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Abstract. A standard task in pharmacogenomics research is identifying genes
that may be involved in drug response variability, i.e., pharmacogenes. Because
genomic experiments tended to generate many false positives, computational ap-
proaches based on the use of background knowledge have been proposed. Until
now, those have used only molecular networks or the biomedical literature. Here
we propose a novel method that consumes an eclectic set of linked data sources
to help validating uncertain drug–gene relationships. One of the advantages relies
on that linked data are implemented in a standard framework that facilitates the
joint use of various sources, making easy the consideration of features of various
origins. Consequently, we propose an initial selection of linked data sources rel-
evant to pharmacogenomics. We formatted these data to train a random forest al-
gorithm, producing a model that enables classifying drug–gene pairs as related or
not, thus confirming the validity of candidate pharmacogenes. Our model achieve
the performance of F-measure=0.92, on a 100 folds cross-validation. A list of top
candidates is provided and their obtention is discussed.

1 Introduction

Pharmacogenomics (PGx) studies how individual gene variations cause variability in
drug responses [36]. A state of the art of PGx is available and constitutes a basis for im-
plementing personalized medicine, i.e., a medicine tailored to each patient by consider-
ing in particular her/his genomic context. This state of the art lies both in the biomedical
literature and in specialized databases [15, 35], but a large part of it is controversial, and
not yet applicable to medicine. Indeed, its results from studies difficult to reproduce and
that do not fulfil statistical validation standards for two main reasons: the small size of
populations involved in studies because of the rarity of gene variants studied and the
potential coaction of several variants [24, 37]. It is consequently of interest to the PGx
community to explore any source of evidence that may contribute to confirming or
moderating PGx state of the art. So far, existing works used either molecular network
databases or the biomedical literature (see Section 2 for references).

Linked Open Data (LOD) are constituting a large and growing collection of datasets
represented in a standard format (that includes the use of RDF and URIs), partially
connected to each other and to domain knowledge represented within semantic web
ontologies [5]. For these reasons, LOD offer novel opportunities for the development of



successful data integration and knowledge discovery approaches. The recent availability
of LOD is particularly beneficial to the life sciences, where relevant data are spread
over various data sources with no agreement on a unique representation of biological
entities [2]. Consequently, data integration is an initial challenge one faces if one wants
to mine life science data considering several data sources. Various initiatives such as
Bio2RDF, the EBI platform, PDBj and Linked Open Drug Data (LODD) aim at pushing
life sciences data into the LOD cloud with the idea of facilitating their integration [7, 13,
25, 31]. It results from these initiatives a large collection of life-science data unequally
connected but in a standard format and available for mining. Despite good will and
emerging standard practices for publishing data as LOD, several drawbacks make their
use still challenging [17, 28]. Among existing difficulties we can cite the limited amount
of links between datasets and the limits of implementations of federated queries.

In this paper we present a novel method that consists in mining an eclectic set of
linked data sources to help validating uncertain drug–gene relationships. This method
can be divided in three steps: first, selecting, connecting and, when necessary, pub-
lishing relevant PGx linked data; second, formatting linked data in a set of instances,
suitable to train a machine learning algorithm; third, training a random forest model,
subsequently used to classify and rank candidate pharmacogenes.

The paper is organized as follow: next section introduces some related works; sec-
tion 3 presents successively the preparation, formatting and mining of PGx linked data;
section 4 provides the results of training and classification tasks; the last section dis-
cusses the proposed method and its results.

2 State of the Art

2.1 Pharmacogenomics data and linked data

PharmGKB is a comprehensive database about PGx that includes manually annotated
gene–drug relationships [35]. Recently, PharmGKB distinguished well validated gene–
drug relationships from insufficiently validated ones, pointing at knowledge in need of
additional validation [30]. Parts of PharmGKB have been transformed and published in
RDF by the Bio2RDF project, enabling SPARQL queries [4]. Several other databases
provides data that are indirectly relevant to PGx, such as DrugBank (providing for in-
stance drug–target relationships), CTD, Sider, OMIM. Hoehndorf et al. integrated and
made available a set of PGx related data that includes PharmGKB, DrugBank and CTD,
using semantic web technologies [21]. They used the integrated dataset to identify path-
ways that may be perturbed in PGx. In this effort of publishing PGx data, Coulet et al.
extracted about 40,000 PGx relationships from the biomedical literature and published
them in the form of RDF statements [9].

2.2 Mining linked data

Suggesting novel drug–gene relationships from an RDF graph can be described as a link
prediction problem. Many works have focused on the link prediction problem studying
various approaches such as machine learning [3, 22], graph mining [33], identity reso-
lution [6, 34] and data visualisation [20]. Some of these methods obtain good results,



but all are dependent from the quality of input graphs and are hard to reuse for new
applications. In relation with PGx research, Percha et al. mined with a Random For-
est (RF) algorithm the set of RDF statements extracted from text by Coulet et al. and
predicted successively drug–drug interactions [29].

2.3 Discovery of Pharmacogenes

Hansen et al. proposed a method based on a logistic classifier to generate candidate
pharmacogenes, using data from PharmGKB, DrugBank, and protein–protein interac-
tions from InWeb [19]. An issue here is that PharmGKB and DrugBank are manu-
ally curated from the literature and are consequently expensive to maintain and update.
Garten et al. answered this issue by proposing an automatic method that consider di-
rectly (and only) the literature [16]. They improved the results obtained by Hansen
et al. by considering gene–drug pairs co-occurring in sentences of the PGx literature.
Recently, Funk et al. proposed also to use the biomedical literature, plus GO annota-
tions, to identify pharmacogenes [14]. They achieve high F-measure and AUC (0.86 and
0.86), but proposed a binary classification that avoids any ranking of the candidates.
Semantic web technologies have also been experimented for PGx knowledge discovery.
Dumontier and Villanueva-Rosales proposed a knowledge representation of the domain
and benefit from reasoning mechanisms to answer sophisticated queries related to de-
pression drugs [12]. Coulet et al. used patient data to instantiate a DL knowledge base,
then extracted association rules from it to identify gene variant–drug response associa-
tions [8]. More generally, advantages that semantic web technologies may offer to PGx
and personalized medicine are listed in [32].

In this paper, we report about a selection of data source that we think relevant to
mine for validating pharmacogenes. When necessary, we transformed in RDF graphs
and interconnected these data, respecting semantic web precepts to facilitate later addi-
tion/removal of sources. Finally, we formatted obtained RDF data to train a RF model,
subsequently used to classify candidate pharmacogenes.

3 Methods

3.1 Preparation of the PGx linked data

Data selection Initial step is to select a set of data that include relevant features about
PGx drug–gene relationships. Figure 1 gives an overview of the type of data we con-
sider in this study: data about three types of entities (Gene, Phenotype and Drug) and
relationships between them (i.e., Gene–Phenotype, Phenotype–Drug and Gene–Drug
relationships). To obtain these data, we selected sources manually but oriented our se-
lection to sources providing typed relationships and limited ourselves to two sources
per relationship. As a result, we selected ClinVar and DisGeNET for Gene–Phenotype;
SIDER and Medi-Span for Phenotype–Drug; DrugBank for Gene–Drug relationships.
PharmGKB completes the set of data sources to enable building the training and test
sets (see subsection 3.3).



Fig. 1. General view of the type of entities and relationships considered in this study. Naming of
different parts (i.e., 1-hop , 2-hop links and gene, phenotype and drug attributes) is used later, in
the step of formatting of the linked data (see subsection 3.2).

Data RDFization The second step is about turning selected data in standardized RDF
graph. We benefit from the fact that DisGeNET3, SIDER4 and DrugBank5 are already
available online in the form of LOD and reused them. We completed the Bio2RDF ver-
sion of PharmGKB locally with gene–drug relationships manually annotated by Phar-
mGKB but not openly distributed [4]. Similarly, we transformed drug indications and
side-effects from Medi-Span in the form of RDF triples and loaded them into our local
SPARQL server. DisGeNET includes data from ClinVar, but because it includes only a
part of it, we made our own RDF version of ClinVar6 following guidelines and scripts
of the Bio2RDF project. This last dataset will be made available on the Bio2RDF portal
soon. Figure 2 presents the detailed schema (i.e., type of entities and relationships) of
the linked data we consider for mining.
Mapping definition The third step of the data preparation is to define mappings
between entities of the same type but of various provenance. Figure 2 illustrates that
for each type of entity (Gene, Phenotype or Drug), data we consider may come from
four distinct sources. To define mappings, we first relied on standard identifiers such as
NCBI Gene ID found in DisGeNET and ClinVar URIs and UMLS CUI found in Dis-
GeNET, ClinVar, SIDER and Medi-Span. We defined regular expressions over URIs
to isolate identifiers and when two match, we define a mapping. Figure 3 shows two
entities, clinvar:1956 and disgenet:1956 that share a unique identifier within
different namespaces.

3 DisGeNET endpoint: http://rdf.disgenet.org/sparql/
4 SIDER endpoint: http://sider.bio2rdf.org/sparql
5 DrugBank endpoint: http://drugbank.bio2rdf.org/sparql
6 ClinVar in RDF: http://dbs.kevindalleau.fr/sparql

http://rdf.disgenet.org/sparql/
http://sider.bio2rdf.org/sparql
http://drugbank.bio2rdf.org/sparql
http://dbs.kevindalleau.fr/sparql


Fig. 2. Schema of the data selection made for this study. Entities are of three distinct types: Gene,
Phenotype and Drug. Gene–Phenotype relationships are coming from ClinVar and DisGeNET,
Phenotype–Drug relationships from SIDER and Medispan, Gene–Drug relationships from Drug-
Bank. In addition, we included gene and drug entities from PharmGKB to enable building the
training and test sets (detailed in subsection 3.3). Equivalence mappings are defined between
entities of the same type but of different provenance.

Second, when no standard identifier exists, we relied on services provided by biodb.
jp to obtain cross-references between identifiers and, accordingly, define mappings
[23]. We implemented a tool named biojp2rdf that transforms in RDF the cross-references
provided by biodb.jp [10]. We loaded these data into a SPARQL server dedicated to
the resolution of identity between entities of the same type.

For the sake of computation of SPARQL queries, of independence from third party
RDF platforms and of license of certain data, we loaded all considered data on our local
server, using Apache Jena Fuseki.

3.2 Formatting the PGx linked data

Linked data are in the form of graphs, whereas machine learning algorithms, such as
RF take as an input a feature matrix. Consequently, we needed to format our PGx linked
data in the form of such a matrix. Each line of a feature matrix represents an instance and
each column represents a feature describing the instances. In this work, we hypothesize

biodb.jp
biodb.jp
biodb.jp


Fig. 3. Sample of PGx linked data, describing relationships between EGFR gene, Gefitinib and
Non-small cell lung carcinoma. Entities of same type but of different provenance are mapped to
each other.

that paths that exist between 2 entities in linked data may describe their relationship.
Consequently we aimed at encoding, in the matrix, paths between genes and drugs. To
contain the size of the matrix, we considered only paths of length 1 and 2, hereafter
named 1-hop and 2-hop links. In addition to links, we encoded few attributes that qual-
ify the drug, the gene and the potential intermediate phenotypes (see Figure 1). As a
result, each instance is corresponding to a combination of paths between a drug and a
gene, plus a combination of potential attributes. One drug–gene pair may be described
in the matrix by several instances, but each instance describes a unique pair. The maxi-
mal number of instances that may describe the relationship between drug d and gene g
is

nd-g = ∣{1-hop links}d-g ∣ × ∣{2-hop links}d-g ∣ × ∣{att}d∣ × ∣{att}g ∣ ×
m

∏
i=1

∣{att}pi ∣

where ∣{x-hop links}d-g ∣ is the number of distinct x-hop links between g and d,
∣{att}y ∣ is the number of distinct attributes of the entity y and pi are intermediate phe-
notypes of 2-hop links. The various amount of available data for distinct d-g pairs ex-
plains that nd-g may be very different (from one to several thoushands) from one pair
to another. Table 1 shows an example of matrix obtained when formatting the sample
of linked data represented in Figure 3.



Table 1. Example of a feature matrix generated from linked data represented in Figure 3. All
the instances (e.g., lines) describe the same drug–gene relationships (EGFR–Gefitinib), which is
annotated as associated in PharmGKB (Class=1).

ID Gene Phenotype Drug 1-hop link 2-hop link1 2-hop link2 Class
attribute attribute attribute

PA7360- signal T191 L01 drugbank: clinvar: sider: 1
PA131301952 transduction target so 0001575 indication

PA7360- immune T191 L01 drugbank: clinvar: sider: 1
PA131301952 system target so 0001575 indication

PA7360- signal T191 L01 drugbank: clinvar:varia- sider: 1
PA131301952 transduction target tion to disease indication

PA7360- immune T191 L01 drugbank: clinvar:varia- sider: 1
PA131301952 system target tion to disease indication

3.3 Mining the PGx linked data

Training set To classify drug–gene pairs as associated or not with regards to PGx
data, we use Random Forest (RF) that is a supervised machine learning algorithm. RF
requires for training two sets of instances: positives and negatives. Our sets of positives
and negatives are drug–gene pairs annotated as associated or not according to Phar-
mGKB (version of June 1st, 2013) that are related by at least one 2-hop link and that
are associated with a high level of validation in PharmGKB (i.e., level=1 or 2) [30].
PharmGKB includes 2,542 positive and 373 negative relationships, only 78 and 8 of
those have a 2-hop link and 51 and 8 of those have a high level of validation.
To balance the number of positives and negatives, we enriched the set of negatives with
43 drug–gene pairs that are generated randomly, but checked to be absent from DGIdb
(the Drug Gene Interaction database), which collects gene–drug relationships from var-
ious sources [18]. Resulting 51 positive pairs and 51 negative pairs are used as seeds
in our formatting approach to explore PGx linked data and generate respectively 4,618
and 1,170 instances7. Note that balancing the number of positive and negative pairs
results in unbalancing the number of positive and negative instances.

Test set We considered 1,760 drug–gene pairs insufficiently validated, i.e., associated
with the evidence level 3 or 4 in PharmGKB. From them, we kept the 82 that have at
least one 2-hop link. These pairs served as seeds to constitute the 13,500 instances of
our test set, according to our formatting approach. 3.2.

Multi-instance classification and candidate ranking With RF prediction, a probability
distribution value may be used to evaluate the confidence of the model for classifying
a new instance and then rank classified instances. However, the drug–gene pairs that
we classify are typical examples of multi-instance objects, also named bag of instances,
since they are not represented by a single instance but by several ones. Even if RF may

7 The training set is open at http://www.loria.fr/˜coulet/training_set.csv

http://www.loria.fr/~coulet/training_set.csv


be trained on single instances to classify bags of instances [26], RF output associates
a class and a probability to an instance, not to a bag of instances. Then, we required
additional treatments to classify and rank bags of instances. We consider a pair as asso-
ciated only if all the instances of a bag are classified as positive. For the probability, we
compute the arithmetic mean p̄ of probabilities of instances of the bag [1].

4 Training and Classification Results

We trained and evaluated our model using the Weka implementation of the RF and 100-
fold cross validation. Its processing lasts 13 seconds on a Intel i5-4570 (3,2 GHz). Table
2 presents the results of this evaluation.
Table 2. Results of the 100-fold cross validation of our RF model, trained on PharmGKB well
validated data.

Class Precision Recall F-Measure

1 (positive) 0.936 0.969 0.952

0 (negative) 0.858 0.738 0.794

Weighted Average 0.92 0.922 0.92

The 13,500 instances of our test set have been classified either as positive or nega-
tive in about 5 seconds. The top-10 pairs predicated as positive according to the instance
classification is provided in Table 3.

Table 3. 10-Top candidates of drug–gene pairs predicted from our PGx linked data.

Rank Gene Drug p̄ Rank Gene Drug p̄

1 APOE Rosuvastatin 0.874 6 SLC10A1 Thalidomide 0.860

2 APOE Fenofibrate 0.874 7 ABCC6 Thalidomide 0.853

3 APOE Simvastatin 0.874 8 HLA-B Carbamazepine 0.851

4 ACAPG Vincristine 0.864 9 HLA-B Lamotrigine 0.851

5 AADRB2 Risperidone 0.862 10 HLA-B Oxcarbazepine 0.851

5 Discussion and Conclusion

The aim of this work is to study the usefulness of LOD mining for PGx by setting up
a baseline experiment. The method we propose is simple and may be improved. We
list here some potential improvements. First, the size of our training set is small be-
cause we aimed at containing the amount of missing data by considering only pairs
of entities related by a 2-hop link. We may enlarge the training set by removing this
constraint.Second, we propose a selection of data sources that was made arbitrary by
the authors, whereas attribute selection methods may guide this process. Indeed, our
choice for linked data framework is motivated by the fact that we want to ease the ad-
dition/removal of data sources for enabling the selection of best features out of many
sources. A preliminary processing of the information gain (InfoGain) on our features



shows that the type of the 1 hop-link obtained from DrugBank, which may have the
value drugbank:target or n/a is useless on its own (InfoGain=4.10−16), whereas
gene and drug attributes are of importance (InfoGain=0.22 and 0.12). Third, the format-
ting of RDF graph data in the form of a feature matrix may be improved. In our case, a
drug–gene pair from the training or test set is encoded by multiple instances, whereas
RF classifies single instances [1]. To classify multi-instance objects, we may consider
more sophisticated methods such as MIForests, a multi-instance learning algorithm for
randomized trees [26]. Fourth, the choice for RF algorithm may be discussed and we
may compare its results with alternative machine learning algorithms such as SVM that
have been successfully used on LOD. This will require to adapt the formatting of the
RDF graph data to comply with the chosen algorithm [11, 27].
A clear limitation of our study is the coarse grain of entities we considered. State of the
art in PGx reports about relationships between genomic variant, sometimes haplotypes,
and drug response phenotype, whereas we are considering simply genes and pheno-
types. This is harmful since a unique gene may host two variants, one that impacts drug
response and one that does not.

We presented in this paper a method to help validating candidate pharmacogenes
using linked data, and its initial results. We selected, published and interconnect data
relevant to PGx domain in the form of RDF graphs. Then we formatted these data to
train a RF classifier. We used this classifier to identify and rank candidate pharmaco-
genes. Potential improvements to our method have been identified, however this base-
line experiment present promising results, achieving a F-measure=0.92. Top candidate
pharmacogenes underlined by the methods will be investigated to evaluate how system-
atically we can confirm or moderate insufficiently validated PGX knowledge.
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