit realisiert. Ergänzend ermöglicht der Prototyp umfassende Analysemöglichkeiten für das Messsystem. Die abschließende Wertung ist eine Abschätzung der Leistungsfähigkeit von ZEfIRA auf Basis dieser prototypischen Entwicklung
    corecore