9 research outputs found

    Integration and publication of heterogeneous text-mined relationships on the Semantic Web

    Get PDF
    International audienceBackground - Advances in Natural Language Processing (NLP) techniques enable the extraction of fine-grained relationships mentioned in biomedical text. The variability and the complexity of natural language in expressing similar relationships causes the extracted relationships to be highly heterogeneous, which makes the construction of knowledge bases difficult and poses a challenge in using these for data mining or question answering. Results - We report on the semi-automatic construction of the PHARE relationship ontology (the PHArmacogenomic RElationships Ontology) consisting of 200 curated relations from over 40,000 heterogeneous relationships extracted via text-mining. These heterogeneous relations are then mapped to the PHARE ontology using synonyms, entity descriptions and hierarchies of entities and roles. Once mapped, relationships can be normalized and compared using the structure of the ontology to identify relationships that have similar semantics but different syntax. We compare and contrast the manual procedure with a fully automated approach using WordNet to quantify the degree of integration enabled by iterative curation and refinement of the PHARE ontology. The result of such integration is a repository of normalized biomedical relationships, named PHARE-KB, which can be queried using Semantic Web technologies such as SPARQL and can be visualized in the form of a biological network. Conclusions - The PHARE ontology serves as a common semantic framework to integrate more than 40,000 relationships pertinent to pharmacogenomics. The PHARE ontology forms the foundation of a knowledge base named PHARE-KB. Once populated with relationships, PHARE-KB (i) can be visualized in the form of a biological network to guide human tasks such as database curation and (ii) can be queried programmatically to guide bioinformatics applications such as the prediction of molecular interactions. PHARE is available at http://purl.bioontology.org/ontology/PHARE

    Integration and publication of heterogeneous text-mined relationships on the Semantic Web

    Get PDF
    International audienceBackground - Advances in Natural Language Processing (NLP) techniques enable the extraction of fine-grained relationships mentioned in biomedical text. The variability and the complexity of natural language in expressing similar relationships causes the extracted relationships to be highly heterogeneous, which makes the construction of knowledge bases difficult and poses a challenge in using these for data mining or question answering. Results - We report on the semi-automatic construction of the PHARE relationship ontology (the PHArmacogenomic RElationships Ontology) consisting of 200 curated relations from over 40,000 heterogeneous relationships extracted via text-mining. These heterogeneous relations are then mapped to the PHARE ontology using synonyms, entity descriptions and hierarchies of entities and roles. Once mapped, relationships can be normalized and compared using the structure of the ontology to identify relationships that have similar semantics but different syntax. We compare and contrast the manual procedure with a fully automated approach using WordNet to quantify the degree of integration enabled by iterative curation and refinement of the PHARE ontology. The result of such integration is a repository of normalized biomedical relationships, named PHARE-KB, which can be queried using Semantic Web technologies such as SPARQL and can be visualized in the form of a biological network. Conclusions - The PHARE ontology serves as a common semantic framework to integrate more than 40,000 relationships pertinent to pharmacogenomics. The PHARE ontology forms the foundation of a knowledge base named PHARE-KB. Once populated with relationships, PHARE-KB (i) can be visualized in the form of a biological network to guide human tasks such as database curation and (ii) can be queried programmatically to guide bioinformatics applications such as the prediction of molecular interactions. PHARE is available at http://purl.bioontology.org/ontology/PHARE

    Selected papers from the 13th Annual Bio-Ontologies Special Interest Group Meeting

    Get PDF
    Over the years, the Bio-Ontologies SIG at ISMB has provided a forum for discussion of the latest and most innovative research in the application of ontologies and more generally the organisation, presentation and dissemination of knowledge in biomedicine and the life sciences. The ten papers selected for this supplement are extended versions of the original papers presented at the 2010 SIG. The papers span a wide range of topics including practical solutions for data and knowledge integration for translational medicine, hypothesis based querying , understanding kidney and urinary pathways, mining the pharmacogenomics literature; theoretical research into the orthogonality of biomedical ontologies, the representation of diseases, the representation of research hypotheses, the combination of ontologies and natural language processing for an annotation framework, the generation of textual definitions, and the discovery of gene interaction networks

    PGxO: A very lite ontology to reconcile pharmacogenomic knowledge units

    Get PDF
    International audienceWe present in this article a lightweight ontology named PGxO and a set of rules for its instantiation, which we developed as a frame for reconciling and tracing pharmacogenomics (PGx) knowledge. PGx studies how genomic variations impact variations in drug response phenotypes. Knowledge in PGx is typically composed of units that have the form of ternary relationships gene variant–drug–adverse event, stating that an adverse event may occur for patients having the gene variant when being exposed to the drug. These knowledge units (i) are available in reference databases, such as PharmGKB, are reported in the scientific biomedical literature and (ii) may be discovered by mining clinical data such as Electronic Health Records (EHRs). Therefore, knowledge in PGx is heterogeneously described (i.e., with various quality, granularity, vocabulary, etc.). It is consequently worth to extract, then compare, assertions from distinct resources. Using PGxO, one can represent multiple provenances for pharmacogenomic knowledge units, and reconcile duplicates when they come from distinct sources

    Suggesting valid pharmacogenes by mining linked data

    Get PDF
    International audienceA standard task in pharmacogenomics research is identifying genes that may be involved in drug response variability, i.e., pharmacogenes. Because genomic experiments tended to generate many false positives, computational approaches based on the use of background knowledge have been proposed. Until now, those have used only molecular networks or the biomedical literature. Here we propose a novel method that consumes an eclectic set of linked data sources to help validating uncertain drug–gene relationships. One of the advantages relies on that linked data are implemented in a standard framework that facilitates the joint use of various sources, making easy the consideration of features of various origins. Consequently, we propose an initial selection of linked data sources relevant to pharmacogenomics. We formatted these data to train a random forest algorithm , producing a model that enables classifying drug–gene pairs as related or not, thus confirming the validity of candidate pharmacogenes. Our model achieve the performance of F-measure=0.92, on a 100 folds cross-validation. A list of top candidates is provided and their obtention is discussed

    Expressing high-level scientific claims with formal semantics

    Get PDF
    The use of semantic technologies is gaining significant traction in science communication with a wide array of applications in disciplines including the life sciences, computer science, and the social sciences. Languages like RDF, OWL, and other formalisms based on formal logic are applied to make scientific knowledge accessible not only to human readers but also to automated systems. These approaches have mostly focused on the structure of scientific publications themselves, on the used scientific methods and equipment, or on the structure of the used datasets. The core claims or hypotheses of scientific work have only been covered in a shallow manner, such as by linking mentioned entities to established identifiers. In this research, we therefore want to find out whether we can use existing semantic formalisms to fully express the content of high-level scientific claims using formal semantics in a systematic way. Analyzing the main claims from a sample of scientific articles from all disciplines, we find that their semantics are more complex than what a straight-forward application of formalisms like RDF or OWL account for, but we managed to elicit a clear semantic pattern which we call the "super-pattern''. We show here how the instantiation of the five slots of this super-pattern leads to a strictly defined statement in higher-order logic. We successfully applied this super-pattern to an enlarged sample of scientific claims. We show that knowledge representation experts, when instructed to independently instantiate the super-pattern with given scientific claims, show a high degree of consistency and convergence given the complexity of the task and the subject. These results therefore open the door on the longer run for allowing researchers to express their high-level scientific findings in a manner they can be automatically interpreted. This in turn will allow for automated consistency checking, question answering, aggregation, and much more

    PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison

    Get PDF
    International audienceBackgroundPharmacogenomics (PGx) studies how genomic variations impact variations in drug response phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form of ternary relationships gene variant – drug – adverse event. Such a relationship states that an adverse event may occur for patients having the specified gene variant and being exposed to the specified drug. State-of-the-art knowledge in PGx is mainly available in reference databases such as PharmGKB and reported in scientific biomedical literature. But, PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs), and in this case, may either correspond to new knowledge or confirm state-of-the-art knowledge that lacks “clinical counterpart” or validation. For this reason, there is a need for automatic comparison of knowledge units from distinct sources.ResultsIn this article, we propose an approach, based on Semantic Web technologies, to represent and compare PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx knowledge units and their components. Combined with PROV-O, an ontology developed by the W3C to represent provenance information, PGxO enables encoding and associating provenance information to PGx relationships. Additionally, we introduce a set of rules to reconcile PGx knowledge, i.e. to identify when two relationships, potentially expressed using different vocabularies and levels of granularity, refer to the same, or to different knowledge units. We evaluated our ontology and rules by populating PGxO with knowledge units extracted from PharmGKB (2701), the literature (65,720) and from discoveries reported in EHR analysis studies (only 10, manually extracted); and by testing their similarity. We called PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles knowledge units of those various origins.ConclusionsThe proposed ontology and reconciliation rules constitute a first step toward a more complete framework for knowledge comparison in PGx. In this direction, the experimental instantiation of PGxO, named PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge sources

    Identifying interactions between chemical entities in text

    Get PDF
    Tese de mestrado em Bioinformática e Biologia Computacional (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014Novas interações entre compostos químicos são geralmente descritas em artigos científicos, os quais estão a ser publicados a uma velocidade cada vez maior. No entanto, estes artigos são dirigidos a humanos, escritos em linguagem natural, e não são processados facilmente por um computador. Métodos de prospeção de texto são uma solução para este problema, extraindo automaticamente a informação relevante da literatura. Estes métodos devem ser adaptados ao domínio e tarefa a que vão ser aplicados. Esta dissertação propõe um sistema para identificação automática e eficaz de interações entre entidades químicas em documentos biomédicos. O sistema foi desenvolvido em dois módulos. O primeiro módulo reconhece as entidades químicas que são mencionadas num dado texto. Este módulo foi baseado num sistema já existente, o qual foi melhorado com um novo tipo de medidas de semelhança semântica. O segundo módulo identifica os pares de entidades que representam uma interação química no mesmo texto, com recurso a técnicas de Aprendizagem Automática e conhecimento específico ao domínio. Cada módulo foi avaliado separadamente, obtendo valores de precisão elevados em dois padrões de teste diferentes. Os dois módulos constituem o sistema IICE, que pode ser usado para analisar qualquer documento biomédico, de forma a encontrar entidades e interações químicas. Este sistema está acessível através de uma ferramenta web.Novel interactions between chemical compounds are often described in scientific articles, which are being published at an unprecedented rate. However, these articles are directed to humans, written in natural language, and cannot be easily processed by a machine. Text mining methods present a solution to this problem, by automatically extracting the relevant information from the literature. These methods should be adapted to the specific domain and task they are going to be applied to. This dissertation proposes a system for automatic and efficient identification of interactions between chemical entities from biomedical documents. This system was developed in two modules. The first module recognizes the chemical entities that are mentioned in a given text. This module was based on an existing framework, which was improved with a novel type of semantic similarity measure. The second module identifies the pairs of entities that represent a chemical interaction in the same text, using Machine Learning techniques and domain knowledge. Each module was evaluated separately, achieving high precision values against two different gold standards. The two modules were constitute the IICE system, which can be used to analyze any biomedical document for chemical entities and interactions, accessible via a web tool

    Semantic resources in pharmacovigilance: a corpus and an ontology for drug-drug interactions

    Get PDF
    Mención Internacional en el título de doctorNowadays, with the increasing use of several drugs for the treatment of one or more different diseases (polytherapy) in large populations, the risk for drugs combinations that have not been studied in pre-authorization clinical trials has increased. This provides a favourable setting for the occurrence of drug-drug interactions (DDIs), a common adverse drug reaction (ADR) representing an important risk to patients safety, and an increase in healthcare costs. Their early detection is, therefore, a main concern in the clinical setting. Although there are different databases supporting healthcare professionals in the detection of DDIs, the quality of these databases is very uneven, and the consistency of their content is limited. Furthermore, these databases do not scale well to the large and growing number of pharmacovigilance literature in recent years. In addition, large amounts of current and valuable information are hidden in published articles, scientific journals, books, and technical reports. Thus, the large number of DDI information sources has overwhelmed most healthcare professionals because it is not possible to remain up to date on everything published about DDIs. Computational methods can play a key role in the identification, explanation, and prediction of DDIs on a large scale, since they can be used to collect, analyze and manipulate large amounts of biological and pharmacological data. Natural language processing (NLP) techniques can be used to retrieve and extract DDI information from pharmacological texts, supporting researchers and healthcare professionals on the challenging task of searching DDI information among different and heterogeneous sources. However, these methods rely on the availability of specific resources providing the domain knowledge, such as databases, terminological vocabularies, corpora, ontologies, and so forth, which are necessary to address the Information Extraction (IE) tasks. In this thesis, we have developed two semantic resources for the DDI domain that make an important contribution to the research and development of IE systems for DDIs. We have reviewed and analyzed the existing corpora and ontologies relevant to this domain, based on their strengths and weaknesses, we have developed the DDI corpus and the ontology for drug-drug interactions (named DINTO). The DDI corpus has proven to fulfil the characteristics of a high-quality gold-standard, and has demonstrated its usefulness as a benchmark for the training and testing of different IE systems in the SemEval-2013 DDIExtraction shared task. Meanwhile, DINTO has been used and evaluated in two different applications. Firstly, it has been proven that the knowledge represented in the ontology can be used to infer DDIs and their different mechanisms. Secondly, we have provided a proof-of-concept of the contribution of DINTO to NLP, by providing the domain knowledge to be exploited by an IE pilot prototype. From these results, we believe that these two semantic resources will encourage further research into the application of computational methods to the early detection of DDIs. This work has been partially supported by the Regional Government of Madrid under the Research Network MA2VICMR [S2009/TIC-1542], by the Spanish Ministry of Education under the project MULTIMEDICA [TIN2010-20644-C03-01] and by the European Commission Seventh Framework Programme under TrendMiner project [FP7-ICT287863].Hoy en día ha habido un notable aumento del número de pacientes polimedicados que reciben simultáneamente varios fármacos para el tratamiento de una o varias enfermedades. Esta situación proporciona el escenario ideal para la prescripción de combinaciones de fármacos que no han sido estudiadas previamente en ensayos clínicos, y puede dar lugar a un aumento de interacciones farmacológicas (DDIs por sus siglas en inglés). Las interacciones entre fármacos son un tipo de reacción adversa que supone no sólo un riesgo para los pacientes, sino también una importante causa de aumento del gasto sanitario. Por lo tanto, su detección temprana es crucial en la práctica clínica. En la actualidad existen diversos recursos y bases de datos que pueden ayudar a los profesionales sanitarios en la detección de posibles interacciones farmacológicas. Sin embargo, la calidad de su información varía considerablemente de unos a otros, y la consistencia de sus contenidos es limitada. Además, la actualización de estos recursos es difícil debido al aumento que ha experimentado la literatura farmacológica en los últimos años. De hecho, mucha información sobre DDIs se encuentra dispersa en artículos, revistas científicas, libros o informes técnicos, lo que ha hecho que la mayoría de los profesionales sanitarios se hayan visto abrumados al intentar mantenerse actualizados en el dominio de las interacciones farmacológicas. La ingeniería informática puede representar un papel fundamental en este campo permitiendo la identificación, explicación y predicción de DDIs, ya que puede ayudar a recopilar, analizar y manipular grandes cantidades de datos biológicos y farmacológicos. En concreto, las técnicas del procesamiento del lenguaje natural (PLN) pueden ayudar a recuperar y extraer información sobre DDIs de textos farmacológicos, ayudando a los investigadores y profesionales sanitarios en la complicada tarea de buscar esta información en diversas fuentes. Sin embargo, el desarrollo de estos métodos depende de la disponibilidad de recursos específicos que proporcionen el conocimiento del dominio, como bases de datos, vocabularios terminológicos, corpora u ontologías, entre otros, que son necesarios para desarrollar las tareas de extracción de información (EI). En el marco de esta tesis hemos desarrollado dos recursos semánticos en el dominio de las interacciones farmacológicas que suponen una importante contribución a la investigación y al desarrollo de sistemas de EI sobre DDIs. En primer lugar hemos revisado y analizado los corpora y ontologías existentes relevantes para el dominio y, en base a sus potenciales y limitaciones, hemos desarrollado el corpus DDI y la ontología para interacciones farmacológicas DINTO. El corpus DDI ha demostrado cumplir con las características de un estándar de oro de gran calidad, así como su utilidad para el entrenamiento y evaluación de distintos sistemas en la tarea de extracción de información SemEval-2013 DDIExtraction Task. Por su parte, DINTO ha sido utilizada y evaluada en dos aplicaciones diferentes. En primer lugar, hemos demostrado que esta ontología puede ser utilizada para inferir interacciones entre fármacos y los mecanismos por los que ocurren. En segundo lugar, hemos obtenido una primera prueba de concepto de la contribución de DINTO al área del PLN al proporcionar el conocimiento del dominio necesario para ser explotado por un prototipo de un sistema de EI. En vista de estos resultados, creemos que estos dos recursos semánticos pueden estimular la investigación en el desarrollo de métodos computaciones para la detección temprana de DDIs. Este trabajo ha sido financiado parcialmente por el Gobierno Regional de Madrid a través de la red de investigación MA2VICMR [S2009/TIC-1542], por el Ministerio de Educación Español, a través del proyecto MULTIMEDICA [TIN2010-20644-C03-01], y por el Séptimo Programa Macro de la Comisión Europea a través del proyecto TrendMiner [FP7-ICT287863].This work has been partially supported by the Regional Government of Madrid under the Research Network MA2VICMR [S2009/TIC-1542], by the Spanish Ministry of Education under the project MULTIMEDICA [TIN2010-20644-C03-01] and by the European Commission Seventh Framework Programme under TrendMiner project [FP7-ICT287863].Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Asunción Gómez Pérez.- Secretario: María Belén Ruiz Mezcua.- Vocal: Mariana Neve
    corecore