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Resumo

Novas interações entre compostos químicos são geralmente descritas

em artigos cientí�cos, os quais estão a ser publicados a uma velocidade

cada vez maior. No entanto, estes artigos são dirigidos a humanos,

escritos em linguagem natural, e não são processados facilmente por

um computador. Métodos de prospeção de texto são uma solução para

este problema, extraindo automaticamente a informação relevante da

literatura. Estes métodos devem ser adaptados ao domínio e tarefa a

que vão ser aplicados.

Esta dissertação propõe um sistema para identi�cação automática e

e�caz de interações entre entidades químicas em documentos biomédi-

cos. O sistema foi desenvolvido em dois módulos. O primeiro módulo

reconhece as entidades químicas que são mencionadas num dado texto.

Este módulo foi baseado num sistema já existente, o qual foi melho-

rado com um novo tipo de medidas de semelhança semântica. O se-

gundo módulo identi�ca os pares de entidades que representam uma

interação química no mesmo texto, com recurso a técnicas de Apren-

dizagem Automática e conhecimento especí�co ao domínio. Cada mó-

dulo foi avaliado separadamente, obtendo valores de precisão elevados

em dois padrões de teste diferentes. Os dois módulos constituem o

sistema IICE, que pode ser usado para analisar qualquer documento

biomédico, de forma a encontrar entidades e interações químicas. Este

sistema está acessível através de uma ferramenta web.

Palavras Chave: Prospeção de Texto, Aprendizagem Automática,

Reconhecimento de Entidades, Extração de Relações, Semelhança

Semântica





Abstract

Novel interactions between chemical compounds are often described

in scienti�c articles, which are being published at an unprecedented

rate. However, these articles are directed to humans, written in nat-

ural language, and cannot be easily processed by a machine. Text

mining methods present a solution to this problem, by automatically

extracting the relevant information from the literature. These meth-

ods should be adapted to the speci�c domain and task they are going

to be applied to.

This dissertation proposes a system for automatic and e�cient iden-

ti�cation of interactions between chemical entities from biomedical

documents. This system was developed in two modules. The �rst

module recognizes the chemical entities that are mentioned in a given

text. This module was based on an existing framework, which was

improved with a novel type of semantic similarity measure. The sec-

ond module identi�es the pairs of entities that represent a chemical

interaction in the same text, using Machine Learning techniques and

domain knowledge. Each module was evaluated separately, achieving

high precision values against two di�erent gold standards. The two

modules were constitute the IICE system, which can be used to ana-

lyze any biomedical document for chemical entities and interactions,

accessible via a web tool.

Keywords: Text Mining, Machine Learning, Named Entity Recog-

nition, Relation Extraction, Semantic Similarity





Resumo Alargado

Diariamente, é gerada uma grande quantidade de informação biomédica,

disponível para a comunidade cientí�ca. Esta informação pode ter

uma estrutura de dados de�nida, facilitando o processamento por um

computador. No entanto, grande parte da informação disponibilizada

está na forma de texto, sem qualquer estrutura de dados subjacente. A

literatura cientí�ca é direcionada para humanos, o que torna mais difí-

cil o processamento por um computador. Por esta razão, é necessário

desenvolver métodos de prospeção que transformem o texto numa es-

trutura de dados. Com este tipo de métodos, é possível extrair do

texto certo tipo de informações, como por exemplo, referências a in-

terações entre entidades relevantes.

As interações químicas extraídas automaticamente de textos cientí-

�cos podem ser usadas por peritos para, por exemplo, desenvolver

bases de dados, ou encontrar potenciais efeitos adversos entre fárma-

cos. Ao extrair interações de um grande conjunto de artigos, é possível

que sejam encontradas interações implícitas entre compostos quími-

cos. Se dois compostos químicos tiverem uma interação em comum,

encontrada em trabalhos de investigação diferentes, com um terceiro

composto, é provável que estes constituam também uma interação. O

desenvolvimento de técnicas de prospeção de texto permite que este

tipo de interações seja encontrado muito mais rapidamente do que

uma abordagem manual.

Aprendizagem Automática consiste num conjunto de algoritmos para

treinar classi�cadores que consigam classi�car novos dados, apren-

dendo com um conjunto de dados anotado por peritos no domínio

em que o classi�cador vai ser aplicado. Este tipo de abordagem tem

a vantagem de se adaptar mais facilmente a novos domínios do que

abordagens baseadas em dicionários ou regras �xas. Os algoritmos de



Aprendizagem Automática têm sido aplicados com sucesso em várias

tarefas de prospeção de texto. Uma destas tarefas é o reconhecimento

de entidades, que consiste em identi�car as entidades relevantes men-

cionadas num dado texto. Outra tarefa, que é geralmente sequencial à

anterior, consiste em extrair relação entre entidades que são descritas

no texto. O objetivo é classi�car se cada par de entidades é uma

interação ou não, e se for, de que tipo. Estas duas tarefas têm sido

aplicadas a vários domínios ao longo dos anos, sendo que o principal

é geralmente textos jornalísticos.

Vários tipos de interações podem ser extraídas de documentos biomédi-

cos, como por exemplo, proteína-proteína, doença-tratamento, e doença-

gene. No domínio dos compostos químicos, algum trabalho tem sido

desenvolvido para a extração de interações do tipo fármaco-fármaco.

Neste sentido, foi organizada uma competição, inserida no SemEval

2013, para extração de interações deste tipo, denominada DDI Ex-

traction. Esta foi a segunda edição desta competição, que foi dividida

em duas subtarefas: a primeira consistiu na extração de entidades

químicas do texto, e a segunda na identi�cação de interações. Seis

equipas submeteram resultados para a primeira subtarefa, enquanto

que oito equipas submeteram para a segunda. No entanto, apenas

duas equipas submeteram resultados para as duas subtarefas. Isto

mostra que é necessário mais investigação em sistemas que extraiam

interações entre compostos químicos a partir de textos sem qualquer

anotação prévia.

A técnicas de prospeção de texto devem ser adaptadas ao domínio

ao qual vão ser aplicadas através de conjuntos de dados de treino

e processos de validação dos resultados. Dois conjuntos de dados

para entidades químicas foram lançados recentemente, no âmbito da

tarefa CHEMDNER da competição BioCreative IV, e da tarefa DDI

(Drug-Drug Interaction) Extraction, da competição SemEval 2013.

Estes conjuntos de dados servem para treinar classi�cadores, e depois

avaliar os resultados obtidos com o sistema desenvolvido, comparando



com outros sistemas semelhantes. Existem também bases de dados e

ontologias que podem ser usadas para validar resultados obtidos com

prospeção de texto. A ideia é complementar os algoritmos de Apren-

dizagem Automática com esta informação especí�ca, para treino dos

classi�cadores ou mapeamento das entidades reconhecidas a identi�-

cadores únicos. Algumas fontes de informação úteis para compostos

químicos são o ChEBI (Chemical Entities of Biological Interest), Gene

Ontology, e DrugBank.

O objetivo desta dissertação foi desenvolver um sistema para extração

automática e e�caz de interações químicas de textos biomédicos. O

sistema desenvolvido, chamado IICE, é baseado em algoritmos de

Aprendizagem Automática, bem como recursos especí�cos ao domínio

biomédico. O sistema IICE é constituído por dois módulos, que foram

desenvolvidos e avaliados separadamente.

O módulo CNER reconhece as entidades químicas mencionadas no

texto, mapeando cada entidade a um identi�cador único do ChEBI.

Os resultados obtidos passam por um processo de validação que usa

semelhança semântica para �ltrar erros de reconhecimento. Este mó-

dulo é baseado num sistema já existente, tendo sido otimizado para

os conjuntos de dados mencionados anteriormente. Estas melhorias

consistiram no aumento do número de propriedades exploradas pelo

algoritmo de Aprendizagem Automática usado, bem como no mel-

horamento do processo da validação. Para isto, foi desenvolvido um

novo tipo de medida de semelhança semântica, que considera apenas

os termos mais relevantes no cálculo da semelhança. O fundamento

deste tipo de medida é que ascendentes de um conceito da ontolo-

gia com mais relevância serão também os mais importantes para o

cálculo. A relevância de um conceito foi estimada através de uma

adaptação da medida h-index, usada para avaliar o peso do trabalho

publicado por um investigador. Com estas duas melhorias, foi obtida

uma medida-F de 82,23% para o conjunto de dados DDI Extraction,



o que representa um aumento de 4,13 pontos percentuais em relação

aos resultados obtidos com a versão original do sistema.

O módulo CIE foi desenvolvido para detetar pares de entidades que

constituem uma interação, de acordo com o texto, e, se for esse o

caso, classi�car com um tipo de interação química. Para isto, foram

usados algoritmos de Aprendizagem Automática que têm em conta o

contexto em que as entidades são mencionadas, as próprias entidades,

e informação externa de bases de dados e ontologias. Este módulo foi

também avaliado com o conjunto de dados DDI Extraction, obtendo

uma medida-F de 74,57% para a deteção de interações, e 65,02% para

a classi�cação de interações. Este resultados são próximos aos obtidos

pela melhor participação da competição original.

Os dois módulos foram combinados no sistema IICE, para identi�-

cação automática de interações entre entidades químicas. O sistema

foi implementado com um interface de linha de comandos, para anal-

isar grandes quantidades de documentos. No entanto, está também

disponível numa ferramenta web, em http://www.lasige.di.fc.ul.

pt/webtools/iice/, que permite a qualquer utilizador introduzir um

texto para ser analisado pelo sistema. Também é possível introduzir

um identi�cador PubMed para analisar o resumo de um artigo da base

de dados MEDLINE. Várias opções foram implementadas na ferra-

menta, que correspondem a parâmetros descritos nesta dissertação.

É possível usar apenas o módulo CIE, caso o texto esteja já anotado

com entidades químicas, ou apenas o módulo CNER, para extrair ape-

nas as entidades químicas. O objetivo é o utilizador poder veri�car

por sim mesmo o efeito dos diferentes parâmetros nos resultados obti-

dos. É apresentada uma tabela de resumo para as interações químicas

identi�cadas, e outra tabela para os compostos químicos identi�cados.

Como alternativa, os resultados também podem ser descarregados em

formato XML.

No domínio biomédico, a extração de interações é uma tarefa ainda

com pouco trabalho desenvolvido, quando comparada com outros

http://www.lasige.di.fc.ul.pt/webtools/iice/
http://www.lasige.di.fc.ul.pt/webtools/iice/


domínios e tarefas. Esta dissertação propõe um sistema para extração

automática de conhecimento sobre interações químicas de documen-

tos biomédicos. Os resultados obtidos demonstram o potencial deste

sistema em aplicações práticas. O uso de técnicas de Aprendizagem

Automática permite que este sistema possa ser, no futuro, adaptado

a outros tipos de entidades e domínios, usando um conjunto de dados

apropriado.
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Chapter 1

Introduction

1.1 Motivation

Everyday, a large amount of biomedical data is generated and made available to

the scienti�c community. This data can be organized in speci�c data structures,

which are easily read by a machine or computer program. However, part of this

available biomedical data does not have a de�ned structure, making it di�cult to

be processed by a computer program. For example, text, �gures and videos often

contain biomedical information but those formats are mostly directed to humans,

and need a de�ned process to be transformed into structured data.

One of the major sources of current scienti�c knowledge is scienti�c litera-

ture, in form of patents, articles or other types of communication. Interactions

discovered between chemical compounds are often described in scienti�c articles

(Aronson, 2007). However, the number of documents that a researcher has to

retrieve, read and understand to �nd something useful for his work increases ev-

eryday, turning it into a very time-consuming task. Furthermore, the available

drug interactions databases are uneven and unable identify correctly the interac-

tions with highest clinical importance (Abarca et al., 2003). One of the biggest

sources of biomedical documents is the MEDLINE database (Greenhalgh, 1997),

created in 1965. This database contains over 21 million references to journal ar-

ticles in life sciences, while more than 700,000 were added in 2013. Figure 1.1

shows how this database has increased greatly, storing a lot of knowledge about

many topics relevant to biomedicine, including chemical interactions.

1
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Figure 1.1: Number of citations present in MEDLINE since its beginning in
1950. Data from o�cial statistics available at www.nlm.nih.gov/bsd/index_

stats_comp.html.
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1.1 Motivation

The interactions found in biomedical documents can be used to validate the

results of new research or even to �nd potentially new interactions between two

chemical compounds that interact with the same chemical compound. For ex-

ample, Swanson (1990) found that dietary �sh oils might bene�t patients with

Raynaud's syndrome, by connecting the information present in two di�erent sets

of articles that did not cite each other. This inference had been con�rmed in-

dependently by others in clinical trials (DiGiacomo et al., 1989). In the same

study, the author provided two other examples of inferences that could not be

drawn from one single article, but only by combining the information of multiple

articles. Considering that since that study, the amount of articles available has

grown immensely, there are probably many new chemical interactions that can

be extracted from this source of information.

Text mining is a research �eld where techniques are developed to extract

useful knowledge from textual data. It has been applied to many domains where

information is stored in text documents, for example, news articles, patents, legal

cases and scienti�c papers. Various tasks can be accomplished with Text Mining

techniques, for example:

� Named entity recognition (NER) consists in extracting references to relevant

entities from text.

� Relation extraction (RE) consists in discovering relations between entities

mentioned in the same document.

� Sentiment analysis is used to classify the polarity of a given text relative to

an entity or topic.

A more detailed description of these tasks is provided in Chapter 2. As with data

mining, there are di�erent approaches that can be applied to perform these tasks.

Machine learning approaches have the advantage of being more adaptable than

dictionary based approaches, without the manual e�ort required by rule based

approaches. There are various Machine Learning algorithms that can be applied

to Text Mining, the most common being Support Vector Machines (Cortes &
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Vapnik, 1995) and Condition Random Fields (La�erty et al., 2001). These algo-

rithms require a text corpus and the expected results for each training document

to learn how to extract information from text.

The extraction of interactions between chemical entities requires a �rst step

of identifying the chemical entities mentioned in a given text. This �rst step is a

NER task and it may in�uence the performance of the Relation Extraction step.

Chemical NER is a complex and challenging task, compared to other domains.

A single entity maybe be represented by di�erent names, for example, using

the systematic nomenclature, molecular formula or brand name. This ambiguity

should be resolved by mapping each entity to a universal identi�er. Moreover, it is

impossible for a single resource to contain every chemical entity that exists, since

new chemical compounds are discovered everyday. Dictionary based approaches

have limited potential since they cannot identify new entities.

In the simplest case, a chemical interaction consist of two entities, and the

relation is symmetrical, i.e., the direction of the relation between the two entities

is not relevant. In reality, the relations can be more complex, involving more

than two entities, and each entity may have a speci�c role in the relation.

A chemical interaction is de�ned in a given text whenever at least two chemical

entities are mentioned and at least one of them has some kind of e�ect on any

of the others. Since the focus of this dissertation is on chemical entities with

biomedical interest, this e�ect can be on the chemical structure, concentration

value and metabolic pathways of a chemical entity, or other e�ects relevant to

biomedicine.

1.2 Objectives

Biomedical NER has received attention from the community, in the form of

research papers, conferences and community challenges. The most advanced

systems have obtained good results in the community challenges organized to

evaluate the state-of-art, close to the results obtained for domains outside of

biomedicine. However, the extraction of chemical interactions has not been re-

searched as much, even though the results obtained with the task can be applied
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directly to obtain new knowledge. Fully automated interaction extraction sys-

tems are necessary to process the large quantity of text available and extract

useful knowledge from it, which can then be applied, for example, to expand

databases of chemical compounds and interactions. The objective of this work

was to develop a system for extraction of chemical interactions mentioned in

biomedical documents, based on Machine Learning and using external resources

for validating the results.

Hypothesis: Information about chemical interactions can be e�ciently extracted

from biomedical documents using Machine Learning techniques and domain

knowledge from ontologies.

Machine learning is a sub�eld of Arti�cial Intelligence that deals with the

design and development of algorithms to perform certain tasks, by learning from

example data. The advantage of these algorithms is that they are more �exible

than a �xed approach, based on rules or patterns. The results obtained with

Machine Learning can then be complemented with domain knowledge.

The system developed should be able to process biomedical documents with-

out any manual annotations, identify the chemical entities mentioned and the

chemical interactions described on each document. Each module of this system

should then be evaluated using data sets that were created for similar tasks. The

Drug-Drug Interactions Extraction task of SemEval 2013 (Segura-Bedmar et al.,

2013) provided a corpus of 1025 documents annotated with chemical entities and

chemical interactions (Herrero-Zazo et al., 2013). This corpus was used by the

participants to evaluate the performance of their systems. The results obtained

provided a baseline for the development of other systems.

1.3 Contributions

This work will be fundamentally concerned with proposing a system for automatic

extraction of chemical interactions from biomedical documents. This system was

divided in two modules, one for the recognition of chemical entities and another

for identi�cation of chemical interactions. Thus, the speci�c contributions can be

enumerated as follows:
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Chemical Named Entity Recognition (CNER) module: Improvement of the

framework developed by Grego & Couto (2013). Since the identi�cation of

interactions is dependent on considering the correct entities, it is essential

that this module is as optimized as possible. I improved the framework

by expanding the feature set and by implementing various validation pro-

cesses. In particular, I developed a new category of semantic similarity

measures which was able to better assess the relevance of concepts, based

on the h-index. I used this module to participate on the CHEMDNER task

of BioCreative IV. This work resulted in two conference participations and

one journal article:

� Lamurias et al. (2013). Chemical compound and drug name recogni-

tion using CRFs and semantic similarity based on ChEBI. In BioCre-

ative Challenge Evaluation Workshop, vol. 2, 75

� Lamurias et al. (2014a). Chemical Named Entity Recognition: Im-

proving recall using a comprehensive list of lexical features. In 8th

International Conference on Practical Applications of Computational

Biology & Bioinformatics (PACBB 2014), 253-260, Springer.

� Lamurias et al. (2014c). Improving chemical entity recognition through

h-index based semantic similarity. Journal of Cheminformatics (Minor

revisions).

Chemical interactions extraction (CIE) module: Amodule to classify each

pair of chemical entities mention in a given text with a type of interaction, or

as not interacting This module is based on Machine Learning techniques,

complemented with domain knowledge, and was tested on the DDI Ex-

traction gold standard. The work done for this module resulted in one

conference presentation and one journal article .

� Lamurias & Couto (2014). Identifying interactions between chemical

entities in text. In Bioinformatics Open Days, University of Braga.

� Lamurias et al. (2014b) Identifying interactions between chemical en-

tities in biomedical text. Journal of Integrative Bioinformatics (In

Press).

6



1.4 Overview

System for identi�cation of chemical interactions from raw text: I inte-

grated the two modules developed in one system for analyzing biomedical

text. This system is accessible via a web tool1, and was presented on the

Lisbon Machine Learning Summer School Demo Day, on Instituto Superior

Técnico.

1.4 Overview

The overview of this document is as follows.

Chapter 2 provides an overview of the state-of-art of Text Mining, in particular

applied to biomedical documents and chemical entities. The main resources used

for this work are presented as well as the ICE framework for chemical entity

recognition.

Chapter 3 refers to the improvements that I applied to the ICE framework,

in particular the analysis of each newly implemented feature, and the improved

semantic similarity measure used for validation.

Chapter 4 deals with the identi�cation of entity pairs that interact in a given

sentence. The advantages of kernel methods are discussed, as well as the e�ect

of an ensemble classi�er on the classi�cation of interactions.

In Chapter 5 I present the system that I developed for automatic extraction

of chemical interactions from raw text.

Finally, on Chapter 6, I discuss the main conclusions of this work, and indicate

some directions for future work.

1http://www.lasige.di.fc.ul.pt/webtools/iice/
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Chapter 2

Related Work

This chapter serves as an overview on the current state of biomedical information

extraction with focus on the extraction of chemical interactions from biomedical

text. First, the basic concepts necessary to fully understand Text Mining systems

based on Machine Learning are presented. A Text Mining system assessment re-

quires speci�c evaluation measures for the tasks performed, for comparison with

other similar systems. Challenge evaluations have been organized, as an e�ort

to compare di�erent approaches to biomedical information extraction. The main

evaluation measures and recent challenge evaluations are described in this chap-

ter. Then, the main resources available for biomedical information extraction are

presented, including software tools, databases and corpora. While the databases

and corpora are focused on the biomedical domain, the software tools can be ap-

plied to di�erent domains, assuming the input data is appropriate. In the recent

years, the interest for automatic extraction for chemical interactions from text

has increased, and as such, chemical interaction extraction systems have been

developed and evaluated with domain-speci�c challenge evaluations. The best

systems are reviewed in this chapter. Finally, the approach used by �Identifying

Chemical Entities� (ICE) is explained, which was used as a framework for the

chemical entity recognition component of this work. This component is required

to develop a fully automatic chemical interaction extraction system.
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2.1 Text Mining

Text mining consists in extracting useful and relevant knowledge from unstruc-

tured text documents (Tan et al., 1999). It can be considered a sub-�eld of data

mining, where the data is in the form of words and sentences. As such, some

data mining algorithms can be applied to Text Mining, if the input text is �rst

converted into an appropriate data type, for example, a numeric vector.

While systems developed for news articles have obtained high levels of success,

the results are usually lower for the same tasks on scienti�c text (Dickman, 2003).

This is mostly due to the high level of ambiguity within the terms used to refer to

entities. Not only the same entity can be mentioned by di�erent nomenclatures

or spellings, but the same expression can refer to di�erent entities depending

on the context. Furthermore, the sentence structures employed to explain the

interactions range from simple to very complex, depending on the mechanism of

the interaction and the number of entities.

2.1.1 Main Tasks

The term �Text Mining� is used to describe various tasks with the common goal

of extracting useful and relevant information from unstructured text. The actual

information that is extracted is what di�erentiates each task. Di�erent types

of information will have di�erent types of applications for the end result. Each

task is accomplished using di�erent approaches, which can then be combined to

improve the results of another task, or simply to extract more information from

the same text. The main Text Mining tasks applied to the biomedical domain

will now be described.

2.1.1.1 Document Classi�cation

Document classi�cation is a task with the objective of classifying each document

in a set with one or more labels. For example, it may be necessary to classify if

each document is relevant to a certain topic, or if it contains information about

a certain entity, from a large collection. This can be accomplished by treating

the whole document as an instance, and the frequency of each term mentioned as
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features, which is usually known as the bag-of-words model. Then, it is possible

to apply a supervisioned or semi-supervisioned classi�cation algorithm if there is

a set of documents for which the correct labels are known. Otherwise, it is also

possible to apply a document clustering algorithm to a set of documents, using

the similarity between the feature vectors as a distance measure. This task may

be used to assign a topic to each document in a collection, without knowing how

the collection is organized.

2.1.1.2 Named Entity Recognition

Named Entity Recognition (NER) consists in classifying the elements in a given

text that refer to speci�c categories. This task usually requires dividing the text

in elements, known as tokens, that can then be individually labeled by a classi�er.

In same cases, the exact location of the entities mentioned may be relevant, while

in other cases, it is enough to know that the document mentions a given entity

somewhere.

In the biomedical domain, NER systems have been developed to recognize

mentions to proteins, genes, cell locations, biological processes, chemical com-

pounds and drugs.

The relevant entities may be constituted by just one word, multiple words

in sequence, or multiple words with other words between, each case being more

challenging than the other. A common approach that deal with multiple words in

sequence is the BIO labels: �Beginning�, for the �rst word of an entity, �Inside�,

for the other words of the entity, and �Outside�, for irrelevant words. To consider

entities constituted by words that do not appear sequentially in the sentence, it

is necessary to adopt a more complex label system.

The results obtained can be further validated with domain resources such as

databases and ontologies. This process is often referred to a normalization, since

synonyms are normalized to the same unique identi�er. In the biomedical domain,

the nomenclature of the entities can vary greatly, which is why an appropriate

method should be used to map each entity to the correct identi�er.
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2.1.1.3 Relation Extraction

The goal of the Relation Extraction task is to identify meaningful semantic rela-

tions between the entities mentioned in the text. For this task, it is often implicit

that the entities are already identi�ed, manually or with a NER module. A rela-

tion may occur between two or more entities, each entity may have its own role in

the relation, and it may occur in one speci�c direction. Furthermore, a relation

between a set of entities may be labeled with a speci�c type. For example, a re-

lation between a gene and a transcription factor may be of the type �activation�

or �repression�. It is necessary to distinguish between those two types, in order

to extract the correct information from the text.

Many types of interactions have been explored, however, in biomedical do-

main, the focus has been mainly on protein-protein interactions (Krallinger et al.,

2008). Other interactions that have been explored are disease-gene, disease-

treatment (Bundschus et al., 2008), and drug-drug.

2.1.2 Machine Learning

Machine Learning is a scienti�c discipline concerned with the design and develop-

ment of algorithms that allow computers to automatically perform certain tasks,

for example, classi�cation of data instances, by learning from training data. The

algorithms developed can be applied to a large variety of �elds and domains.

Supervised Machine Learning algorithms require a training set, composed by

examples of the input data, and the respective expected output. This training

set is going to be used to generate a classi�er, according to the algorithm chosen.

This classi�er should be able to classify new unlabeled data, according to the

model derived from the training data. It should be noted that the quality and

size of the training set will always in�uence the results produced with a supervised

algorithm (Witten & Frank, 2005). A training set should be representative of the

data that it is going to be applied to.

Unsupervised learning algorithms do not require the training set to be labeled

with the expected output. This is useful if the data labels are unclear or unknown.

It is also possible to combine labeled and unlabeled data to train a classi�er, with

semi-supervised algorithms.
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Many Machine Learning algorithms are based on features extracted from the

data. These features are inherent to the data, representing properties that distin-

guish each instance and each label. The selection of the best features for a given

task is one of the main challenges in developing a Machine Learning system. The

features selected should be speci�c enough so that the algorithm can learn the

di�erence between the labels, but not too restrict so that it can also be applied

to a large variety of data.

The input data for Text Mining is in the form of sentences, paragraphs, doc-

uments, or other categories of natural language. For this reason, the input must

be converted into a format that is expected for the Machine Learning algorithm.

The bag-of-words model is a common approach to convert textual data into

a numeric vector. Some algorithms were already created with text data in mind

(La�erty et al., 2001). In this case, it may be necessary to split the text by word

tokens, and generate features for each token. These features are based on the

word itself, its context, or external knowledge. The sentence structure can also

be used by some algorithms as input data (Zelenko et al., 2003).

The types supervised learning algorithms that are frequently used for Text

Mining are now described:

� Decision Trees (Apte et al., 1998): The data is fractioned by branches

that represent a condition applied to each instance. The leaves represent

the class labels assigned to the instances. This type of algorithm can be

applied to text classi�cation, for example.

� Association rules (Wong et al., 1999): Generation of rules according to

frequent patterns that occur in the data, generally of the type �if x then y�.

Useful for extracting relations between entities recognized.

� Naive Bayes (Rennie et al., 2003): The independence of the features is

assumed, and a probability model is used to determine the most probable

label for each instance. It has been applied to document classi�cation.

� Conditional Random Fields (La�erty et al., 2001): Labels a sequence of

tokens with the most probable sequence of labels, according to the training
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data. In this case, the instances are the tokens of a sentence and the context

of each token is taken into account.

� Support Vector Machines (Cortes & Vapnik, 1995; Joachims, 1998): The

data is represented as points in space, and the algorithm tries to establish

a clear division between the instances with the same label. This algorithm

can be applied to various types of tasks, as long as the data instances can

be represented in a vector space model.

� Kernel-based methods (Zelenko et al., 2003): Class of algorithms that can

be applied to Machine Learning, in order to reduce the importance of the

feature set. This type of algorithm is based on a kernel functionK : S×S →
[0,∞], which is used to express the similarity between two training instances

x and y:

K(x, y) = 〈f(x), f(y)〉

where x, y ∈ S and f is a function that maps an instance to a feature vector,

which does not have to be stated explicitly. The kernel function implicitly

calculates the dot-product of these feature vectors. This kernel can then be

applied to linear Machine Learning algorithm, for example, Support Vector

Machines and the Perceptron (Aizerman et al., 1964). With kernel methods,

the focus is shifted from feature selection to kernel construction. This is

particularly useful for Relation Extraction because the instances are not

easily expressed by a feature vector.

Machine learning algorithms usually have parameters that can be changed

to optimize the performance. However, caution is necessary when experimenting

with di�erent parameters, to prevent over�tting on the example data. Over�tting

occurs when the classi�er is adjusted to the training data, and memorized various

peculiarities of that speci�c data set, which may not be relevant to other data sets

(Dietterich, 1995). Over�tting may also be caused by other reasons, including

a limited training set, or poor feature selection. The result is that the classi�er

seems to perform well for the data available, but when applied to other cases, it

has low predictive power.
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Over�tting can be avoided by selecting a good evaluation technique. It is

common to divide the available data in two or more data sets. One of these

partitions is the previously mentioned training set, which should constitute about

70% of the data. Sometimes the training set is only 35% of the data, while the

other 35% is the development set, used only to optimize the parameters. The

test set is usually about 30% of the data, and it is used to evaluate the system,

with the appropriate measures, when it is completed. Each partition should

be independent of each other. Another technique to avoid over�tting is cross-

validation (Kohavi et al., 1995). This technique consists in dividing the data set

in k partitions of equal size, and then testing the classi�er on one partition, while

training with the rest of the data set. This process is repeated k times and the

results of each partition are then evaluated.

2.1.2.1 Other Approaches

While this work is focused on Machine Learning approaches for biomedical Text

Mining, it is possible to apply other types of approaches to extract knowledge

from text. For a NER task, one common approach is matching the words in the

document with a �xed list of entities. This is referred to as dictionary matching

(Banville, 2006). This approach usually results in high quality results, which can

be easily mapped to a database identi�er. However, it is limited, since it cannot

recognize a term that is not already contained in the dictionary.

Another common approach involves �xed rules and regular expressions to �nd

entities or interactions. These rules are designed by domain experts, based on

language patterns. The results obtained are also of high quality, and it is not as

limited as dictionary matching. The main disadvantage of this approach is the

time and e�ort necessary to design the rules, which must be speci�c for a certain

type of text and domain.

Machine learning systems are domain-independent, and more �exible than dic-

tionary and rules-based systems. A pure Machine Learning approach to biomed-

ical information retrieval may not produce results as precise as the other ap-

proaches, but it can be enhanced by combining it with a �xed approach. For

example, by using matching rules to map the terms recognized with a Machine
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Learning classi�er to a database identi�er, it is possible to �lter out some recog-

nition errors made by the classi�er (Grego & Couto, 2013).

2.1.3 Natural Language Processing

Natural Language Processing consists in a set of techniques used to derive mean-

ing from raw text written by and for humans. This section is focused on tech-

niques that can process text in some way useful to improve the Text Mining tasks

mentioned previously.

2.1.3.1 Tokenization

One of the �rst processes applied to raw text to be analyzed by a machine is

tokenization (Webster & Kit, 1992). Its purpose is to break the text into tokens

that can be processed individually and as a sequence. These tokens may consist

of simple words, but also of numbers, symbols, phrases and other elements.

The most basic technique for tokenization consists in splitting the text by

whitespace and punctuation characters. However, this rule does not always work,

and more complex technique should be developed. Usually, a list of abbreviations

and acronyms is part of the technique, so that the period at the end is not

separated from the letters.

The criteria to what constitutes a token will also vary with the type of text

that is going to be processed. In the case of chemical compounds, it may not be

desirable to split systematic names, which often contain punctuation and sym-

bols, in more than one token. If this process is not correctly implemented, the

performance of a Text Mining system may be limited (Leaman et al., 2008).

2.1.3.2 Stemming

In order to reduce the variability intrinsic to natural language, it is necessary to

apply a technique that normalizes variations of the same concept. The objective is

to reduce the complexity of the analyzed text by reducing the number of distinct

terms used. One of these techniques is stemming, which consists in reducing a

word to its stem, or base form. For example, the various forms of a verb should

be reduced to the same stem.
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Although there are many approaches to this problem, one of the most used

is the Porter stemming algorithm (Porter, 1980). This algorithm is based on

su�x stripping, and has the advantage of being fast and producing good results,

compared to more advanced techniques (Paice, 1996).

Another technique to word normalization is reducing the word to its lemma,

called lemmatization. Unlike the Porter algorithm, this technique takes into

account the context of the word in the sentence. However, this introduces another

source of error to the process, since the sentence structure has to be correctly

resolved. Since this technique is more speci�c than stemming, domain-speci�c

lemmatization tools have been developed (Liu et al., 2012).

2.1.3.3 Part-of-speech tagging

Part-of-speech tagging is often an additional useful source of information for

each word in a given sentence. The category of each word depends on both

the word itself and its context, since one word may belong to di�erent categories.

Approaches developed for news articles and biomedical domain have achieved

high performance (Toutanova et al., 2003; Tsuruoka et al., 2005), which is one of

the reasons these tags are considered a reliable feature for Text Mining tasks.

2.1.3.4 Parse tree

A parse tree is a representation of the syntactic structure of a sentence. These

trees may be constructed according to its constituency grammars, which dis-

tinguishes between root, branch and leaf nodes, or according to its dependency

grammars, where all nodes are terminal. The output of this process is a structure

that can be used as input for another algorithm. The probabilistic methods de-

veloped to determine these structures are based on supervised learning techniques

(Socher et al., 2013a).

2.1.3.5 Co-reference resolution

To correctly determine the relations between the entities in a given text, it is

necessary to resolve co-references to these entities. A co-reference occurs when
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two or more expressions refer to the same entity. Usually, one of these expres-

sions in the actual name of the entity, while the others are abbreviated forms,

for example, a pronoun or other referring expressions. This is usually one of the

last processes applied to a text, since proposed tools require information pro-

vided by the processes described previously. One of the currently used solutions

for this problem is the Stanford Deterministic Co-reference Resolution System

(Lee et al., 2013), which implements a multi-pass sieve co-reference resolution,

achieving good results on a shared task dataset. A domain speci�c solutions for

the biomedical domain has also been proposed (Segura-Bedmar et al., 2010).

2.2 Performance Assessment

Methods for evaluating information extraction systems have been developed in

order to assess correctly the performance of a system by itself and in comparison

to other systems. The evaluation measures developed are used to determine how

good a system performs on a given dataset. These measures can be applied

to di�erent types of Text Mining. Community challenges are then organized

in order to evaluate the state-of-art for a given task and domain. Each team

submits the results for a corpus without knowing the expected result, and the

organizers compute the evaluation measures for each system. These challenges are

essential in order to improve the baseline performance for biomedical Text Mining

(Hirschman & Blaschke, 2006). In this section I describe the main evaluation

measure used by the community, as well as two recent biomedical Text Mining

community challenges.

2.2.1 Evaluation Measures

The performance of an information extraction system is evaluated by testing it

with an unlabeled corpus. Although the corpus has been previously annotated

with the expected results by domain experts, the system should not use these

annotations to generate results. A gold standard is an annotated corpus used

to evaluate information extraction systems, and its format depends on the task

being evaluated. For NER, it may be a corpus annotated with the position of
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every entity mentioned on each document, or just a list of every entity mention

on each document. For a Relation Extraction task, the gold standard should

be list of pairs of entities that are interacting on each document. In order to

evaluate this task separately from the entity recognition task, a list of all entities

mentioned on each document should also be provided.

For a given information extraction task, it should be de�ned what is considered

a positive result. In the case of entity recognition, a positive result is an entity

identi�ed in the text, while for Relation Extraction, it is an interaction found

between two entities in the text. Likewise, a negative result is a piece of text that

was not identi�ed as a relevant entity, or a pair of entities that was not classi�ed

as an interaction, respectively.

The positive results identi�ed by a system that are actually correct according

to the gold standard are known as True Positives (TP). The ones that were

incorrectly identi�ed as positive are known as False Positives (FP). The same logic

applies to True Negatives (TN) and False Negatives (TN). These four possible

types of result of a gold standard evaluation can be represented in a contingency

table, as in Table 2.1.

Table 2.1: Contingency table for the types of result obtained with a Text Mining
system.

Gold Standard Positive Gold Standard Negative
Positive outcome True Positives (TP) False Positives (FP)
Negative outcome False Negatives (FN) True Negatives (TN)

The objective of an information retrieval system is to maximize the number

of TP and TN, and minimizing the number of FP and FN. However, to compare

the results obtained within di�erent data sets, relative measures are calculated

from the values on Table 2.1, since the maximum number of TP and TN will vary

with the data set. Precision is the fraction of positive results that were correctly

classi�ed:

Precision =
TP

TP + FP
(2.1)

19



2. RELATED WORK

This measure represents how often the results obtained with the system are

correct. Systems with high precision values are unlikely to extract incorrect

information. Recall is a measure of how many positive results were extracted by

the system, relative to the total for that gold standard:

Recall =
TP

TP + FN
(2.2)

A system that has obtained a recall of 100% for a given gold standard has ex-

tracted all the relevant information. However it may have also extracted infor-

mation that was incorrect or irrelevant, which means that the number of FP may

be higher than 0, and the precision value would be less than 100%. Likewise, a

system may identify only correct information, but just a fraction of what it was

supposed to identify, according to the gold standard. While these two measures

have a de�ned meaning in the context of information extraction, it is often useful

to combine them in order to express the performance level by just one number.

The F-measure is the harmonic mean of precision and recall and it is often used

to determine the best system on a community challenge:

F-measure =
2× Precision× Recall
Precision + Recall

(2.3)

To achieve a high F-measure, it is necessary to obtain both high precision and

recall values.

It should be noted that these measures depend not only on the performance of

the system but also on the quality of the manual annotations of the gold standard.

The inter-annotator agreement estimates the quality of an annotated corpus and

it is calculated with the kappa coe�cient:

k =
P (A)− P (E)

1− P (E)
(2.4)

where P (A) is percentage of times the annotators agreed and P (E) is the per-

centage of times it was expected for them to agree by chance (Carletta, 1996). A

k of 100% would indicate that the annotators agreed on every annotation.
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2.2.2 Community Evaluations

2.2.2.1 CHEMDNER task

The CHEMDNER task of BioCreative IV consisted in the identi�cation of named

chemical entities from PubMed abstracts (Krallinger et al., 2014b). There were

two types of predictions the participants could submit for the CHEMDNER task:

a ranked list of unique chemical entities described on each document, for the

Chemical Document Indexing (CDI) subtask, and the start and end indices of

each chemical entity mentioned on each document for the Chemical Entity Men-

tion (CEM) subtask. Using the CEM predictions, it was possible to generate

results for the CDI subtask, by excluding multiple mentions of the same entity in

each document. A gold standard for both subtasks was available to the partici-

pants, which could be used evaluate the performance of each approach, with the

evaluation script released by the organization. Each team was allowed to submit

up to �ve di�erent runs for each subtask.

Since BioCreative is nowadays a reference in biomedical Text Mining evalua-

tions, there was much interest in this task, with 27 teams participating on at least

one subtask. The organization estimated that a dictionary based approach, using

only the entities annotated on training and development sets, would obtained a

F-measure of 53.85% for the CDI task and 57.11% for the CEM task. The best

team achieved a F-measure of 88.20% for the CDI task and 87.39% for the CEM

task. Most teams used Machine Learning techniques and external domain lexical

resources to develop their systems.

2.2.2.2 DDI Extraction task

The DDI Extraction was part of 2013 edition of SemEval, a series of workshops

on semantic evaluation (Segura-Bedmar et al., 2013). This was the second edition

of this task, which was composed by two subtasks. The �rst subtask consisted

in the recognition and classi�cation of pharmacological substances mentioned in

biomedical texts, while the second consisted in the identi�cation and classi�cation

of drug-drug interactions, also from biomedical texts. Each team could submit

results for just one of the tasks, since the test sets were independent. However,

the train set was common to both subtasks, each document being annotated
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with drug entities and drug-drug interactions. The corpus released for this task

consisted of MEDLINE abstracts and descriptions of drug-drug interactions from

DrugBank.

A total of 6 teams participated in the �rst subtask, while 8 teams submitted

results for the second subtask. The best team achieved a F-measure of 71.5% for

the NER task and 65.1% for the Relation Extraction task. However, consider-

ing only the documents from DrugBank, the results obtained were much better,

with the best F-measure being 87.8% and 67.6% for each of the two subtasks,

respectively.

2.3 Resources

The following sub-sections aim to describe the main resources for biomedical in-

formation extraction. The Text Mining algorithms and natural language process-

ing techniques previously described have been implemented in software packages,

which can then be applied to any compatible data. To achieve high performance,

information extraction systems can combine various tools to process the input

text. This sections describes the main tools that can be used to build and in-

formation extraction system. The Machine Learning classi�ers should be trained

with an appropriate corpus. For Relation Extraction, the corpus has to be an-

notated with the relevant entities, and the interacting entities should be identi-

�ed. In this section, I will describe two corpora that have been released recently,

annotated with chemical entities and chemical interactions. These corpora are

essential for development and evaluation of chemical interaction extraction sys-

tems. Finally, I will present some of the most popular sources of biomedical and

chemical information.

2.3.1 Machine Learning

2.3.1.1 Natural Language Processing

Fortunately, there are various tools available, which can process text and perform

natural language processing tasks on it. These tools can then be combined as a

pre-processing step for a Text Mining system.
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The Natural Language Toolkit (NLTK) (Bird et al., 2009) is a platform for

natural language processing in Python, that can be used for sentence splitting,

tokenization, POS tagging, stemming, lemmatization and manipulation of parse

trees. It incorporates models based on various corpora, mostly from the news

domain, but also some biomedical corpora, for example, the BioCreAtIvE-PPI

corpus, for protein-protein interactions.

The Stanford Natural Language Processing Group has released a set of tools,

which are integrated together in the CoreNLP suite (Manning et al., 2014). This

suite provides a tool for tokenization, lemmatization, POS tagging (Toutanova

& Manning, 2000), dependency parsing (Klein & Manning, 2003), co-reference

resolution (Lee et al., 2013) and Named Entity Recognition of speci�c categories,

including numeric entities (Finkel et al., 2005). While the models used by each

tools are trained with news articles, they can also be applied to biomedical texts.

The BLLIP reranking parser (also known as Charniak-Johnson parser) (Char-

niak, 2000) is a constituency parser and discriminative maximum entropy reranker,

used to determine the parse tree from sentences. There is a self-trained reranking

model augmented by biomedical texts that is available for this tool (McClosky

& Adviser-Charniak, 2010). As expected, this model provides better results with

biomedical texts than the Stanford parser (Segura-Bedmar et al., 2014).

2.3.1.2 Machine Learning tools

Machine learning toolkits are used to test and compare the results obtained with

various algorithms. Scikit-learn (Pedregosa et al., 2011) is a Python-based gen-

eral purpose toolkit for Machine Learning. It provides implementations of many

algorithms, as well as other common functions, for example, feature extraction,

parameter optimization, and cross-validation. Weka (Hall et al., 2009) is another

general purpose toolkit for Machine Learning, available in a Java API, Java class,

and graphical user interface. It also provides some common functions, for pre-

processing the input data and model evaluation.

In some cases, it may be more practical to use an algorithm-speci�c tool. The

Machine Learning algorithms previously described have been implemented by

various tools, which can di�er in the performance and default parameters. One
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of the most used Conditional Random Fields implementations is Mallet (McCal-

lum, 2002), which is Java-based and also performs other Text Mining tasks, for

example, document classi�cation and clustering. Other implementations exist,

for example, CRFsuite (Okazaki, 2007), which has been reported to be much

faster than Mallet.

The most popular Support Vector Machines implementations are SVM-light

(Joachims, 1999) and LIBSVM (Chang & Lin, 2011). The SVM-light-TK (Joachims,

1999; Moschitti, 2006) is an implementation of the SubSet Tree kernel, based on

SVM-light. It uses the parse tree of a sentence to identify pairs of interacting

entities. The jSRE tool implements a non-linear kernel, the Shallow Language

kernel (Giuliano et al., 2006), for classi�cation of pairs of entities. This tool is

based on LIBSVM and has been applied to the biomedical domain, obtaining

good results (Segura-Bedmar et al., 2011). The Shallow Language kernel takes

into account both the global and local context of each entity to determine if they

are interacting or not.

2.3.2 Corpora

Recently, some community challenges have focused on identi�cation of chemical

entities and chemical interactions form biomedical text. These challenges provide

a corpus for training and evaluation of the competing systems. The objective

of this section is to describe the corpora released for the Drug-Drug Interaction

Extraction task of SemEval 2013 and for the CHEMDNER task of BioCreative

IV. The results obtained with these gold standards can then be compared with

those obtained by the teams that participated in each competition.

However, to be fair, evaluations done outside of the scope of the competition

are not completely comparable with the participating teams since their work was

limited by the submission deadline.

2.3.2.1 CHEMDNER corpus

The CHEMDNER corpus consists of 10,000 MEDLINE titles and abstracts and

was partitioned randomly in three sets by the authors: training, development and

test (Krallinger et al., 2014a). The chosen articles were sampled from a list of
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articles published in 2013 by the top 100 journals of a list of categories related to

the chemistry �eld. These articles were manually annotated by a team of curators

with background in chemistry. Each annotation consisted of the article identi�er,

type of text (title or abstract), start and end indices, the text string and the

type of chemical entity, which could be one of the following: �trivial�, �formula�,

�systematic�, �abbreviation�, �family� and �multiple�. There was no limit for the

number of words that could refer to a CEM but due to the annotation format, the

sequence of words had to be continuous. There were a total of 59,004 annotations

on the training and development sets, which consisted of 7,000 documents. The

test set consisted of 3,000 documents and was annotated with 25,351 chemical

entities. Figure 2.1 provides an example of the format of this corpus.

Abstract

Annotations

Figure 2.1: Example of the text and annotations provided by the CHEMDNER
corpus. The Abstract section consists of the PMID, title and abstract text, sepa-
rated by tabs. The Annotations section consists of PMID, Title (T) or Abstract
(A), start index, end index, text string and type of chemical entity, also tab
separated.

The inter-annotator agreement estimated for this corpus was 91% when con-

sidering only the matching of the entities, and 85.26% when also taking into
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account the types of chemical entities.

2.3.2.2 DDI corpus

The DDI corpus was originally released for task 9 of SemEval 2013, which con-

sisted in extracting drug-drug interaction from biomedical texts (Herrero-Zazo

et al., 2013). This corpus is composed by 792 texts from the DrugBank database

and 233 MEDLINE abstracts, and was partitioned in two sets by the authors:

train and test. Each document is annotated with drug names and drug-drug

interactions. The types of interactions considered by this corpus were: "mecha-

nism", "e�ect", "advice" or "int" when none of the others was applicable. Table

2.2 provides an example of each type of interaction from the corpus.

Table 2.2: Examples of interactions from the DDI corpus. The entities that
constitute the interaction are highlighted.
DDI type Sentence

advise Administration of a higher dose of indinavir should be considered when
coadministering with megestrol acetate.

e�ect When administered concomitantly with ProAmatine, cardiac glyco-
sides may enhance or precipitate bradycardia, A.V.

mechanism In vivo, the plasma clearance of ropivacaine was reduced by 70% during
coadministration of �uvoxamine (25 mg bid for 2 days), a selective and
potent CYP1A2 inhibitor.

int Trilostane may interact with aminoglutethimide or mitotane (caus-
ing too great a decrease in adrenal function).

There was a total of 18,502 chemical entities and 5,028 interactions in this

dataset. The estimated inter-annotator agreement for the relation of this cor-

pus was of 83.85% for the DrugBank documents and 62.13% for the MedLine

documents.

2.3.3 Databases and Ontologies

Several e�orts have been made in order to develop open accessible repositories of

biomedical knowledge. An ontology is a data structure used to represent concepts

within a domain and their relationships (Gruber, 1993). With an ontology, it is
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possible to compare the terms using the structural component of the ontology.

This section describes three popular information resources for chemical entities,

which can be used to validate the results obtained with a biomedical information

extraction system.

2.3.3.1 Chemical Entities of Biological Interest

Chemical Entities of Biological Interest (ChEBI) is a freely available database

and ontology of small molecular entities with biological interest, containing more

than 40,000 entries (Hastings et al., 2013). The ontology is a Directed Acyclic

Graph (DAG), which means that each concept can have multiple ancestors. It

is composed by three sub-ontologies: �chemical entity�, �role� and �subatomic

particle�, while nine di�erent types of relationships are considered. Since a recent

update, all database entries have a �is a� relationship within the ontology, which

means that the ontology now has as many concepts as the database.

2.3.3.2 Gene Ontology

The objective of Gene Ontology is to develop a dynamic, controlled vocabulary

that is able the adapt with the high rate at which biomedical knowledge is pro-

duced (Ashburner et al., 2000). This project has been very successful, and has

been applied to many bioinformatics projects. The ontology itself is composed

by three sub-ontologies: �biological process�, �molecular function� and �cellular

component�, and three types of relations are considered: �is a�, �part of� and

�regulates�.

Recently, GO developers have worked closely with ChEBI developers in order

to align the chemical concepts present in the GO with the respective concept in

the ChEBI ontology (Consortium et al., 2012). This means that two chemical

entities that exist in both ontologies may be compared di�erently on each one.

2.3.3.3 DrugBank

The DrugBank database is a resource for detailed biochemical and pharmacolog-

ical information about drugs and their mechanisms, including interactions with

other drugs (Law et al., 2014). Its latest version contains 7,677 drug entries,
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and it is available to the public as a single �le that can be downloaded from the

homepage.

2.4 State-of-the-art of Chemical Interaction Ex-

traction

In this section, I will cover the state-of-the-art approaches for identi�cation of

chemical interactions, based on recent community challenges. In the last few

years, chemical entity recognition systems have switched from dictionary based

approaches to Machine Learning techniques, mostly Conditional Random Fields

and Support Vector Machines, which led to great improvements in the results

obtained. For this reason, there are many systems that perform recognition of

chemical terms in text. However, only a fraction of these systems also extract the

chemical interactions described in the same text. The interest of the community

in this type of task has grown over the years, and the results have also been

improving. Although protein-protein interactions are usually the main case study

for extraction of interactions from biomedical texts, chemical interactions have

also received some attention from the community. For instance, the best F-

measure for the detection of interactions task improved from 65.74% to 80%

between the 2011 and 2013 editions of the DDI extraction task (Segura-Bedmar

et al., 2013). The best systems for this type of task employ Machine Learning

algorithms, in particular non-linear kernel SVMs and biomedical language models

to identify interactions described in the text. Table 2.3 summarizes the main

approaches and resources used by each system.

Table 2.3: Summary of the state-of-the-art systems to extraction of chemical
interactions from text.
System Main Approaches External resources Interactions

HyRex Hybrid kernel SVMs SVM-Light-TK, jSRE DDI
TEES 2.0 SVM WordNet, DrugBank Various
WBI Kernel-based methods DrugBank, Phare Ontology,

TEES, jSRE
DDI
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HyREX is a system for detection and classi�cation of drug-drug interactions

(Chowdhury & Lavelli, 2013a). The main feature of this system is that it exploits

the scope of negation of a sentence to reduce the number of candidate pairs. This

is applied on the �rst of two stages that constitute this system. In the second

stage, a hybrid kernel is used to classify each pair with a label, corresponding

to a type of interaction, or none. This system obtained the best performance on

the DDI Extraction task of SemEval 2013. The source code for this system is

available at https://github.com/fmchowdhury/HyREX.

The Turku Event Extraction System (TEES) is a system that performs recog-

nition of chemical entities and chemical interactions, besides other types of re-

lations and events, from biomedical texts (Björne et al., 2011). This system is

based on SVM classi�ers trained with deep syntactic features and information

from external resources, achieving good results on various community challenges,

including both editions of the DDI extraction task. The source code for this

system is available at https://github.com/jbjorne/TEES/.

Thomas et al. (2013) have combined several kernel-based methods to iden-

tify and classify drug-drug interactions. Furthermore, they also employ TEES,

DrugBank and the Phare Ontology (Coulet et al., 2011) as external sources of

information. This approach achieved the best performance of the 2011 DDI ex-

traction task and second best performance of the 2013 DDI Extraction task.

2.5 ICE framework

�Identifying Chemical Entities� (Grego & Couto, 2013) (ICE) is framework for

chemical entity recognition that was adapted for this work. This framework was

originally developed with a corpus of forty patent documents, manually annotated

with ChEBI terms by a team of curators from ChEBI and the European Patent

O�ce. The main components of this framework will now be described.

2.5.1 CRF entity recognition

The ICE framework is based on the Conditional Random Fields (CRF) imple-

mentations of Mallet, with the default values. In particular, only an order of 1
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is used for the CRF algorithm. The following features are extracted from the

training data to train the classi�ers:

Stem: Stem of the word token with the Porter stemming algorithm

Pre�x and Su�x size 3: The �rst and last three characters of a word token.

Number: Boolean that indicates if the token contains digits.

Furthermore, each token is given di�erent labels depending on whether it was

not a chemical entity, a single word chemical entity, or the start, middle or end

of a chemical entity (Grego et al., 2009). Table 2.4 provides an example of the

features generated for a fragment of text, as well as the labels.

Table 2.4: Example of a sequence of the ICE features, and the corresponding label,
derived from a sentence fragment (PMID 23194825). The �Number� feature is
omitted since none of the tokens were numbers.

Token Pre�x 3 Su�x 3 Stem Label
Cells Cel lls Cells Not Chemical

exposed exp sed expos Not Chemical
to to to to Not Chemical

α-MeDA α-M eDA α-MeDA Chemical
showed sho wed show Not Chemical
an an an an Not Chemical

increase inc ase inscres Not Chemical
in in in in Not Chemical

intracellular int lar intracellular Not Chemical
glutathione glu one glutathion Chemical

( ( ( ( Not Chemical
GSH GSH GSH GSH Chemical
) ) ) ) Not Chemical

levels lev els level Not Chemical

Since Mallet does not provide a con�dence score for each label, the source code

was adapted, so that for each label, a probability value is also returned, according

to the features of that token. This information is used to adjust the precision

of the predictions obtained, and to rank them according to how con�dent the

system is about the extracted mentions being correct.

30



2.5 ICE framework

2.5.2 ChEBI resolution

After having recognized the named chemical entities, this framework resolves each

term to the ChEBI ontology. The resolution method takes as input the string

identi�ed as being a chemical compound name and returns the most relevant

ChEBI concept along with a mapping score (Grego et al., 2012).

To perform the search for the most likely concept for a given input string, an

adaptation of FiGO, a lexical similarity method (Couto et al., 2005), is employed.

This adaptation compares the constituent words in the input string with the

constituent words of each concept, to which di�erent weights have been assigned

according to its frequency in the ontology vocabulary. A mapping score between

0 and 1 is provided with the mapping, which corresponds to a maximum value in

the case of a concept that has the exact same name as the input string.

2.5.3 ChEBI Semantic Similarity

The calculation of the semantic similarity between two concepts is based on the

ChEBI ontology:

sim(c1, c2) = n, n ∈ [0, 1] ∧ c1, c2 ∈ ChEBI

Three measures are implemented for the ChEBI ontology: Resnik, simUI and

simGIC. Then, the semantic similarity is calculated between one concept and

every other concept recognized in the same text window. The maximum value

returned by this method for each recognized concept is used as the semantic

similarity score. This means that if a recognized concept has a high similarity

value with at least one other concept in the same text window, it will also have

a high semantic similarity score (Grego & Couto, 2013). The assumption is that

if two entities are mention in the same text window, they should share some

semantic similarity and are more likely to be correct.

2.5.4 Post-processing

Some simple rules are implemented, in an e�ort to improve the quality of the

annotations:
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1. Exclude if one of the words is in a stop words list

2. Exclude text with no alphanumeric characters

3. Delete the last character if it is a dash (�-�)

A list of common English words is used as stop words in post-processing. If a

recognized chemical entity is part of this list or one of the words on the list is

part of the chemical entity, then it is considered a recognition error and it it not

considered a chemical entity.
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Chemical Named Entity

Recognition

A required �rst step for the automatic identi�cation of chemical interactions is

the recognition of chemical entities mentioned in a given text. As a starting

point, I adapted the ICE framework, by improving the results obtained for the

CHEMDNER corpus. Then, I evaluated these improvements with the DDI cor-

pus. The objective of this chapter was to optimize the CNER module as much

as possible, so that it would not limit the performance of the CIE module. Even

though the CNER module initially achieved high precision values, the recall was

not as high. If some chemical entities are not considered for the CIE module, it

will not identify the interactions that involve those entities. As such, the goal

was to improve the recall, with minimal e�ect on the precision, which would also

improve the F-measure.

3.1 Methods

Since the patent corpus initially used on ICE was small and not used by other

similar systems, new classi�ers were trained for the DDI and CHEMDNER cor-

pus. For each type of chemical entities considered on each of these corpus, one

additional training dataset was generated and type-speci�c classi�er was trained

with it. Each input document is classi�ed with this set of classi�ers, and the

results are merged. The objective of this strategy was to recognize more entities
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than a general classi�er would not recognize. However, I did not attempt to clas-

sify each recognized entity with a type, since each entity is mapped to a ChEBI

identi�er, which should provide more domain-speci�c information.

3.1.1 Validation process

The output provided for each putative chemical named entity recognized is the

Conditional Random Fields (CRF) classi�er's con�dence score, the ChEBI map-

ping score and the most similar putative chemical named entity mentioned on the

same document through the maximum semantic similarity score. The features

set for each prediction was composed by these three scores. When a chemical

entity mention is detected by at least one classi�er, but not all, the con�dence

score for the classi�ers that did not detect this mention was considered to be

0. These features were used to train a classi�er to �lter false positives from the

results, with minimal e�ect on the recall value. The predictions obtained by

cross-validation on the CHEMDNER training and development sets were used

to train di�erent classi�ers with Weka, using the di�erent learning algorithms

implemented by the toolkit. The best results were obtained with the Random

Forests ensemble learning approach.

I then experimented with di�erent combinations of training corpora and vali-

dation approaches to evaluate the performance of the module on the CHEMDNER

corpus. Each of these combinations corresponds to a testing run submitted for

the CHEMDNER task of BioCreative IV.

Di�erent runs use di�erent corpora for the CRF step: each uses (1) either the

CHEMDNER corpus by itself or (2) the CHEMDNER corpus along with the DDI

and patents (PAT) corpora. DDI and PAT were not annotated with the same

criteria used for the CHEMDNER corpus, and do not contain the same type of

texts. The DDI corpus is focused on drug names and contains drug interaction

descriptions and PubMed abstracts, while PAT contains only patents annotated

with chemical named entities.

To validate the CRF results, I employed three di�erent approaches: (1) The

�rst approach was to map the recognized entities to ChEBI and then apply the
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Semantic Similarity Measure (SSM) described on Section 2.5.3 to �lter the en-

tities based on a �xed threshold. (2) The second approach was to combine the

con�dence scores obtained with Mallet and ChEBI mapping score with the SSM

values for each entity, computing a new score which was also used to �lter the

CRF results based on a threshold (COMBINED). (3) Finally, I used the three

scores independently to produce a Random Forests classi�er to classify each entity

as a true positive or a false positive (RF).

Experimenting with cross-validation on the training and development sets, I

assembled di�erent combinations of these approaches (see Table 3.1).

Table 3.1: Corpora and validation approaches used for each testing run.
Corpora Validation

Run CHEMDNER DDI/PAT SSM COMBINED RF
1 X X X
2 X X
3 X X
3* X
4 X X
5 X X X

On run 1, I used the full set of corpora alongside the RF validation. This

was decided after noticing that the Random Forest classi�ers provided a better

balance between precision and recall than a simple approach based on a score

and threshold (approaches SSM and COMBINED).

For run 2, I used only the CHEMDNER corpus and the COMBINED valida-

tion process, since the combined score of each entity is more detailed than just

one of the values. I determined empirically the threshold of 0.8 for this run, which

gave the maximum precision value for the module.

Run 3 is equivalent to a baseline for the validation processes. In fact, this run

uses only the results obtained with a CRF classi�er trained with the full set of

corpora, without a validation step. To better understand the e�ect of the training

corpus, I also created a run 3*, where the CRF was trained with the CHEMDNER

corpus only. The results of these two runs (3 and 3*) establish the maximum recall

value that can be expected with the CNER module, as they result in a non-�ltered

list which the validation step trims down. The perfect validation step should be
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able to remove from the CRF results all the false positive recognitions, but can

never increase the number of correctly recognized entities. Notice that run 3*

was not submitted for evaluation at the CHEMDNER task, as only 5 runs were

allowed per team.

Runs 4 and 5 use the SSM validation step, along with either the CHEMDNER

corpus alone (run 4) or the full set of corpora (run 5) This selection was done

in order to evaluate the performance of the SSM validation approach, since it

had been applied before to a di�erent gold standard with success. The threshold

value applied (0.4) was based on the experiments done by Grego & Couto (2013).

According to the corpora used, run 3 should be used as a baseline for runs 1

and 5, while run 3* should be used as a baseline for runs 2 and 4.

3.1.2 Expanded feature set

After participating on the CHEMDNER challenge with the runs previously de-

scribed, I further improved two aspects of this approach, with the objective of

improving the recall, without a�ecting the precision. As such, thirteen new fea-

tures were integrated on the CNER module, based on orthographic and morpho-

logical properties of the words used to represent the entity, and inspired by other

CRF-based chemical NER systems (Batista-Navarro et al., 2013; Campos et al.,

2013; Huber et al., 2013; Leaman et al., 2013; Usié et al., 2013). I studied the

e�ect of adding one new feature at a time, while always keeping the four original

features constant. The following features were integrated:

� Pre�x and Su�x sizes 1, 2 and 4: The �rst and last n characters of a

word token.

� Greek symbol: Boolean that indicates if the token contains Greek sym-

bols.

� Non-alphanumeric character: Boolean that indicates if the token con-

tains non-alphanumeric symbols.

� Case pattern: "Lower" if all characters are lower case, "Upper" if all

characters are upper case, "Title" if only the �rst character is upper case

and "Mixed" if none of the others apply.
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� Word shape: Normalized form of the token by replacing every number

with '0', every letter with 'A' or 'a' and every other character with 'x'.

� Simple word shape: Simpli�ed version of the word shape feature where

consecutive symbols of the same kind are merged.

� Periodic Table element: Boolean that indicates if the token matches a

periodic table symbols or name.

� Amino acid: Boolean that indicates if the token matches a 3 letter code

amino acids.

For example, for the sentence fragment "Cells exposed to α-MeDA showed an

increase in intracellular glutathione (GSH) levels", the list of tokens obtained by

the tokenizer and some possible features are shown on Table 3.2.

Table 3.2: Example of a sequence of some the new features, and the corresponding
label, derived from a sentence fragment (PMID 23194825).

Token Pre�x 4 Su�x 4 Case pattern Word shape Label
Cells Cell ells titlecase Aaaaa Not Chemical

exposed expo osed lowercase aaaaaaa Not Chemical
to to to lowercase aa Not Chemical

α-MeDA α-Me MeDA mixed xxAaAA Chemical
showed show owed lowercase aaaaaa Not Chemical
an an an lowercase aa Not Chemical

increase incr ease lowercase aaaaaaaa Not Chemical
in in in lowercase aa Not Chemical

intracellular intr ular lowercase aaaaaaaaaaaaa Not Chemical
glutathione glut ione lowercase aaaaaaaaaaa Chemical

( ( ( - x Not Chemical
GSH GSH GSH uppercase AAA Chemical
) ) ) - x Not Chemical

levels leve vels lowercase aaaaaa Not Chemical

After applying the validation process SSM previously described for each new

feature, I was able to compare the e�ect of each one on the results. This validation

process was chosen since it was shown to achieve a good compromise between

precision and recall. However, the threshold was set at 0.8, which results in very
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high precision and low recall. My objective was to improve the recall for high

precision levels. Then, I selected the features that achieved higher precision, recall

and F-measure for that threshold, creating three sets of features for each metric

and a fourth set with all the features tested, for comparison.

3.1.3 Improved validation process

I used the maximum semantic similarity value of each predicted chemical entity

to the other entities identi�ed in the same fragment of text to �lter entities

incorrectly predicted by the CRF classi�ers.

The simUI measure (Gentleman, 2005) is an edge-based approach to measure

the semantic similarity between two classes. Given two classes c1 and c2, and the

set of their ancestors asc(c1) and asc(c2), this measure is equal to the number of

classes in the intersection between asc(c1) and asc(c2) divided by the number of

classes in the union of the same two sets:

simUI(c1, c2) =
#{t | t ∈ asc(c1) ∩ asc(c2)}
#{t | t ∈ asc(c1) ∪ asc(c2)}

A similar approach for measuring semantic similarity is the simGIC measure

(Pesquita et al., 2007). In this case, each ancestor is weighted by its information

content (IC), which is a measure of the speci�city of a concept. The simGIC is

de�ned as the sum of the IC of the classes in the intersection between asc(c1) and

asc(c2) divided by the sum of the IC of the classes in the union of the same two

sets:

simGIC(c1, c2) =

∑
{IC(t) | t ∈ asc(c1) ∩ asc(c2)}∑
{IC(t) | t ∈ asc(c1) ∪ asc(c2)}

The hierarchical structure of the ontology can be used to quantify the IC of

each class. Seco et al. (2004) proposed an intrinsic IC as a function of the number

of sub-classes and the maximum number of classes in the ontology:

IC(c) = 1− log(sub-classes(c) + 1)

log(C)
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where sub-classes(c) is the number of sub-classes of c and C is the total number

of classes in the ontology.

Both simUI and simGIC consider every ancestor up to the root. These mea-

sures could be improved by selecting only the ancestors that are more relevant

in the ontology. I estimated the relevance of a class by adapting the h-index

(Hirsch, 2005) to the ChEBI ontology, de�ning it as follows: A term has index

h if h of its Np children have at least h children each and the other (Np − h)
children have ≤ h children each. Figure 3.1 shows an example of a ChEBI entity

(CHEBI:24346) with an h-index of 2. Classes that are leaf nodes or classes that

have only leaf nodes as sub-classes have an h-index of 0.

Figure 3.1: Section of the ChEBI ontology showing a term (CHEBI:24346) with
a h-index of 2, since 2 of its child nodes have at least 2 other child nodes, and
the other child node has no more than 2 child nodes.

Then, I adapted the simUI and simGIC measures to exclude ancestors with

an h-index lower than a certain threshold α. Only the ancestors with h-index

higher or equal to α are considered for asc(c1) and asc(c2).

simUIh(c1, c2) =
#{t | t ∈ asc(c1) ∩ asc(c2) ∧ h-index(t) ≥ α}
#{t | t ∈ asc(c1) ∪ asc(c2) ∧ h-index(t) ≥ α}
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simGICh(c1, c2) =

∑
{IC(t) | t ∈ asc(c1) ∩ asc(c2) ∧ h-index(t) ≥ α}∑
{IC(t) | t ∈ asc(c1) ∪ asc(c2) ∧ h-index(t) ≥ α}

Using lower α values, fewer ancestors are excluded and consequentially, the

similarity values should be closer to the ones obtained with the original measures.

As the threshold α is increased, only the most relevant classes are considered and

the semantic similarity values deviate more from the original.

I performed a similar recognition process to what was used previously on the

framework, but now using the simUI and simGIC similarity measures, and the

adapted versions based on h-index �ltering.

My objective was to improve the overall recall while maintaining high precision

values, by better �ltering out false positives from the results obtained with the

CNER module. Using my adapted versions of the simUI and simGIC measures, I

expected more false positives to be removed, for the same number of true positives

wrongly removed. In other words, for a �xed recall, I would be able to achieve

higher precision values.

3.2 Results

Using di�erent combinations of the developed approaches, �ve runs were submit-

ted to the BioCreative IV CHEMDNER challenge. Each run combined di�erent

corpora and di�erent validation processes. I used the CHEMDNER corpus and

two external corpora for run 3, while only the CHEMDNER corpus was used for

run 3*. These two runs provide the maximum recall achieved, since no valida-

tion process was employed. Run 3* was not submitted to the competition since

the recall obtained with run 3 was higher, and there was a limit of �ve runs per

team. Run 2 combines the CHEMDNER corpus and a high validation threshold

based on the CRF con�dence, ChEBI mapping score and semantic similarity to

other entities in the same document. These three values were also used to train a

Random Forest classi�er to validate the CRF results, which corresponds to run 1.

Run 4 uses only the CHEMDNER corpus, like run 3*, but each result is validated

with semantic similarity, while run 5 uses the same training corpora as run 3, but
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also with the semantic similarity validation. Each run is described with more

detail in Section 3.1.

With the results from each run, I was able to generate predictions for the

CEM subtask, using every entity recognized, and for the CDI subtask, considering

only unique entities for each document. The metrics for each set of predictions

were calculated using the o�cial evaluation script on the results of 3-fold cross-

validation for the CHEMDNER training and development dataset (Table 3.3).

The o�cial evaluation results are presented in Table 3.4. Generally, the results

for the test set are better than using cross-validation.

Table 3.3: Precision (P), Recall (R) and F-measure (F) estimates for each ap-
proach used, using cross-validation on the CHEMDNER training set. The Ap-
proach column references the resources used, besides the CHEMDNER corpus,
and the validation process applied, if any.
Run Approach CDI CEM

P R F P R F
1 DDI/PAT + RF 84.1% 72.6% 77.9% 87.3% 70.2% 77.8%
2 COMBINED 95.0% 6.5% 12.2% 95.0% 5.9% 11.1%
3 DDI/PAT 52.1% 80.4% 63.3% 57.1% 76.6 % 65.4%
3* CHEMDNER only 76.7% 75.7% 76.2% 80.2% 72.8 % 76.3%
4 SSM 87.9% 22.7% 36.1% 89.7% 21.2% 34.3%
5 DDI/PAT + SSM 87.8% 22.7% 36.1% 79.9% 22.6% 35.3%

Table 3.4: Precision (P), Recall (R) and F-measure (F) estimates for each ap-
proach used, on the CHEMDNER test set. The Approach column references
the resources used, besides the CHEMDNER corpus, and the validation process
applied, if any.
Run Approach CDI CEM

P R F P R F
1 DDI/PAT + RF 85.3% 68.9% 76.2% 87.8% 65.2% 74.8%
2 COMBINED 96.8% 8.06% 14.9% 96.7% 7.11% 13.3%
3 DDI/PAT 57.7% 81.5% 67.5% 63.9% 77.9 % 70.2%
4 SSM 91.9% 24.4% 38.6% 92.9% 22.7% 36.4%
5 DDI/PAT + SSM 77.1% 27.3% 40.3% 79.7% 25.0% 38.1%
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3.2.1 Best features

The precision, recall and F-measure values obtained using the four original fea-

tures of ICE plus one new one are presented in Table 3.2.1. For each metric, a

shaded column was added which compares that value with the one obtained on

Table 3.4, for the run with best precision (run 2).

Table 3.5: Precision, Recall and F-measure estimates for each new features used
with the original set, obtained with cross-validation on the CHEMDNER training
set, for the CEM subtask

Feature set P ∆P R ∆R F1 ∆F1

Pre�x/su�x 1 92.4% -2.6% 13.4% +7.4% 23.4% +12.3%
Pre�x/su�x 2 93.5% -1.5% 18.3% +12.3% 30.6% +19.5%
Pre�x/su�x 4 94.2% -0.8% 6.6% +0.6% 12.2% +1.1%
Greek letter 94.2% -0.8% 11.8% +5.8% 20.9% +9.8%
Periodic table 94.7% -0.3% 16.4% +10.4% 28.0% +16.9%
Amino acid 95.1% +0.1% 8.7% +2.7% 16.0% +4.9%
Alphanumeric 92.0% -3.0% 4.4% -1.6% 8.4% -2.7%
Case pattern 93.5% -1.5% 14.9% +8.9% 25.6% +14.5%
Word shape 93.3% -1.7% 12.7% +6.7% 22.4% +11.3%
Simple word shape 92.4% -2.6% 16.9% +10.9% 28.7% +17.6%

The features that returned the best recall and F-measure were the simple word

shape and pre�x and su�x with size=2. Using pre�x and su�x with size=1 and

the alphanumeric boolean decreased the precision the most, without improving

the other metrics as much as other features. The periodic table feature, which

was one of the two domain-speci�c features, achieved a recall value of 16.4%,

while maintaining the precision at 94%. The other domain-speci�c feature, amino

acid, achieved the highest precision in this work. The general e�ect of using �ve

features instead of the original four was a decrease in precision by 0.8%-4.5% and

increase in recall and F-measure by 0.4%-19.5%.

I performed another cross-validation run with the original four features to

use as baseline values. Based on these results, three feature sets were created,

composed by the original features I used for BioCreative and the features that

improved precision, recall or F-measure on any subtask, compared to the baseline.

The three feature sets created were:

� Best precision: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 4, Has

Greek symbol, Has periodic table element, Has amino acid.
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� Best recall: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 1, Pre�x/-

su�x 2, Has Greek symbol, Has periodic table element, Case pattern, Word

shape, Simple word shape.

� Best F-measure: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 1, Pre-

�x/su�x 2, Has Greek symbol, Has periodic table element, Has amino acid,

Case pattern, Word shape, Simple word shape.

The results obtained with these sets are presented in Table 3.2.1 Although

there was a decrease in precision in every case, the di�erence in recall and F-

measure values was always much higher. The feature set with best F-measure

was able to improve the recall by 21.0% while taking only 3.2% of the precision.

This feature set was then integrated in the module, and used for the following

validation experiments.

Table 3.6: Precision, Recall and F-measure estimates for each feature set used
with the original set, obtained with cross-validation on the CHEMDNER training
set.

Feature set P ∆P R ∆R F1 ∆F1

Precision 94.1% -0.9% 15.0% +9.0% 25.9% +14.8%
Recall 92.0% -3.0% 23.9% +17.9% 37.9% +26.8%
F-measure 92.3% -2.7% 28.0% +22.0% 43.0% +31.9%
All features 93.0% -2.0% 24.2% +18.2% 38.4% +27.3%

3.2.2 H-index for the ChEBI ontology

The h-index of each concept of the ChEBI ontology was computed. Figure 3.2

shows the average percentage of ancestors with an h-index above each threshold.

We can see that about 10% of ancestors have an h-index higher than 7; based

on this results, I decided to use the proposed measure with h-index of 2, 3, 4,

5 and 6. This decision was further validated when the results in Table 3.7 were

obtained. In fact, once an h-index threshold of 6 is applied, precision values start

to decrease, suggesting that the SSM scores start to degrade because of the high

amount of concepts removed from the ancestry.

I tested each measure for di�erent validation thresholds, obtaining di�erent

precision and recall values for each threshold and each SSM. As the validation
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Figure 3.2: Average percentage of ancestors discarded using each h-index value.

threshold is increased, ideally the precision should also increase without a�ecting

the recall. Eventually, true positives are also eliminated by this process, lowering

the recall as the validation threshold increases. Figure 3.3 compares the precision

and recall values obtained for di�erent validation thresholds between simUI and

simGIC and my proposed approach with �ve di�erent h-index values. I restricted

the recall values between 15% and 30%, since this is where the most of the

points lie. Using my proposed approach, I obtained generally higher precision

values for the same recall. This indicates that using the h-index information to

measure semantic similarity results in a better performance at �ltering out false

positives from Machine Learning results. Furthermore, as the h-index increases,

the di�erence between the original and the adapted measure increases. While on

plot A of Figure 3.3, the points are mostly overlapping, this is less frequent on

plot B, as the h-index measure achieves higher precision values. Between plots C,
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D and E, this di�erence is less noticeable, which indicates that for higher h-index

values, the �lter becomes less e�cient.

To con�rm that the new adapted measures performed better at excluding

fewer true positives, I compared the precision value obtained for each measure,

with a �xed recall of 20%, on table 3.7. The points from Figure 3.3 that were

closest to a recall of 20% were selected. Between each measure, the precision

correspondent to similar recall values improves with the h-index used for the

measure.

Table 3.7: Precision values obtained with each SSM for a �xed recall.
P R

simUI 92.97% 20.31%
simUI2 93.14% 20.23%
simUI3 93.01% 19.73%
simUI4 93.10% 19.77%
simUI5 93.35% 19.81%
simUI6 93.00% 20.16%
simGIC 92.95% 20.23%
simGIC2 93.14% 20.23%
simGIC3 93.23% 19.85%
simGIC4 93.24% 20.09%
simGIC5 93.19% 20.10%
simGIC6 93.10% 19.79%

3.2.3 Final evaluation

Table 3.8 shows the results obtained for the CHEMDNER and DDI gold stan-

dards, with the methods described in this section. I considered true positives

only the entities that matched exactly the o�sets of the gold standard, and did

not attempt to classify the type of entity, which was required only for the DDI

task. In this table, ICE 2013 refers to the best results obtained previously with

that corpus, for the respective competition. For the DDI task, it corresponds to

the results on Grego et al. (2013) while for the CHEMDNER task, it corresponds

to the results of run 1 on Table 3.4. The classi�ers used for each test set were the

same, and were trained with both corpora. The validation processes in the rows

45



3. CHEMICAL NAMED ENTITY RECOGNITION

14 16 18 20 22 24 26 28 30
Recall

92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simGIC2

simGIC

14 16 18 20 22 24 26 28 30
92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simUI2
simUI

b

aa

b
14 16 18 20 22 24 26 28 30

Recall

92.0

92.5

93.0

93.5

94.0

simGIC3

simGIC

14 16 18 20 22 24 26 28 30
92.0

92.5

93.0

93.5

94.0

simUI3
simUI

b

aa

b

14 16 18 20 22 24 26 28 30
Recall

92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simGIC4

simGIC

14 16 18 20 22 24 26 28 30
92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simUI4
simUI

b

aa

b

14 16 18 20 22 24 26 28 30
92.0

92.5

93.0

93.5

94.0

simUI5
simUI

14 16 18 20 22 24 26 28 30
Recall

92.0

92.5

93.0

93.5

94.0

simGIC5

simGIC

aa

bb

14 16 18 20 22 24 26 28 30
92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simUI6
simUI

14 16 18 20 22 24 26 28 30
Recall

92.0

92.5

93.0

93.5

94.0

P
re

ci
si

on

simGIC6

simGIC

aa

bb

C

A B

D

E

Figure 3.3: Comparison of precision and recall values for di�erent thresholds
between simUI and simGIC and variants with h-index ≥ 2,3,4,5 and 6, corre-
sponding to the plots A, B, C, D and E, respectively.

of the table refer to the ones mentioned in the Methods section: "SSM" consists

in �ltering by one score, in this case, the SSM score; "COMBINED" consists in
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�ltering by a combination of scores, in this case, the average of the three highest

scores for each results; and "RF" refers to the Random Forest classi�er.

Table 3.8: Precision, Recall and F-measure estimates for NER using di�erent
validation processes, on the test set of the CHEMDNER and DDI corpus.

CHEMDNER DDI
P R F P R F

ICE 2013 87.80% 65.20% 74.80% 82.80% 73.90% 78.10%
No validation 58.18% 80.93% 67.70% 79.40% 81.49% 80.43%

SSM 77.36% 46.64% 58.20% 86.56% 31.92% 46.65%
COMBINED 68.96% 33.13% 44.76% 91.25% 56.27% 69.61%

RF 88.25% 70.31% 78.26% 89.25% 76.24% 82.23%

On the CHEMDNER corpus, the best F-measure was of 78.26%, using the

Random Forests validation, which is an improvement over the previous best F-

measure (74.80%). The best F-measure on the DDI Corpus was of 82.23%, also

with the Random Forests validation. On the DDI corpus, the results were higher

than on the CHEMDNER corpus. However, without the improvements described

on this chapter, the ICE framework also performed better on the DDI corpus.

3.3 Discussion

The results of runs 3 and 3* of Table 3.4 show the performance of the CNER

module without any validation process. The values obtained are comparable with

other applications of Mallet to this same task, for example, Campos et al. (2013).

Since run 3 uses external corpora, the precision is much lower than run 3*, which

uses only the CHEMDNER corpus. With each validation process, corresponding

to the other four runs, I was able to improve precision, while run 1 also improved

the F-measure of the CEM task by 4.6% on the test set. Every validation process

also lowered signi�cantly the recall, between 12%-60%. For this reason, I focused

my work on improving the validation process so that the e�ect on recall is reduced.

Comparing with the results from other teams that participated on the CHEMD-

NER challenge, I achieved high precision values, especially on run 2 (96.8% for

the CDI task), which was the second highest of all teams. However, the recall
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obtained with that run was also one of the lowest of the competition. The results

of this run should be viewed as an extreme case for the proposed validation pro-

cess, since too many true positives were wrongly �ltered out from the �nal result.

Using semantic similarity (run 4), high precision were also achieved, without low-

ering the recall as much as run 2. The validation processes employed should be

improved so that high precision values are still obtained, with minimal e�ect on

the recall.

Individually, the implemented features that were speci�c to chemical com-

pounds achieved the best balance between precision and recall. Adding only the

pre�xes and su�xes with size 2, I was able to increase the recall and F-measure by

12.3% and 19.5%, while decreasing the precision by 1.5%. Using a combination

of the features that achieved the best results individually, I was able to increase

the recall and F-measure by 21.2% and 31.0% respectively while decreasing the

precision by 2.6% (Table 3.2.1).

By using the h-index to improve the simUI and simGIC measures, I was able

to �lter out fewer true positives with the validation process, and achieve higher

precision values for the same recall. Comparing the simGIC with the simUI

measure, which does not take into account the information content, the former

measure achieved better results. The improvement is relatively small, but this

may be because the NER applied was already well tuned for precision. This is an

indication that the h-index provides a good estimate for the relevance of a class

for the computation of the semantic similarity between two classes.

3.3.1 Error analysis

Analyzing the false positives committed by the CNER module on the CHEMD-

NER corpus, it was possible to see that a common source of error were words that

have pre�xes and su�xes similar to chemical entities. For example, �nanoparti-

cles�, �insulin�, �nanostructures� and �cytokines� were some of the most common

false positives. Another source of errors were acronyms that do not refer to

chemical entities, for example, �RNA�, �NMR� and �SAR�.

Regarding false negatives, even though one feature related to the periodic

table was implemented, not all periodic table elements were identi�ed, missing
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49/80 mentions to �Ca(2+)�, 26/99 mentions to �N� and 25/74 mentions to �C�.

This is due to the fact that these symbols are very ambiguous and it is necessary

to understand completely the context of the token to distinguish between the

chemical element and the letter.

The sources of false positives for the DDI corpus were similar to the ones

described previously. However, it was possible to �nd some terms that were

considered relevant on the CHEMDNER corpus but not on this one, for example,

�warfarin�, �ketoconazole�, ��uconazole� and �lithium�. This corpus was more

focused on chemical entities with pharmacological interest, and with potential

for interactions. However, the CHEMDNER classi�ers also increased greatly the

recall of the module on the DDI corpus, as it is possible to see on the �rst two

lines of Table 3.8.

3.3.2 Limitations to other domains

The types of entities identi�ed by this module are restricted to what was an-

notated on the corpora used to train the classi�ers. However, the Mallet im-

plementation of CRFs can be applied to any type of annotated and tokenized

text.

The di�erent validation processes employed depend on the ChEBI ontology,

which is a domain-speci�c resource. In order to adapt to another domain, the

recognized entities would have to be mapped to an appropriate database identi-

�er. However, the same mapping process can be used for a di�erent database or

ontology, since it was originally developed for the Gene Ontology (Couto et al.,

2005).

The Random Forests classi�er uses the classi�er con�dence score, mapping

score and semantic similarity score as features. As long as these three scores are

still provided for each putative entity, the results obtain with the RF validation

process should be similar.
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Chapter 4

Extraction of Chemical Interactions

Chemical interactions are described in scienti�c literature and can be a source of

information for databases and ontologies. In this chapter I propose a module for

the extraction of these chemical interactions. Since the previous chapter presented

a module for the recognition of chemical entities mention in a given text, the input

of this module is a biomedical document, annotated with chemical entities. The

Chemical Interaction Extraction (CIE) module proposed here can be used by

itself, or in conjunction with the CNER module.

4.1 Methods

Considering all the chemical entities annotated in a given text, each pair of entities

mentioned in the same sentence is a potential interaction. Then, each pair of

entities is classi�ed as a true or false interaction and labeled with one of the DDI

types considered in the DDI corpus. A Machine Learning classi�er was trained

to perform this classi�cation, integrated with domain-speci�c resources. This

module is able to bypass the CNER module and identify interactions in a text

that is already annotated with chemical entities.

4.1.1 Pre-processing

As a pre-processing step, this module runs the input text through Stanford

CoreNLP to extract additional information provided by this tool:

51



4. EXTRACTION OF CHEMICAL INTERACTIONS

� Part-of-speech (POS) tagging;

� Parse tree;

� Co-reference resolution: the co-reference annotator is used to replace im-

plicit references to a chemical entity by the representative words. This way,

the structure of the sentence is simpler and easier to understand for a clas-

si�er. Co-reference resolution was considered to be one of the main source

of errors in this task (Segura-Bedmar et al., 2014);

� Named entity recognition: used to detect mentions to numbers, percentages

and dates, which can improve the recall since drug interactions are often de-

scribed with dosages and temporal references (Segura-Bedmar et al., 2014).

Figure 4.1 provides an example of the pre-processing method and the type of

data generated, which is then used as input for the Machine Learning classi�ers.
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Figure 4.1: Pre-processing transformations on the input text for the CIE module.
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The names of the chemical entities are replaced in the text by an identi�er

unique for each sentence. When classifying a pair, the identi�ers of the two

candidate entities are replaced by a generic string, and all the other chemical

entities by a di�erent generic string. This technique has been shown to improve

the results of RE systems by ensuring the generality of the classi�ers (Pyysalo

et al., 2008).

4.1.2 Machine Learning for pair classi�cation

Kernel methods have gained popularity in the RE �eld and were employed by the

teams that achieved the best results at the DDI Extraction task (Chowdhury &

Lavelli, 2013b; Thomas et al., 2013). A brief explanation of this type of methods

is given on Section 2.1.2

I applied the Shallow Linguistic (SL) kernel, implemented by the jSRE tool

(Giuliano et al., 2006) and the SubSet Tree kernel (SST), implemented by the

SVM-Light-TK toolkit (Joachims, 1999; Moschitti, 2006) to classify each pair

instance.

The SL kernel is composite kernel that takes into account both the local and

global context of the pair elements. I followed the recommendations provided

by Segura-Bedmar et al. (2011), on which this kernel was also applied to the

DDI corpus, obtaining good results which I intended to improve upon. Each

training instance of this kernel is the whole sentence tokenized, where the two

candidates are assigned a role of �Agent� and �Target�. Whenever a candidate was

mentioned more than once, by resolving co-references, an instance was added for

each combination between the two pairs. This means that the example on Figure

4.1 would generate 5 instances: 3 for each pair and then 2 more where the second

reference to the �s2.e2� entity is considered. Since the interactions considered

were symmetric, �Agent� was always the �rst candidate and �Target� the second.

This kernel calculates the similarity between two instances by comparing the text,

POS tags, stems and label of each token. As such, I used the tokenization, POS

tagging and stemming rows from Figure 4.1 besides the SL instance line, for the

SL kernel. The label of each token was given by the Stanford NER, which could be

only �NUMBER�, �DATE�, �PERCENTAGE�, or �OTHER�. For every chemical
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4. EXTRACTION OF CHEMICAL INTERACTIONS

entity, including the ones that did not constitute the pair, the label �DRUG� was

assigned.

The SST kernel is a tree kernel that calculates the similarity between two

instances by computing the number of common subset trees between two trees.

For this kernel, the input is the smallest tree that contains both candidates (SST

line of Figure 4.1) and the default parameters of the tool.

Both kernel methods classify each pair as interacting or not. One classi�er

was trained for each kernel method and for each type of interaction, as well as

for the whole corpus, resulting in a total of 10 classi�ers (4 types of interaction

+ 1 with the whole corpus for each of the two kernel methods).

4.1.3 Ensemble classi�er

Even though the results of the kernel classi�ers can directly classify the pairs, I

implemented an ensemble SVM classi�er, which uses as features the output of

each RE classi�er, along with a set of lexical and domain speci�c features. I used

the SVM implementation of scikit-learn, based on LIBSVM, to train and test this

classi�er The feature set can be organized in three di�erent groups: output of

the kernel classi�ers, ontological knowledge and presence of certain stems in the

sentence. Table 4.1 shows a summary of the features used for this classi�er.

Table 4.1: Feature set for the ensemble classi�er, divided in three groups.
Kernel results Ontological Presence of stems in the sentence

Kernel DDI type

SL

all Resnik advanc advic a�ect
e�ect simUI anaesthetis augment awar
mechanism simGIC bound care coadminist
advice simUI4 combin concentr decreas
int simGIC4 e�ect exagger expos

SST

all ChEBI synonym inhibit ioniz lengthen
e�ect ChEBI Distance mechan metabol not
mechanism DrugBank interactions note part prevent
advice reach regul short
int should warn withdrawn
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The features derived from the classi�ers could only be 0 or 1, depending on

if the pair was classi�ed as interacting or not. For example, if the SL kernel

classi�er trained with the type �e�ect� identi�ed the pair as a true interaction,

the feature �SL e�ect� would be equal to 1 for this instance. Since SSM values

have been useful before for �ltering false positives on the CNER module, this

information is used again for the ensemble classi�er in this module. I used �ve

di�erent SSMs as features: Resnik, simUI, simGIC, simUI4 and simGIC4, which I

had already implemented for the CNER module. Moreover, three features based

on DrugBank and ChEBI were added to improve the performance of the classi�er:

� One candidate is a synonym of the other according to the ChEBI ontology

� Distance between the two candidates if one is an ascendant of the other in

the ChEBI ontology (-1 otherwise)

� DrugBank entry for one candidate mentions the other candidate in the list

of interactions

As some terms are more commonly employed than others when describing a

type of interaction, I compiled a list of 32 stems that suggest the possibility of

a DDIs, and added one binary feature for the presence of each word of this list.

Finally, there is also another binary feature that has value 1 if the text of the two

candidates is the same, since usually these pairs are not interactions.

This classi�er was trained to label each pair with one of the following labels:

�mechanism�, �e�ect�, �advice�, �int� (the four DDI types considered in the training

data) or �no-ddi�, corresponding to pairs that do not represent an interaction.

Finally, I used the evaluator released by the organization of the DDI Extraction

task to compute the standard precision, recall and F-measure values.

4.2 Results

To evaluate the CIE module, I compared the results obtained with only the

kernel methods, to the results obtained using also the ensemble classi�er. In the

�rst case, I considered a true DDI any pair classi�ed as such by at least one

classi�er. If it was classi�ed by more than one type-speci�c classi�er, or only
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by the whole-corpus classi�er, I selected the type that was most frequent in the

training data. The order of types, from most to least frequent, was: �e�ect�,

�mechanism�, �advice� and �int�. Otherwise, the DDI type was the one of the

classi�er that identi�ed that DDI.

Two types of task were evaluated: the detection task consisted in simply

labeling each pair as a DDI or not, while the classi�cation task consisted in

classifying each pair with one type of DDI or none. Table 4.2 shows the results

obtained by training the classi�ers with the training set and then testing on the

test set. The ensemble classi�er improved the precision of results for the detection

and classi�cation tasks, and also the F-measure of the classi�cation task. The

best F-measure for the detection task was 74.57%, using only the kernel methods,

and for the classi�cation task it was 64.02%, using the ensemble classi�er.

Table 4.2: Precision, Recall and F-measure estimates for the CIE module, the
test set of the DDI corpus.

Task P R F

Kernel
Detection 70.32% 79.37% 74.57%

Classi�cation 49.95% 56.38% 52.98%

Ensemble
Detection 80.20% 66.19% 72.52%

Classi�cation 70.79% 58.43% 64.02%

4.3 Discussion

My assumption was that an ensemble of classi�ers and features would provide

better results than using only one Machine Learning algorithm. In fact, just by

using the two kernel methods, an acceptable F-measure was obtained, since the

recall was maximized with this strategy. The kernel results provide a baseline for

the ensemble classi�er.

Without the ensemble classi�er, higher recall values were achieved, since the

positive pairs of two di�erent classi�ers were merged, but at the cost of lower

precision. This classi�er was able to generally increase the precision, particularly

on the classi�cation task. This task was more complex and, for this reason, the

results were considerably lower: the highest F-measure for detection was 74.57%
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while for classi�cation, it was 64.02%. However, the ensemble classi�er was able

to reduce the di�erence between the F-measure of detection and classi�cation

by 12.11 percentage points on the train set and 13.48 percentage points on the

test set. The main factor for this reduction was the increase in precision by

the ensemble classi�er, which uses Machine Learning to label the pairs with a

DDI type. The ensemble classi�er improved both precision and recall of the

classi�cation task. While it is still 7.76 percentage points lower than the recall

of the detection task, this is an improvement over the classi�cation results of the

kernel methods.

However, the main advantage of the ensemble classi�er was that it assigned the

DDI types with more precision than the rule used for merging the results of the

kernel methods. Hence, were able to increase the precision by 20.84 percentage

points for the classi�cation task. The results obtained were close to the best

team of the detection and classi�cation tasks of the DDI Extraction challenge

(F-measure of 80.0% and 65.1%, respectively). Even though it did not achieve

better results than the top systems of these competitions, this module is almost

independent of external sources, using only the ChEBI ontology and DrugBank

for domain knowledge.

4.3.1 Error analysis

Analyzing the false positives committed by the CIE module, I veri�ed that many

were caused by coordinate structures that were not resolved correctly by the

parser. When one entity interacts with another, and then a list of examples

for the second entity is provided, the module may not identify the interactions

between the �rst entity and the list. For example, in the sentence �The induction

dose requirements of DIPRIVAN Injectable Emulsion may be reduced in patients

with intramuscular or intravenous premedication, particularly with narcotics (eg,

morphine, meperidine, and fentanyl, etc.)�, the module identi�ed the interaction

between �DIPRIVAN� and �narcotics�, but not between �DIPRIVAN� and each

of the narcotics mentioned.

Furthermore, the approach applied for resolving co-references is limited since

it was not optimized for biomedical text, which can have complex sentence struc-
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tures. In the sentence �It is reasonable to employ appropriate clinical moni-

toring when potent cytochrome P450 enzyme inducers, such as phenobarbital

or rifampin, are co-administered with montelukast.�, the module was unable to

identify the interaction between �phenobarbital� and �montelukast�.

I veri�ed that 17 DDIs that the kernel methods were unable to identify were

then correctly identi�ed by the ensemble classi�er using the domain and stem

features. For example, the pair DDI-DrugBank.d585.s0.p2 of the DDI corpus,

which is an interaction between �anticholinergic drugs� and �quinidine�, was not

identi�ed by the kernel methods, possibly because of the complex structure of

that sentence, which has 14 chemical entities, but the ensemble classi�er correctly

identi�ed this pair as an interaction of the type e�ect.

4.3.2 Limitations to other domains

Even though this work was focused on the extraction of chemical interactions, the

techniques used have been previously applied to other domains with success, such

as protein-protein interactions and news articles. The �rst issue when applying to

a di�erent domain would be the corpora on which the kernel classi�ers are trained.

The natural language techniques employed are not speci�c to the biomedical

domain, in fact, the models used by the Stanford CoreNLP toolkit are trained

for the news domain. Nevertheless, domain-speci�c alternatives to the tools used

to obtain the information from Figure 4.1 should provide even better results.

The kernel methods employed can be trained with any kind of corpus as long

as it is annotated with the relevant entities. Although only one type of entities was

considered on this work, it may be the case on other domains that di�erent types

of entities are mentioned in the text, and only some combinations of types may

interact. This would require a pre-processing step to select the pairs that could

be interacting according to this criteria. Then, these pairs would correspond to

instances that can be used as input for the two kernel methods, as it was described

in this chapter.

The ensemble classi�er is the step most tuned for the chemical interactions

domain. It employs domain-speci�c resources (ChEBI and DrugBank) as well as

speci�c stems used to describe these types of interactions in scienti�c literature.

58



4.3 Discussion

However, ontologies are available to other domains, and the semantic similarity

measures used are not restricted to the ChEBI ontology and therefore can be

applied to other ontologies. The list of stem expressions used to describe interac-

tions would have to be adapted to a di�erent domain. This list should take into

account the di�erent types of interactions considered in the domain.

Finally, an appropriate gold standard should be used to evaluate the per-

formance on a di�erent domain. This gold standard could be an independent

partition of the corpus used for training, or a gold standard from a community

challenge, for example.

Each domain has its own challenges which should be taken into account when

adapting the methodology described in this chapter. The origin and number of

features used by the ensemble classi�er may have to be altered, and di�erent

kernel-based classi�ers may also be added. However, this work provides a base

framework for RE, achieving good results for the chemical interactions domain

and it can possibly be adapted to other domains. For example, it may be applied

to a large news corpus in order to extract interactions between persons, places,

and organizations.
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Chapter 5

IICE

5.1 Architecture

Combining the techniques developed and presented throughout Chapters 3 and 4,

I developed a system for automatically Identifying Interactions between Chemical

Entities (IICE) from biomedical text. An overview of the system architecture is

presented in Figure 5.1. The system can process raw text without any annotation,

or text already annotated with chemical entities, which is what I did to evaluate

the RE module, starting the input on the box "Annotated Text" (step 4).

The �rst input of the system is one or more biomedical documents (1). These

documents should contain information about chemical compounds and interac-

tions, but it is not known where the chemical entities are located in the text. To

analyze each document, it is �rst split by sentence, tokenize each sentence, and

generate features for each token (step 2, Section 3.1.2). These features will be

used by the CRF classi�ers (step 3, Sections 2.5.1) to identify if each token or

sequence of tokens refers to a chemical entity. Each chemical entity identi�ed is

then validated by one of the three processes described in Section 3.1.1 (step 4),

which will employ external domain knowledge. At this point, each input docu-

ment should be annotated with chemical entities. The steps 1-4 may be bypassed

if the input documents are already annotated, manually or by a di�erent system.

As such, a pre-processing step is applied for extraction of chemical interactions

(step 5, Section 4.1.1). Then, each pair of chemical entities is classi�ed by the ker-

nel classi�ers (step 6, Section 4.1.2) as a true or false interaction. These results,
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Figure 5.1: Overview of the system architecture.

along with external domain knowledge, are then used for the ensemble classi-

�er (step 7, Section 4.1.3), which will assign a label to each pair, corresponding

to a type of interaction, or none. The �nal result of this pipeline is the input

documents annotated with chemical entities and interactions.

5.2 Implementation

The system was developed with Python programming language, version 2.6. At

least one script was developed for each of the system components, represented

as nodes on Figure 5.1. In same cases more than were script was developed,

for example, one script was necessary for each kernel method, and another one

to merge the results. Furthermore, two more scripts were developed to process

the corpora for the challenges and train the classi�ers. Finally, two scripts were

developed to evaluate each module.

For the libraries used, preference was given to Python modules since these

could be easily integrated with the main system. In same cases, there was no

Python module, or it did not perform as well as another implementation of the

same function. This was the case for the natural language processing tasks for
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Relation Extraction, as well as the kernel classi�ers. External libraries were inte-

grated with system calls to Java classes, in this case, to Mallet, Stanford CoreNLP

and Weka. The main Python libraries used were NLTK and ElementTree for sim-

ple text processing tasks, and sci-kit for general Machine Learning tasks. Each

of the two corpora employed had one evaluation program, developed by the same

authors, that I used to evaluate the results obtained.

These libraries implement complex Machine Learning algorithms or simple

but useful tasks. However, the main challenge with the development of this

system was the integration of these libraries with the input data. Each corpus

was in a di�erent format, and the expected format for the competitions was also

di�erent. To input to external libraries as to be written to a text �le since they

cannot be used directly with Python. Overall, the system processes the input

data, performs pre-processing tasks both based on libraries and implemented

anew, generates input for the Machine Learning libraries, reads the results and

performs the �nal tasks necessary to generate the output.

For each task and corpus, the system can be called by command line to eval-

uate with cross-validation, train classi�ers or test with new data. The input data

can be provided in one of the formats adopted by the corpora, or as raw text

in the command line. Three options are provided for the output format of the

results: the HTML option is used to generate the tables for our web tool; the

XML option corresponds to the same structure as the DDI corpus; the TSV op-

tion is similar to the format used for the CHEMDNER task, but adapted for

interactions.

I implemented the command line options described on Table 5.1. The Steps

column refers to the numbers on Figure 5.1 and show which steps of the pipeline

are a�ected by each option.

The NER module has a series of options, related to the CRF classi�ers and

validation processes. It is possible to �lter the predicted entities by Semantic

Similarity Measure score (SSM), ChEBI mapping score (MAP), or by the con�-

dence of the CRF classi�er for that entity (CRF). The similarity measure can be

chosen, from the ones described on Section 3.1.3. The best results were obtained

with �simgic_hindex�, which is my proposed version of the simGIC measure, con-

sidering only the most relevant ancestors. The COMBINED option is a �lter on
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Table 5.1: Description of the options available for the system.
Steps Option Values Description
1,2,3 NER Boolean Recognize chemical entities mention in

the text
5,6,7 DDI Boolean Identify drug-drug interactions in the

text
2 Corpora chemdner, ddi, all Corpora to be used for entity recogni-

tion
3 Measure resnik, simui, simgic,

simui_hindex,
simgic_hindex

Semantic similarity measure to be used
for validation

Validation
3 SSM Float Thresold value for the SSM score
3 MAP Float Thresold value for the mapping score
3 CRF Float Thresold value for the CRF classi�ers

score
3 COMBINED Float Thresold value for the combined score
3 RF Boolean Use Random Forests classi�er for entity

recognition
Relation Extraction

6 Kernels slk, sst List of kernels to be used for DDI clas-
si�cation separated by commas

7 Ensemble Boolean Use ensemble classi�er for entity recog-
nition

4,8 Format xml, html, tsv Format for the results
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a score which combines the SSM, MAP and CRF scores. However, Section 3.2.3

has shown that the best results are achieved with the Random Forests classi�er,

which corresponds to the RF option. This will use the previously trained Ran-

dom Forests classi�er to �lter false positives. The classi�ers were trained with

two di�erent corpora, CHEMDNER and DDI, each one being annotated with

di�erent guidelines. The input text can be classi�ed with classi�er from only one

of these two, or both.

With the Relation Extraction module, it is possible to control the kernel

classi�ers used to classify the interactions and if the ensemble classi�er is applied

to the results. The two kernel methods described on Section 4.1.2 are available

in the Kernels options. It is possible to use only one of them, although using

both at the same time provide more robust results. The ensemble classi�er will

perform much better than the kernel classi�ers at assigning the interaction types

to the interactions identi�ed, as shown on Table 4.2.

The system is more e�cient when processing a large corpus than single docu-

ments or sentences. The test set for the CHEMDNER challenge consisted of 3000

abstracts and took approximately 24 hours to process, which results in an average

of 29 seconds per abstract. However, it may take between one or two minutes to

process a single abstract individually. One reason for this di�erence is the system

calls to external libraries, which usually take more time that other instructions,

and are only called once every time the system runs. This cost is less relevant if

more documents are processed. The performance aspect of this system should be

improved in the future, in order to be more e�cient when processing individual

documents.

5.3 Web tool

The web tool was developed in order to experiment the proposed system with a

sentence or paragraph, available at www.lasige.di.fc.ul.pt/webtools/iice.

Figure 5.2 shows screenshots of the input options, and results obtained with the

web tool.

The user inserts a text to be analyzed in the text box. However, it is also

possible to input text already annotated with chemical entities, by marking the
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relevant entities with a �<entity>� tag. This is useful in case the user wants

to determine how the Named Entity Recognition technique employed a�ects the

identi�cation of interactions. These tags will be considered only if the �NER�

option is not checked. The tool can also analyze any PubMed abstract, just by

inserting the PMID on the text box. In this case, the tool will automatically

download the abstract from the PubMed webservices, and analyze that text.

The right panel on Figure 5.2 shows a series of options that can be changed.

These options are related to Table 5.1 and serve two purposes: adjust the expected

results in terms of types of entities (Corpora option) or precision (Validation) of

the results; or experiment the in�uence of the details presented on Chapters 3

and 4, in terms of semantic similarity measures or kernel methods.

The output of this tool can be seen on the web page as one table with the

chemical interactions and another table with the chemical entities, or it can be

downloaded in XML format, similar to what was used for the DDI corpus. In case

the user submits more than when sentence, the system will split by sentence and

analyze each sentence individually. As such, one pair of tables is generated for

each sentence, while the sentence to which they refer to is presented above them.

The �rst table shows the interaction identi�ed on the text: the two interacting

chemical entities and the type of interaction. The second table shows all the

chemical entities found, according to the thresholds established on Validation. In

case the entity was mapped to ChEBI, a link is provided to the ChEBI page for

that entity. A type of chemical entity is also provided, from the ones considered

on the CHEMDNER corpus.

This web tool also provides additional information about the project. The

�About� page is a brief explanation of the implementation of the system and

resources used. The �Team� page shows describes the team that worked on this

project, while �Publications� is a list the papers published about the methods

described in this dissertation.

5.4 Conclusion

The work developed for this dissertation was combined on a chemical interaction

extraction system for biomedical texts, entitled IICE. This system is able to
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process text with and without annotations of chemical entities. A web tool was

developed in order to access and test this system, with various options related

to the techniques described. The main purpose of this tool is to demonstrate

the capabilities of IICE. However, it may also be useful to curators performing

semi-automatic annotations of biomedical documents. This system was recently

presented on the Lisbon Machine Learning Summer School Demo Day 2014, on

Instituto Superior Técnico.

67



5. IICE

A

B

Figure 5.2: Screenshot of the Web tool. A: Input options; B. Results obtained.
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Chapter 6

Conclusion

The hypothesis of this dissertation was to develop a system, based on two mod-

ules, to automatically and e�ciently extract chemical interactions from biomed-

ical text. I accomplished this by combining Machine Learning and Text Mining

techniques with domain knowledge, to achieve higher levels of precision. The

system was composed by two modules because �rst it is necessary to recognize

the chemical compounds mentioned in a given text (CNER module), and only

then the chemical interactions can be identi�ed (CIE module).

The basis for the CNER module was an existing framework. I optimized the

performance of this framework and evaluate on two corpora from community

challenges. This module achieved a best F-measure of 82.23% and the maximum

precision achieved was 91.25%, for a recall of 56.27%, on the DDI corpus. The

F-measure value represent an improvement of 4.13 percentage points over the

previous version of the framework, while being only 1.10 percentage points below

the best performance of the competition. To improve the validation process, I

developed a new category of semantic similarity measures based on the h-index,

which �ltered out fewer true positives, and achieved higher precision values for

the same recall, compared to other measures.

The CNER module was based on two kernel methods applied to Support Vec-

tor Machines for Relation Extraction. The results obtained with the kernels were

complemented with domain knowledge to train an ensemble classi�er, in order

to improve the classi�cation of interactions. The best F-measure for detection of

interactions was of 74.57%, obtained without the ensemble classi�er. However,
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this classi�er obtained a F-measure of 65.02% on the classi�cation of interactions

task, which is an improvement of 11.04% percentage points over the F-measure

obtained without the classi�er, for the same task.

The whole IICE system was made available in the form of a web tool, which

can be accessed at www.lasige.di.fc.ul.pt/webtools/iice. This web tool has

a series of options which can be used to tune the results obtained for precision

or recall. The input to this tool can be a PMID in order to analyze the abstract,

or any other text that can be copied to the text box. This text can include

entity annotation, in case the user wants to bypass CNER module. The results

obtained with this tool can be downloaded in a XML �le, with the same format

as the DDI corpus. The IICE system has been shown to be e�ective at extracting

information about chemical interaction from biomedical texts and was presented

at the Lisbon Machine Learning Summer School Demo Day 2014, on Instituto

Superior Técnico. This system opens the possibility of automatically analyzing

old and new documents that are available, in order to construct or complement

a database of chemical interactions, with minimal human intervention.

6.1 Future work

The work presented in this dissertation has been evaluated on two recent commu-

nity challenges. However, the scope of these two challenges was limited, with focus

on MEDLINE abstracts and DrugBank descriptions. The performance of the sys-

tem may vary with di�erent types of text, which is why it should be tested with

other types of scienti�c literature. Furthermore, only one corpus for extraction

of chemical interactions was used, which was focused on drug-drug interactions.

Other types of chemical interactions should be explored in the future.

In order to overcome the lack of annotated corpus speci�c to this domain, un-

supervised and semi-supervised Machine Learning algorithm should be explored.

Deep Learning is one type of unsupervised learning algorithm that is currently be-

ing applied to Text Mining task mining tasks with success (Socher et al., 2013b),

and could possibly be integrated in the IICE system in the future.

The semantic similarity measure introduced could be further optimized by

applying the h-index concept to other measures that fully explore the semantics
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present in biomedical ontologies (Couto & Pinto, 2013). A better measure could

improve the precision of the two developed modules since the assessment of the

similarity between each pair of entities is crucial to both modules.

Even though this work was focused on chemical interactions, the techniques

employed can and have been applied to other domains. In the future, I intend

to adapt the whole system to the news domain. The idea is to extract relation

between various types of entities, for example, persons, places and organizations.

This system should perform better than pattern based approaches, obtaining

results similar to what was obtained in this dissertation. The �rst step required

to adapt the system for the news domain would be adapting the domain-speci�c

techniques. For the news domain, the WordNet Fellbaum (1998) and DBpedia

(Lehmann et al., 2014) are two ontologies that should be explored. The semantic

similarity measures mention in this dissertation would have to be implemented

on those two ontologies.
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