52,253 research outputs found

    The use of GIS in Brownfield redevelopment

    Get PDF
    In recent years, the issue of Brownfield site development - the re-use of previously used urban land - has gained a significant place in the planning agenda. However, not all Brownfield sites are derelict or contaminated land, some are significant as environmental amenities - be it part of wider ecosystem or a green area for the local population. The growing concern to include environmental aspects into the public debate have lead the Environment Agency, the Jackson Environment Institute and the Centre for Advanced Spatial Analysis to commission a short term pilot study to evaluate the contribution of a GIS for decision support and for "discussion support".In this paper, we describe how the state-of-the-art in geographic information (GI) and GI Science (GISc) can be used in a short term and limited project to achieve a practical and usable system. We are drawing on developments in information availability, as made accessible through the World Wide Web and research themes in GISc ranging from Multimedia GIS to Public Participation GIS

    Seafloor characterization using airborne hyperspectral co-registration procedures independent from attitude and positioning sensors

    Get PDF
    The advance of remote-sensing technology and data-storage capabilities has progressed in the last decade to commercial multi-sensor data collection. There is a constant need to characterize, quantify and monitor the coastal areas for habitat research and coastal management. In this paper, we present work on seafloor characterization that uses hyperspectral imagery (HSI). The HSI data allows the operator to extend seafloor characterization from multibeam backscatter towards land and thus creates a seamless ocean-to-land characterization of the littoral zone

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Determining Sustainable Development Density using the Urban Carrying Capacity Assessment System

    Get PDF
    Diverse urban problems in the capital region of Korea occur due to over-development and over-concentration which exceed the region’s carrying capacity. Particularly, environmental problems such as air and water pollution have become more evident and become central issues for urban planners and decision-makers. In achieving sustainable environment through resolving such problems, practical approaches to incorporate the concept of environmental sustainability into managing urban development are needed. This research aims at developing an integrated framework for assessing urban carrying capacity which can determine sustainable development density, and has yielded the following. First, seven determining factors for urban carrying capacity including energy, green areas, roads, subway systems, water supply, sewage treatment, and waste treatment were identified, and the assessment framework was developed by integrating such factors. Second, the UCCAS, a GIS-based carrying capacity assessment system was developed based upon the framework. Finally, through a case study of determining carrying capacity of an urban area, it was revealed that decision support with the UCCAS demonstrated in this research could play a pivotal role in planning and managing urban development more effectively

    Environmental urbanization assessment using gis and multicriteria decision analysis: a case study for Denizli (Turkey) municipal area

    Get PDF
    In recent years, life quality of the urban areas is a growing interest of civil engineering. Environmental quality is essential to display the position of sustainable development and asserts the corresponding countermeasures to the protection of environment. Urban environmental quality involves multidisciplinary parameters and difficulties to be analyzed. The problem is not only complex but also involves many uncertainties, and decision-making on these issues is a challenging problem which contains many parameters and alternatives inherently. Multicriteria decision analysis (MCDA) is a very prepotent technique to solve that sort of problems, and it guides the users confidence by synthesizing that information. Environmental concerns frequently contain spatial information. Spatial multicriteria decision analysis (SMCDA) that includes Geographic Information System (GIS) is efficient to tackle that type of problems. This study has employed some geographic and urbanization parameters to assess the environmental urbanization quality used by those methods. The study area has been described in five categories: very favorable, favorable, moderate, unfavorable, and very unfavorable. The results are momentous to see the current situation, and they could help to mitigate the related concerns. The study proves that the SMCDA descriptions match the environmental quality perception in the city. © 2018 Erdal Akyol et al

    Environmental Response Management Application

    Get PDF
    The Coastal Response Research Center (CRRC), a partnership between the University of New Hampshire (UNH) and NOAA\u27s Office of Response and Restoration (ORR), is leading an effort to develop a data platform capable of interfacing both static and real-time data sets accessible simultaneously to a command post and assets in the field with an open source internet mapping server. The Environmental Response Management Application (ERMA™) is designed to give responders and decision makers ready access to geographically specific data useful during spill planning/drills, incident response, damage assessment and site restoration. In addition to oil spill and chemical release response, this website can be relevant to other environmental incidents and natural disasters, responses and regional planning efforts. The platform is easy to operate, without the assistance of Information Technology or Geographic Information Systems (GIS) specialists. It allows users to access individual data layer values, overlay relevant data sets, and zoom into segments of interest. The platform prototype is being developed specifically for Portsmouth Harbor and the Great Bay Estuary, NH. The prototype demonstrates the capabilities of an integrated data management platform and serves as the pilot for web-based GIS platforms in other regions
    • …
    corecore