4,085 research outputs found

    Towards Joint Modeling of Dialogue Response and Speech Synthesis based on Large Language Model

    Full text link
    This paper explores the potential of constructing an AI spoken dialogue system that "thinks how to respond" and "thinks how to speak" simultaneously, which more closely aligns with the human speech production process compared to the current cascade pipeline of independent chatbot and Text-to-Speech (TTS) modules. We hypothesize that Large Language Models (LLMs) with billions of parameters possess significant speech understanding capabilities and can jointly model dialogue responses and linguistic features. We conduct two sets of experiments: 1) Prosodic structure prediction, a typical front-end task in TTS, demonstrating the speech understanding ability of LLMs, and 2) Further integrating dialogue response and a wide array of linguistic features using a unified encoding format. Our results indicate that the LLM-based approach is a promising direction for building unified spoken dialogue systems

    Dialogue Act Modeling for Automatic Tagging and Recognition of Conversational Speech

    Get PDF
    We describe a statistical approach for modeling dialogue acts in conversational speech, i.e., speech-act-like units such as Statement, Question, Backchannel, Agreement, Disagreement, and Apology. Our model detects and predicts dialogue acts based on lexical, collocational, and prosodic cues, as well as on the discourse coherence of the dialogue act sequence. The dialogue model is based on treating the discourse structure of a conversation as a hidden Markov model and the individual dialogue acts as observations emanating from the model states. Constraints on the likely sequence of dialogue acts are modeled via a dialogue act n-gram. The statistical dialogue grammar is combined with word n-grams, decision trees, and neural networks modeling the idiosyncratic lexical and prosodic manifestations of each dialogue act. We develop a probabilistic integration of speech recognition with dialogue modeling, to improve both speech recognition and dialogue act classification accuracy. Models are trained and evaluated using a large hand-labeled database of 1,155 conversations from the Switchboard corpus of spontaneous human-to-human telephone speech. We achieved good dialogue act labeling accuracy (65% based on errorful, automatically recognized words and prosody, and 71% based on word transcripts, compared to a chance baseline accuracy of 35% and human accuracy of 84%) and a small reduction in word recognition error.Comment: 35 pages, 5 figures. Changes in copy editing (note title spelling changed

    Integrating Prosodic and Lexical Cues for Automatic Topic Segmentation

    Get PDF
    We present a probabilistic model that uses both prosodic and lexical cues for the automatic segmentation of speech into topically coherent units. We propose two methods for combining lexical and prosodic information using hidden Markov models and decision trees. Lexical information is obtained from a speech recognizer, and prosodic features are extracted automatically from speech waveforms. We evaluate our approach on the Broadcast News corpus, using the DARPA-TDT evaluation metrics. Results show that the prosodic model alone is competitive with word-based segmentation methods. Furthermore, we achieve a significant reduction in error by combining the prosodic and word-based knowledge sources.Comment: 27 pages, 8 figure

    Integrating Syntactic and Prosodic Information for the Efficient Detection of Empty Categories

    Get PDF
    We describe a number of experiments that demonstrate the usefulness of prosodic information for a processing module which parses spoken utterances with a feature-based grammar employing empty categories. We show that by requiring certain prosodic properties from those positions in the input where the presence of an empty category has to be hypothesized, a derivation can be accomplished more efficiently. The approach has been implemented in the machine translation project VERBMOBIL and results in a significant reduction of the work-load for the parser.Comment: To appear in the Proceedings of Coling 1996, Copenhagen. 6 page

    Parsing Speech: A Neural Approach to Integrating Lexical and Acoustic-Prosodic Information

    Full text link
    In conversational speech, the acoustic signal provides cues that help listeners disambiguate difficult parses. For automatically parsing spoken utterances, we introduce a model that integrates transcribed text and acoustic-prosodic features using a convolutional neural network over energy and pitch trajectories coupled with an attention-based recurrent neural network that accepts text and prosodic features. We find that different types of acoustic-prosodic features are individually helpful, and together give statistically significant improvements in parse and disfluency detection F1 scores over a strong text-only baseline. For this study with known sentence boundaries, error analyses show that the main benefit of acoustic-prosodic features is in sentences with disfluencies, attachment decisions are most improved, and transcription errors obscure gains from prosody.Comment: Accepted in NAACL HLT 201

    Prosody-Based Automatic Segmentation of Speech into Sentences and Topics

    Get PDF
    A crucial step in processing speech audio data for information extraction, topic detection, or browsing/playback is to segment the input into sentence and topic units. Speech segmentation is challenging, since the cues typically present for segmenting text (headers, paragraphs, punctuation) are absent in spoken language. We investigate the use of prosody (information gleaned from the timing and melody of speech) for these tasks. Using decision tree and hidden Markov modeling techniques, we combine prosodic cues with word-based approaches, and evaluate performance on two speech corpora, Broadcast News and Switchboard. Results show that the prosodic model alone performs on par with, or better than, word-based statistical language models -- for both true and automatically recognized words in news speech. The prosodic model achieves comparable performance with significantly less training data, and requires no hand-labeling of prosodic events. Across tasks and corpora, we obtain a significant improvement over word-only models using a probabilistic combination of prosodic and lexical information. Inspection reveals that the prosodic models capture language-independent boundary indicators described in the literature. Finally, cue usage is task and corpus dependent. For example, pause and pitch features are highly informative for segmenting news speech, whereas pause, duration and word-based cues dominate for natural conversation.Comment: 30 pages, 9 figures. To appear in Speech Communication 32(1-2), Special Issue on Accessing Information in Spoken Audio, September 200
    corecore