42,018 research outputs found

    Web Science: expanding the notion of Computer Science

    No full text
    Academic disciplines which practice in the context of rapid external change face particular problems when seeking to maintain timely, current and relevant teaching programs. In different institutions faculty will tune and update individual component courses while more radical revisions are typically departmental-wide strategic responses to perceived needs. Internationally, the ACM has sought to define curriculum recommendations since the 1960s and recognizes the diversity of the computing disciplines with its 2005 overview volume. The consequent rolling program of revisions is demanding in terms of time and effort, but an inevitable response to the change inherent is our family of specialisms. Preparation for the Computer Curricula 2013 is underway, so it seems appropriate to ask what place Web Science will have in the curriculum landscape. Web Science has been variously described; the most concise definition being the ‘science of decentralized information systems’. Web science is fundamentally interdisciplinary encompassing the study of the technologies and engineering which constitute the Web, alongside emerging associated human, social and organizational practices. Furthermore, to date little teaching of Web Science is at undergraduate level. Some questions emerge - is Web Science a transient artifact? Can Web Science claim a place in the ACM family, Is Web Science an exotic relative with a home elsewhere? This paper discusses the role and place of Web Science in the context of the computing disciplines. It provides an account of work which has been established towards defining an initial curriculum for Web Science with plans for future developments utilizing novel methods to support and elaborate curriculum definition and review. The findings of a desk survey of existing related curriculum recommendations are presented. The paper concludes with recommendations for future activities which may help us determine whether we should expand the notion of computer science

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas

    An information technology competency model and curriculum

    Get PDF
    This paper addresses the progress made by the Association for Computing Machinery (ACM) and the IEEE Computer Society (IEEE-CS) in developing a competency model and curricular guidelines for four-year degree programs in information technology. The authors are members of an international task group representative of academic institutions, industry, and professional organizations. The task group is to develop a competency model, called IT2017, for information technology education within two years based on earlier guidelines and other perspectives. This paper provides a brief background of the project, some activities undertaken, the progress made, and expectations for future developments. IT2017 seeks to produce a futuristic model of academic excellence so information technology graduates will be prepared for new technological challenges in a global economy

    Educating the educators: Incorporating bioinformatics into biological science education in Malaysia

    Get PDF
    Bioinformatics can be defined as a fusion of computational and biological sciences. The urgency to process and analyse the deluge of data created by proteomics and genomics studies has caused bioinformatics to gain prominence and importance. However, its multidisciplinary nature has created a unique demand for specialist trained in both biology and computing. In this review, we described the components that constitute the bioinformatics field and distinctive education criteria that are required to produce individuals with bioinformatics training. This paper will also provide an introduction and overview of bioinformatics in Malaysia. The existing bioinformatics scenario in Malaysia was surveyed to gauge its advancement and to plan for future bioinformatics education strategies. For comparison, we surveyed methods and strategies used in education by other countries so that lessons can be learnt to further improve the implementation of bioinformatics in Malaysia. It is believed that accurate and sufficient steerage from the academia and industry will enable Malaysia to produce quality bioinformaticians in the future

    Integrating Computer Technology in Early Childhood Education Environments: Issues Raised by Early Childhood Educators

    Get PDF
    The purpose of this study was to assess the educators’ perspectives on the introduction of computer technology in the early childhood education environment. Fifty early childhood educators completed a survey and participated in focus groups. Parallels existed between the individually completed survey data and the focus group discussions. The qualitative data provided a richer understanding of the issues faced by these educators. Thematic analyses of the focus group discussions revealed that many of the educators’ concerns involved the effect of technology on the educators themselves, with secondary emphasis on how computers affected the students and parents. Although educators generally supported the integration of computers, they also identified critical concerns and limitations. L’objectif de cette Ă©tude Ă©tait d’évaluer les points de vue des Ă©ducateurs relatifs Ă  l’introduction de la technologie informatique dans un milieu d’éducation des jeunes enfants. Cinquante Ă©ducateurs de la petite enfance ont complĂ©tĂ© une enquĂȘte et ont participĂ© aux sessions de groupes de discussion. La recherche a trouvĂ© des correspondances entre les donnĂ©es des enquĂȘtes individuelles et les discussions de groupe. Les donnĂ©es qualitatives ont permis une meilleure connaissance des enjeux auxquels sont confrontĂ©s ces Ă©ducateurs. Des analyses thĂ©matiques des discussions de groupe ont rĂ©vĂ©lĂ© que plusieurs des prĂ©occupations des Ă©ducateurs portaient sur l’effet de la technologie sur les Ă©ducateurs eux-mĂȘmes et, en deuxiĂšme lieu, sur l’influence des ordinateurs sur les Ă©lĂšves et les parents. Tout en indiquant qu’ils appuyaient globalement l’intĂ©gration des ordinateurs, les Ă©ducateurs ont Ă©galement identifiĂ© des prĂ©occupations et des limites importantes

    'First Portal in a Storm': A Virtual Space for Transition Students

    Get PDF
    The lives of millennial students are epitomised by ubiquitous information, merged technologies, blurred social-study-work boundaries, multitasking and hyperlinked online interactions (Oblinger & Oblinger, 2005). These characteristics have implications for the design of online spaces that aim to provide virtual access to course materials, administrative processes and support information, all of which is required by students to steer a course through the storm of their transition university experience. Previously we summarised the challenges facing first year students (Kift & Nelson, 2005) and investigated their current online engagement patterns, which revealed three issues for consideration when designing virtual spaces (Nelson, Kift & Harper, 2005). In this paper we continue our examination of students’ interactions with online spaces by considering the perceptions and use of technology by millennial students as well as projections for managing the virtual learning environments of the future. The findings from this analysis are informed by our previous work to conceptualise and describe the architecture of a transition portal

    "Boring formal methods" or "Sherlock Holmes deduction methods"?

    Full text link
    This paper provides an overview of common challenges in teaching of logic and formal methods to Computer Science and IT students. We discuss our experiences from the course IN3050: Applied Logic in Engineering, introduced as a "logic for everybody" elective course at at TU Munich, Germany, to engage pupils studying Computer Science, IT and engineering subjects on Bachelor and Master levels. Our goal was to overcome the bias that logic and formal methods are not only very complicated but also very boring to study and to apply. In this paper, we present the core structure of the course, provide examples of exercises and evaluate the course based on the students' surveys.Comment: Preprint. Accepted to the Software Technologies: Applications and Foundations (STAF 2016). Final version published by Springer International Publishing AG. arXiv admin note: substantial text overlap with arXiv:1602.0517

    Latin American perspectives to internationalize undergraduate information technology education

    Get PDF
    The computing education community expects modern curricular guidelines for information technology (IT) undergraduate degree programs by 2017. The authors of this work focus on eliciting and analyzing Latin American academic and industry perspectives on IT undergraduate education. The objective is to ensure that the IT curricular framework in the IT2017 report articulates the relationship between academic preparation and the work environment of IT graduates in light of current technological and educational trends in Latin America and elsewhere. Activities focus on soliciting and analyzing survey data collected from institutions and consortia in IT education and IT professional and educational societies in Latin America; these activities also include garnering the expertise of the authors. Findings show that IT degree programs are making progress in bridging the academic-industry gap, but more work remains
    • 

    corecore